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Dielectric nanoparticles not showing distinct Mie resonances have been discarded as useful elements of
resonant nanophotonics. However, the incorporation of the excitonic transition into such nanoparticles may
allow us to generate sharp resonances, in particular, Fano resonances, thereby enhancing the utility of such
nanoparticles. In this work, on the basis of the Mie theory and its electrostatics approximation, we analyze
analytically and numerically optical responses and resonant behaviors of internal fields in spherical excitonic
nanoparticles. The excitonic sphere is characterized by a dielectric constant consisting of a background dielectric
constant and a Lorentzian response of the exciton excitation. From equations of the electrostatics approximation,
by appropriately accounting for the background scattering, it is shown analytically that the absorption efficiency
is expressed as a Lorentzian function, while the efficiencies of the scattering and extinction are expressed in
the form of the generalized Fano function (external Fano resonance). From the same procedures, it is also
shown that the spectra of the enhancement factor of internal fields are described by the same generalized
Fano function (internal Fano resonance). Equations appearing in the derivation clearly indicate that both the
external and internal Fano resonances are caused by the interference between a nonresonant component and a
resonant component, corresponding to a broad background and sharp excitonic transition, respectively. Assuming
a model excitonic sphere that mimics a polymer sphere doped with J-aggregates of excitonic molecules, spectra
of scattering, absorption and extinction efficiencies, as well as that of the enhancement factor of internal fields,
are calculated including a size range beyond the small particle limit, for which the exact Mie theory is used.
The generalized Fano functions are shown to reproduce very well the calculated spectra even beyond the small
particle limit, provided that the sphere radius is less than an upper bound. The results of the present paper provide
a firm basis for discussing the formation of the Fano line shapes in optical responses and spectra of internal fields
of excitonic nanospheres.
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I. INTRODUCTION

Over the past decade, Fano resonances, characterized by
asymmetric spectral line shapes, in a variety of nanostructures
including metallic and dielectric nanoparticles, metamateri-
als and photonic crystals, have been the subject of intensive
experimental and theoretical studies since they find potential
applications in sensing, optical switching, enhanced spectro-
scopies, and so on [1–4]. The Fano line shapes exhibited
by single nanoparticles, one of the simplest nanostructures,
have been analyzed based on the theory of Mie scattering.
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In 1908, Mie developed an electromagnetic theory that allows
us to calculate cross sections of scattering, absorption, and the
extinction of a single sphere of arbitrary size illuminated by
an electromagnetic plane wave [5]. Even more than a cen-
tury later, the Mie theory still provides a basis for discussing
various optical properties resulting from Mie resonances as-
sociated with the excitation of electric and magnetic modes
supported by nanoparticles [6–9].

Recent analyses based on the exact Mie theory showed
that, in a metallic sphere which supports electric modes (plas-
mon modes), Fano line shapes are generated in forward and
backward (directional) scattering due to the interference of
scattered waves associated with a broad electric dipole mode
and a sharp electric quadrupole mode [10,11]. On the other
hand, in a high-index dielectric sphere, which supports both
the electric and magnetic modes, the interference between
scattered waves associated with a broad electric dipole mode
and a sharp magnetic dipole mode was shown to generate the
Fano line shapes in directional scattering [11]. Furthermore,
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Tribelsky and Miroshnichenko [12] showed that a cascade of
Fano resonances in total scattering can take place in a high-
index dielectric sphere with a size parameter x (defined by
x = 2π

√
εmR/λ with the radius of the sphere R, the dielecric

constant of surrounding medium εm, and the wavelength of
the incident light λ) falling in the range of x ∼ 1, i.e., the
range of Mie-tronics [13–15]. The Fano resonances in metal
core-dielectric shell spheres have been observed experimen-
tally for the ZnS-coated Au sphere by Chen et al. [16] and
theoretically analyzed by Arruda et al. [17]. Jule et al. [18]
analyzed theoretically the Fano resonances in a dielectric
core-metal shell sphere much smaller than the wavelength of
incident light. Very recently, Wang et al. [19] and Minin et al.
[20] discovered high-order Fano resonances in a low-index
dielectric sphere with x values falling in the range of x ∼ 10,
i.e., the range of mesotronics [21,22].

In recent years, particular attention has been paid to high-
index dielectric nanoparticles that show pronounced Mie
resonances in the visible region. The low-loss nanostructures
are currently under intensive experimental and theoretical
studies towards realizing highly efficient optical nanodevices
based on the Mie resonances (Mie-tronics) [13–15], over-
coming the problems of losses in plasmonic nanodevides.
In contrast to the high-index dielectric nanoparticles, those
having relatively low refractive indices did not attract much
attention because they show only monotonous spectra without
resonant peaks; when they are sufficiently small, they show
scattering spectra obeying the 1/λ4-law of Rayleigh scattering
[6]. However, even for low-index dielectric nanoparticles, it
is possible to generate sharp resonances, in particular, Fano
resonances, if excitonic transitions are incorporated into them.
The simplest way is to use the nanoparticles of excitonic
materials. Halide perovskites are materials attracting great
interest in recent years because of their strong exciton res-
onances at room temperature. Very recently, Muckel et al.
[23] reported the experimental observation of the Fano line
shape in dark field-scattering spectra of thin films consist-
ing of nanograins of (C4H9NH3)2PbI4. Since their samples
showed broad background scattering, they concluded that the
Fano resonance originated from the interference between the
exciton resonance and the broad background scattering. In
previous reports on similar halide perovskites nanoparticles,
Tiguntseva et al. [24] suggested the coupling of the exciton
resonance with the Mie resonance of the nanoparticle itself
[24] as the origin of the Fano resonance, while Cai et al. [25]
reported the Fano resonance arising from the coupling of the
exciton resonance with plasmon resonances of Ag nanostruc-
tures. In contrast to these reports, the report of Muckel et al.
[23] suggested that no distinct resonance was necessary and
just a broad background scattering was sufficient to generate
the Fano resonance through the coupling with the exciton
resonance. This simple mechanism of the Fano resonance is
expected to work not only in the halide perovskites nanoparti-
cles, but also in a wide range of excitonic nanoparticles having
relatively low background refractive indices, for instance,
glass or polymer nanoparticles doped with J-aggregates of
excitonic molecules. However, systematic studies of the Fano
resonances generated by such a mechanism are still lacking,
and influences of various sample parameters like the size of

