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Time-reversal invariant finite-size topology
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We report finite-size topology in the quintessential time-reversal (TR) invariant systems, the quantum spin Hall
insulator (QSHI) and the three-dimensional, strong topological insulator (STI)—previously-identified helical
or Dirac cone boundary states of these phases hybridize in wire or slab geometries with one open boundary
condition for finite system size, and additional, topologically protected, lower-dimensional boundary modes
appear for open boundary conditions in two or more directions and coexist with the response signatures of the
higher-dimensional topological bulk. We explicitly demonstrate this coexistence for both the QSHI in a ribbon
geometry and the STI in a slab geometry. For the quasi-one-dimensional (q(2-1)D) QSHI, we find topologically
protected, quasi-zero-dimensional (q(2-2)D) boundary states within the hybridization gap of the helical edge
states, determined from q(2-1)D bulk topology characterized by topologically nontrivial Wilson loop spectra.
We show this finite-size topology furthermore occurs in 1T’-WTe2 in ribbon geometries with sawtooth edges,
based on analysis of a tight-binding model derived from density-functional theory calculations, motivating exper-
imental investigation of our results. In addition, we find quasi-two-dimensional (q(3-1)D) finite-size topological
phases occur for the STI, yielding helical boundary modes distinguished from those of the QSHI by a nontrivial
magneto-electric polarizability linked to the original 3D bulk STI. Finite-size topological phases therefore
exhibit signatures associated with the nontrivial topological invariant of a higher-dimensional bulk, clearly
distinguishing them from previously-known topological phases. Finally, we find the q(3-2)D STI also exhibits
finite-size topological phases, finding the first signs of topologically protected boundary modes of codimension
greater than one due to finite-size topology. Finite-size topology of four- or higher-dimensional systems is
therefore possible in experimental settings without recourse to thermodynamically large synthetic dimensions.

DOI: 10.1103/PhysRevB.108.125410

I. INTRODUCTION

The discovery of the first topological insulator (TI),
the quantum spin Hall insulator (QSHI) in HgTe quantum
wells [1,2] heralded a paradigm shift in condensed matter
physics towards broad study of topological phases of
matter. Understanding and characterization of topology
is now central to the field, with major applications
ranging from fault-tolerant quantum computing [3,4]
to unconventional superconductivity [5]. Consequently,
searching for novel, experimentally accessible topological
systems is a major theme of the last few decades
[2,6–13]. These efforts usually target experimental
confirmation of a hallmark of topological phases known
as bulk-boundary correspondence: a nontrivial topological
invariant of the system bulk is associated with topologically
robust, gapless boundary states. While it has long been
understood that a D-dimensional bulk topology yields
(D − 1)-dimensional gapless boundary states for most
topological phases [14], the recent discovery of topological
phases of matter exhibiting topological response signatures of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

higher-dimensional bulk topology coexisting with
lower-dimensional bulk-boundary correspondences when
D-dimensional systems are not thermodynamically large
in all directions, known as finite-size topology (FST)
[15], shows this foundational aspect of topological
physics is richer than previously thought. If a system
is characterized by a topological invariant computed
in the D-dimensional infinite bulk, but is finite in size
and thin in one direction as illustrated in Fig. 1 (for
the QSHI D = 2 while for the 3D TI D = 3), such that
topologically protected boundary states interfere with one
another, this quasi-(D − 1)- or q(D − 1)-dimensional bulk
is characterized by an additional topological invariant.
When this additional invariant takes nontrivial values,
open boundary conditions in a second direction yield an
additional set of quasi-(D − 2)-dimensional, topologically
protected boundary states localized on this boundary of the
quasi-(D − 1)-dimensional system. Crucially, at the same
time, (i) these quasi-(D − 2)-dimensional topologically
robust states are localized on the boundary, in correspondence
with a nontrivial value for a topological invariant of the
quasi-(D − 1)-dimensional bulk, and (ii) the system retains
topological response signatures of the parent D-dimensional
bulk invariant.

Following the previous thinning process we end up with
a q(D − 1)-dimensional bulk with topological edge states in
one less dimension, the situation is then just like at the start
of the program, but with D replaced by D − 1. Thus one may
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FIG. 1. Schematic of the finite-size TRI systems studied. From
left to right, (a) QSHI wire, (b) slab of 3D TI, and (c) 3D TI wire.
Blue and red cones are schematic of the gap openings of the 3D TI
due to the hybridization of the the Dirac cones. Similarly blue and red
helical edge states get hybridized (yellow/purple) in the QSHI wire
and the finite-size quasi-1D edge states (blue and red) get hybridized
(yellow/purple) for the 3D TI wire. Topological edge states (pink)
are present as quasi-0D modes or quasi-1D modes polarized in spin,
for wire or slab configurations, respectively.

think of applying the thinning process once again, now thin-
ning the xD−1 dimension and hybridizing the previous q(D −
2) edge states. We then arrive at a q(D − 2)-dimensional bulk
with q(D − 2 − 1)-dimensional edge states, which again can
be subjected to the same procedure. The general process is
illustrated in Fig. 2, while Fig. 1(c) shows the specific case of
the 3D TI q(3 − 2) bulk. We note that this procedure could
in principle be applied until there are no more number of
dimensions to thin down.

Although theoretical discovery of the Chern insulator [16]
preceded theoretical prediction of the TR-invariant QSHI de-
rived from it [17,18], experimental confirmation of the QSHI
[2] occurred within one year of the prediction, while more
than two decades passed for the Chern insulator [19]. This
reflects a broader trend in the field, of TR-invariant topologi-
cal insulators being confirmed experimentally more quickly
and easily than TR-symmetry-broken topological insulators
reliant on engineering particular magnetic orders [2,20,21].
Following this idea, in order to more rapidly observe finite-
size topology in experiment, we study the time-reversal
invariant finite-size topology of the QSHI and the strong TI
(STI), by considering these systems in geometries as shown in
Fig. 1. We also note that due to the vast experimental studies
in TI ultra-thin films [22–24], van der Waals heterostructures
[25–28], and transition-metal dichalcogenides in particular
given their large spin-orbit coupling [29,30], there may al-
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FIG. 2. Schematic of the finite-size process for topological insu-
lators. From left to right a D dimensional phase gets shrunk in one
direction xD to give rise to a quasi-(D − 1)-dimensional phase. This
phase can be further shrunk in a remaining xD−1 direction so that
x1, x2, . . . xD−2 are still periodic directions and now a quasi-(D − 2)-
dimensional phase is realized.

ready be signs of finite-size topology in previous experiments.
Past work, for instance, indicates few-layer 1T’-MoTe2 is
semimetallic [31], while the monolayer is predicted to be a
quantum spin Hall insulator [32], suggesting the few-layer
topology derives from the Weyl semimetal phase of the three-
dimensional bulk, while the monolayer topological phase has
a distinct origin due to a strictly two-dimensional bulk.

