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Chiral van der Waals bilayers with interlayer quantum coupling provide an exceptional platform for manipu-
lating the intrinsic chirality within atomically thin films. In this paper, we delve into the intrinsic chirality of two-
dimensional (2D) bilayers possessing time-reversal symmetry (TRS), based on the constitutive equations and cir-
cular dichroism (CD), using the methodologies pioneered in recent works by Stauber et al. [Phys. Rev. Lett. 120,
046801 (2018); Phys. Rev. B 98, 195414 (2018)]. We introduce chiral conductivity σchir and demonstrate that
σchir �= 0 leads to a nonzero CD, unveiling the distinctive chiral response inherent in a 2D bilayer. According to
the criterion, to achieve a chiral response in 2D bilayers while preserving TRS, it is essential to eliminate both
mirror and spatial inversion symmetries. Through the derivation of Poynting vectors, it becomes evident that
σchir �= 0 assumes a crucial role in realizing chiral plasmons within isotropy 2D bilayers characterized by TRS in
the local response limit. We also simulate the chiral response of untwisted bilayer graphene under a bias voltage
by means of numerical calculations.
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I. INTRODUCTION

Chiral materials are abundant in nature and find extensive
applications in stereochemistry [1,2], drug development [3],
and spintronics [4,5] due to their unique property of being
nonsuperimposable on their mirror images. Experimentally,
the chirality of materials can be characterized by circular
dichroism (CD), which measures the relative difference in
absorption between right- and left-circularly polarized light
(CPL; A+ and A−), CD = (A+ − A−)/[2(A+ + A−)]. The
emergence of two-dimensional (2D) materials provides a su-
perior platform for programming the intrinsic chirality in
atomically thin films. Breaking the time-reversal symmetry
(TRS) is essential to achieve chiral response in a monolayer,
which makes experimental realization challenging. Here, van
der Waals (VDW) bilayers offer an alternative approach for
regulating the chirality by sliding or twisting between mono-
layers [6–10]. Twisted bilayer graphene (TBG) eliminates
all mirror symmetries due to the relative rotation between
two graphene layers [6,11–13]. Recent experiments show
that TBG displays remarkably strong CD without the break-
ing TRS [14]. The CD within TBG has garnered attention
from various theoretical studies [15–18], with their findings
showing strong agreement with experimental observations.
Transverse conductivity σchir = σxy stands as a significant in-
dicator, reflecting how current responds in one layer to an
electric field perpendicular to it in another layer. It was dis-
cerned to hold the intrinsic chiral attribute responsible for the
observed nonzero CD [16,17]. The chiral essence of TBG is
also obtained through a tight-binding (TB) model, yielding
σchir = σxy + σ ′

xy [19], where σ ′
xy signifies the transverse con-
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ductivity, capturing the interplay between intralayer currents
and interlayer electric fields. However, for a 2D bilayer with
general symmetries, such as those characterized by notable
anisotropy, a broader understanding of their chiral nature be-
comes essential. Thus, it becomes imperative to explore the
intrinsic chirality within 2D bilayer systems adhering to TRS.
Such a study holds immense significance in predicting the
chiral attributes of diverse 2D bilayer configurations.

Plasmons, the collective oscillations of electrons, can en-
hance light-mater interactions by interacting with light. This
offers an efficient means of boosting chiral optical responses,
such as CD [3,4,20–27], which tend to be very weak in chiral
materials. Chiral Berry plasmons (CBPs) are nonreciprocal
plasmon modes that are confined at the boundaries of 2D ma-
terials. Recently, they have gained significant attention [28,29]
due to their ability to propagate in a strong nonreciprocal
manner, providing a significant advantage in reducing energy
losses. However, the creation of such a CBP is limited to
materials where TRS is lifted, such as magnetic materials or
gapped Dirac systems under pumping with CPL. Recently,
chiral plasmons have also been discovered in TBG. The chiral
plasmons in TBG are characterized by the presence of chiral
electromagnetic fields, accompanied by nonzero transverse
Poynting vectors [30,31]. The chiral plasmons in TBG greatly
enhance the chiral response of the electromagnetic near fields,
making them promising for detecting chiral molecules [30].
This finding offers a viable strategy for obtaining chiral plas-
mons in bilayer materials without violating TRS. However,
a universal theory for the chiral plasmons in these bilayers
is currently lacking, highlighting a need for further research
regarding this issue.

In this paper, we delve into the intrinsic chirality exhibited
by 2D bilayers adhering to TRS, based on the constitu-
tive equations and CD, using the pioneering methodologies
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introduced in recent works by Stauber et al. [16,19]. We
introduce a chiral conductivity σchir = σxy + 1

2σ ′
xy − 1

2σ ′′
xy and

demonstrate that σchir �= 0 leads to nonzero CD and therefore
features the chiral response of a 2D bilayer. We demonstrate
that generation of chiral responses in bilayers requires the
breaking of both mirror and spatial inversion symmetries, in
sharp contrast to the case of monolayers where TRS should
be lifted. In the local response limit, σchir �= 0 is an essen-
tial requirement for the emergence of chiral plasmons within
isotropic 2D bilayer with TRS. The chiral response of bilayer
graphene under a bias voltage is verified by numerical calcu-
lations, which is consistent with the universal criteria.

II. CHIRAL RESPONSE IN A 2D MONOLAYER

We start from a 2D monolayer where the response of the
in-plane current J(ω) to the electric field E(ω) is given by[

Jx(ω)
Jy(ω)

]
=

[
σxx(ω) σxy(ω)
σyx(ω) σyy(ω)

][
Ex(ω)
Ey(ω)

]
. (1)

In Eq. (1), we take the long wavelength limit (q → 0) by
assuming that the wavelength of the electric field is much
larger than the lattice constant of the monolayer. The con-
ductivity of the monolayer σαβ (ω) is calculated by the Kubo
formula [32]:

σαβ (ω) = − ie2gh̄

(2π )2

×
∫ ∑

m,n

fk,m − fk,n

εk,m − εk,n

〈k, m|vα|k, n〉〈k, n|vβ |k, m〉
εk,m − εk,n + h̄ω + iη

× d2k. (2)

In this expression, g is the degeneracy of the system,
εk,m and |k, m〉 represent the energy eigenvalues and the
corresponding eigenvectors, respectively, fk,m is the Fermi
distribution function for the state with the energy of εk,m,
and vα is the velocity operator along the α direction. In
the TB limit, the velocity operator v(k) is expressed as
v(k) = (1/h̄)∇kH (k) [19], where H (k) is the Hamiltonian
matrix for wave vector k. Notably, for the intraband transition
(m = n), we have limq→0( fk,m − fk+q,m)/(εk,m − εk+q,m) =
∂ fk,m/∂εk,m. The intraband part of conductivity σ intra

αβ (ω) can
be written as σ intra

αβ (ω) = iDαβ (ω)/ω, where Dαβ (ω) is the
Drude matrix elements [19].