nanoparticles and dielectric constant of surrounding medium
on the Fano line shape are not yet well known.

In this work, on the basis of the Mie theory and its elec-
trostatics (ES) approximation valid for a sufficiently small
particle (small-particle limit), we perform systematically an-
alytical and numerical studies of scattering, absorption, and
extinction spectra of a spherical excitonic nanoparticle. We
also extend our study to Fano-resonant behaviors of electric
fields induced inside the sphere (internal fields). The present
analytical and numerical results provide a firm basis for dis-
cussing the formation of Fano line shapes in scattering and
extinction spectra as well as in the spectra of the internal
fields. For both the optical spectra and the spectra of internal
fields, we show that the Fano line shapes are generated by the
interference between a resonant component associated with
the exciton excitation and a nonresonant broad background.
This paper is organized as follows. In Sec. II, line shapes of
scattering, absorption, and extinction spectra of an excitonic
sphere are investigated. First, we show analytically that, in the
small-particle limit, the absorption spectrum is expressed as a
Lorentzian function and the scattering and extinction spectra
are expressed in the form of generalized Fano function. Sec-
ond, from numerical calculations of the spectra for a model
excitonic sphere performed by the exact Mie theory, we show
that the Lorentzian and generalized Fano functions are still
valid even beyond the small-particle limit, provided that the
particle radius is smaller than an upper bound. In Sec. III,
Fano-resonant behaviors of the internal fields are analyzed.
It is shown that in the small-particle limit, the enhancement
factor of the internal fields can be expressed by the same
generalized Fano function as that of the scattering spectra, and
the generalized Fano function remains valid even beyond the
small-particle limit until an upper bound radius.

II. SPECTRA OF SCATTERING, ABSORPTION,
AND EXTINCTION

A. Analytical analyses based on electrostatics approximation

1. Line-shape functions

Let us consider an excitonic sphere of radius R charac-
terized by a dielectric function ε(ω) placed in a surrounding
medium with a dielectric constant εm, as schematically shown
in Fig. 1. We use the following expression of the dielec-
tric function resulting from the Lorentz oscillator model [6],
which has been widely used for the discussion of optical prop-
erties of excitonic materials including the halide perovskites
[23,26] and J-aggregates of dye molecules [27,28]:

ε(ω) = εb − f ω2
exc

ω2 − ω2
exc + iωγexc

, (1)

where ωexc is the excitonic transition frequency, γexc the cor-
responding damping rate, f the oscillator strength, and εb the
background dielectric constant. Normally, all the parameters
entering in the above expression take real values. In general,
an excitonic transition gives rise to a Lorentzian line in the
absorption spectrum, which can be well described by the
second term of ε(ω).

As summarized in the Supplemental Material [29], the
Mie theory [5,6] allows us to calculate efficiencies (cross
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FIG. 1. Excitonic sphere illuminated by incident light.

sections normalized to the cross-sectional area πR2) of scat-
tering Qsca, absorption Qabs, and extinction Qexc for a sphere
with an arbitrary radius R. The efficiencies are expressed in
terms of the Mie coefficients an and bn, which correspond to
the excitation of nth-order electric and magnetic modes of
the sphere, such as the electric dipole, electric quadrupole,
magnetic dipole, and magnetic quadrupole modes [6]. In the
case of a sphere much smaller than the wavelength of incident
light λ (small-particle limit), i.e., when the size parameter
defined by x = 2πR

√
εm/λ is much less than unity, it is

known that the optical response of the sphere is determined
only by the lowest-order electric mode corresponding to a1. In
this case, Qsca and Qabs reduce to simple expressions derived
within the ES approximation [6]. From Eqs. (S7) and (S8)
of the Supplemental Material [29], the efficiencies in the ES
approximation can be written as

Qsca = 8

3
x4

∣∣∣∣ ε(ω) − εm

ε(ω) + 2εm

∣∣∣∣
2

, (2)

and

Qabs = 4xIm
ε(ω) − εm

ε(ω) + 2εm
. (3)

Furthermore, Qext is given by

Qext = Qsca + Qabs. (4)

Using these expressions together with ε(ω) given by Eq. (1),
we first derive analytical expressions of line shape functions.