Since finite-size topological phases occur for the Kitaev
chain and Chern insulator [15], nontrivial finite-size topology
is expected for TR-invariant systems of the QSHI and STI
given concrete relationships between Hamiltonians for these
topological phases: The Kitaev chain Hamiltonian may be
used to construct the Chern insulator Hamiltonian, if many
chains are coupled forming a 2D system [33], and a Chern
insulator Hamiltonian and its time-reversed partner are the
basis of Hamiltonians for the QSHI [17,18]. We find that FST
extends to these TRI topological phases. As Hamiltonians for
TR-invariant topological phases are used to construct Hamil-
tonians for other topological phases, these results also reveal
that a larger set of topological phases harbor FST: A Weyl
semimetal phase [34] Hamiltonian may be constructed from
magnetically doped STI and trivial insulator thin films stacked
alternatingly, while a stack of QSHIs corresponds directly to
the weak 3D TI [35,36]. Topological crystalline phases may
furthermore be constructed, for instance, as Chern insulators
within mirror subsectors or with the Chern insulator bulk
confined to a mirror-invariant plane of a three-dimensional
Brillouin zone [37]. More generally, topological crystalline
phases are characterized by considering symmetry protection
by crystalline point group symmetries in addition to the inter-
nal symmetries of the 10-fold way. On a technical level this is
accomplished by expressing the Hamiltonian in a block diag-
onal form using the additional symmetry, in each subsector in-
ternal symmetries are still present and thus can be analyzed by
classification schemes obtained from the 10-fold way [38,39].

In this paper, we first, in Sec. II, characterize finite-size
topology in a QSHI wire. We start by considering a thin QSHI
system with one open thin dimension and one infinite periodic
dimension. The energy and Wilson loop spectra of this q(2-
1)D system reveal that the nontrivial zones in phase space
are a subset of the original 2D bulk topological regions. Fur-
thermore opening boundary conditions again in the remaining
periodic direction shows the presence of edge states localized
on the q(2-2)D boundaries. We end this section by studying
the response to on-site disorder and perturbations, where the
robustness of the edge states indicates a link to the original 2D
bulk gap.

Afterwards in Sec. III, we consider a more realistic and ex-
perimentally accessible system 1T ′ WTe2 in the QSHI phase.
We find similarly that this material realizes a finite-size topo-
logical phase with topologically robust q(2-2)D edge states
for a sawtooth ribbon geometry, the presence of this edge
states is again verified to be predicted by a nontrivial Wilson
loop spectrum. Extending our analysis to the 3D case we
consider in Sec. IV the STI in a q(3-1)D slab geometry. In
this case, interference between the STI Dirac cone surface
states yields q(3-2)D edge states. We show the Wilson loop
spectrum of the q(3-1)D bulk displays topologically nontriv-
ial signatures in correspondence with these boundary states,
indicating Wilson loop spectra are a robust bulk diagnostic of
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finite-size topology. Additionally, we compute the magneto-
electric polarizability, which should be trivially zero if the
system is just a 2D QSHI, instead we encounter the response
expected for the infinite 3D TI bulk. This central result allows
us to contemplate the idea of detecting topological signatures
of higher-dimensional phases, say the 4D TI, in quasi-lower-
dimensional systems. Finally, we study the case of a STI
in a q(3-2)D wire geometry, where we once again use the
Wilson loop indicator to find abulk-boundary correspondence
restricted to a subset of the original 3D topological phase
diagram. In this final case the number of edge states is seen to
follow the number of ±π phases such that only even numbers
of distinct edge states appear. In Sec. VI we summarize our
results and present some concluding remarks.

II. QSHI WIRE

As a starting point of our analysis we consider a QSHI first
considering the canonical Bernevig-Hughes-Zhang Hamil-
tonian for HgTe quantum wells [1] where we also add a
Rashba-type spin-orbit coupling. Thus the Hamiltonian in
momentum space has the form [40]

h(kx, ky) = (u + 2t (cos kx + cos ky))σz + sin ky σy

+ sin kx szσx + c sxσy, (1)

where si, σi are Pauli matrices in spin and orbital space, re-
spectively. For simplicity we omit the identity in spin space
and denote the tensor product by placing two matrices next
to each other. The real number u corresponds to a staggered
potential, t to a hopping parameter, and c is the spin-orbit
coupling that breaks sz spin symmetry. The phase diagram for
this Hamiltonian includes both a region in which the QSHI
phase is realized and a region in which the Dirac semimetal
(DSM) phase is realized, as discussed in Ref. [40] and plotted
in Figs. 3(a) and 3(b). In the following analysis, we first
consider the QSHI regime, and then that of the DSM.

Next we consider what happens if we open boundary con-
ditions (OBC) in the x direction for a small number of lattice
sites N . Since the helical edge modes of the QSHI are not
completely localized at the boundary, but instead decay expo-
nentially into the bulk [41], these boundary states interfere in
systems of finite width. The lattice second quantized Hamil-
tonian with open boundary conditions in the x̂ direction and
periodic boundary conditions in the ŷ direction is

Ĥ =
∑
k,n

�
†
k,n((u + 2t cos k)σz + sin k σy + c sxσy)�k,n

+ �
†
k,n+1

(
t σz + i

2
szσx

)
�k,n + H.c., (2)

where k ≡ ky and n runs over the N sites of the open x direc-
tion. Here, �k,n are four-component spinor fermion operators
acting on the spin and orbit degrees of freedom. We first
examine the spectrum of Eq. (2) for small N on the order
of a few lattice constants. We first consider the spectrum for
a particular point in phase space as shown in Fig. 3(c) for a
small system with N = 6 with nontrivial 2D bulk invariant, as
shown in Fig. 3(b). Comparing the dispersion for the system
with periodic boundary conditions in each direction (black
lines) to that of the system with open boundary conditions

FIG. 3. (a) Direct gap heat plot of the 2D bulk Hamiltonian
(1) as a function of potential u and spin-orbit coupling constant c.
(b) Topological phase diagram of the 2D bulk, showing the QSHI
phase (yellow) and DSM gapless phase (blue) of the 2D bulk.
(c) Quasi-1D dispersion for PBC in y and OBC (PBC) in x with
N = 6 sites. The parameters for the gap closing with OBC in x are
u = 0.76, c = 0.8, t = 1/2. (d) Spectrum for PBC in y as a function
of the staggered potential u and c = 0.8, t = 1/2.

only in the x̂ direction (red lines), we see the periodic system
is gapped, while the system with open boundary conditions
is instead gapless. While gapless boundary states are expected
due to the nontrivial bulk topology, the gaplessness in this case
is not topologically robust: The gapless boundary modes inter-
fere in finite-size systems to open a hybridization gap in gen-
eral. Under certain conditions, however, the boundary modes
interfere destructively, corresponding to a fine-tuned gapless
state when hybridization matrix elements pass through zero.
Examining the spectrum for the q(2-1)D bulk as a function of
u as shown in Fig. 3(d), we see this more general pattern of
finite-interference gaps, with a discrete set of u correspond-
ing to gap closings and destructive interference between the
helical boundary modes. We will show these gap closings can
correspond to topological phase transitions, and some of these
gapped regions host finite-size topological phases.