For a monolayer, the CD can also be represented as [33]

CD = Im[σyx(ω) − σxy(ω)]

2Re[σxx(ω) + σyy(ω)]
. (3)

Obviously, a nonzero CD signal requires Imσyx(ω) �=
Imσxy(ω). The physical meanings of this criterion are more
apparent when referencing Eq. (1), which gives (∇E × J) ·
ez = σyx − σxy. Here, σyx − σxy �= 0 represents intrinsic spi-
ral textures of J(ω) and E(ω). Therefore, we define the
chiral conductivity σchir (ω) = σyx(ω) − σxy(ω), which is ro-
tationally invariant [34], to measure the chiral response of a
monolayer.

For a 2D monolayer with TRS, we have H (k) = H∗(−k)
which gives the eigenvalues and eigenvectors of εk,m = ε−k,m

and ψk,m = ψ∗
−k,m. The electron velocity given by vα (k) =

(1/h̄)∂H (k)/∂kα satisfies vα (−k) = −v∗
α (k). This leads to

σαβ (ω) = σβα (ω) according to Eq. (2). Therefore, breaking
TRS is necessary for creating chiral responses with σxy(ω) �=
σyx(ω) in a 2D monolayer [28,29]. Notably, the chiral re-
sponse explored in this paper distinguishes itself from the
k-resolved chiral response, which entails the selective ab-
sorption of distinct CPL by electrons in specific momentum
regions (valleys). The k-resolved chiral response is observed
in monolayer systems with TRS and broken inversion symme-
try, such as gapped graphene and MoS2 monolayers [35,36].
However, the total CD in these monolayer systems remains
zero owing to the presence of TRS.

III. CHIRAL RESPONSE IN A 2D BILAYER WITH TRS

We divide the current jBL = [ j (1); j (2); j (i)] and electric
field EBL = [E (1); E (2); E (i)] in a 2D bilayer into three parts,
where j (1) (E (1)) and j (2) (E (2)) are the current (or electric
field) of layers 1 and 2, respectively. The interlayer current j (i)

stems from the interlayer transition of electrons. We assume
that the in-plane currents are adequate to characterize the
optical response [16]. Therefore, the current and electric fields
are the two-component vectors and can be written as j (α) =
[ j (α)

x , j (α)
y ]T and E (α) = [E (α)

x , E (α)
y ]T , with α ∈ (1, 2, i). Then

the current jBL and electric field EBL are six-component vec-
tors. The response for 2D bilayer becomes jBL = σBLEBL,
where the conductivity σBL is given by a 6 × 6 matrix.

For a bilayer system, the TB Hamiltonian matrix
H (k) can be partitioned into H (k) = H (1)(k) + H (2)(k) +
H (i)(k) corresponding to the layers of TB bases, which
gives the velocity operator v(α) = (1/h̄)∇kH (α)(k) [α ∈
(1, 2, i)]. Subsequently, the conductivity σBL is derived based
on the composite velocity vector vBL = [v(1), v(2), v(i)] =
[v(1)

x , v(1)
y , v(2)

x , v(2)
y , v(i)

x , v(i)
y ]:

σ BL
αβ (ω) = − ie2gh̄

(2π )2

∫ ∑
m,n

fk,m − fk,n

εk,m − εk,n

× 〈k, m|vBL
α |k, n〉〈k, n|vBL

β |k, m〉
εk,m − εk,n + h̄ω + iη

d2k. (4)

In this expression, α, β ∈ (1, 2, . . . , 6), and vBL
α and vBL

β are
the αth and βth components of the composite velocity vec-
tor vBL, respectively. The presence of TRS leads to σ BL

αβ =
σ BL

βα . The intraband contribution of σ BL
αβ (ω) relates the corre-

sponding Drude matrix element DBL
αβ (ω) with σ BL,intra

αβ (ω) =
iDBL

αβ (ω)/ω, which gives

DBL
αβ (ω) = − e2g

(2π )2

∑
m

∫
∂ fk,m

∂Ek,m
〈k, m|vBL

α |k, m〉

× 〈k, m|vBL
β |k, m〉d2k. (5)

For convenience, we replace σ BL
αβ (ω) and DBL

αβ (ω) with σαβ

and Dαβ in our subsequent discussion. We can demonstrate
that only σ14 − σ23, σ16 − σ25, and σ36 − σ45 are invari-
ant under rotation operations and thus are available for
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characterizing chiral response. Therefore, we separate the chi-
ral part σchir from the conductivity σBL = σchir+σachir with

σchir =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 σxy 0 σ ′
xy

0 0 −σxy 0 −σ ′
xy 0

0 −σxy 0 0 0 σ ′′
xy

σxy 0 0 0 −σ ′′
xy 0

0 −σ ′
xy 0 −σ ′′

xy 0 0
σ ′

xy 0 σ ′′
xy 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

and

σachir =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ11 σ12 σ13 σ̃xy σ15 σ̃ ′
xy

σ12 σ22 σ̃xy σ24 σ̃ ′
xy σ26

σ13 σ̃xy σ33 σ34 σ35 σ̃ ′′
xy

σ̃xy σ24 σ34 σ44 σ̃ ′′
xy σ46

σ15 σ̃ ′
xy σ35 σ̃ ′′

xy σ55 σ56

σ̃ ′
xy σ26 σ̃ ′′

xy σ46 σ56 σ66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

In these expressions, σxy = 1
2 (σ14 − σ23), σ ′

xy = 1
2 (σ16 − σ25),

σ ′′
xy = 1

2 (σ36 − σ45), σ̃xy = 1
2 (σ14+σ23), σ̃ ′

xy = 1
2 (σ16+σ25),

and σ̃ ′′
xy = 1

2 (σ36+σ45). Correspondingly, we can de-
fine Dxy = 1

2 (D14 − D23), D′
xy = 1

2 (D16 − D25), and D′′
xy =

1
2 (D36 − D45).

To elucidate the physical significance of σchir and σachir, we
adopt the assumption made in previous literature [19] that the
electric field varies linearly along the z direction, which gives

E (1) = Ē + 1

2
�E,

E (2) = Ē − 1

2
�E,

E (i) = Ē . (8)

Here, Ē is the average electric field of layers 1 and 2, and
�E represents the difference between E (1) and E (2).

