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The development of two-dimensional materials has resulted in a diverse range of novel, high-quality com-
pounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate
determination of these materials’ band structure parameters. However, this task is challenging due to the intricate
band structures and the indirect nature of experimental probes. In this work, we introduce a general framework
to derive band structure parameters from experimental data using deep neural networks. We applied our method
to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states.
First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance
as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network
to automatically determine tight-binding parameters directly from experimental data, with extracted parameters
being in a good agreement with values in the literature. We conclude by discussing potential applications of our
method to other materials and experimental techniques beyond penetration field capacitance.
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I. INTRODUCTION

Electronic band structure of crystalline solids represents
a simple yet very rich example of emergence. Under the
influence of scattering from the lattice potential, the elec-
tron may acquire a different value of effective mass, become
massless, and acquire additional quantum numbers such as
pseudospin. In addition, electronic band structure determines
basic properties of materials, provided interactions are weak
enough [1]. Therefore, identifying material parameters that
determine the band structure is of crucial importance. From
a theoretical point of view ab initio methods such as density
functional theory have achieved enormous success in this di-
rection [2]. Nevertheless one typically relies on experimental
data to quantitatively extract band structure properties. Exper-
imentally there exist numerous ways to access the electronic
structure, such as angle-resolved photoemission [3] and x-
ray absorption spectroscopy [4], de Haas-van Alphen effect
based on magnetic oscillations [5], analyzing reflection and
absorption spectra [6], and electronic transport measurement
[7], to name just a few. Despite such a wealth of measurement
techniques, matching experimental results with theoretical
predictions remains a challenging problem due to the com-
plexity of the band structure, which translates into a large
number of involved parameters.

The recent surge of two-dimensional (2D) materials [8]
brings new aspects to the problem of determining band struc-
ture. First, often the complexity and the number of parameters
in 2D materials is considerably lower compared to their
three-dimensional counterparts. Besides, 2D materials feature
additional level control such as modifying charge density by

gating, and may have an extremely high crystal quality. This
opens access to high-resolution experimental data, which may
potentially be used for precise determination of band structure
parameters. A particular example of such data is provided by
so-called penetration field capacitance measurements [9], that
effectively probe the density of states (DOS) of the material
as a function of carrier density and transverse electric field.
Such experimental data has been used to determine material
parameters such as hopping matrix elements in several 2D
systems [10,11].

Typically, extraction of band structure parameters based on
experimental data relies on an efficient solution to what we
term the forward problem. In the specific example of pene-
tration field capacitance measurements sensitive to the DOS,
this means simulating the DOS for specific values of material
parameters such as hopping matrix elements entering tight-
binding model of the band structure. However, the existence of
an efficient solution for this forward problem does not guaran-
tee a fast solution to the inverse problem—identification of the
physical parameters corresponding to a set of empirical data.
The inverse problem is challenging because (i) solving for
the best-fitting parameters is a high-dimensional optimization
problem that requires numerous simulations of the forward
problem at each step that can quickly become very costly
numerically; and (ii) experimental measurements are typically
affected by additional factors not easily accounted for in sim-
ulation (e.g., geometric and parasitic capacitance, disorder),
meaning that an exact match between the data simulated in
the forward problem and that obtained from experiments is
not possible. The typical approach is therefore manual com-
parison of an experimental dataset with a large number of
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FIG. 1. Our approach to the direct extraction of the band structure parameters uses datasets obtained with a physical simulator shown in
(a) to train a DNN in (b), thus providing a more efficient solution to the forward problem. The DNN-based simulator is used for a gradient
optimization of the band structure parameters, allowing to extract their values from experimental data in (c).

simulated ones, relying on physical intuition of which features
are important. This process is laborious and computationally
expensive,1 calling for the development of more efficient and
systematic approaches.

In this work we present a machine-learning-based method
that automates the process of comparing numerical simulation
and experimental data, so the physical parameters of the band
structure that gave rise to a particular experimental dataset can
be determined with minimal human effort. Recently machine
learning and artificial neural network techniques have seen
various applications in the realm of physical sciences [12]. In
condensed matter physics, artificial neural networks have been
used to represent quantum states [13,14] and learn these states
from available data [15,16]. In a different direction, recently
machine learning models were use for photonic crystals band
diagram prediction and gap optimization [17–19]. Despite a
large number of more theoretical applications, machine learn-
ing approaches are only starting to be employed in analysis
of experimental data. Recent examples include identification
of quantum phase transitions [20] and hidden orders from
experimental images [21]. These few examples highlight the
strong potential of machine-learning-based approaches on ex-
perimental data, that we further exploit in the present work.

A conceptual overview of our approach is shown in Fig. 1.
To extract the band structure parameters from experimental
data, we first train a deep neural network (DNN) [22,23]
that solves the forward problem by replicating the numerical
calculation of the DOS (Sec. II A). To this end we use the
simulation of the experimental data shown in Fig. 1(a). In
the particular example of penetration field capacitance data
considered here, the simulator uses the band structure pa-
rameters, the asymmetry potential between two edges of the
system (physically equivalent to transverse electric field) and
the chemical potential as input parameters. As an output we
get charge density and from that determine the DOS by dif-
ferentiating density with respect to chemical potential. A set
of simulated data is used to train the DNN in Fig. 1(b). Con-
structed in a way to efficiently replace the data simulator, the
DNN acts as a function that takes the band structure param-
eters, the asymmetry potential and directly charge density as

1This approach is aptly referred to as graduate-student descent.

input, and outputs the corresponding DOS. It is constructed by
learning from a large dataset of simulation results, optimising
its output to always match that of the simulator. The resulting
DNN represents a fast and differentiable replacement for the
physical simulation. It can therefore be used to efficiently
solve the inverse problem (Sec. II B). In particular, the values
of parameters that gave rise to a given dataset are extracted
using gradient-based optimization in Fig. 1(c), where we iter-
atively modify the band structure parameters until the DNN’s
output matches the provided DOS values.