A. Periodic system

To characterize the finite-size topological phases of this
time-reversal invariant system, we now reinterpret the original
model with OBC in the x̂ direction as a q(2-1)D bulk, and
characterize topology of this q(2-1)D bulk system similarly
to characterization of a d-dimensional bulk. We therefore first
compute a phase diagram for the minimum direct gap over
the Brillouin zone of the q(2-1)D bulk as a function of u, c for
fixed hopping t = 1/2, shown in Figs. 4(a) and 4(b) for N = 6
and N = 7 layers in the x̂ direction, respectively. A dome
forms in the phase diagram, consisting of a set of curved,
stripe-like regions of finite minimum direct gap separated by
lines along which the q(2-1)D minimum direct bulk gap is
zero, with these lines intersecting to form a checkerboard-
like pattern at larger values of c. As the number of lattice

125410-3



FLORES-CALDERON, MOESSNER, AND COOK PHYSICAL REVIEW B 108, 125410 (2023)

FIG. 4. Quasi-(2-1)D minimum direct bulk gap for (a) N = 6, we
show also an inset plot for a different scale of the logarithmic energy
gap where the gapless regions are more clearly comparable to the
Wilson loop eigenvalues well defined for a gapped bulk. (b) N = 7
and t = 1/2. Plot of the number of ±π phases N±π (red is 2, black
0) in the Wilson loop eigenvalues for (c) N = 6 and (d) N = 7.

sites in the x̂ direction increases, the number of gap-closing
lines increases while the regions of finite minimum direct gap
decrease in size. This pattern is consistent with a picture of
gap closings due to interference between the helical boundary
modes of the QSHI: the boundary modes in this q(2-1)D
system possess a standing wave character, and the gap-closing
lines correspond to hybridisation matrix elements passing
through zero with tuning of system parameters. With increas-
ing system size, this interference pattern becomes denser as
the difference in wavelength between the oscillatory compo-
nents of the helical boundary modes generically decreases. It
is particularly interesting to compare these phase diagrams for
the q(2-1)D bulk with the counterpart phase diagram of the 2D
bulk shown in Figs. 3(a) and 3(b), which reveals that different
kinds of topological phases of the 2D bulk (and corresponding
different gapless boundary states) yield different interference
patterns as a function of u and c. Notably, the checkerboard
region of the phase diagram corresponds to the DSM phase
region of the corresponding phase diagram for the 2D bulk,
revealing that the DSM phase is generally gapped out in
the q(2-1)D regime, and exhibits more complex interference
pattern than does the QSHI.

As the 2D minimum direct bulk gap remains finite over
the region of the phase diagram where we observe this in-
terference pattern between helical boundary modes of the
QSHI, and the 2D minimum direct bulk gap remains closed
due to topologically protected band touchings of the DSM,
topological invariants of the 2D bulk do not change within
these regions. However, as subsets of each of these regions
possess a finite minimum direct gap in the q(2-1)D spectrum,
it is possible to further characterize the topology of the q(2-
1)D system if suitable topological invariant(s) are identified.
This gapped regions in the phase diagram are what we call
“bubbles”. To further characterize finite-size topology of this

quasi-1D TRI system with Wilson loop spectra, we compute
the Wilson loop eigenvalues [42], which distinguish between
topologically distinct phases of matter as they characterize
holonomy in a system due to parallel transport through non-
contractible loops in the BZ [43–45].

The Wilson loop spectra for the q(2-1)D system are com-
puted by integrating the Berry connection over the remaining
k ≡ ky momentum coordinate, using the following expression
[42]:

W = Pe−
∫ π

−π
dkA(k)

, (3)

where A(k) is the non-Abelian Berry connection over the
occupied bands and P is the path ordering operator. Since
we compute the Wilson matrix for a tight-binding system we
discretize Eq. (3). The set of Wilson loop eigenvalue phases
is the Wannier charge center spectrum characterizing polar-
ization. In a topologically nontrivial phase, Wannier charge
center(s) are fixed to value(s) of ±π , so we compute the
number of these nontrivial phases as N±π . The phase diagrams
characterizing N±π vs u and c are shown in Figs. 4(c) and 4(d)
for systems with N = 6 or N = 7 layers in the x̂ direction,
respectively.

These N±π vs c and u phase diagrams shown in Figs. 4(c)
and 4(d) reveal alternating regions of N±π = 0 and N±π = 2,
indicating the system undergoes a variety of topological phase
transitions. We even observe stripe-like regions at smaller
c, which intersect to form checkerboard patterns at larger c.
These lines across which N±π changes in value are in direct
correspondence with lines shown in Figs. 4(a) and 4(b), re-
spectively, along which the q(2-1)D minimum direct gap goes
to zero. Taken together, these phase diagrams in Fig. 4 reveal
a topological phase transition occurs every time the q(2-1)D
minimum direct bulk gap goes to zero.

The phase diagrams for N = 6 layers differ dramatically
from those for N = 7 layers, reflecting the dependence of this
topology on finite-size effects. From the plots, one can see that
as the number of layers in the x̂ direction increases the number
of topologically distinct regions also increases in agreement
with the number of lines along which the q(2-1)D minimum
direct bulk gap is zero. The topological phase diagram of the
2D bulk Hamiltonian (1) studied in Ref. [40] is therefore being
further divided into topologically distinct regions in the q(2-
1)D regime in a strongly N-dependent manner revealing that
topological phase transitions due to finite-size topology [15]
may occur without the minimum direct gap of the 2D bulk
going to zero.

B. Bulk-boundary correspondence and disorder

Having characterized finite-size topology of the q(2-1)D
bulk of Hamiltonian Eq. (1) with open boundary conditions
in the x̂ direction and periodic in ŷ, we now explore the
additional bulk-boundary correspondence of finite-size topo-
logical phases. We first study the spectral signatures of this
bulk-boundary correspondence that appear for nontrivial Wil-
son loop spectra in accordance with the modern theory of
polarization of Ref. [46]. N±π �= 0 for the q1D bulk corre-
sponds to topologically protected, q0D bound states for open
boundary conditions in the ŷ direction in addition to open
boundary conditions in the x̂ direction. With system size in
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FIG. 5. (a) Spectrum for OBC (red) in both directions, PBC in
y (black) as a function of the staggered potential u and c = 0.6, t =
1/2, N = 6. (b) Spectrum for OBC (red) in both directions, PBC in
y (black) as a function of the staggered potential u and c = 0.8, t =
1/2, N = 6 with a particle-hole symmetry and sublattice symmetry
breaking on-site potential 0.1 cos(2πn/N )σx . (c) Disorder-averaged
spectrum for N = 6 sites and u = 1, t = 1/2 as a function of c for
200 uniformly distributed random particle-hole symmetric potentials
of strength κ = 0.5u. (d) Disorder-averaged spectrum with the same
parameters but for 200 particle-hole symmetry-breaking disorder
potentials of strength κ = 0.2u. (e) 2D minimum direct bulk gap as
a function of c for u = 1. (f) Density profile of q(2-2)D state for the
same number of sites, c = 0.8, u = 1.0, and Ly = 300.

the ŷ direction of Ly, such a bulk-boundary correspondence
characterized in the q1D bulk by N±π is clear for Ly � Lx as
shown in Figs. 5(a) and 5(b). In this case, one finds in-gap
states close to zero energy within the q(2-1)D bulk gap of
the energy spectrum. The separation in energy between these
states decreases exponentially to zero as a function of Ly,
realizing a fourfold degenerate manifold of zero-energy states.
Such states are not present for periodic boundary conditions
in the ŷ direction, further indicating they appear as a conse-
quence of bulk-boundary correspondence for the finite-size
topological phase.