Then the total current j = jchir + jachir and difference of
current between layers 1 and 2 � j = j (1) − j (2) = � jchir +
� jachir are obtained using the constitutive equations for σchir

and σachir, which are written as

jachir = σachir
j,E Ē + 1

2
σachir

j,�E�E,

� jachir = σachir
� j,E Ē + 1

2
σachir

� j,�E�E, (9)

and

jchir = 1

2
σchir

j,�E�E,

� jchir = σchir
� j,E Ē . (10)

The response matrices σachir
j,E , σachir

j,�E , σachir
� j,E and σachir

� j,�E are
presented in the Supplemental Material [34]. The equality of
the antidiagonal terms in these matrices provides evidence for
the achiral nature of jachir and � jachir. The response matrices
for chiral part of currents are

σchir
j,�E = −σchir

� j,E = −2

(
0 σchir

−σchir 0

)
, (11)

with σchir = σxy + 1
2 (σ ′

xy − σ ′′
xy). Clearly, σchir �= 0 features a

chiral response, which can be treated as a universal crite-
rion for 2D chiral bilayers with TRS. The significance of
σxy, σ

′
xy, σ

′′
xy becomes evident when examining Eq. (6). Here,

σxy represents the response of current in one layer to an elec-
tric field perpendicular to it in another layer, while σ ′

xy(σ ′′
xy)

signifies the response of current in layer 1(2) to the interlayer
electric field in the perpendicular direction. The contribution
of intraband transitions to the chiral conductivity σchir can be
characterized by Dchir = −iωσ intra

chir . Therefore, we can deduce
Dchir = Dxy + 1

2 (D′
xy − D′′

xy).
Additionally, according to Maxwell’s equations, we have

z × [E (2) − E (1)] = iωdB̄, where B̄ is the averaged in-plane
magnetic field component between the two layers, and d is the
interlayer distance of the bilayer. Equation (10) can be written
to

jchir = − iωdσchirB̄,

mchir = − dσchirĒ. (12)

Here, mchir = d
2 � j × z represents the in-plane magnetic den-

sity. The chiral nature of the responses characterized by σchir

become more apparent in Eq. (12).
For a 2D bilayer featuring 180 °-rotation symmetry

around the y axis at the middle point between the
two layers, we have H (1)(Myzk) = H (2)(k), H (2)(Myzk) =
H (1)(k), and H (i)(Myzk) = H (i)(k), where Myz is the oper-
ator: Myz(kx, ky) = (−kx, ky). One can obtain v(1)

x (Myzk) =
−v(2)

x (k), v(1)
y (Myzk) = v(2)

y (k), v(i)
x (Myzk) = −v(i)

x (k), and
v(i)

y (Myzk) = v(i)
y (k). Therefore, we can get σ16 = −σ36, i.e.,

σ ′
xy + σ̃ ′

xy = −(σ ′′
xy + σ̃ ′′

xy). Furthermore, if the bilayer also
exhibits rotational invariance around the z axis, we can derive
σ̃ ′

xy = σ̃ ′′
xy = 0 as well, resulting in σ ′

xy = −σ ′′
xy. Consequently,

this allows us to deduce σchir = σxy + σ ′
xy and Dchir = Dxy +

D′
xy, aligning with the chiral Drude parameter discussed in

Ref. [19].

IV. RELATION BETWEEN σchir AND CD

We now examine the scattering behavior when the bi-
layer is subjected to linearly polarized light E i = (Ex

i ex +
Ey

i ey)eiqz (q = ω/c), as depicted in Fig. 1(a). We consider
the scenario where the bilayer is in contact with a substrate
having a dielectric constant ε and occupying the half-space
(z > d), while the remaining half-space (z < 0) is vacuum.
In the absence of currents, we can determine the electric
fields by applying the boundary conditions of Maxwell’s
equations at the interface (z = d). Consequently, we derive
the reflection wave E0

r = (E0,x
r ex + E0,y

r ey)e−iqz and transmis-
sion wave E0

t = (E0,x
t ex + E0,y

t ey)eiq′z(q′ = ω
√

ε/c), wherein
E0,α

r = r0ei2qd Eα
i and E0,α

t = t0ei(q−q′ )d Eα
i (α = x, y), with

r0 = 1 − √
ε

1 + √
ε
, t0 = 1 + r0. (13)

The currents within the bilayers can be deduced from
the constitutive equation j = σBLE0. Notably, these currents
are of the first order with respect to optical conductivity
σi j . The high-order terms of σi j can be safely neglected
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FIG. 1. (a) Schematic of the electromagnetic scattering at a bi-
layer. The two layers are located at z = 0 and z = d planes, and the
interlayer current is assumed to locate at the z = d/2 plane. i, r, and t
represent the incident, reflected, and transmitted waves, respectively.
The electromagnetic waves which propagate between two layers are
represented by m1−m4. (b)–(d) Three typical stacking patterns of
bilayer graphene, which are AA, AB, and BA, respectively.

under the condition where σi j/(cε0) � 1. The total electric
field E is given as E = E0 + E ind, where E ind represents the
electric field induced by currents j = [ j (1); j (2); j (i)]. For the
sake of simplification, we assume that the interlayer current
is confined in the middle plane (z = d/2) between the two
monolayers.

The induced electric fields can be resolved through the ap-
plication of the boundary conditions of Maxwell’s equations,

which gives [34]

E ind
t = − t0

2ε0c
[ei(q−q′ )d j (1) + e−iq′d j (2) + ei(1/2q−q′ )d j (i)]eiq′z,

E ind
r = − 1

2ε0c
[(1 + r0ei2qd ) j (1) + t0eiqd j (2)

+ (1 + r0eiqd )ei(qd/2) j (i)]e−iqz. (14)

Subsequently, we derive the transmission wave Et = E0
t +

E ind
t = (Ex

t ex + Ey
t ey)eiq′z and reflection waves Er = E0

r +
E ind

r = (Ex
r ex + Ey

r ey)e−iqz. The transmission and reflection
amplitudes tαβ and rαβ are given by the linear relationship:(

Ex
t

Ey
t

)
=

(
txx txy

tyx tyy

)(
Ex

i

Ey
i

)
, (15)

and (
Ex

r

Ey
r

)
=

(
rxx rxy

ryx ryy

)(
Ex

i

Ey
i

)
, (16)

which are presented in the Supplemental Material [34]. CPL
has the electric fields of (ex ± iey)/