For convenience, we write the second term of ε(ω)
[Eq. (1)] responsible for the Lorentzian line shape as f L(ω),
then we can write as ε(ω) = εb − f L(ω). Inserting this ex-
pression into the factor common to Qsca and Qabs we can
derive

ε(ω) − εm

ε(ω) + 2εm
=

(
εb − εm

εb + 2εm

)
χ (ω), (5)

with

χ (ω) = 1 − cm f L(ω)

1 − cp f L(ω)
, (6)

where cm and cp are cm = (εb − εm )−1 and cp = (εb +
2εm )−1, respectively. It is possible to write χ (ω) in the form

χ (ω) = 1 + f A
L(ω)

1 − cp f L(ω)
, (7)

where A = −3εmcpcm. Using this result, we can decompose
the right-hand side of Eq. (5) into two parts as

ε(ω) − εm

ε(ω) + 2εm
= εb − εm

εb + 2εm
− 3εm f L(ω)

(εb + 2εm )[(εb + 2εm ) − f L(ω)]
.

(8)

For given values of εb and εm, the first term gives a constant
representing a nonresonant component of the scattered wave,
which persists even when f = 0 (no excitonic transition),
while the second term describes an ω-dependent resonant
component arising from the exciton excitation, which van-
ishes when f = 0. Since Qsca given by Eq. (2) is proportional
to the square of the absolute value of Eq. (8), we can expect
that Qsca exhibits a Fano line shape caused by the interference
between the nonresonant and resonant components of the
scattered wave. The line shape is determined by the relative
magnitudes of the nonresonant and resonant components and
their phase difference.

To derive the Fano line shape function for Qsca, it is
convenient to introduce a background scattering efficiency
corresponding to the case of f = 0 defined by

Qback = 8

3
x4

(
εb − εm

εb + 2εm

)2

. (9)

Note that Qback is proportional to x4 and thus to 1/λ4. Qback

is nothing but the efficiency of the Rayleigh scattering of
a sufficiently small sphere having the background dielectric
constant εb. Writing as Fsca = |χ (ω)|2 we can express Qsca as

Qsca = QbackFsca. (10)

For a sufficiently small value of γexc, L(ω) makes a sig-
nificant contribution to ε(ω) only in a narrow region around
ω = ωexc. Therefore, we can approximate the term iωγexc in
L(ω) by iωexcγexc. Under this approximation, χ (ω) takes the
following form:

χ (ω) ≈ ω2 − ω2
z

ω2 − ω2
p

, (11)

with ω2
z = ω2

exc(1 + cm f ) − iωexcγexc and ω2
p = ω2

exc(1 +
cp f ) − iωexcγexc, respectively. Note that this form of χ (ω) is
very similar to that of the optical response functions discussed
by Avrutsky et al. [30] and Nesterenko et al. [31]. When ω2

F =
ω2

exc(1 + cp f ) and X = (ω2 − ω2
F)/ωexcγexc are introduced, it

is straightforward to derive the following line shape function:

F ap
sca = |χ (ω)|2 = (X + q)2 + 1

X 2 + 1
, (12)

with

q = (ω2
p − ω2

z )

ωexcγexc
= f A

ωexc

γexc
= −3εm f

(εb + 2εm )(εb − εm )

ωexc

γexc
.

(13)
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It should be noted that this expression of F ap
sca is a special case

of the generalized Fano function derived from an ab initio
electromagnetic theory by Gallinet and Martin [32,33], which
is written as

σF = (
 + q)2 + b


2 + 1
, (14)

where 
 = (ω2 − ω2
F)/ωF� with the position ωF and the

width � of the Fano resonance, q is the asymmetry parameter,
and b is the screening parameter arising from the loss. In
fact, σF reduces to F ap

sca when b is set to 1 and ωF� in the
denominator of 
 is replaced by ωexcγexc.

It is now clear that the scattering spectrum of the excitonic
sphere is generated by the interference of two components,
the nonresonant component corresponding to the Rayleigh
scattering of the sphere having the background dielectric con-
stant and the resonant component arising from the exciton
excitation. As in Eq. (10), Qsca is given by a product of
Qback describing the background Rayleigh scattering and F ap

sca

[Eq. (12)] describing the asymmetric Fano line shape. Within
the ES approximation considered here, Qback increases with
the radius being proportional to R4 [Eq. (9)], while F ap

sca is
independent of the radius. The analytical expression of q
[Eq. (13)] allows us to easily predict changes in the Fano line
shape brought by changes in the parameters εb, f , ωexc, and
γexc in the excitonic dielectric function, as well as εm of the
surrounding medium.

From the approximate expression of χ (ω) given by
Eq. (11) we can obtain

Imχ (ω) ≈ −A f

X 2 + 1

ωexc

γexc
. (15)

When Qabs is factorized by Qback as

Qabs = QbackFabs, (16)

an approximate form of Fabs is simply given by

F ap
abs = a

X 2 + 1
, (17)

with

a = 9εm f

2x3
0 (εb − εm )2

ωexc

γexc
, (18)

where x0 is given by x0 = (ωexc/c)
√

εmR with the speed of
light c. In deriving Eq. (18) λ entering in the expressions
of Qabs [Eq. (3)] and Qback [Eq. (9)] though the size pa-
rameter x was replaced by λexc and converted to ωexc, since
Imχ (ω) makes significant contributions only in the vicinity
of ω = ωexc. The above equations indicate that the absorption
spectrum Qabs exhibits a Lorentzian line shape F ap

abs superposed
on the Rayleigh background Qback.