To further explore the extent to which these in-gap states
are due to an additional bulk-boundary correspondence of
finite-size topological phases, we compute the probability
density for these in-gap states. We find these states are local-
ized at the boundaries of the q1D system as shown in Fig. 5(f).
Probability density peaks at the corners of the system as seen

in Fig. 5(f) and decays over fifteen to twenty unit cells to zero
for x approaching the q(2-1)D bulk. As the system is time-
reversal invariant, we also compute the spin polarization for
these q(2-2)D boundary modes. We find the q(2-2)D boundary
modes are spin polarized in the ±ẑ direction, with a spin
up/down pair localized at each end of the q(2-1)D system.

We also study the robustness of the in-gap q(2-2)D bound-
ary states against symmetry breaking due to disorder. We
introduce disorder in the q(2-1)D system for OBC as a uni-
form random potential, with strength κ . The disorder average
spectrum for 200 disorder realizations of the form κns0σz is
shown in Fig. 5(c) as a function of spin-orbit coupling c
for κn ∈ (−0.2u, 0.2u). The q(2-2)D states are present over
a wide range in c. Surprisingly, they survive even for disorder
strengths κn greater than the q(2-1)D minimum direct bulk gap
for the QSHI phase. The edge states may move away from
zero energy, if the perturbation breaks particle-hole symmetry,
such effect is shown in Fig. 5(b) as a function of u, where
an on-site perturbation 0.1 cos(2πn/N )s0σx is present. For
disorder effects we considered a term of the form Vis0σ0, the
spectrum is thus shown in Fig. 5(d) where the edge modes
deviate from zero energy, as in the case of an SSH chain with
next-nearest neighbors studied in Ref. [47]. However, the q(2-
2)D boundary modes persist and remain strongly localized,
with their pair degeneracy preserved.

Interestingly, the topological invariant remains fixed at
nontrivial values even when a particle-hole breaking term is
present in the Hamiltonian. This reflects the dependence of
this nontrivial topology on the presence of the topologically
protected boundary states of the higher-dimensional phase,
which require only time-reversal symmetry to remain robust
up to the minimum direct 2D bulk gap going to zero. We
further find N±π still predicts the existence of edge states
in the nontrivial region. The validity of the invariant and
bulk-boundary correspondence in the absence of particle-hole
symmetry will be further verified for the case of the 1T ′-WTe2

wire. The phase is therefore protected by time-reversal sym-
metry alone while particle-hole symmetry is required only to
anchor the in-gap states to zero energy. This analysis parallels
the one in Ref. [47] where analogously the invariant and phase
are protected by only inversion symmetry while both inversion
and particle-hole symmetry secure the zero-energy value. For
particle-hole-symmetric disorder [Fig. 5(c)] the perturbation
strength is protected not by the q(2-1)D gap but rather the 2D
bulk gap of the system, which for c = 0.8, u = 1.0 is � ≈ 0.5
as seen in Fig. 5(e). If the perturbation breaks time-reversal
symmetry, however, the Kramers degeneracy of the q(2-2)D
bound states is broken as expected.

Having studied the disorder robustness and bulk-boundary
correspondence, it is natural to think about the response to
external perturbations. In the case of the QSHI in 2D we know
the time-reversal symmetry makes topological signatures dif-
ficult to distinguish or to be exactly quantized, as is the case
for the spin Hall conductivity [48]. Nevertheless one can
think of the previous signatures observed for the finite-size
Chern insulator [15] and consider threading flux through a
single central plaquette of the lattice in the q(2-1)D geometry
2πφ/φ0. Of course this will break time-reversal symmetry,
which is crucial for the QSHI topology so we may counteract
that with another flux threading in the opposite direction on
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FIG. 6. Energy spectrum as a function of the time-reversal symmetric flux 2πφ threading through two plaquettes of the lattice separated by
a distance Ly/2. The central panel is in a topological phase both in the q1D and in the 2D limit, here N = 6 with parameters u = 0.5, c = 0.4.
We observe the q0D edge states at zero energy as well as bulk pumping in the form of energy crossings located at π flux. Eliminating the
boundary (green plot) results in no q0D edge states but energy crossings persist. Getting rid of the finite-size (black plot) property leads still to
topological energy crossings with the same degeneracy. In contrast, a trivial bubble with u = 0 and c = 0.1 has no pumping and no q0D edge
states (bottom blue panel). The case of trivial 2D and q1D invariant (top blue panel) gives the same result.

a different plaquette of the lattice y −2πφ/φ0. Taking the
coordinates of the fluxes as (x = 0, y = ±Ly/4), we vary the
flux to obtain Fig. 6. We observe in the central panel the
presence of (i) the q0D edge state consistent with the q(2-1)D
topology alongside and (ii) the topologically protected energy
crossings related to the 2D invariant. Note that removing the
boundary removes the q0D edge states (upper green panel)
but not the states traversing the energy gap, also making the
system large in both directions, Nx = Ny = 50, again removes
the q0D edge states while still maintaining the energy crossing
with the same degeneracy at π flux as in the finite-size case. In
contrast if one of the two invariants [2D or q(2-1)D] is trivial
for the finite-size system, the situation could not be more
different (bottom left panel): the spectrum is always gapped
and no states traverse the bulk gap (blue panels). We are thus
lead to conclude that both topological invariants, the q(2-1)D
and the 2D QSHI, must be nontrivial to observe the combined
behavior of the central panel.

We conclude from this analysis that the q(2-1)D wire with
spinful time-reversal symmetry, realized for a system with
a 2D bulk and open boundary conditions in one direction,
exhibits finite-size topological phases for subsets of the topo-
logically nontrivial regions of the 2D bulk topological phase
diagram. In these subsets, bounded by lines along which the
minimum direct q(2-1)D bulk goes to zero rather than the min-
imum direct 2D bulk gap, in general, the wire harbors topolog-
ically protected q(2-2)D boundary modes for open boundary

conditions in two directions appearing in Kramers pairs. In
the quasi-1D bulk, these subsets correspond to Wilson loop
spectra with some Wilson loop eigenvalue phases fixed to
±π , protected by spinful time-reversal symmetry. These sig-
natures of nontrivial topology are therefore associated with
time-reversal invariant, q(2-1)D finite-size topological phases
due to interference between topologically protected gapless
boundary modes resulting from 2D bulk topology, either of
the quantum spin Hall insulator or the 2D Dirac semimetal. In
contrast, the 10-fold way classification scheme of topological
phases of matter determines a 1D system in class AII [49] has
trivial topological classification. These results are therefore
evidence of topologically nontrivial phases of matter outside
of the 10-fold way classification scheme.