√
2. The amplitudes of the

transmission and reflection waves given by using Eqs. (15)
and (16) are, respectively:

t± = 1√
2

[(txx ± itxy)ex + (tyx ± ityy)ey],

r± = 1√
2

[(rxx ± irxy)ex + (ryx ± iryy)ey]. (17)

The absorption efficiencies A± of the bilayer to the right-
and left-CPL can be determined from A± = 1 − R± − T±,
where R± = |r±|2 and T± = √

ε|t±|2 represent the reflection
and transmission coefficients, respectively. Assuming qd � 1
and σi j/(cε0) � 1, the CD is given as

CD ≈ −2ωd

c

√
εRe

[
σxy + 1

2σ ′
xy − 1

2

(
1 − 1

2 r0
)
σ ′′

xy

] + r2
0

4t0
Re[σ ′

xy + σ ′′
xy]

Re
(
σ eff

xx + σ eff
yy

) , (18)

where we only consider the lowest orders of qd and σi j .
For ε = 1, we can obtain r0 = 0 and t0 = 1. The CD further
becomes

CD ≈ −2ωd

c

Reσchir

Re
(
σ eff

xx + σ eff
yy

) . (19)

The expressions for σ eff
xx and σ eff

yy are presented in the
Supplemental Material [34]. It is evident that the presence of
Reσchir �= 0 is necessary for the generation of nonzero CD
signals when the bilayer is suspended in vacuum, thereby
highlighting that the chiral response of a bilayer with TRS
can be generally characterized by σchir �= 0. As a special case,
the continuum model of TBG has σ ′

xy = σ ′′
xy = 0 because the

interlayer transitions are independent of wave vector [6], and
the interlayer current is thus neglectable. The CD of TBG
given by Eq. (18) is consistent with that reported in the
previous literature [16]. While the CD has been explored

extensively for TBG through a series of theoretical inves-
tigations [15,17,18], the methodologies established in these
studies can also be adopted for numerical calculation of CD in
various other bilayer configurations. Nevertheless, a direct CD
expression tailored for bilayers with TRS remains absent. The
equation [Eq. (18)] introduced herein holds valuable potential
for CD prediction in bilayer systems with TRS. Its practical
applicability can be further bolstered through experimental
validation.

V. SYMMETRY-DEPENDENT σchir

We now tend to the relationship between the chiral re-
sponse in a bilayer and the underlying lattice symmetries,
including mirror and spatial inversion symmetries. Previous
researchers have suggested that the chiral response in a TBG
system is attributed to the lack of mirror symmetry resulting
from the twist operation applied between the two graphene
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monolayers [16]. In a bilayer system, the mirror operation
with respect to the x-y plane Mxy results in the exchange of the
two atomic layers, while the wave vector remains unchanged.
Therefore, the mirror symmetry with respect to the x-y plane
leads to v(1)

x (k) = v(2)
x (k) and v(1)

y (k) = v(2)
y (k). Using Eq. (4),

we have σ14 = σ23, σ16 = σ36, and σ25 = σ45, which results
in σxy = 0, σ ′

xy = σ ′′
xy, and thereby σchir = 0. Similarly, for

the mirror operation with respect to the x-z plane, Mxz, the
wave vector k becomes Mxzk, while the atomic layers re-
main unchanged. The mirror symmetry with respect to the
x-z plane in a bilayer system results in v(α)

x (k) = v(α)
x (Mxk)

and v(α)
y (k) = −v(α)

y (Mxk), with α ∈ 1, 2, inter, which leads to
σ14 = σ23 = 0, σ16 = σ25 = 0, and σ36 = σ45 = 0, according
to Eq. (4), and thereby σchir = 0. The mirror symmetry with
respect to other planes containing the z axis will also lead
to σchir = 0 because σchir is rotationally invariant. Therefore,
to produce a chiral response, it is necessary to eliminate
all mirror symmetries in a bilayer system. Moreover, spa-
tial inversion symmetry should also be removed from the
bilayer system to achieve a chiral response. Under spatial
inversion symmetry, the velocity operators satisfy v

(1)
x,(y)(k) =

−v
(2)
x,(y)(−k) and v

(inter)
x,(y) (k) = −v

(inter)
x,(y) (−k), which engenders

σ14 = σ23, σ16 = σ36, and σ25 = σ45, according to Eq. (4), and
thereby an achiral response with σchir = 0.

VI. CHIRAL PLASMONS IN A 2D BILAYER

Plasmon modes refer to the electromagnetic fields aris-
ing from the collective oscillations of electrons. Notably, the
transverse component of the Poynting vectors has recently
emerged as a reliable means of characterizing plasmon chi-
rality [30,31]. In the subsequent section, we delve into the
exploration of chirality of plasmons with a 2D bilayer by
considering the influence of the interlayer current.

In the context of a 2D bilayer, we assume the plasmon
currents for layer 1 [ j (1)] and layer 2 [ j (2)] are localized
at the z = 0 and z = d planes, respectively. The interlayer
current j (i) is assumed to be confined in the middle plane
(z = d/2). We further posit that the bilayer is surrounded by a
medium characterized by a dielectric constant ε and magnetic
permeability μ = 1. The current j (α) [α ∈ (1, 2, i)] is defined
as j (α) = [ j (α)

‖ eq + j (α)
⊥ eq,⊥], where q is the wave vector of

plasmon, eq and eq,⊥ represent unit vectors that align parallel
and perpendicular to the wave vector q, respectively. It is
noteworthy that the phase factor ei(q·r−ωt ) is omitted in the
expression of j (α). Within the half-space z < 0 or z > d , the
electric and magnetic fields induced by currents j (α) can be
expressed in the bases (eq, eq,⊥, ez ) as

E ind,(α) = iω

⎡
⎢⎢⎣

−dl j (α)
‖

−dt j (α)
⊥

−i sgn(z)qdl j (α)
‖ /q′

⎤
⎥⎥⎦eiq·re−q′ |z−dα |, (20)

and

Bind,(α) =

⎡
⎢⎢⎣

−sgn(z)q′dt j (α)
⊥

−sgn(z)k2
0 dl j (α)

‖ /q′

−iqdt j (α)
⊥

⎤
⎥⎥⎦eiq·re−q′ |z−dα |. (21)

Here, q′ =
√

q2−ε ω2

c2 , k0 = √
ε ω

c , dl = q′
2εε0ω2 , and dt = − μ0

2q′ .