The task of mapping a vector of inputs (e.g., band struc-
ture parameters) to a continuous output (e.g., DOS) is known
as regression in machine learning [23]. A DNN implements
such a mapping as a series of chained matrix multiplications
(layers) interleaved with elementwise nonlinear functions (ac-
tivations). Each layer multiplies the vector of outputs from
the previous by some weight matrix, to give an updated
vector [22]; the final layer typical yields a single value.
The weight matrices are optimized (trained) using first-order
optimization (e.g., gradient descent), such that the overall
mapping from inputs to output approximates some function
defined by a training dataset of inputs and desired outputs.
The celebrated universal approximation theorem [24] proves
that a neural network with just two layers (but unbounded
width) can represent any smooth function. More recently, it
has been shown that this is also true for a neural network of
bounded width (but unbounded depth) [25]. In practice, even
finite-sized DNNs have proven very successful in approxi-
mating complex functions in many domains of science. One
of our contributions is to show a DNN can also provide an
accurate estimate of DOS given band structure parameters,
field strength, and chemical potential.

Since our final goal is to determine the band structure
parameters from experimental measurements of penetration
capacitance, it might seem natural to train the DNN for ex-
actly this task (the inverse problem), instead of the forward
problem. However, this is not possible in practice. We have
only a single experimental dataset, for which the parameters
are unknown, whereas machine learning techniques require
a large dataset of training examples (with the true output
known) to learn the desired mapping from. If instead we
trained on easy-to-obtain simulated data, the resulting model
would not work on experimental data since the latter is
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significantly different from the former both in terms of the
relative magnitude of features in the data, and the locations
of features such as edges. These differences may arise since
the simulator uses a simplified effective model of the mate-
rial and does not account for screening at the microscopic
level, disorder, strain, experimental uncertainties, and possi-
bly other ingredients. In contrast, statistical learning theory
requires that the training and test data be drawn from the
same distributions if a trained model is to work on the
latter [26].

As a specific application, we demonstrate the framework
outlined above on Bernal stacked (ABA) trilayer graphene.
For this material both band structure parametrization [27,28]
and high-quality experimental measurements are readily
available [11], calling for an accurate extraction of the band
structure parameters. The determination of the band structure
was performed by tour de force manual fitting in an ear-
lier work [11], thus allowing us to benchmark our approach.
First, we train the DNN and show it gives an efficient and
accurate surrogate for numerical calculation of the DOS for
this system, for a wide range of band structure parameters
(Sec. III C). Next, we use the DNN for automatically solving
the inverse problem of determining the physical parameters
giving rise to certain values of the penetration capacitance
(Sec. III D). Finally, we apply this to experimental data from
Ref. [11] by exploiting techniques from computer vision, that
allow matching important features of the measurements (e.g.,
Van Hove singularity peaks and jumps of DOS), while ignor-
ing features that differ between experimental and simulated
data (e.g., measurement noise and discreteness of calculation
grid) (Sec. III E). The resulting values of parameters agree
within error bars with the estimates from the literature, thus
providing a particular benchmark for our approach.

The paper is organized as follows. Section II describes
the general structure of the DNN for the forward prob-
lem and our minimization approach for inverse problem.
Section III applies the framework constructed in Sec. II to
ABA graphene simulation results for the forward and inverse
problems, eventually utilizing it for extracting band parame-
ters from experimental results. Finally Sec. IV is devoted to
discussion of the main results and generalization of the model
to other systems.

II. METHOD

We assume access to a simulator S (see Fig. 1) that in the
particular example of the penetration field capacitance calcu-
lates the charge density n and density of states ν = ∂n

∂μ
given

band structure parameters γ , interlayer asymmetry �1, and
chemical potential μ. We assume γ ∈ �, where � defines a
physically-plausible range for those parameters, and similarly
that (�1, n) ∈ P. The approach presented here is general,
while the specific physical meaning of these parameters will
be discussed in Sec. III. Typically the simulator will be slow to
evaluate, making it difficult to use in the loop for solving the
inverse problem, of finding the physical parameters γ corre-
sponding to observed data. We will instead use S to generate
training data represented by tuples (γ, �1, n, ν) for a ma-
chine learning regression model—a deep neural network—Fω,
that will be trained to approximate S in Sec. II A. We will then

use the resulting DNN Fω when solving the inverse problem
in Sec. II B.

A. Forward problem

We introduce a function Fω that maps γ , �1 and n to the
DOS. We choose Fω to be a deep neural network (DNN) [22],
with weights ω; these weights are free parameters that deter-
mine the function it represents. Our goal is that Fω matches
S as closely as possible for all relevant values of γ , �1 and
μ, i.e., if the simulator returns n and ν for given (γ, �1, μ)
and if (�1, n) ∈ P are within the domain of physically re-
alistic parameters, then DNN approximates well the DOS,
Fω(γ,�1, n) ≈ ν. The network weights ω would ideally be
set to minimize the absolute difference between the network’s
predicted values and those ν from the simulator, over the
entire parameter space � × P:

ω = argmin ω′
∫

(�1, n)∈P,γ∈�

|Fω′ (γ, �1, n) − ν| dγ d�1dn

In practice we instead minimize the mean error over a finite
training set [23] of points T ⊂ � × P at which we have pre-
computed n and ν using the simulator S , i.e.,

ω = argmin ω′ 1

|T |
∑

(γ, �1, n, ν)∈T
|Fω′ (γ, �1, n) − ν|. (1)

To solve this optimization problem, the weights ω are initial-
ized using the heuristic of Ref. [29], then iteratively updated
using the first-order stochastic-gradient optimizer ADAM [30]
with a minibatch size of 512 and learning rate (step size)
of 10−3. We use a DNN with five fully connected lay-
ers of 512 units each, with ELU nonlinearities [31], layer
normalization [32], and residual connections [33]. For the
input layer, we use Fourier feature embedding with four
octaves [34]; for the output layer, we use a single linear unit,
see Appendix A for details. We select these architectural pa-
rameters, and determine when to stop training the DNN, based
on its performance on a separate validation set, that is disjoint
from T . We implemented the DNN using the TensorFlow li-
brary [35]. Codes for generating data, training, and evaluating
the DNN are publicly available [36].