III. 1T ′-WTe2 WIRE

Although the previous model is based on the celebrated
HgTe quantum wells, which allowed for the discovery of the
first QSHI, it may not be most suitable for the experimental
discovery of finite-size topology. The need for a small sample
size in one direction may be easier to achieve for mono-
layers such as the 1T ′-TWe2 QSHI [50]. We thus consider
the tight-binding model studied in Ref. [51] derived from
density-functional theory calculations, symmetry considera-
tions, and fitting to experimental data. Since the finite-size
topology comes from the hybridization of the edge states, we
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FIG. 7. (a) Energy spectrum (eV) as a function of the change
in Rashba spin-orbit coupling �λSOC for a Nx = 6 saw-tooth ter-
minated 1T ′-TWe2 wire. (b) Energy spectrum (eV) for the system
with Nx = 12 as a function of �λSOC showing edge states at zero
field. (c) Number of Wilson loop spectrum ±π phases for Nx = 6 as
a function of �λSOC. (d) Wave function probability density for one
edge state at �λSOC = 0.35eV and Nx = 6, Ny = 200 for the same
saw-tooth terminated 1T ′-TWe2 wire.

consider only the lattice termination, which results in a Dirac
crossing near the Fermi energy. That is we study the sawtooth
y ribbon with open boundary conditions in the x direction.
The 1T ′-WTe2 DFT-derived tight-binding Hamiltonian is pre-
sented in the Appendix.

Under such circumstances we expect the Dirac crossing
to gap out in general on larger and larger energy scales as
the system size in the x direction Nx decreases. Such a gap
opening does occur for the original material parameters for
even Nx values ranging from 4 to 20. It is worth noting that the
gap still exists even for larger Nx but its magnitude becomes
very small compared to other material energy scales. Such a
gapped system may then host topological q(2-2)D edge states
if the Wilson loop spectrum is nontrivial. Specifically, we
find that for Nx = 8, 10, 12 the gap has a ±π phase in the
Wilson loop spectrum. Even in the case where the spectrum
is trivial, for example at Nx = 6, we may still tune the system
so that a gap closing occurs and a nontrivial Wilson loop
phase appears. To do so, we may apply an electric field
perpendicular to the monolayer corresponding to addition of
a symmetry-allowed Rashba spin-orbit coupling term to the
Hamiltonian. Since the original model already includes such
couplings, we further include a change of the in-plane SOC
parameters by a quantity �λSOC.

For the case of Nx = 6, we obtain a phase diagram for
the number of Wilson loop eigenvalues with phase ±π ,
N±π , vs spin-orbit coupling anisotropy �λSOC showing
a change in N±π from 0 to 1 with increasing �λSOC as
shown in Fig. 7(a). Based on our previous results for a
canonical toy model of the QSHI, we expect q(2-2)D edge

states to appear if we open boundary conditions in the ŷ
direction as well. Such edge states due to an additional
bulk-boundary correspondence characterized by N±π of the
q(2-1)D bulk do exist, as shown in Fig. 7(b) corresponding
to a line of fourfold degenerate, in-gap states as a function
of �λSOC. The fourfold degeneracy corresponds to a twofold
Kramers degeneracy due to spinful time-reversal symmetry,
and twofold degeneracy corresponding to boundary modes
localized at the left and right edge as in the previous simple
model of Eq. (1). For a fixed Rashba spin-orbit coupling
change of �λSOC = 0.35 eV, we find that the edge states
localize on each end of the wire as shown in Fig. 7(c).

IV. 3D TI SLAB

We now study the finite-size topology of the quintessential
3D TI in symmetry class AII [39,49]. The classification
in this case is dictated by four Z2 topological invariants
(ν0; ν1, ν2, ν3) [35,36], where the last three invariants are
related to the translational invariance of the system classifying
the weak TI phase (WTI) while the ν0 parameter classifies
the strong TI phase (STI). In the following, we study the STI
phase with trivial lower-dimensional invariants corresponding
to (1; 000), which is realized in the model Bloch Hamiltonian
[52],

H (k) = −2λ
∑

μ

sin kμσzsμ + σxs0

(
M − t

∑
μ

cos kμ

)
,

(4)

where the Pauli matrices {σi}, {s j} act on orbital and spin
degrees of freedom respectively, λ is a spin-orbit coupling
parameter that breaks spin conservation, M is an on-site
staggered potential, and t is a nearest-neighbor-hopping
integral. In the following, we take all energies to be in units
of t by setting t = 1, and consider the regime in which
1 < M < 3 and λ positive, for which the model realizes the
desired strong TI phase. First, we specialize to the case of a
thin slab in the x̂ direction of N layers. In that case, we expect
in analogy to the QSHI that the Dirac cones from the upper
and lower surfaces interfere due to the thin bulk and hybridize
to open a gap even for open boundary conditions.

The hybridization gap, just as in the previous 2D case, is
expected to sometimes protect a nontrivial finite-size topolog-
ical phase. To study this, we once again characterize topology
using the Wilson loop spectrum, now as a function of ky or
kz with OBC in x to characterize topology first of a q(3-1)D
bulk, in regions of the phase diagram where the 3D bulk cor-
responds to the strong TI. As the isotropy of the Hamiltonian
(4) suggests, there is no difference between the Wilson loop
eigenvalues of W (ky) and W (kz ), thus we consider only W (kz ),
where each Wilson loop matrix is now defined as

W (ky) = Pe−
∫ π

−π
dkzAz(ky, kz )

, (5)

W (kz ) = Pe−
∫ π

−π
dkyAy(ky, kz )

. (6)

A typical Wannier charge center spectrum vs the remaining
momentum component kz is plotted in Fig. 8, which shows the
spectral flow (a) characteristic of a TR-invariant topological
insulator for some values and a trivial spectrum and (b) for
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FIG. 8. (a) Wilson loop nontrivial eigenvalue spectrum as a func-
tion of kz for OBC in x and PBC in y, z. The parameters are M =
2.0, λ = 0.2, and N = 6 layers. (b) Wilson loop trivial eigenvalue
spectrum as a function of kz for OBC in x and PBC in y, z. The
parameters are M = 1.6, λ = 0.1, and N = 6 layers.

others within the (1; 000) 3D bulk phase classification. The
nontrivial spectral flow only appears for certain parameter
regimes: these regions can be distinguished in a systematic
way by counting the number of fixed ±π phases in the Wil-
son loop spectrum, as in the previous case. These regions
of parameter space, which have an energy gap are again the
“bubbles” observed in the QSHI case. We plot the phase
diagram as a function of the model parameters in Figs. 9(a)
and 9(b) for N = 5, 6 layers, respectively. The phase diagram
changes dramatically for each value of N , the number of
layers, indicative of the finite-size topology [15]. The pattern
of trivial and nontrivial regions is entirely contained with the
nontrivial region of the 3D bulk topological phase diagram
for Hamiltonian (4), indicating the 3D minimum direct bulk
gap remains finite during these topological phase transitions
of the q(3-1)D bulk. We remark that the sudden changes in
color near λ = 0 seem to be just an artifact of the numerical

FIG. 9. Phase diagram from wilson loop spectrum for a slab with
(a) N = 5, (b) N = 6, black-0, yellow-2 ±π phases. (c) Quasi-1D
dispersion for OBC in x N = 6, PBC in z and OBC (PBC) in y as a
function of kz. The parameters are M = 1.8, λ = 0.1. (d) Spectrum
for OBC in x, y as a function of M, for discretized values of kz with
N = 5 and 100 sites in the remaining directions, λ = 0.1.

precision when approaching the STI gap closing in the 3D
bulk.