Also, z = dα is the plane where current j (α) is localized.
Therefore, the total induced electric and magnetic fields are
E ind = ∑

α E ind,(α) and Bind = ∑
α Bind,(α), respectively. The

Poynting vector of the induced electromagnetic fields is de-
fined by P = 1

2μ0
Re[(E ind )

∗ × Bind]. In the limit of q′d � 1,
we have

P = 1

2μ0

⎛
⎜⎝P‖

P⊥
Pz

⎞
⎟⎠e−2q′ |z|, (22)

where

P‖ = ωqRe
∑
α,β

[dt
2 j (α)∗

⊥ j (β )
⊥ + dl

2k0
2 j (α)∗

‖ j (β )
‖ /q′2]

× [1 + q′sgn(z)(dα + dβ )],

P⊥ = −2ωqdl dt Re
∑
α,β

j (α)∗
‖ j (β )

⊥ [1 + q′sgn(z)(dα + dβ )],

Pz = iωsgn(z)Re
∑
α,β

[−d2
l k2

0 j (α)∗
‖ j (β )

‖ /q′ + q′d2
t j (α)∗

⊥ j (β )
⊥

]
× [1 + q′sgn(z)(dα + dβ )]. (23)

The chiral plasmon is characterized by the nonzero trans-
verse component of the Poynting vectors, i.e., P⊥ �= 0. To
gain insight into the origin of the chiral plasmon, it becomes
imperative to establish a connection between the plasmon
currents and the inherent attributes of bilayers, such as their
optical conductivities. In the scope of this paper, we introduce
the definitions of the plasmon current and electric field for the
bilayer as jBL = [ j (1); j (2); j (i)] and EBL = [E (1); E (2); E (i)],

with j (α) = [ j (α)
‖ , j (α)

⊥ ]
T

and E (α) = [E (α)
‖ , E (α)

⊥ ]
T

. The linear

response between current and electric field is written as jBL =
σBLEBL, where σBL is a 6 × 6 nonlocal response matrix for
a finite wave vector q. It is important to highlighted that the
matrix element σi j (q, ω) does not necessarily equal σ ji(q, ω)
even in bilayers with TRS, showcasing the intricate nature of
nonlocal responses.

In the unretarded limit (q � √
εω/c), the bilayers exhibit

support for two types of plasmon modes: an optical mode
characterized by eq · E (1) = eq · E (2) and an acoustic mode
characterized by eq · E (1) = −eq · E (2) [31]. Both modes fall
within the longitudinal category, i.e. eq,⊥ · E (α) = 0. In the
context of bilayers featuring interlayer quantum coupling, it
is typical for the attenuation factor of the Coulomb potential
e−qd to approximate 1. As a result, only the optical modes can
be supported [34]. For instance, considering bilayer graphene
with a carrier density of n = 1012cm−2 per layer and an inter-
layer distance of d = 3.35 Å, we can obtain kF d ≈ 0.06 and
e−kF d ≈ 0.94, where kF represents the Fermi vector. There-
fore, we will only focus on the optical plasmon modes in
our subsequent analysis. For these optical plasmon modes,
we have E (1)

‖ = E (2)
‖ = E (i)

‖ = E and E (α)
⊥ = 0. With these

considerations, we can subsequently determine the plasmon
currents and Poynting vectors.

For the sake of clarity, we will elucidate our points
through two specific examples. First, in the limit of d →
0, we have P⊥ = μ0q

2εε0ω
Re[ j (tot)∗

‖ j (tot)
⊥ ]. Here, j (tot)

‖ and j (tot)
⊥
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are the total transverse and longitudinal currents given by
j (tot)
‖ = ∑

α j (α)
‖ and j (tot)

⊥ = ∑
α j (α)

⊥ . In general, j (tot)
‖ is

not equal to zero, a consequence of the density fluctua-
tion of electrons inherent to plasmon modes. Here, j (tot)

⊥
can be expressed as j (tot)

⊥ = σ⊥q(q, ω)E , where σ⊥q(q, ω)
is the total transverse component of optical conductivity
matrix, given as σ⊥q(q, ω) = σ21 + σ23 + σ25 + σ41 + σ43 +
σ45 + σ61 + σ63 + σ65. As a result, the chiral property of plas-
mons requires σ⊥q(q, ω) �= 0. The local response limit proves
effective particularly for small wave vectors (for graphene,
q < kF ), a range that aligns significantly with the experimen-
tal focuses. In the local response limit σi j (q, ω) ≈ σi j (q →
0, ω), the transverse conductivity σ⊥q(q → 0, ω) can manifest
as nonzero within 2D systems where TRS is broken or in
anisotropic 2D systems [34]. Therefore, to the zero order of
interlayer distance d , P⊥ can be nonzero, and chiral plasmons
can exist in these types of systems.

Secondly, for an isotropy 2D bilayer with TRS, in the local
response limit, σBL can be written as

σ BL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ11 0 σ13 σxy σ15 σ ′
xy

0 σ11 −σxy σ13 −σ ′
xy σ15

σ13 −σxy σ33 0 σ35 σ ′′
xy

σxy σ13 0 σ33 −σ ′′
xy σ35

σ15 −σ ′
xy σ35 −σ ′′

xy σ55 0
σ ′

xy σ15 σ ′′
xy σ35 0 σ55

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

In this condition, σ⊥q(q, ω) is equal to zero. Conse-
quently, P⊥ also attains zero value in the d → 0 limit.
However, using jBL = σBLEBL and Eq. (23), we can
get P⊥ = μ0qq′d

2εε0ω
sgn(z)|E |2Re(σchirσ

∗
tot ). Here, σchir = σxy +

1
2 (σ ′

xy − σ ′′
xy) is the chiral optical conductivity introduced in

previous section. Also, σtot is given as σtot = σ11 + σ33 +
σ55 + 2σ13 + 2σ15 + 2σ35, which generally stands apart from
zero for plasmon modes. This observation enables us to in-
fer that σchir �= 0 leads to the emergency of nonzero P⊥ for
plasmons within isotropic 2D systems with TRS. As a special
case, σxy �= 0 is an essential requirement for the manifesta-
tion of chiral plasmons within the continuum model of TBG
[30,31].

In accordance with our theoretical framework, chiral plas-
mons, distinguished by the presence of a nonzero transverse
component within the Poynting vectors, can be observed
within specific contexts. These contexts encompass a 2D
bilayer where TRS is lifted as well as anisotropic bilay-
ers. Moreover, they also extend to isotropic bilayers where
TRS is maintained and σchir �= 0. It is worth highlighting
that the nature of chiral plasmons differs from the chiral
response previously discussed at q → 0. This distinction is
particularly evident in the case of an anisotropic 2D bilayer,
where chiral plasmons can manifest even in the presence of
σchir = 0.