Using the above results, it is easy to obtain the line shape
function for Qext = Qsca + Qabs. In the same way as Qsca and
Qabs, we factorize as

Qext = QbackFext. (19)

Then, the line shape function F ap
exc is given by

F ap
ext = F ap

sca + F ap
abs = (X + q)2 + (1 + a)

X 2 + 1
. (20)

This functional form is identical to the generalized Fano
function given by Eq. (14) when 1 + a is rewritten as b and
ωexcγexc in the denominator of X is replaced by ωF�. Since
q and b can be calculated analytically using the expressions
given above, it is easy to predict changes in the Fano line
shape of F ap

ext caused by changes in the system parameters.

2. General functions describing εm-dependence
of parameters q and a

The Fano line shape described by F ap
sca [Eqs. (12) and (13)]

does not depend on R since q [Eqs. (13)] is independent of
R. However, Eq. (13) predicts a strong dependence of q on
εm. To discuss the εm-dependence of the Fano line shape,
it is convenient to introduce a ratio t = εm/εb. Then, q is
transformed into

q = Cq fq(t ), (21)

with

Cq = 3 f

εb

ωexc

γexc
, (22)

and

fq(t ) = −t

(1 + 2t )(1 − t )
. (23)

For a given set of the parameters, Cq is a constant. Therefore,
the εm-dependence of q can generally be described by the
function fq(t ). The factor (1 − t ) contained in the denomi-
nator of fq(t ) allows us to predict two important behaviors
of q. One is the change in the sign of q; q is negative for
t < 1 (εm < εb), while it is positive for t > 1 (εm > εb).
Another important behavior is the divergence of q when t
(εm) approaches 1 (εb). As mentioned before, the Fano line
shape arises from the interference between the nonresonant
background component [first term of Eq. (8)] and the res-
onant excitonic component [second term of Eq. (8)] of the
scattered wave. The asymmetry parameter q is determined
by the relative magnitude and the phase difference of the
two components. Equation (8) indicates that the background
component is proportional to εb − εm and changes its phase
by π depending on the relative magnitudes of εm and εb. On
the other hand, the excitonic component does not contain the
factor εb − εm, and shows no abrupt phase change. Therefore,
the change in the sign of q is attributed to the π -change in
the phase of the nonresonant component. The origin of the
factor (1 − t ) contained in the denominator of fq(t ) can be
traced back to the factorization of Qsca by Qback. Therefore, the
physical origin of the divergence of |q| as t (εm) approaches 1
(εb) is the disappearance of the background scattering, leaving
only the Lorentzian excitonic component; note that the line
shape described by the generalized Fano function approaches
the Lorentzian line shape as |q| → ∞.

The parameter a of the Lorentzian function F ap
abs [Eq. (18)]

can also be expressed in terms of t as

a = Ca fa(t ), (24)

with

Ca = 9 f

2y3
0(

√
εb)5

ωexc

γexc
, (25)
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FIG. 2. Spectra of a model excitonic sphere of R = 20 nm (xes

= 0.2) placed in air (εm =1), which mimics a polymer sphere
doped with J-aggregates of excitonic molecules, calculated by using
Eqs. (2), (3), and (9) of the ES approximation. (a)–(c) display the
spectra of Qsca, Qabs, and Qback, respectively. Comparison of Fsca,
Fabs, and Fext spectra with those obtained from approximate line shape
functions F ap

sca, F ap
abs, and F ap

ext ; comparisons between (d) Fsca and F ap
sca,

(e) Fabs and F ap
abs, and (f) Fext and F ap

ext , respectively.

and

fa(t ) = 1√
t (1 − t )2

, (26)

where y0 is given by y0 = (ωexc/c)R. Since Ca is a constant
for a given set of the parameters, the function fa(t ) describes
generally the εm-dependence of a. Because of the factor
(1 − t )−2 in fa(t ), a is predicted to diverge at t = 1. The origin
of this factor can also be traced back to the factorization of
Qabs by Qback. We can thus attribute the divergence of a at t =
1 to the disappearance of the background scattering. Note that
the factorization by Qback also introduces a R−3-dependence
into a.

3. Spectra of a model excitonic sphere

To perform realistic numerical calculations of spectra we
consider a model excitonic sphere that mimics a polymer
sphere doped with J-aggregates of dye molecules. We as-
sume the following parameters of the excitonic dielectric
function ε(ω): h̄ωexc = 2.0664 eV (corresponding to an ex-
citon wavelength of λexc = 600 nm), h̄γexc = 103.32 meV
(corresponding to γexc/ωexc = 0.05), f = 0.13, and εb =
2.2. These values were chosen because they are very
close to those of poly(vinyl alcohol) thin films doped with
J-aggregates of 5, 5′, 6, 6′-tetrachloro-1, 1′-diethyl-3, 3′-di(4–
sulfobutyl)-benzimidazolocarbocyanine (TDBC) molecules
[27], a typical example of excitonic materials. Figures 2(a),
2(b), and 2(c) show spectra of Qsca, Qabs, and Qback cal-
culated by using Eqs. (2), (3), and (9), respectively. In the
calculations, an excitonic sphere of radius R = 20 nm placed
in air (εm = 1) was assumed. To estimate the size param-
eter of the sphere in a simple manner, it is convenient to

chose a sampling wavelength of the incident light at λes =
2π × 100 nm (≈628.3 nm, corresponding to a photon energy
of ≈1.973 eV), which is close to the exciton wavelength
(600 nm). The size parameter estimated at λes is simply given
by xes = √