B. Inverse problem

Suppose we have an experimental dataset that provides
measurements of penetration capacitance Cp(D, n), which is
a quantity that is sensitive to the DOS, as we discuss below.
The measurements are acquired while varying (D, n) over
some finite set Q; here D is the strength of an externally
applied electric field that affects �1. The inverse problem is
to determine the band structure parameters γ for the system,
i.e., to find the setting for γ for which the simulated results are
the closest to the experimental ones. We use the trained DNN
Fω in place of the simulator S; we therefore seek

γ = argmin
γ ′∈�

min
α, β

1

|Q|
∑

(D,n)∈Q

d (C∗
p (D, n), Cp(D, n)), (2)

where d is a metric quantifying the difference between exper-
imental and predicted values, and we introduced a function
C∗

p (D, n) that relies on the electrostatic model to convert the

125411-3



PAUL HENDERSON et al. PHYSICAL REVIEW B 108, 125411 (2023)

DOS approximated by the DNN into the penetration field
capacitance value,

C∗
p (D, n) = β1

β2 + Fω(γ ′, α1D + α3D3, n)
, (3)

with α1,3 and β1,2 being parameters that encode the screening
and electrostatic characteristics of the experimental setup, re-
spectively. This function and intuition behind these additional
parameters is described in detail in Sec. III A.

We solve the minimization problem (2) using the ADAM

optimizer [30].2 This optimizer makes use of the gradient
of the objective with respect to γ; to calculate this, we use
reverse-mode automatic differentiation on the objective in
Eq. (2), similar to the back-propagation process used when
training the DNN [37], but now with the weights ω held fixed
and gradients instead propagated to the inputs γ .

III. APPLICATION TO ABA GRAPHENE

In this section we discuss a specific application of our
method—determining the band structure of Bernal stacked
trilayer (ABA) graphene. We first describe the physical system
and how it is simulated in Sec. III A. Then, we discuss the
dataset that we generate using this simulator (Sec. III B) and
use to train the DNN. Finally, we discuss the performance
of the trained DNN when solving the forward (Sec. III C)
and inverse (Sec. III D) problems, and how we apply it to
experimental data (Sec. III E).

A. Physical system and simulation

The band structure of ABA graphene can be decomposed
through rotation of the basis into monolayer- and bilayer-
graphene-type sectors, which get coupled through a dis-
placement field applied between the layers. The Hamiltonian
matrix takes the form [28]

Hk =
(

HSLG V

V T HBLG

)
, (4)

where

HSLG =
(

�2 − γ2

2 v0π
†

v0π − γ5

2 + δ + �2

)
,

HBLG =

⎛
⎜⎜⎜⎜⎝

γ2

2 + �2

√
2v3π −√

2v4π
† v0π

†

√
2v3π

† −2�2 v0π −√
2v4π

−√
2v4π v0π

† δ − 2�2

√
2γ1

v0π −√
2v4π

†
√

2γ1
γ5

2 + δ + �2

⎞
⎟⎟⎟⎟⎠,

V =
(

�1 0 0 0

0 0 0 �1

)
.

2We also experimented with the constrained trust-region method
of Ref. [49], and the quasi-Newton method L-BFGS-B [50], both as
implemented in SCIPY [51]. However, noise in the experimental data
caused both these methods to perform poorly, becoming trapped in
local optima.

Here vi = √
3aγi/2 and a = 2.46 Å is the lattice constant.

γi and δ are the hopping and on-site potential parameters of
the physical system. π = ξkx + iky is the crystal imaginary
momentum measured with respect to K± valley points labeled
by ξ = ±1. �1 describes the effect of the external field and �2

charge asymmetry between external and internal layers.
For producing simulated data we calculate density and

DOS on a grid using eigenvalues of Hamiltonian (4) εk for
each value of chemical potential μ

n(μ) = 4
Sk

(2π )2

1

N

∑
k

nF (εk − μ), (5)

ν(μ) = 4
Sk

(2π )2

1

N

∑
k

n′
F (εk − μ), (6)

where 4 accounts for spin and valley degeneracy, Sk is the area
of the Brillouin zone sampled in the grid, N is the number
of grid points, and nF (x) = 1/(ex/T + 1) is the Fermi-Dirac
distribution. We use finite temperature T = 0.025 meV in the
calculation to smoothen singularities of DOS at Van Hove
singularity points, and a hexagonal grid with a momentum
cutoff ka = 0.15 and 7.5×105 grid points.

To obtain the dependence of the experimentally measured
penetration field capacitance on the DOS we can use the
following formula [11,38,39]:

Cp = ct cb

ct + cb + e2ν
, (7)

where cb and ct is the geometric capacitance of bottom and top
gate, e is the charge of the electron. However, this is a simpli-
fied formula, which ignores layer polarization change due to
the applied electric field D, and views the trilayer graphene as
a single-layer system. Therefore, to allow a more general re-
lationship, we introduced the parameters β1 and β2 in (3). Be-
sides linear screening, we allow for nonlinear component, so

�1 = α1D + α3D3. (8)

Due to the presence of a parasitic capacitance, we model
the relation between experimentally measured and calculated
charge density by

n′ = n + (μ − μ(�1 = 0, n = 0))/η, (9)

where η is the inverse of parasitic capacitance.
In the figures, simulation results are presented in terms

of inverse of DOS ν−1 in units of eV · Au.c, where Au.c =√
3a2/2 is the area of graphene unit cell. Charge density is

always presented in units of cm−2. Band structure parameters
γi and parameters δ, �1, �2, and μ are presented in meV.

B. Data generation

Using the simulation S described above, we generate data
to train and evaluate the DNN. In order to define a suitable
grid, we choose the space � of valid physical parameters
using physical insights into the meaning of the tight-binding
parameters. Since δ and γ5 introduce only a simple energy
shift on the spectrum for a considerable range of values,
we fix them to δ = 35.5 meV and γ5 = 50 meV. We also
fix γ0 = 3100 meV and γ1 = 380 meV; these are intralayer
and direct interlayer hopping matrix elements, which were
studied extensively in graphite, and in monolayer and bilayer
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TABLE I. Range of physical parameter and grid step used in the
calculations.