VII. CHIRAL RESPONSE IN UN-TBG

A highly symmetric bilayer graphene has three typical
stacking patterns: AA, AB, BA, as shown in Figs. 1(b)–1(d),
with the latter two patterns being energetically equivalent and
more favorable than the first pattern. These three patterns

have mirror and spatial inversion symmetries and thereby
achiral response. However, the mirror symmetries can be
lifted by sliding one monolayer relative to another. Starting
from AA stacking pattern, we define the sliding vector δ =
ma1 + na2, where a1=

√
3ai and a2 = √

3a/2i + 3a/2 j are
the basis vectors of graphene. Here, δAB = (a1 + a2)/3 and
δBA = (2a1 − a2)/3 correspond to the AB and BA stacking
patterns, respectively. Obviously, when the sliding vector is
along the zigzag direction (a1, a2, or a1 − a2) or armchair
direction (a1 + a2, −2a1 + a2, or −a1 + 2a2), the mirror sym-
metries with respect to the plane containing the sliding vector
and perpendicular to the x-y plane (basal plane) are preserved,
and thus, the resulting bilayer graphene is achiral. For other
sliding vectors, all the mirror symmetries are removed, but
the spatial inversion symmetry remains intact. The spatial
inversion symmetry of bilayer graphene can be lifted through
the interaction with substrates [e.g., hexagonal boron nitride
(h-BN) substrate] or by applying a bias voltage.

Without loss of generality, we consider the latter case
to demonstrate the possibility of generate chiral response in
un-TBG. We numerically calculate the intraband transition
contribution to the chiral conductivity Dchir based on a TB
model (see the Supplemental Material for details [34]). The
Dchir contours of the bilayer graphene with the stacking pat-
tern characterized by the sliding vector δ = xi + y j, filling
factor ξ = 0.005, and bias voltage U = 0.1eV are plotted in
Fig. 2(a). Here, ξ = 1 represents doping two electrons per unit
cell. As a result, ξ = 0.01 corresponds to the electron density
of n = 3.8 × 1013 cm−2. For a certain δ, we can determine
the atomic positions and establish the TB Hamiltonian. Di-
agonalizing the Hamiltonian allows us to obtain the energy
eigenvalues and corresponding eigenstates. For a given fill-
ing factor ξ , we can derive the Fermi energy. Subsequently,
the Drude matrix elements can be calculated using Eq. (5).
The TB calculations demonstrate that the sliding vectors along
the armchair or zigzag direction lead to Dchir (ω) = 0, suggest-
ing that bilayer graphene at these stacking patterns is achiral.
This is consistent with the symmetry analysis. Moreover,
we can find that Dchir (−δ,U ) = Dchir (δ,U ). We attribute it
to the symmetry operators that link the two stacking patterns.
The stacking patterns of biased bilayer graphene characterized
as δ and −δ but with identical U are connected through the use
of mirror (Mxy) and spatial inversion (I) operators. Interest-
ingly, |Dchir (ω)| reaches its maximal value at δW1 = (0.615i +
0.639 j) Å (W1 pattern) and δW2 = (1.845i + 0.639 j) Å (W2

pattern). The maximal value of |Dchir (ω)| is approximately on
the order of 10−5te2/h̄2, which is two orders of magnitude
smaller than the values reported in TBG [37]. The electronic
band structure of the biased bilayer graphene with W1 stack-
ing pattern is plotted in Fig. 2(b). Layer polarization is quite
apparent, due to the interlayer charge transfer between two
graphene layers induced by bias voltage. The filling factor
dependence of Dchir corresponding to the two stacking pat-
terns is plotted in Fig. 2(c). The two stacking patterns exhibit
opposite Dchir for a specific ξ . The Drude matrix elements Dxy,
D′

xy, and D′′
xy exhibit opposite trends for the two stacking pat-

terns, as illustrated in Figs. 2(d) and 2(e). Unlike the findings
in TBG [19], D′

xy �= −D′′
xy is obtained in these two stacking

patterns due to the reduced symmetries. We also plotted the
bias voltage dependence of Dchir corresponding to the two
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FIG. 2. (a) Dchir as a function of the slipping vector δ = xi + y j between two graphene layers for biased bilayer graphene with U = 0.1 eV
and ξ = 0.005. Dchir is in units of 10−5te2/h̄2, where t = 2.7eV. (b) The layer-polarized band structure for biased bilayer graphene of W1

pattern with U = 0.1eV. K1 and K2 represent two maximum points of the second energy band, which is shown more clearly in the three-
dimensional (3D) band structures. The Fermi energy for different filling factors and several electronic transition processes (t1, t2, and t3)
are also shown. (c) Dchir as a function of ξ for biased bilayer graphene with U = 0.1 eV of W1 and W2 patterns, respectively. The filling
dependence of Dxy, D′

xy, and D′′
xy for W1 and W2 patterns are plotted in (d) and (e), respectively. (f) Dchir as the function of U for biased bilayer

graphene with ξ = 0.005 of W1 and W2 patterns, respectively.

stacking patterns for a filling factor ξ = 0.005 in Fig. 2(f).
It is noteworthy that the Dchir values for bilayer graphene
with identical sliding vector but opposite bias voltages exhibit
opposite behavior, specifically Dchir (δ,−U ) = −Dchir (δ,U ),
since they are connected through the spatial inversion opera-
tor. The Dchir is equal to zero for U = 0 due to the presence
of spatial inversion symmetry, aligning with our symmetry
analysis.

Figures 3(a) and 3(b) showcase the real part of σchir and
CD computed using Eq. (19) for U = 0.1eV and stacking
pattern W1. It is worthy highlighting that the peaks observed
in both Reσchir and CD agree well with the energies of certain
electron transition processes indicated in the band structures
presented in Fig. 2(b). In this analysis, our focus is solely

on ξ = 0. The t1 represents the interband transition processes
with the minimum transition energies, while t2 and t3 represent
the interband transitions involving nested energy bands. Fig-
ures 3(c) and 3(d) illustrate the comparison of Reσchir and CD
among distinct stacking patterns of biased bilayer graphene.
Our chosen parameters are U = 0.2 eV and ξ = 0.0175 (n =
6.65 × 1013 cm−2), values that align with experimental fea-
sibility [38]. Stacking patterns W1 and W2 exhibit nonzero
Reσchir and CD across a wide frequency range, whereas the
nonchiral stacking pattern W3 (with δW1 = 0.639Å j) yields
nearly negligible Reσchir and CD. The chiral response can be
enhanced when the bilayer graphene is placed on a hBN sub-
strate, as simulated by adding the additional on-site energies
for atoms of one layer [34]. For the W1 stacking pattern on a
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FIG. 3. (a) The real part of σchir as a function of energy h̄ω for biased bilayer graphene of W1 pattern with U = 0.1 eV. The corresponding
circular dichroism (CD) for ε = 1 is shown in (b). (c) The real part of σchir for biased bilayer graphene of W1 pattern, W1 pattern with hBN
substrate, W2 pattern, and W3 pattern, respectively. We have taken U = 0.2 eV and ξ = 0.0175. The corresponding CD is shown in (d).