One of the consequences of the system being in a topo-
logically nontrivial regime, according to the Wilson loop
spectra of the q(3-1)D bulk, is an additional bulk-boundary
correspondence: Opening boundary conditions in a second
direction in these regions of phase space, we find topologi-
cally protected q(3-2)D states that now are localized at the
edges of the slab, as shown in Fig. 9(c). These q(3-2)D states
appear within the q(3-1)D bulk gap similarly to the case of
q(2-2)D boundary states appearing in the q(2-1)D bulk gap
of the QSHI. A topological phase diagram for the q(3-1)D
system with open boundary conditions in the ŷ direction as
a function of M is also shown in Fig. 9(d), demonstrating the
direct correspondence of the topologically protected boundary
modes with the topologically nontrivial regions of the q(3-1)D
bulk in Fig. 9(a). This indicates that N±π , the number of ±π

phases in the Wilson loop eigenvalue spectrum, characterizes
finite-size topological phases resulting from interference of
the topologically protected Dirac cones of the 3D TI, in ad-
dition to characterizing finite-size topological phases due to
interference between the helical boundary modes of the QSHI.

While the finite-size topological phase in the q(3-1)D sys-
tem exhibits helical boundary modes analogous to those of
the QSHI, this topological phase is not just a QSHI. Notably,
the 3D minimum direct gap remains finite in this region
of the phase diagram where nontrivial finite-size topological
phases occur, so the 3D bulk is still in the topological phase
(1; 000). The finite-size topological phase therefore exhibits
signatures associated with a nontrivial intrinsically 3D topo-
logical invariant. This is indicated by adding perturbations
to the system to probe the magneto-electric polarizability of
the system, which depends on the intrinsically 3D topolog-
ical invariant, a connection identified in previous study by
Essin et al. [53].

We then compare the result to a q(3-1)D stack of 2D QSHI
in the x direction with the same perturbation to demonstrate
the finite-size topological phase of the q(3-1)D system is
distinct from a QSHI. The type of perturbations we consider
to determine the magnetoelectric polarizability in these two
cases are TRS-breaking terms in the form of weak Zeeman
field in only the uppermost and lowest layers, i.e., V = κ · s
with | κ |≈ 0.1. This could correspond to ferromagnetically
ordered magnetic dopants in just these layers. This situation
is illustrated schematically in Fig. 10(a). We first consider a
Zeeman field oriented in the yz plane and labeled κ‖ as shown
in Fig. 10(a) for both the (1; 000) system (q(3-1)D STI) and
the (0; 001) system (q2D WTI, or stack of QSHIs). In this
case, these systems react similarly, their spectra gapping out
as shown in Fig. 10(b). This is expected, as the perturbation
breaks TR symmetry.

However, the responses of the two systems are strikingly
distinct if we instead consider an applied Zeeman field ori-
ented along the x̂ axis, or field κ⊥ as shown in Fig. 10(a).
In the case of the (1; 000) system (q(3-1)D STI), two of the
q1D boundary states gap out, leaving two gapless boundary
modes remaining. They constitute chiral boundary modes of
a QHE on each surface as shown in Fig. 10(c), correspond-
ing to a layer-dependent Hall conductivity σxy as shown in
Fig. 10(d). This is a known manifestation of the quantized
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FIG. 10. (a) Diagram of perturbations and edge states (pink) on
a q(3-1)D STI slab, parallel field (purple) and perpendicular field
(black), we consider the perturbations for OBC in x, y and PBC in z.
(b) Spectrum of STI slab with OBC in x and y, Nx = 5, Ny = 100.
A constant Zeeman field ordering κ = 0.1 parallel to the slab top
and bottom layers is present. The parameters are M = 1.8, λ = 0.1.
(c) Same parameters as in (c) but now with a perpendicular field the
system exhibits a QHE. (d) Layer conductivity (Chern number) for
Nx = 6, M = 2.0, λ = 0.2.

magnetoelectric polarizability of the STI, resulting from the
nontrivial value of the strong invariant, these results can be
directly compared with past work for systems with a 3D bulk
rather than q(3-1)D bulk [53].

In contrast, there is no topological magnetoelectric effect
and no QHE in the surface layers of the QSHI stack. Instead,
the states maintain their degeneracy and helicity, for small
fields, which is consistent when we view the field as parallel
to the edge surfaces hosting the helical boundary states of
the QSHI layers. Therefore, although the spectrum of q(3-1)D
STI slab appears to be similar to the spectrum of a QSHI stack,
its response to TRS-breaking perturbations reveals that it is a
finite-size topological phase arising from (1; 000) topology of
the 3D bulk.

V. 3D TI WIRE

We finally consider a q(3-2)D wire geometry for the
STI, demonstrating that finite-size topology arises from in-
terference between topologically protected boundary states of
finite-size topological phases, as well as interference between
the topologically protected boundary states of topological
phases in the 10-fold way. We therefore consider the same
Hamiltonian (4) as considered in the previous section, but
now with open boundary conditions in x̂ and ŷ directions
and periodic boundary conditions in the ẑ direction, with the
number of lattice sites in the x̂ and ŷ directions, Nx and Ny,
respectively, each much less than Nz, the number of lattice
sites in the ẑ direction (so Nx, Ny 
 Nz). For this geometry,
we only investigate whether FST bulk-boundary correspon-
dence is realized, and do not provide evidence of coexistence

of the lower-dimensional bulk-boundary correspondence with
topological response signatures of the underlying 3D bulk
topological phase. We defer this calculation to a later study
given the complexity in this case, in part due to the potential
now for ambiguity between the 3D bulk topological response
and quasi-(3-1)D bulk topological response in this geometry.

According to the 10-fold way classification scheme for
topological phases of matter, this is an effectively 1D system
in class AII, which is topologically trivial [38,39,49]. Here, we
show finite-size topological phases are nonetheless possible
in this system, first characterizing finite-size topology of the
q1D bulk through analysis of Wilson loop spectra, and then by
demonstrating an additional bulk-boundary correspondence
yielding q(3-3)D topologically protected boundary modes in
the q1D wire, ultimately resulting from interference between
the topologically protected Dirac cone surface states of the
STI.