εmR′/100, where R′ denotes the value of R without
the nm unit. Therefore, for R = 20 nm and εm = 1 we obtain
xes = 0.2. It should be noted that, for the range of photon
energy shown in Fig. 2 and in similar figures shown later, x
falls in the range 0.7096xes � x � 1.520xes. The spectrum of
Qabs [Fig. 2(b)] exhibits a Lorentzian line corresponding to
the exciton excitation, while that of Qback [Fig. 2(c)] shows a
monotonous increase toward the larger photon energies obey-
ing the (h̄ω)4-law of Rayleigh scattering. The spectrum of
Qsca [Fig. 2(a)] no longer exhibits the Lorentzian line shape,
but clearly exhibits an asymmetric line shape superposed on
the Rayleigh background.

In Figs. 2(d), 2(e), and 2(f), the spectra of Fsca, Fabs, and
Fext obtained by normalizing Qsca, Qabs, and Qext to Qback

are compared with those calculated by using the line shape
functions F ap

sca, F ap
abs, and F ap

ext given by Eqs. (12), (17), and
(20), respectively. Figure 2(d) demonstrates that Fsca can be
well reproduced by the Fano function F ap

sca. The Fano line
shape was generated by a value of q = −1.5476 obtained
from Eq. (13) with the assumed values of the parameters. We
define the maximum deviation of F ap

sca from Fsca by �max
sca =

max|F ap
sca − Fsca|/maxFsca. According to our detailed analyses,

the maximum deviation takes place at the steep part of the
spectra, due to a small shift of F ap

sca relative to Fsca; �max
sca

was found to be 1.74%. This deviation is small enough (too
small to be seen in the figure) to conclude that the line shape
function F ap

sca is capable of representing the overall line shape
of Fsca obtained in the ES approximation.

As can be seen in Figs. 2(e), the spectrum of Fabs can be
well reproduced by the Lorentzian function F ap

abs, which was
generated by a value of a = 884.40 obtained from Eq. (18)
with the parameter values. The maximum deviation, defined in
the same way as for F ap

sca, is found at the steep part of the larger
energy side of the Lorentzian line shape (not around the max-
imum of the Lorentzian line shape); �max

abs is estimated to be
8.10%. The spectrum of Fext (=Fsca + Fabs) shown in Fig. 2(f)
is essentially the same as that of Fabs shown in Fig. 2(e), since
the contribution of Fsca is about 200 times smaller than that
of Fabs. The line shape of Fext is very close to the Lorentzian
shape, but can be well reproduced by the generalized Fano
function F ap

ext [Eq. (20)] with q = −1.5476, which is identical
to that of F ap

sca, and a + 1 = 885.40. The estimated �max
ext value

is 8.09%. Although the maximum deviations for F ap
abs and F ap

ext
are larger than that for F ap

abs, Figs. 2(e) and 2(f) demonstrate
that the line shape functions F ap

abs and F ap
ext are capable of well

describing the spectra of Fabs and Fext obtained in the ES
approximation. The results presented in Figs. 2(d), 2(e), and
2(f) validate the use of the line shape functions in describing
the spectra of the small particle limit in simple manners using
the parameters q and a.

B. Beyond the small-particle limit

1. Size dependence of spectra

Based on the exact Mie theory, we extended our spec-
tral calculations to the size range beyond the small particle
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FIG. 3. Spectra of Qsca, Qabs, Qext , and Qback calculated by the
exact Mie theory for the model sphere of R = 60, 100, and 140 nm
(xes = 0.6, 1.0, and 1.4) placed in air.

limit. We find that for R < 50 nm (xes < 0.5), the spectra of
Qsca, Qabs, Qext, and Qback (Qsca obtained with f = 0) for
the present model exitonic sphere are practically the same
as those of the small particle limit. However, around R = 50
nm (xes = 0.5) the spectra start to deviate from those of the
small-particle limit and the deviation becomes more and more
pronounced as R increases. Therefore, the ES approximation
is no longer valid for the present excitonic sphere for R > 50
nm (xes > 0.5). The deviation is caused by increasing contri-
butions of higher-order electric modes and magnetic modes
of the sphere, in addition to the lowest electric dipole mode
that determines the spectra of the ES approximation. Figure 3
shows the spectra of Qsca, Qabs, Qext, and Qback obtained
from the exact Mie theory for R = 60, 100, and 140 nm
(corresponding to xes = 0.6, 1.0, and 1.4, respectively). We
see that the spectrum of Qabs exhibits a Lorentzian line and
its maximum value increases gradually as R increases. On
the other hand, the spectrum of Qsca exhibits an asymmetric
line; as R increases, the maximum value increases rapidly
along with the overall increase of Qback. The line shape of
Qext (= Qsca + Qabs) tends to change from the Lorentzian
to asymmetric one since the contribution of Qsca relative to
that of Qabs increases rapidly with the increase of R; the
maximum value of Qext increases rapidly caused by the rapid
increase in the Qsca. For the value of εb = 2.2 assumed for the
present excitonic sphere, the spectra of Qback for R < 150 nm
(xes < 1.5) do not exhibit distinct resonant peaks and increase
monotonously towards higher energies. However, our detailed
analyses of the spectra show that they no longer obey exactly
the (h̄ω)4-law of Rayleigh scattering and the deviation from
the Rayleigh scattering is more and more pronounced as R
increases.