hBN substrate, the maximum CD value reaches ∼ 0.1 mdeg,
akin to the order of magnitude observed in small-twist-angle
TBG [16]. Experimental observations indicate CD values in
the range of a few mdeg for large-twist-angle TBG (θ � 14◦)
[14], a range consistent with CD magnitudes observed in var-
ious chiral molecules [39]. It is worth noting that employing
superchiral light can elevate the asymmetry absorption factor
by an order of magnitude [40]. Thus, experiments have the po-
tential to unveil the chiral response of biased bilayer graphene
with interlayer sliding through the utilization of superchiral
light. Importantly, the chiral characteristic σchir offers a means
to assess and anticipate the intrinsic chirality of diverse 2D
bilayers possessing TRS.

VIII. CONCLUSIONS

In summary, we propose a universal criterion for gener-
ation of chiral response in a 2D bilayer without the need
of breaking TRS. We introduce chiral conductivity σchir =
σxy + 1

2σ ′
xy − 1

2σ ′′
xy and demonstrate that σchir �= 0 features a

chiral response of a 2D bilayer. This criterion is more univer-

sal than that (σxy �= 0) developed for TBGs. According to this
criterion, to achieve a chiral response in the 2D bilayers while
preserving TRS, it is necessary to remove both the mirror
and spatial inversion symmetries. We also set up an analytic
relation between CD and σchir, which will be quite useful for
evaluating CD of a 2D bilayer. Furthermore, out investigation
extends to the examination of chirality in plasmons within 2D
bilayers. Our finding indicates the presence of chiral plasmons
in 2D bilayers where TRS is broken as well as in anisotropic
bilayers. Additionally, these chiral plasmons can manifest in
isotropic bilayers that possess both TRS and σchir �= 0. Taking
the un-TBG under a bias voltage as a demo system, we verify
the criterion by numerical calculations. The findings establish
a comprehensive theoretical framework for exploring chiral
responses in 2D bilayer systems.

ACKNOWLEDGMENTS

This paper is supported by the National Natural Science
Foundation of China (No. 12074218) and the Taishan Scholar
Program of Shandong Province.

[1] M. B. Smith and J. March, March’s Advanced Organic Chem-
istry: Reactions, Mechanisms and Structure (John Wiley &
Sons, Inc., Hoboken, 2007).

[2] Y. Inoue and V. Ramamurthy, Chiral Photochemistry (Taylor &
Francis Group LLC, Boca Raton, 2004).

[3] Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alu,
Chirality detection of enantiomers using twisted optical meta-
materials, Nat. Commun. 8, 14180 (2017).

[4] B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F.
Hanne, Z. Vager, R. Naaman, and H. Zacharias, Spin selectivity

125415-8

https://doi.org/10.1038/ncomms14180


CHIRAL RESPONSE IN TWO-DIMENSIONAL BILAYERS … PHYSICAL REVIEW B 108, 125415 (2023)

in electron transmission through self-assembled monolayers of
double-stranded DNA, Science 331, 894 (2011).

[5] W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K.
Mishra, J. S. Speck, and D. D. Awschalom, Current-induced
spin polarization in gallium nitride, Appl. Phys. Lett. 95,
072110 (2009).

[6] R. Bistritzer and A. H. MacDonald, Moire bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[7] C. J. Tabert and E. J. Nicol, Dynamical conductivity of AA-
stacked bilayer graphene, Phys. Rev. B 86, 075439 (2012).

[8] E. J. Nicol and J. P. Carbotte, Optical conductivity of bilayer
graphene with and without an asymmetry gap, Phys. Rev. B 77,
155409 (2008).

[9] L. Wang, E. M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes,
C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim et al.,
Correlated electronic phases in twisted bilayer transition metal
dichalcogenides, Nat. Mater. 19, 861 (2020).

[10] E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao, X.
Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta et al., Mott and
generalized Wigner crystal states in WSe2/WS2 moire superlat-
tices, Nature (London) 579, 359 (2020).

[11] D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A.
de Heer, P. N. First, and J. A. Stroscio, Structural analysis
of multilayer graphene via atomic moiré interferometry, Phys.
Rev. B 81, 125427 (2010).

[12] A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S.
Novoselov, A. K. Geim, and E. Y. Andrei, Single-layer Behav-
ior and Its Breakdown in Twisted Graphene Layers, Phys. Rev.
Lett. 106, 126802 (2011).

[13] G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro
Neto, A. Reina, J. Kong, and E. Y. Andrei, Observation of Van
Hove singularities in twisted graphene layers, Nat. Phys. 6, 109
(2009).

[14] C. J. Kim, A. Sanchez-Castillo, Z. Ziegler, Y. Ogawa, C.
Noguez, and J. Park, Chiral atomically thin films, Nat.
Nanotechnol. 11, 520 (2016).

[15] E. Suárez Morell, L. Chico, and L. Brey, Twisting Dirac
fermions: Circular dichroism in bilayer graphene, 2D Mater. 4,
035015 (2017).

[16] T. Stauber, T. Low, and G. Gomez-Santos, Chiral Response
of Twisted Bilayer Graphene, Phys. Rev. Lett. 120, 046801
(2018).

[17] S. T. Ho and V. N. Do, Optical activity and transport in twisted
bilayer graphene: Spatial dispersion effects, Phys. Rev. B 107,
195141 (2023).

[18] K. Chang, Z. Zheng, J. E. Sipe, and J. L. Cheng, Theory of
optical activity in doped systems with application to twisted
bilayer graphene, Phys. Rev. B 106, 245405 (2022).

[19] T. Stauber, T. Low, and G. Gómez-Santos, Linear response
of twisted bilayer graphene: Continuum versus tight-binding
models, Phys. Rev. B 98, 195414 (2018).

[20] A. Guerrero-Martinez, B. Auguie, J. L. Alonso-Gomez, Z.
Dzolic, S. Gomez-Grana, M. Zinic, M. M. Cid, and L. M. Liz-
Marzan, Intense optical activity from three-dimensional chiral
ordering of plasmonic nanoantennas, Angew. Chem., Int. Ed.
50, 5499 (2011).