Parameter Minimum (meV) Maximum (meV) Step (meV)

γ0 3100 3100 –
γ1 380 380 –
γ2 −25 −1 3
γ3 −340 −242 7
γ4 100 177 7
γ5 50 50 –
δ 35.5 35.5 –
�2 0 11 1

graphene. The remaining tuning parameters that constitute γ

are γ2, γ3, γ4, �2, and η. These parameters are allowed to
take values in the ranges shown in Table I. Finally, we define
P, the region of acceptable parameters �1 and n, according
to 0 � �1 � 75 meV and |n| < 4×1012 cm−2, corresponding
to the physically achievable range of transverse electric fields
and densities, respectively.

To generate datasets for training, validation, and testing of
the DNN, we iterate over a grid of γ2, γ3, γ4, and �2, with the
respective increments for each specified in the last column of
Table I. The increment is chosen so that for each parameter
the grid contains on the order of 10 points. We also add an
additional random offset of up to half the step size to each
value, to avoid the DNN overfitting on points of the grid. We
then partition this set of parameter vectors into three disjoint
subsets: We randomly assign 75% of parameter values to the
training set T , 10% for validation, and the remainder for
testing.3

For each value of the structure parameters, we vary �1

and μ in the intervals [0, 75] meV and [−115, 115] meV with
steps 2.5 meV and 0.025 meV, respectively. We calculate the
corresponding values of n and ν using S as specified in
Eqs. (5)–(6). Since the charge density n for different values
of the parasitic capacitance may be determined straightfor-
wardly from that when it is zero, we fix the inverse parasitic
capacitance η = ∞. This yields a dataset of tuples of val-
ues (γ2, γ3, γ4, �2, �1, n, ν). We discard tuples where n /∈
P (which is beyond our range of interest), or both |n| <

0.01×1012 cm−2 and ν < 0.01 eV · Au.c (i.e., very close to the
charge neutrality point and the gapped region, respectively).
During the training process itself, we sample the value of in-
verse parasitic capacitance, η, from a log-uniform distribution
on the interval [50, 5000] 10−12 meV×cm2, independently for
each element of each minibatch, and transform n according to
(9). In total our training set contains 1.38×109 points from
14580 settings of the band structure parameters; there are
184×106 points in the validation set, and 276×106 in the test
set.

C. Forward problem: Calculating ν

Using the dataset of simulation results for ABA graphene
described above, we train a DNN following the protocol

3Note that the validation set is used for determining convergence
and selecting the network architecture, while all results are reported
on the testing set; this avoids overfitting to the testing data.

in Sec. II A, to predict the density of states ν. To evalu-
ate the accuracy of the trained DNN, we use it to predict
ν for points in the held-out test set, i.e., for parameters
(γ2, γ3, γ4,�2) /∈ T that were not contained in the training
dataset. Quantitatively, our method achieves a mean absolute
error in ν of 0.00288 eV · Au.c, corresponding to a mean rel-
ative error of 5.95%. We further analyzed the cause of these
errors, by resimulating a random subset 300 of plots in the
test set using a finer momentum grid with 6.75×106 points
and cutoff ka = 0.2. Comparing the DNN’s predictions to
these more accurate simulations, the absolute error reduces
to 0.00067 eV · Au.c, corresponding to a mean relative error
of 1.32%. We also measure the relative error of the lower-
resolution simulations forming our dataset, with respect to
the 300 higher-resolution plots, and find this is 5.97%. Re-
markably, the DNN’s predictions are therefore slightly more
accurate than the lower-resolution simulations used for its
training data. We hypothesize that this is due to the DNN’s in-
ductive bias towards learning smooth functions discouraging
it from learning the very variable high-frequency artifacts that
arise due to the coarser momentum grid. Therefore, in the fol-
lowing figures we show simulator results for higher-resolution
momentum grid, although DNN training was performed using
lower-resolution data.

Examples of outputs from the DNN, alongside corre-
sponding outputs from the simulator, are shown in Fig. 2.
We also visualize the mean absolute difference between the
DNN’s predictions, and those of the simulator. We see that
the DNN produces outputs closely matching the simulator,
most importantly accurately incorporating features such as
discontinuities and (smoothened) singularities that originate
from the changes of Fermi surface topology upon tuning den-
sity, n or �1. For instance, the diagonal feature for negative
densities in Fig. 2(a) corresponds to the disappearance of the
hole pocket upon increasing density, while parabola-shaped
blue line in the negative density region corresponds to the
Van Hove singularity where DOS would show a logarithmic
divergence in absence of cutoffs introduced due to finite tem-
perature and finite grid size in momentum space. The plots
of absolute differences show that the errors are typically very
small in regions of uniform ν−1, and are dominated by small
misalignments of the features that correspond to DOS discon-
tinuities or singularities.

We also measure the difference in computation time for
the simulator and the DNN. Running with four threads on a
3.6 GHz Intel Core i7-9700K CPU, the simulator takes 1445 s
to evaluate ν for the grid of (�1, μ) specified in Sec. III B
and the fine momentum grid. Running the DNN on the same
CPU with four threads takes just 1.1 s. Moreover, it does so
with higher-resolution sampling of the range of values of n
that are of interest, due to taking n as an input instead of μ,
hence avoiding the need to discard calculations where n is
outside the range of interest.

D. Inverse problem: Determining parameters

We next consider the inverse problem, of finding the band
structure parameters corresponding to a set of measurements.
We first evaluate our method on simulated data; this allows
validating the proposed approach quantitatively, by measuring
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(a) (b)

FIG. 2. Predictions of the inverse DOS, ν−1, by our DNN, compared with results from a numerical simulator. (a) and (b) corresponds
to the band structure parameters γ2 = −4.3, γ3 = −342, γ4 = 133.4, �2 = −0.4, and γ2 = −15.6, γ3 = −248.8, γ4 = 104.9, �2 = 11.2,
respectively. Both of the sets were not present in the training data for the DNN. For each we show: (left) ν−1 as a function of field strength
�1 and electron charge density n, as predicted by a simulator; (middle) ν−1 as predicted by our DNN; ideally this would exactly match the
simulator output; (right) the absolute difference between the simulator and DNN values. We see good correspondence between the DNN’s
outputs and the simulator, indicating that it has been successfully trained to replicate the simulator output, at much lower computational cost.

how accurately it recovers the parameters that were input to
the simulator. Specifically, we select 100 simulator-generated
plots at random from the held-out test set to use as input; each
plot shows how DOS ν varies with �1 and n, and we aim to
find the corresponding band structure parameters.