For the q(3-2)D bulk of the STI with periodic boundary
conditions only in the ẑ direction, we compute Wilson loop
spectra by integrating over this one good momentum compo-
nent, similarly to the Wilson loop spectra calculations for the
q(3-2)D bulk of the QSHI in Sec. II. The topological phase
diagrams of the STI q(3-2)D bulk are then determined by
computing the number of eigenvalues in the Wilson loop spec-
trum with ±π phases, or N±π . Although in the previous cases
the spectrum only had two ±π phases or none corresponding
to nontrivial and trivial regions, we find for the 3D TI wire
that some regions of the phase diagram have four ±π phase
eigenvalues as shown in red in Fig. 11(a) for Nx = Ny = 4.
In the case of Nx = Ny = 6, the phase diagram changes again
and now there are not only two and four ±π phases but also
six ±π phases as shown in blue in Fig. 11(e). The change
of invariant is consistent with a gap closing of the q(3-2)D
bulk as shown in Figs. 11(b) and 11(f) where the gap closings
coincide with the change of number of ±π phases in the
Wilson loop spectrum.

As in previous cases, we find the topological phase dia-
grams for the q(3-2)D bulk of the STI depend strongly on
system size. In the case of Nx = 4, Ny = 5, we find that the
region with four ±π phases occurs for smaller parameter
regions and is furthermore shifted in M and skewed relative
to the corresponding regions in the Nx = Ny = 4, reflecting
the difference between x and y directions in phase space. The
skewness is also more prominent as we increase the number of
sites as seen for Nx = Ny = 6 in Fig. 11(e). In this case, even
though the topologically nontrivial regions diminish in size,
they are more strongly skewed. The deformation is such that
starting in a trivial region according to N±π near M = 1.75,
with almost zero λ, we can drive the system into a topolog-
ically nontrivial regime as determined by N±π by increasing
the spin-orbit coupling to λ ≈ 0.1. A comparison of the phase
diagrams in Fig. 11, indicates that as the number of sites
increases, the regions present originally in Nx = Ny = 4 re-
main for Nx = Ny = 6 although now shifted to greater M and
reduced in size over phase space. We notice also that the new
regions appear from the left.

The topological phase diagram and corresponding q(3-2)D
minimum direct bulk gap phase diagram for Nx = Ny = 6
are shown in Figs. 11(e) and 11(f), respectively. While there
are similarities between results for this system size and the
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FIG. 11. (a) Phase diagram for the same finite-size parameters
but PBC in z, red reflects 4 ±π phases, yellow 2, blue 0. with Nx =
Ny = 4. (b) Heat plot of direct gap for the same system parameters.
(c)–(f) Same as before, but for Nx = 4, Ny = 5, and Nx = Ny = 6,
respectfully.

smaller ones, there is a topological region for which six Wil-
son loop eigenvalues have phases fixed to ±π . The regions
of greater N±π appear to be subsets of regions with lesser
N±π : the blue region is contained within a red region, and
red regions are contained within yellow regions. The states
again localize at the boundaries of the wire and states occur
in Kramers pairs. These results indicate the number of ±π

phases in the Wilson loop spectrum N±π corresponds to half
the number of zero-energy edge states N (E = 0) in the q(3-
2)D STI system with OBC in all directions. We can verify this
relation appears to hold for the q(2-1)D QSHI wire and the
q(3-1)D STI slab as well. As N±π > 2 occurs for the q1D STI
wire, this comes to suggest an integer classification 2Z for the
q(3-2)D STI finite-size topological phases, to be explored in
greater detail in future study.

Based on the topological phase diagrams for the q(3-
2)D bulk, we now check for a finite-size topological
bulk-boundary correspondence in this geometry by opening
boundary conditions in the ẑ direction, searching for topolog-
ically protected boundary modes localized at the ends of the
q(3-2)D wire. In analogy to the q(2-1)D QSHI wire, we study
the nontrivial number of ±π eigenvalues in the Wilson loop
spectrum, Figs. 12(a) and 12(b). The system with N±π = 4
phases has now eight edge states within the q(3-2)D bulk gap.

(a) (b)

FIG. 12. (a) Spectrum for OBC in x, y, z as a function of M,
with Nx, Ny = 4 and Nz = 50 sites in the remaining directions with
λ = 0.1. (b) Same plot but for Nx = 4, Ny = 5, and Nz = 100.

These states occur in Kramers pairs, with each state in a given
Kramers pair localized at the same edge. There are, however,
differences between these states observable in the probability
density distributions. We show the probability densities as
a function of layer index in each of the ẑ and ŷ directions,
respectively, for four of the in-gap states, in Figs. 13(a) and
13(b), respectively. The corresponding probability densities as
a function of layer in the ẑ direction and ŷ direction for the
other four in-gap states are shown in Figs. 13(c) and 13(d),
respectively. We see that the second set of four are distin-
guished from the first four by their localization: the second
set of four are pushed inwards from the edge in both the
ẑ and ŷ direction relative to the first four in-gap states. We
find similar physics for Nx = Ny = 6 in the N±π = 6 phase:
there are 12 q(3-3)D edge states at zero energy within the
q(3-2)D bulk gap. This change in localization suggests that
there is a distinction between edge states, which may give way
to distinct phases not distinguished by just the parity of the
number of edge states.

VI. CONCLUDING REMARKS

In this paper, we have studied finite-size topology in time-
reversal invariant systems, emerging from the hybridization

(a) (b)

(c) (d)

FIG. 13. (a) Probability density plot for one q(3-3)D edge mode
as a function of wire length z with M = 1.25, λ = 0.1, Nx = Ny =
4, Nz = 80. (b) Same edge state as a function of site index y. (c) Prob-
ability density for another quasi-0D edge mode within the same
model parameters as a function of wire length (d) now as a function
of site index y.
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of helical boundary modes in QSHIs and of Dirac cones in the
strong TI. In the case of the QSHI, we find the helical bound-
ary modes generically interfere to realize regions in phase
space where the q(2-1)D bulk spectrum (periodic boundary
conditions in one direction and open boundary conditions in
the other) is gapped. These regions are separated from one
another by critical points at which the q(2-1)D minimum
direct bulk gap is zero. We characterize the topology of these
gapped regions by computing Wilson loop spectra, finding
topologically nontrivial gapped phases of the q(2-1)D bulk
corresponding to a nontrivial number of Wilson loop eigen-
values with phase fixed to ±π .

For open boundary conditions in each direction and a
q(2-1)D wire geometry, these Wilson loop eigenvalues with
phase ±π correspond to topologically protected q(2-2)D
boundary modes localized at the ends of the wire. These q(2-
2)D boundary modes occur in Kramers pairs and are robust
against disorder respecting spinful time-reversal symmetry,
maintaining a fourfold degeneracy for particle-hole symmet-
ric disorder, and splitting into doubly-degenerate Kramers
pairs for disorder breaking particle-hole symmetry. In these
cases, the in-gap, q(2-2)D modes are still topologically robust
in that they must correspond to time-reversal invariant charge
transfer in an aperiodic Thouless pump from valence bands
to conduction bands, and this connectivity between q(2-1)D
bulk valence and conduction bands is observed in topological
phase diagrams.

We observe this finite-size topology of the QSHI for a
canonical Hamiltonian describing HgTe quantum wells, but
also find the finite-size topological phase occurs in a tight-
binding model for 1T’-WTe2 ribbons with sawtooth edges
derived from density-functional theory calculations, thus po-
tentially relevant to experiment.