To perform detailed analyses of the line shapes we adopt
here the same factorizations of Qsca, Qabs, and Qext as those
introduced in analyzing the spectra of the small-particle limit
[Eqs. (10), (16), and (19)]. In Figs. 4(a) to 4(c), spectra of
Fsca, Fabs, and Fext obtained from the exact Mie theory are
shown for various R varying from 60 to 140 nm with a step
of 20 nm (xes varying from 0.6 to 1.4 with a step of 0.2). Fig-
ure 4(a) demonstrates that, in contrast to the size-independent

(a)

(b)

(c)

FIG. 4. Spectra of (a)Fsca, (b) Fabs, and (c) Fext obtained from the
exact Mie theory for the sphere of various R varying from 60 to
140 nm with a step of 20 nm (xes varying from 0.6 to 1.4 with a
step of 0.2). The spectra are displayed with vertical offsets; the offset
value is 1.0 for (a) and 2.0 for (b) and (c). In (a), the spectra of Fsca are
compared with curves resulting from fitting to the generalized Fano
funciton, while in (b) the spectra of Fabs are compared with those
resulting from fitting to the Lorentzian function. In (c), the spectra of
Fext are compared with curves obtained by summing the fit results of
Fsca and Fabs.

spectrum of the small-particle limit [Fig. 2(d)], the spectrum
of Fsca significantly changes depending on R. In fact, the
spectrum for R = 60 nm (xes = 0.6) is still very close to that
of the small-particle limit [Fig. 2(d)], but as R increases, the
height of resonance (the difference between the maximum and
the minimum) decreases and the steep part of the spectrum
at the high-energy side becomes less steep. These changes
in the spectral shape suggest the change in the asymmetry
parameter q, when the Fano function is applied to describe
the asymmetric line shape.

In Sec. A.1, we show that the approximate line shape
functions F ap

sca and F ap
ext for Fsca and Fext in the ES approx-

imation take the forms of the generalized Fano function,
while F ap

abs for Fabs is expressed by the Lorentzian function. It
should be remembered that the asymmetry parameter q in F ap

sca

and F ap
ext takes the restricted values determined by Eq. (13).

The amplitude a of the Lorentzian function for F ap
abs also

takes the restricted values determined by Eq. (18). Further-
more, the asymmetry parameter b in F ap

sca is fixed at b = 1.0
[Eq. (12)] and that in F ap

ext at b = a + 1 [Eq. (20)]. Beyond the
small-particle limit, these approximate line shape functions
are expected to be no longer valid. However, it seems that

125408-6



FORMATION OF FANO LINE SHAPES IN OPTICAL … PHYSICAL REVIEW B 108, 125408 (2023)

(a) (b)

(c) (d) (e)

FIG. 5. R-dependencies of the fitting parameters. (a) ωF and (b) � for both the generalized Fano function and Lorentzian function, (c) q and
(d) b for the generalized Fano function and (e) a for the Lorentzian function. Values of the parameters in the small-particle limit are presented
by horizontal broken lines. These figures cover the range 0.5 � xes � 1.5.

the spectra of Fsca beyond the small-particle limit shown in
Fig. 4(a) preserve the Fano line shape. Therefore, we attempt
to fit the spectra to the generalized Fano function given by
Eq. (14) by setting the parameters ωF, �, q, and b as free
parameters, instead of restricting their values to those of the
small-particle limit.

We perform least-square fitting of Fsca spectra obtained by
varying R with a step of 5 nm in the range 50 nm � R � 150
nm (0.5 � xes � 1.5 with a step of 0.05). In Fig. 4(a), the
resulting fit curves are compared with the Fsca spectra. Fit
parameters obtained are plotted as a function of R in Figs. 5(a)
to 5(d). In these figures, the horizontal broken lines indi-
cate the parameters that reproduce the spectrum of the small
particle limit. A close look at Fig. 4(a) reveals that the Fsca

spectra except for that of R = 140 nm (xes = 1.4) can be well
reproduced by the generalized Fano function. However, for
R = 140 nm, deviation of Fsca spectrum from the fit curve
becomes discernible, in particular, near the maximum, imply-
ing that the Fsca spectrum starts to deviate from the Fano line
shape at about R = 140 nm (xes = 1.4). We find that, as R
increases further, the deviation is more and more pronounced
and the deformation of the line shape from the Fano line shape
becomes apparent.

Figures 5(a) to 5(d) demonstrate that all the parameters
in the generalized Fano function, ωF, �, q, and b, start to
deviate from the ES values at about R = 50 nm (xes = 0.5)
and the deviation becomes larger as R increases. As mentioned
earlier, in the small-particle limit, the optical responses are de-
termined by the lowest-order Mie coefficient a1. However, for
the sphere with R > 50 nm (xes > 0.5), b1 and higher-order an

and bn Mie coefficients come to contribute and their contribu-
tions become more and more important as R increases, leading
to the deviations of the Fsca spectra and the fitting parameters
from those of the small particle limit. Nevertheless, the results
presented in Fig. 4(a) and Figs. 5(a) to 5(d) demonstrate that
the generalized Fano function is capable of describing well
the asymmetric line shape of the Fsca spectrum as long as
R is smaller than a certain upper bound value. It is difficult
to determine precisely the upper bound value. However, the

upper bound for the present excitonic sphere can be set at
about Rbound = 130 nm (xes = 1.3).