To find the parameters γ , we follow the procedure de-
scribed in Sec. II B, using the same DNN as discussed in
Sec. III C. As the inputs are simulated data, the DOS itself
is directly available, hence we choose the metric d in (2) to
be the mean-squared difference between the input and pre-
dicted ν.

Table II shows quantitative results from our approach,
calculated over 100 plots from the test set. For each band
structure parameter, we give the mean and median absolute
error, and also the median relative error after first subtracting
the midpoint of the corresponding range in Table I. We see
that both absolute values of error and also its relative value are
small, with the greatest relative error being 5% for the param-
eter γ3, and even smaller for the remaining parameters. Such a
confidence interval in determining tight-binding parameters is
much smaller compared to the error bars typically available in
the literature. For instance, Ref. [11] determines γ3 parameter
with the precision of 17%. Further discussion on quantitative
performance of the model using parity plots is provided in
Appendix B. Qualitative illustrations of our results for two
particular points in the parameter space are given in Fig. 3. We
show the plot provided as input to our method, and the result

TABLE II. Quantitative performance on recovering band struc-
ture parameters from simulated data.

Parameter
Mean absolute

error (meV)
Median absolute

error (meV)
Median relative

error

γ2 0.12 0.10 0.0156
γ3 1.54 1.30 0.0512
γ4 0.59 0.45 0.0240
�2 0.04 0.03 0.0135

of running the simulator on the predicted parameter values.
Here we show high-resolution momentum grid images for
both the input and the prediction, although the DNN operated
on low-resolution momentum grid images. We see that the
residual error is very small, and is less concentrated in the
vicinity of DOS discontinuities or singularities, compared to
Fig. 2 that benchmarked the forward approach.

E. Application to experimental data

Finally, we apply our method to the high-quality experi-
mental dataset of penetration capacitance measurements for
ABA graphene used in Ref. [11]. Note, that Ref. [11] utilized
additional datasets, namely, the density of states in presence
of magnetic field (Landau level regime) in order to assist in
determination of tight-binding parameters and to infer the
associated error bars. In contrast, here we use solely zero
magnetic field penetration field capacitance data. Our goal is
to solve a similar inverse problem to the one in Sec. III D, i.e.,
predicting the band structure parameters for this system, but
now given only noisy measurements of Cp.

Using the mean-squared difference between predicted and
experimental Cp for the metric d in Eq. (2) yields poor results
in this setting. This is because features in the simulated and
experimental plots (e.g., jumps in DOS) do not perfectly align
for any choice of parameters, and also because there is a
small residual difference in the absolute values of Cp between
simulated and experimental data even when the plots are
optimally aligned. These discrepancies can be at least partially
attributed to multiple physical mechanisms that are not in-
corporated in our model. In particular, we take account of the
screening only phenomenologically by using the third-order
expansion (8), whereas the use of self-consistent Hartree-Fock
screening would result in a more complex function. In
addition, we ignore potential renormalization of the band
structure parameters by the strong applied electric fields, that
could make all band structure parameters dependent on n and
�1. Finally, disorder and strain effects are not incorporated in
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γ2 γ3 γ4 Δ2

true −15.58 −314.1 161.1 −0.15
predicted −15.36 −313.3 160.2 −0.16

γ2 γ3 γ4 Δ2

true −18.64 −265.7 114.8 5.30
predicted −18.56 −265.0 115.1 5.28

(a) (b)

FIG. 3. Results on inverting simulator outputs, i.e., predicting the band structure parameters that gave rise to a given plot. Each panel
shows (left) simulated ν−1 as a function of �1 and n, for the specified true band parameters; (center) simulated ν−1 for the values of the band
parameters inferred by our method; (right) absolute difference between simulations and inferred data. The tables at the top compare the true
and predicted values of parameters.

our model, yet these may lead to inhomogeneous broadening
of the features.

To mitigate this issue, we adopt techniques from computer
vision that are used to align dissimilar images; these are typ-
ically employed in tasks such as template matching [40,41],
medical image registration [42,43], and alignment of satellite
imagery [44]. First, in order to match prominent features in
the plot such as edges regardless of the absolute values of Cp,
we match the derivative of Cp with respect to D and n instead
of Cp itself. Second, instead of the mean-squared error, we
use the negative zero-normalized cross correlation [41], which

is invariant to changes in mean and standard deviation. We
therefore set

d (C∗
p, Cp) = − ∂DC∗

p − m∗
D√

〈(∂DC∗
p − m∗

D)2〉
· ∂DCp − mD√〈(∂DCp − mD)2〉

− ∂nC∗
p − m∗

n√
〈(∂nC∗

p − m∗
n )2〉

· ∂nCp − mn√〈(∂nCp − mn)2〉 (10)

in Eq. (2), where 〈 · 〉 is the mean over all (D, n), m∗
D =

〈∂DC∗
p〉, m∗

n = 〈∂nC∗
p〉, mD = 〈∂DCp〉, mn = 〈∂nCp〉, and the

−1.0 −0.5 0.0 0.5 1.0
D (V/nm)

−1.0

−0.5

0.0

0.5

1.0

n
e

10
12

cm
−2

Exp.−Cp (arb. units) 0 1

−100 −50 0 50 100
Δ1 (meV)

Lit.− ν−1 (eV · Au.c.)
0 50

−100 −50 0 50 100
Δ1 (meV)

Pred.− ν−1 (eV · Au.c.)
0 50

FIG. 4. Inferring band structure parameters from experimental data. The left plot shows experimental Cp measurement as a function of
displacement field D and charge density n; the middle and right plots show the inverse of DOS ν−1 as a function of �1 and n for parameters
γ2 = −21, γ3 = −290, γ4 = 141, �2 = 3.5 and γ2 = −15.5, γ3 = −312.9, γ4 = 132.3, �2 = 3.0, respectively. The middle figure is the best
match to the experimental results cited in the literature [11], while the right one is the prediction of the DNN. The middle and right plots
were obtained using simulator with higher resolution of μ (�μ = 0.002), hexagonal grid with maximum momentum ka = 0.2, 6.75×106 grid
points, larger range of �1 and with a step of 0.5.
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TABLE III. Quantitative results of sensitivity analysis on exper-
imental data. For each parameter, we record the values to which it
must be decreased/increased to cause the distance function d (C∗

p, Cp)
to increase by 1%. We specify both absolute and relative values; a
large percentage indicates low sensitivity to that parameter/direction,
as a large change is required to affect the quality of fit.