We show the phenomena associated to finite-size topology,
lower-dimensional bulk-boundary correspondence coexisting
with higher-dimensional topological response signatures, in
the case of the quantum spin Hall insulator in q(2-1)D ge-
ometry as well as in the strong topological insulator in a
q(3-1)D geometry. In the case of the strong topological insu-
lator protected by time-reversal symmetry, we find evidence
of finite-size topological phases both for q(3-1)D slab ge-
ometries and q(3-2)D wire geometries. Wilson loop spectra
are used to characterize the topology of the q(3-1)D and
q(3-2)D bulk: The winding of the Wilson loop eigenvalue
phases characterizes the q(3-1)D topology, similarly to char-
acterization of 2D topological phases in the bulk, while the
q(3-2)D wire topology in this case is also characterized by
the number of ±π Wilson loop eigenvalue phases as in
the case of the q(2-1)D QSHI. For open boundary condi-
tions in two directions, the q(3-1)D STI slab exhibits helical
boundary modes in the finite-size topological phase, but also
exhibits signatures of the magneto-electric polarizability of
the STI, distinguishing this finite-size topological phase from
the QSHI. This confirmation of helical edge modes coexisting
with topological response signatures of the intrinsically 3D
phase fully confirms FST is realized for this case. In the
case of the q(3-2)D wire, q(3-3)D boundary modes occur for
open boundary conditions in all three directions, similarly to
those of the q(2-1)D QSHI. This bulk-boundary correspon-
dence under these conditions, and details of its realization,

FIG. 14. (a) Schematic diagram of a 4D topological phase con-
sisting of some x, y, z real space directions and an Lz orbital degree
of freedom, which gets thinned in the orbital direction. In this case
the quasi-3D slab spectrum from the 4D bulk results from the hy-
bridization of the original 3D boundary modes. (b) The previous
q(4-1)D slab possess an additional bulk-boundary correspondence
when additional open boundary conditions in the z direction are
considered. This results in q(4-2)D boundary modes.

strongly indicate a lower-dimensional FST phase is realized,
but we do not attempt to confirm the coexistence of this
bulk-boundary correspondence in this case as it is again much
more complex, now also because topological response sig-
natures associated with both the 3D bulk topology and 2D
bulk topology are expected. Interestingly, results indicate that
topological classification for the q(3-2)D STI is integer rather
than Z2, with unusual localization of the quasi-0D topological
boundary modes. Importantly, these results show that finite-
size topology yields topologically protected boundary modes
of codimension greater than 1.

We close by pointing out an intriguing possible extension
of the study to a system with dimension D > 3. For example,
a four-dimensional topological phase is expected in a q(4-1)D
setting, as pictured schematically in Fig. 14 for a small system
size in some fourth dimension. These extra nonspatial dimen-
sions could come from physical degrees of freedom, typically
considered for three-dimensional systems, such as a p orbital
degree of freedom as considered in Fig. 14(a). One could now
imagine an infinite 4D bulk defined by the x̂, ŷ, ẑ, and L̂z

(angular momentum) axes. For nontrivial 4D bulk topological
invariant, open boundary conditions in the L̂z direction and
a large system size in the L̂z direction, three-dimensional
topologically protected boundary modes are realized. For the
physical scenario of small system sizes in the L̂z direction
as shown in Fig. 14(a), these three-dimensional boundary
modes could interfere to realize a topologically nontrivial FST
phase, such that additional topologically protected boundary
modes are realized when boundary conditions are addition-
ally opened in a second real-space direction, such as the ẑ
direction as shown in Fig. 14(b). This raises the possibility of
topologically protected boundary states for systems in one to
three-dimensions reflecting higher-dimensional, D > 3 bulk
topology.
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APPENDIX: TIGHT-BINDING MODEL FOR 1T ′-WTe2

DERIVED FROM DENSITY-FUNCTIONAL THEORY
CALCULATIONS

In the main text we discussed a realistic model for realizing
finite-size topology in a 1T ′ − WTe2 monolayer. We adapted
the finite-size calculation from the model explored and de-
rived in Ref. [51]. The model predicts that the four bands
closest to the Fermi level are composed mainly of contribu-
tions from two 3dx2−y2 type orbitals centered at W and two 5px

type orbitals centered at a subset of Te. With this information
at hand and some experimental fitting the authors construct
a minimal tight-binding model that includes also a spin orbit
interaction given by

HWTe2 (k) = s0

([
μp

2
+ tpx cos(akx ) + tpy cos(bky)

]

−

1

+
[
μd

2
+ tdx cos(akx )

]

+

1 + tdABe−ibky

× (1 + eiakx )eik·�1
+
2 + tpAB(1 + eiakx )eik·�2
−

2

+ t0AB(1 − eiakx )eik·�3
3

− 2it0x sin(akx )[eik·�4
+
4 + e−ik·�4
−

4 ]

+ t0ABx(e−iakx − e2iakx )eik·�3
3 + H.c.

)

+ [(
λz

dxsz + λ
y
dxsy

)
sin (akx )

]

+

5

+ [(
λz

pxsz + λy
pxsy

)
sin (akx )

]

−

5

− iλy
0ABsy(1 + eiakx )eik·�3
6 − i

(
λz

0sz + λ
y
0sy

)
× (eik·�4
+

4 − e−ik·�4
−
4 ) − i

(
λz

0sz + λ
y
0sy

)
× (e−ibky eik·�4
+

4 − eibky e−ik·�4
−
4 ) + H.c.,

(A1)

where si are Pauli matrices representing the spin degree of
freedom and they defined the gamma matrices as


0 = τ0σ0, (A2)


±
1 = τ0

2
(σ0 ± σ3), (A3)


±
2 = 1

4
(τ1 + iτ2)(σ0 ± σ3), (A4)


3 = 1

2
(τ1 + iτ2)iσ2, (A5)


±
4 = 1

4
(τ0 ± τ3)(σ1 + iσ2), (A6)


±
5 = τ3

2
(σ0 ± σ3), (A7)


6 = 1

2
(τ1 + iτ2)σ1, (A8)

where τi, σi are Pauli matrices acting in sublattice and orbital
degrees of freedom, respectively. Finally, the constants from
the previous Hamiltonian that reproduce the experimental re-
sults are

μp −1.75 eV λ
y
0AB 0.011 eV

μd 0.74 eV λ
y
0 0.051 eV

tpx 1.13 eV λz
0 0.012 eV

tdx −0.41 eV λ
′y
0 0.050 eV

tpAB 0.40 eV λ′z
0 0.012 eV

tdAB 0.51 eV λ
y
px −0.040 eV

t0AB 0.39 eV λz
px −0.010 eV

t0ABx 0.29 eV λ
y
dx −0.031 eV

t0x 0.14 eV λz
dx −0.008 eV

tpy 0.13 eV

a 3.477 Å b 6.249 Å

rAd (−0.25a, 0.32b) rBp (0.25a, 0.07b)

rAp (−0.25a,−0.07b) rBd (0.25a,−0.32b)
(A9)

Finally, we extended the model with an inclusion of a per-
pendicular electric field in the weak limit where the effect
manifests itself as a change of Rashba spin orbit interaction,
in the previous Hamiltonian this is modelled as a replacement
λi → λi + �λ, with i = x, y.
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