Since the spectra of Fabs shown in Fig. 4(b) appear to be
Lorentzian, we use the following Lorentzian function to fit
the spectra:

σL = a


2 + 1
, (27)

where 
 = (ω2 − ω2
F)/ωF� and a is taken as a free parameter.

The fit curves are compared with the Fabs spectra in Fig. 4(b).
The fit parameters, ωF, �, and a obtained for the Fabs spectra
with R ranging in 50 nm � R � 150 nm (0.5 � xes � 1.5) are
plotted in Figs. 5(a), 5(b), and 5(e), respectively. Figure 4(b)
demonstrates that the Lorentzian fit curves reproduce very
well all the Fabs spectra presented in the figure. In Fig. 4(c),
the spectra of Fext are compared with the curves obtained
by summing the Fano fit curves of Fsca and the Lorentzian
fit curves of Fabs. We see that the summed curves reproduce
well the Fext spectra. As can be seen in Figs. 5(a) and 5(b),
the parameters ωF and � obtained from the fitting are almost
identical for the Fsca and Fabs spectra. This fact allows us to
use a generalized Fano function as the line shape function
of Fext since a summation of the generalized Fano function
representing Fsca and the Lorentzian function representing Fabs

is mathematically proven to be a generalized Fano function;
the asymmetric parameter q of the generated function is the
same as that for Fsca, and the screening parameter is given
by b′ = b + a, where b is the screening parameter for Fsca

and a is the amplitude parameter for Fabs. We note here that
the generation of a Fano line shape in extinction spectra by a
summation of a Fano line shape of scattering and a Lorentzian
line shape of absorption was already reported by Ruan and Fan
[34] who compared the spectra for a metal-dielectric-metal
cylinder obtained from the exact Mie theory and a temporal
coupled-mode theory; Arruda et al. [35] calculated the spec-
tra of a silver nanoshell based on the exact Mie theory and
reported a Fano line shape generated by the same mechanism.

From the results presented above, we can conclude that
even beyond the small-particle limit, the scattering and
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extinction spectra of the excitonic sphere can be well de-
scribed by the generalized Fano function, while the absorption
spectra can be well described by the Lorentzian function.
This conclusion is valid for R smaller than the upper bound
Rbound. According to our detailed analyses, the Rbound be-
comes smaller as εb increases. We note that, for a value of
εb as large as 16, which is the case of high-index materials
like Si and GaP crystals, the Rbound is as small as 30 nm
(xes = 0.3). For R entering in the range of 60 nm � R � 130
nm (0.6 � xes � 1.3), for example, the spectra of Qback of
high-index spheres exhibit pronounced peaks attributed to the
excitation of the electric dipole, magnetic dipole, and higher-
order modes in the visible region, and they shift to lower
energies as R increases [14,36–38]. Our calculations show that
the magnetic dipole (electric dipole) resonance overlaps the
exciton resonance at 2.0664 eV (λ = 600 nm) around R = 70
nm (xes = 0.7) [95 nm (xes = 0.95)]. Under these conditions,
scattering, absorption and extinction spectra exhibit features
much different from those presented above. Around the ex-
citon energy, instead of the asymmetric line shapes, dips are
observed in the scattering and extinction spectra, while the
absorption peak is split into two. These spectral features can
neither be described by the Lorentzian function nor by the
Fano function. The splitting of the absorption peaks suggest
relatively strong coupling between the electromagnetic modes
of the sphere with the excitonic transition, which deserves
further detailed studies.

2. Dependence of spectra on the dielectric constant
of surrounding medium

Assuming the model excitonic sphere of R = 100 nm, we
studied systematically the dependence of the spectra on the
dielectric constant of the surrounding medium εm. Spectra of
Qsca, Qabs, Qext, and Qback obtained for εm < εb (εb = 2.2) and
εm > εb are shown in Figs. 6(a) and 6(b), respectively. Note
that for R = 100 nm, the size parameter is estimated at the
sampling wavelength is simply given by xes = √

εm; therefore,
the results shown in Figs. 6(a) and 6(b) cover the range of
xes from 1.0 to 2.0. These figures demonstrate drastic changes
in the spectra depending on εm. We note that the spectrum
of Qback approaches zero as εm approaches εb from larger
and smaller values. This behavior of Qback is natural because,
when a sphere having εb is embedded in a medium of εb,
optically there is no boundary and thus no scattering. Along
with the change in Qback, Qsca changes dramatically; the most
drastic change in the line shape is the reversal of the peak and
valley positions in the asymmetric line shape, as can be clearly
seen from a comparison of the Qsca spectra corresponding to
εm = 1.0 and 4.0. All the Qsca spectra shown in Figs. 6(a)
and 6(b) are asymmetric, but tend to be less asymmetric and
approach the Lorentzian line shape as εm approaches εb. The
spectra of Qabs exhibit symmetric lines and the maximum
value increases monotonously as εm increases. The spectra
of Qext given by Qsca + Qabs are asymmetric and inherit the
εm-dependence of Qsca, but they are less asymmetric because
of the contribution of the symmetric spectra of Qabs.