Decreasing Increasing

Parameter meV rel. diff. Best fit (meV) meV rel. diff.

γ2 −17.25 −11.2% −15.51 −14.45 +6.8%
γ3 −343.5 −9.8% −312.9 −296.8 +5.1%
γ4 111.1 −16.1% 132.3 153.2 +15.8%
�2 2.72 −9.5% 3.00 3.17 +5.5%

derivatives of the experimental measurements are approxi-
mated using finite differences. Lastly, in order to mitigate
against local minima, we average the objective (10) over
multiple scales, i.e., subsampling the grid Q by factors 2i

for i ∈ {1 . . . 5}, and correspondingly smoothing and down
sampling Cp and C∗

p to form scale-space pyramids [45].
Solving the resulting minimization problem as described in

Sec. II B recovers the following parameters:

γ2 = −15.5 meV, γ3 = −312.9 meV,

γ4 = 132.3 meV, �2 = 3.0 meV. (11)

These are broadly consistent with the estimates obtained from
manual fitting in Ref. [11]. More precisely, our estimates of
γ2, γ3, and γ4 lie within the error bars of Ref. [11] (although
γ2 is at the upper limit), while �2 is slightly outside (we pre-
dict 3.0, compared with their confidence interval [3.3, 3.7]).
Notably, the obtained γ2 is actually very close to the value
obtained for ABC trilayer graphene [46].

In Fig. 4, we visualize the experimental data, and the output
from the simulator when run with the above parameters at
high resolution. The simulated plot shows a good match to the
experimental one, with similar features (e.g., discontinuities)
appearing at similar locations. We also show the result using
the parameters of Ref. [11], these are again qualitatively very
similar. From visual inspection the separation between the two
Van Hove singularities in the hole region appears to be wider
for predicted parameters than for the one from Ref. [11]. This
trend is consistent with the experimental results. For all other
features the difference between the two models is visually
indistinguishable. Therefore, the newly obtained parameters
are a better fit to the experiment data.

We also measure the sensitivity of the experimental fit with
respect to each of the band structure parameters. Specifically,
we increase and decrease each of the parameters γ2, γ3, γ4 and
�2 separately, until the distance d (C∗

p, Cp) between predicted
and experimental Cp values increases by more than 1% from
the best fit value. This lets us measure quantitatively how
large a change in each parameter is required to cause the
same reduction in the quality of fit. Results from this analysis
are given in Table III. We see that the fit is least sensitive to
γ4, with changes of around 16% in either direction required to
cause a change of 1% in the distance d . Conversely, increasing
γ3 by just 5.8% leads to a 1% change in d; �2 and γ2 are
similarly sensitive to increases.

IV. DISCUSSION

To summarize, we proposed a deep neural network-based
approach to determining band structure parameters of two-
dimensional materials. Our framework consists of two steps,
which rely on the existence of a method to simulate the ex-
perimentally accessible data. In the first step we train a deep
neural network to obtain a more efficient replacement for the
data simulator. In the second step, we extract band structure
parameters by minimizing the difference between the experi-
mental dataset and the data simulated by the neural network.
To illustrate the application of our framework, we focused on
a specific material—trilayer graphene—and performed band
structure parameter extraction using the experimental data
on the penetration field capacitance that effectively probes
the density of states. Our procedure resulted in the precise
determination of band structure parameters that are close to
those determined manually.

In contrast to manual fitting, the approach proposed in our
work is more automated, thus involving less human effort.
In addition, it is capable of providing more precise values of
band structure parameters, and of estimating associated error
bars. We expect that our framework can be easily applied
with minimal modifications to the penetration field capac-
itance data in other two-dimensional materials. Moreover,
it can be generalized to other experimental probes, such as
penetration field capacitance in presence of magnetic field,
transport, scanning tunneling microscopy, and other probes
that are sensitive to the band structure details. Application to
different experimental quantities requires replacement of the
simulator function in our framework, which would be straight-
forward. A more intricate step consists in understanding the
relation between the simulated quantities and experimental
measurements. For instance, in the case of penetration field
capacitance, the matching of experimental data additionally
required incorporating nontrivial screening of electric field,
the presence of parasitic capacitance and geometric capaci-
tances of the gates. These steps require physical insight into
the details of the experimental measurements.

Finally, a conceptually novel generalization direction may
include incorporating interaction effects into our framework.
For instance, the recent observation of Stoner transitions in
twisted bilayer graphene [47,48] or chirally stacked ABC
trilayer graphene [46], calls for unambiguous identification
of interaction parameters alongside the band structure details
(that may be in turn quite significantly renormalized due to
interactions). We expect that such an extension of our frame-
work may be feasible, provided one is able to construct an
efficient simulator of the density of states that incorporates
the interactions. This would constitute an important step to-
wards an experimental extraction of the complete Hamiltonian
governing electronic degrees of freedom, thus bringing two-
dimensional materials on par with quantum simulators that
use cold atoms or other platforms to synthetically engineer
and verify a desired Hamiltonian.
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FIG. 5. Architecture of the deep neural network Fω. The DNN takes band structure parameters (γ2, γ3, γ4, �2), inverse parasitic
capacitance η, interlayer asymmetry �1 and charge density n as input. It processes them with a Fourier embedding layer (FE), linear layer with
512 outputs, and ELU nonlinearity, followed by five blocks with residual connections consisting of linear, ELU, and layer-norm (LN) layers.
The resulting features are mapped via a linear projection to the density of states ν.
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APPENDIX A: ADDITIONAL MODEL
AND TRAINING DETAILS

The architecture of our deep neural network Fω is shown in
Fig. 5. In total, the DNN has 1.35×106 weights (i.e., trainable
parameters). We train the model using ADAM [30] with a fixed
learning rate of 10−3, and the standard momentum parameters
β1 = 0.9, β2 = 0.999, and ε = 10−7. The batch size is set to
512. Convergence is determined according to the loss on the
held-out validation set—we stop training once the validation
loss has failed to decrease for ten consecutive epochs, and
retain the checkpoint with minimum validation loss. We use
a single Nvidia RTX 2080 Ti GPU for training, operating at
32-bit precision.