[21] X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. Garcia de
Abajo, N. Liu, and B. Ding, Three-dimensional plasmonic chi-

ral tetramers assembled by DNA origami, Nano Lett. 13, 2128
(2013).

[22] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller,
A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl,
DNA-based self-assembly of chiral plasmonic nanostructures
with tailored optical response, Nature (London) 483, 311
(2012).

[23] B. Yeom, H. Zhang, H. Zhang, J. I. Park, K. Kim, A. O.
Govorov, and N. A. Kotov, Chiral plasmonic nanostructures on
achiral nanopillars, Nano Lett. 13, 5277 (2013).

[24] M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu,
Chiral Plasmonics, Sci. Adv. 3, e1602735 (2017).

[25] H. E. Lee, H. Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho,
K. Chang, W. S. Kim, J. Rho, and K. T. Nam, Amino-acid- and
peptide-directed synthesis of chiral plasmonic gold nanoparti-
cles, Nature (London) 556, 360 (2018).

[26] X. Yin, M. Schaferling, A. K. Michel, A. Tittl, M. Wuttig, T.
Taubner, and H. Giessen, Active chiral plasmonics, Nano Lett.
15, 4255 (2015).

[27] Q. Zhang, T. Hernandez, K. W. Smith, S. A. Hosseini Jebeli, A.
X. Dai, L. Warning, R. Baiyasi, L. A. McCarthy, H. Guo, D. H.
Chen et al., Unraveling the origin of chirality from plasmonic
nanoparticle-protein complexes, Science 365, 1475 (2019).

[28] J. C. Song and M. S. Rudner, Chiral plasmons without magnetic
field, Proc. Natl. Acad. Sci. USA 113, 4658 (2016).

[29] A. Kumar, A. Nemilentsau, K. H. Fung, G. Hanson, N. X. Fang,
and T. Low, Chiral plasmon in gapped Dirac systems, Phys.
Rev. B 93, 041413(R) (2016).

[30] T. Stauber, T. Low, and G. Gomez-Santos, Plasmon-enhanced
near-field chirality in twisted van der Waals heterostructures,
Nano Lett. 20, 8711 (2020).

[31] T. Stauber, M. Wackerl, P. Wenk, D. Margetis, J. González, G.
Gómez-Santos, and J. Schliemann, Neutral magic-angle bilayer
graphene: Condon instability and chiral resonances, Small Sci.
3, 2200080 (2023).

[32] S. A. Mikhailov and K. Ziegler, New Electromagnetic Mode in
Graphene, Phys. Rev. Lett. 99, 016803 (2007).

[33] Z. Addison, J. Park, and E. J. Mele, Twist, slip, and circu-
lar dichroism in bilayer graphene, Phys. Rev. B 100, 125418
(2019).

[34] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.125415 for the demonstration of ro-
tationally invariant chiral conductivity of 2D monolayer, the
achiral response matrices, the transmission and reflection am-
plitudes, the theory for plasmon in a 2D bilayer, the TB model
of bilayer graphene, and the computational details. This con-
tains references to T. Stauber and G. Gomez-Santos, Plasmons
in layered structures including graphene, New J. Phys. 14,
105018 (2012); P. Moon and M. Koshino, Optical absorption
in twisted bilayer graphene, Phys. Rev. B 87, 205404 (2013);
Y.-H. Zhang, D. Mao, and Th. Senthil, Twisted bilayer graphene
aligned with hexagonal boron nitride: Anomalous Hall effect
and a lattice model, Phys. Rev. Res. 1, 033126 (2019).

[35] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics
from inversion symmetry breaking, Phys. Rev. B 77, 235406
(2008).

[36] D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled Spin
and Valley Physics in Monolayers of MoS2 and Other Group-Vi
Dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).

125415-9

https://doi.org/10.1126/science.1199339
https://doi.org/10.1063/1.3194781
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.86.075439
https://doi.org/10.1103/PhysRevB.77.155409
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1103/PhysRevB.81.125427
https://doi.org/10.1103/PhysRevLett.106.126802
https://doi.org/10.1038/nphys1463
https://doi.org/10.1038/nnano.2016.3
https://doi.org/10.1088/2053-1583/aa7eb6
https://doi.org/10.1103/PhysRevLett.120.046801
https://doi.org/10.1103/PhysRevB.107.195141
https://doi.org/10.1103/PhysRevB.106.245405
https://doi.org/10.1103/PhysRevB.98.195414
https://doi.org/10.1002/anie.201007536
https://doi.org/10.1021/nl400538y
https://doi.org/10.1038/nature10889
https://doi.org/10.1021/nl402782d
https://doi.org/10.1126/sciadv.1602735
https://doi.org/10.1038/s41586-018-0034-1
https://doi.org/10.1021/nl5042325
https://doi.org/10.1126/science.aax5415
https://doi.org/10.1073/pnas.1519086113
https://doi.org/10.1103/PhysRevB.93.041413
https://doi.org/10.1021/acs.nanolett.0c03519
https://doi.org/10.1002/smsc.202200080
https://doi.org/10.1103/PhysRevLett.99.016803
https://doi.org/10.1103/PhysRevB.100.125418
http://link.aps.org/supplemental/10.1103/PhysRevB.108.125415
https://doi.org/10.1088/1367-2630/14/10/105018
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevResearch.1.033126
https://doi.org/10.1103/PhysRevB.77.235406
https://doi.org/10.1103/PhysRevLett.108.196802


CHAO DING AND MINGWEN ZHAO PHYSICAL REVIEW B 108, 125415 (2023)

[37] T. Stauber, J. González, and G. Gómez-Santos, Change of chi-
rality at magic angles of twisted bilayer graphene, Phys. Rev. B
102, 081404(R) (2020).

[38] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Controlling the electronic structure of bilayer graphene, Science
313, 951 (2006).

[39] S. M. Kelly, T. J. Jess, and N. C. Price, How to study pro-
teins by circular dichroism, Biochim. Biophys. Acta 1751, 119
(2005).

[40] Y. Tang and A. E. Cohen, Enhanced enantioselectivity in exci-
tation of chiral molecules by superchiral light, Science 332, 333
(2011).

125415-10

https://doi.org/10.1103/PhysRevB.102.081404
https://doi.org/10.1126/science.1130681
https://doi.org/10.1016/j.bbapap.2005.06.005
https://doi.org/10.1126/science.1202817