APPENDIX B: ADDITIONAL QUANTITATIVE RESULTS
ON THE INVERSE PROBLEM

To gain further insights on the performance of the model
for the inverse problem, Fig. 6 shows parity plots of the band
structure parameters γ2, γ3, γ4, and �2 for the same test set
of 100 plots, which was used for obtaining the metrics in
Table II. As noted in the discussion of Table II the largest
deviation is observed for parameter γ3, and Fig. 6(b) shows
that the prediction of the model is always higher than the true
values. This systematic error hints at a direction for further

improving the model accuracy, and would be an interesting
target for future investigation.

(a) (b)

(c) (d)

FIG. 6. Parity plots of the band structure parameters from simu-
lated data for the inverse problem using the test set of 100 plots. The
analyzed data is the same as in Table II. MAE (mean absolute error),
RMSE (root mean-square error) and R2 metrics are also shown.
Equality line (y = x) is shown in red.

125411-9



PAUL HENDERSON et al. PHYSICAL REVIEW B 108, 125411 (2023)

[1] W. A. Harrison, Electronic Structure and the Properties of
Solids: The Physics of the Chemical Bond (Dover Publications,
New York, 1989).

[2] P. J. Hasnip, K. Refson, M. I. Probert, J. R. Yates, S. J. Clark,
and C. J. Pickard, Density functional theory in the solid state,
Philos. Trans. R. Soc. Lond. A 372, 20130270 (2014).

[3] A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved
photoemission studies of the cuprate superconductors,
Rev. Mod. Phys. 75, 473 (2003).

[4] F. de Groot, High-resolution x-ray emission and x-ray absorp-
tion spectroscopy, Chem. Rev. 101, 1779 (2001).

[5] D. Shoenberg, Magnetic Oscillations in Metals (Cambridge
University Press, Cambridge, 2009).

[6] F. Wooten, Optical Properties of Solids (Academic Press,
New York, 2013).

[7] U. Mizutani, Introduction to the Electron Theory of Metals
(Cambridge University Press, Cambridge, 2001).

[8] K. Novoselov, A. Mishchenko, A. Carvalho, and A. Castro
Neto, 2D materials and van der Waals heterostructures, Science
353, aac9439 (2016).

[9] J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Negative
Compressibility of Interacting Two-Dimensional Electron and
Quasiparticle Gases, Phys. Rev. Lett. 68, 674 (1992).

[10] J. Island, X. Cui, C. Lewandowski, J. Khoo, E. Spanton, H.
Zhou, D. Rhodes, J. Hone, T. Taniguchi, K. Watanabe, L. S.
Levitov, M. P. Zaletel, and A. F. Young, Spin–orbit-driven band
inversion in bilayer graphene by the van der Waals proximity
effect, Nature (London) 571, 85 (2019).

[11] A. A. Zibrov, P. Rao, C. Kometter, E. M. Spanton, J. I. A. Li,
C. R. Dean, T. Taniguchi, K. Watanabe, M. Serbyn, and A. F.
Young, Emergent Dirac Gullies and Gully-Symmetry-Breaking
Quantum Hall States in ABA Trilayer Graphene, Phys. Rev.
Lett. 121, 167601 (2018).

[12] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning
and the physical sciences, Rev. Mod. Phys. 91, 045002 (2019).

[13] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[14] K. Choo, G. Carleo, N. Regnault, and T. Neupert, Symmetries
and Many-Body Excitations with Neural-Network Quantum
States, Phys. Rev. Lett. 121, 167204 (2018).

[15] Z. Cai and J. Liu, Approximating quantum many-body wave
functions using artificial neural networks, Phys. Rev. B 97,
035116 (2018).

[16] A. Borin and D. A. Abanin, Approximating power of machine-
learning ansatz for quantum many-body states, Phys. Rev. B
101, 195141 (2020).

[17] T. Christensen, C. Loh, S. Picek, D. Jakobovic, L. Jing, S.
Fisher, V. Ceperic, J. D. Joannopoulos, and M. Soljacic, Pre-
dictive and generative machine learning models for photonic
crystals, Nanophotonics 9, 4183 (2020).

[18] A. Nikulin, I. Zisman, M. Eich, A. Y. Petrov, and A. Itin,
Machine learning models for photonic crystals band diagram
prediction and gap optimisation, Photon. Nanostruct. Fund.
Appl. 52, 101076 (2022).

[19] A. Sheverdin, F. Monticone, and C. Valagiannopoulos, Photonic
Inverse Design with Neural Networks: The Case of Invisibility
in the Visible, Phys. Rev. Appl. 14, 024054 (2020).

[20] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner,
C. Becker, K. Sengstock, and C. Weitenberg, Identifying
quantum phase transitions using artificial neural networks on
experimental data, Nat. Phys. 15, 917 (2019).

[21] Y. Zhang, A. Mesaros, K. Fujita, S. Edkins, M. Hamidian, K.
Ch’ng, H. Eisaki, S. Uchida, J. S. Davis, E. Khatami, and E.-A.
Kim, Machine learning in electronic-quantum-matter imaging
experiments, Nature (London) 570, 484 (2019).

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, 2016), http://www.deeplearningbook.
org.

[23] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer-Verlag, Berlin, 2006).

[24] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-
ward networks are universal approximators, Neural Networks
2, 359 (1989).

[25] P. Kidger and T. Lyons, Universal approximation with deep
narrow networks, in Proceedings of Thirty Third Conference
on Learning Theory, edited by J. Abernethy and S. Agarwal
(PMLR, 2020), Vol. 125, pp. 2306–2327.

[26] V. Vapnik, Principles of risk minimization for learning theory,
Adv. Neural Info. Proc. Syst. 4, 831 (1991).

[27] M. Dresselhaus and G. Dresselhaus, Intercalation compounds
of graphite, Adv. Phys. 30, 139 (1981).

[28] M. Serbyn and D. A. Abanin, New Dirac points and multiple
Landau level crossings in biased trilayer graphene, Phys. Rev.
B 87, 115422 (2013).

[29] X. Glorot and Y. Bengio, Understanding the difficulty of train-
ing deep feedforward neural networks, in Proceedings of the
Thirteenth International Conference on Artificial Intelligence
and Statistics, edited by Y. W. Teh and M. Titterington, Proceed-
ings of Machine Learning Research, Vol. 9 (PMLR, Sardinia,
Italy, 2010), pp. 249–256.

[30] D. P. Kingma and J. L. Ba, Adam: A method for stochastic
optimization, in International Conference on Learning Repre-
sentations (ICLR, Ithaca, NY, 2015).

[31] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accu-
rate deep network learning by exponential linear units (ELUs),
arXiv:1511.07289.

[32] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization,
arXiv:1607.06450.

[33] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition, in Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (IEEE, New York,
2016), pp. 770–778.

[34] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N.
Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and R.
Ng, Fourier features let networks learn high frequency functions
in low dimensional domains, in Advances in Neural Information
Processing Systems, edited by H. Larochelle, M. Ranzato, R.
Hadsell, M. F. Balcan, and H. Lin (Curran Associates, Red
Hook, NY, 2020), Vol. 33, pp. 7537–7547.

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg et al.,
TensorFlow: Large-scale machine learning on heterogeneous
systems, arXiv:1603.04467.

[36] https://git.ista.ac.at/qdyn/ML-band structure-DOS.

125411-10

https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1021/cr9900681
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1103/PhysRevLett.68.674
https://doi.org/10.1038/s41586-019-1304-2
https://doi.org/10.1103/PhysRevLett.121.167601
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevLett.121.167204
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.101.195141
https://doi.org/10.1515/nanoph-2020-0197
https://doi.org/10.1016/j.photonics.2022.101076
https://doi.org/10.1103/PhysRevApplied.14.024054
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41586-019-1319-8
http://www.deeplearningbook.org
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1080/00018738100101367
https://doi.org/10.1103/PhysRevB.87.115422
http://arxiv.org/abs/arXiv:1511.07289
http://arxiv.org/abs/arXiv:1607.06450
http://arxiv.org/abs/arXiv:1603.04467
https://git.ista.ac.at/qdyn/ML-band structure-DOS


DEEP LEARNING EXTRACTION OF BAND STRUCTURE … PHYSICAL REVIEW B 108, 125411 (2023)

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representations by back-propagating errors, Nature (London)
323, 533 (1986).

[38] B. M. Hunt, J. I. A. Li, A. A. Zibrov, L. Wang, T. Taniguchi, K.
Watanabe, J. Hone, C. R. Dean, M. Zaletel, R. C. Ashoori, and
A. F. Young, Direct measurement of discrete valley and orbital
quantum numbers in bilayer graphene, Nature Commun. 8, 948
(2017).

[39] A. A. Zibrov, C. Kometter, H. Zhou, E. Spanton, T. Taniguchi,
K. Watanabe, M. Zaletel, and A. Young, Tunable interacting
composite fermion phases in a half-filled bilayer-graphene Lan-
dau level, Nature (London) 549, 360 (2017).

[40] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision,
Volume II (Addison-Wesley, Boston, 1992), pp. 316–317.

[41] J. P. Lewis, Fast Template Matching, Vision Interface 95 (Cana-
dian Image Processing and Pattern Recognition Society, Quebec
City, Canada, 1995), pp. 120–123.

[42] C. Studholme, D. L. G. Hill, and D. J. Hawkes, Automated 3-D
registration of MR and CT images of the head, Medical Image
Analysis 1, 163 (1996).

[43] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P.
Pluim, Elastix: A toolbox for intensity-based medical image
registration, IEEE Trans. Med. Imag. 29, 196 (2010).

[44] L. G. Brown, A survey of image registration techniques,
ACM Comput. Surv. 24, 325 (1992).

[45] C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
Pyramid methods in image processing, RCA Engineer 29, 33
(1984).

[46] H. Zhou, T. Xie, A. Ghazaryan, T. Holder, J. R. Ehrets,
E. M. Spanton, T. Taniguchi, K. Watanabe, E. Berg,
M. Serbyn, and A. F. Young, Half-and quarter-metals in
rhombohedral trilayer graphene, Nature (London) 598, 429
(2021).

[47] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R. Queiroz,
T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen, A.
Stern, E. Berg, P. Jarillo-Herrero, and S. Ilani, Cascade of
phase transitions and Dirac revivals in magic-angle graphene,
Nature (London) 582, 203 (2020).

[48] S. Wu, Z. Zhang, K. Watanabe, T. Taniguchi, and E. Y. Andrei,
Chern insulators, van Hove singularities and topological flat
bands in magic-angle twisted bilayer graphene, Nat. Mater. 20,
488 (2021).

[49] R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algo-
rithm for large-scale nonlinear programming, SIAM J. Optim.
9, 877 (1999).

[50] C. Zhu, R. H. Byrd, and J. Nocedal, Algorithm 778: L-
BFGS-B: FORTRAN routines for large scale bound con-
strained optimization, ACM Trans. Math. Software 23, 550
(1997).

[51] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J.
Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey et al., SciPy 1.0: Fundamental algo-
rithms for scientific computing in Python, Nat. Methods 17, 261
(2020).

125411-11

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/s41467-017-00824-w
https://doi.org/10.1038/nature23893
https://doi.org/10.1016/S1361-8415(96)80011-9
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1145/146370.146374
http://persci.mit.edu/pub_pdfs/RCA84.pdf
https://doi.org/10.1038/s41586-021-03938-w
https://doi.org/10.1038/s41586-020-2373-y
https://doi.org/10.1038/s41563-020-00911-2
https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1145/279232.279236
https://doi.org/10.1038/s41592-019-0686-2