The spectra of Fsca, Fabs, and Fext obtained for various
values of εm smaller than εb are shown in Figs. 7(a), 7(b),
and 7(c), respectively, while the spectra obtained for various

(a)

(b)

FIG. 6. εm-dependencies of Qsca, Qabs, Qext , and Qback spectra
calculated by the exact Mie theory for the model sphere of R =
100 nm. Spectra corresponding to (a) εm < εb and (b) εm > εb for
εm values indicated in the figures. For R = 100 nm, values of xes are
simply given by

√
εm.

values of εm larger than εb are shown in Figs. 7(d), 7(e), and
7(f). Comparisons between Figs. 7(a) and 7(d), and between
Figs. 7(c) and 7(f), clearly reveal the reversal of the peak
and valley positions in the Fsca and Fext spectra, respectively.
For all of the spectra shown in Fig. 7, we see the increase
of the peak values as εm approaches εb; this is due to the
factorization of Qsca, Qabs, and Qext by decreasing Qback in
obtaining Fsca, Fabs, and Fext.

The spectra of Fsca and Fabs were calculated by varying
εm with a step of 0.1 in the range 1.0 � εm � 4.0 (1.0 �
xes � 2.0). The resulting spectra were fitted to the generalized
Fano function and the Lorentzian function, respectively. The
resulting fitting parameters are plotted in Figs. 8(a) to 8(e).
Comparisons between the fit curves and the spectra of Fsca

[Figs. 7(a) and 7(d)] and those of Fabs [Figs. 7(b) and 7(e)]
reveal that the fit curves reproduce very well the spectra. As
shown in Figs. 7(c) and 7(f), the spectra of Fext are very well
reproduced by curves obtained by summing the fit curves of
Fsca and Fabs. The results presented in Fig. 7 again confirm the
suitability of the generalized Fano function and the Lorentzian
function to describe the spectra of Fsca and Fabs, respectively,
even beyond the small particle limit provided that R < Rbound.

In Figs. 8(c) and 8(e), εm-dependencies of q and a
determined by the fitting are plotted together with those cal-
culated by the analytical expressions of the ES approximation
[Eqs. (13) or (21) for q and Eqs. (18) or (24) for a]. We see
that the results of fitting agree qualitatively with those of the
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(a)

(c)

(b)

(d)

(f)

(e)

FIG. 7. Spectra of Fsca, Fabs, and Fext for the model sphere of R =
100 nm obtained from the exact Mie theory by varying εm (xes =√

εm). (a)–(c) are for εm values varying from 1.0 to 1.8 with a step
of 0.2 (εm < εb). The spectra are displayed with vertical offsets; the
offset value is 2.0 for (a) and (b), and 4.0 for (c), respectively. (d)–(f)
are for εm = 2.6, 2.8, 3.0, 3.5, and 4.0 (εm > εb); the offset value
is 2.0 for (d) and (e), and 4.0 for (f), respectively. In (a) and (d),
the spectra of Fsca are compared with curves resulting from fitting
to the generalized Fano function, while in (b) and (e) the spectra of
Fabs are compared with those resulting from fitting to the Lorentzian
function. In (c) and (f), the spectra of Fext are compared with the
curves obtained by summing the fit curves of Fsca and Fabs.

ES approximation. As already pointed out in Sec. II A 2, the
divergence of q and a at εm = εb is due to the disappearance
of the background scattering. The change in the sign of q is
attributed to the π -change in the phase of background scat-
tered wave. Although these points were deduced within the ES
approximation, the qualitative agreements of the fitting results
with the ES results suggest that the disappearance of the
background scattering at εm = εb, which is also true beyond
the small-particle limit, is the cause of the divergence of q
and a. Furthermore, the π -change in the phase of background
scattered wave is anticipated to be the cause of the change
in the sign of q. As can be seen in Fig. 8(d), in contrast to the
above qualitative agreements of q and a, the εm dependence of
the screening parameter b resulting from the fitting deviates
from that of the ES approximation (b = 1) around εm = εb.
Clear explanation about this deviation is lacking at present
and deserve further detailed studies. The fitting results of ωF

plotted in Fig. 8(a) indicate that ωF is almost identical for
Fsca and Fabs. In Fig. 8(b), we see that the fitting results of
� for Fsca slightly differ from those of Fabs; the maximum
difference is estimated to be ∼13.1%. This small difference
allows us to use the generalized Fano function constructed
by adding that of Fsca and the Lorentzian function of Fabs to
approximately describe the εm-dependence of Fext. The results

presented above indicate that, even beyond the small-particle
limit, the εm-dependence of Fabs can be well described by
the Lorentzian function, while that of Fsca and Fext can be
described by the generalized Fano function, provided that
R < Rbound. We note finally that the strong dependence of Qsca

and Qext spectra on εm shown here opens up a possibility of
developing a single-particle sensor of the refractive index (or
dielectric constant) of the surrounding medium by effectively
monitoring the changes in the spectra.

III. SPECTRA OF INTERNAL FIELDS

A. Electrostatics approximation

We now proceed to analyze the behaviors of internal fields;
the basic equations of the Mie theory necessary for the anal-
ysis are summarized in the Supplemental Material [29]. We
consider here the local field-enhancement factor defined by

FElocal(r) = |E1(r)|2
|E0|2 , (28)

where E1(r) is the local electric field induced at a position
r inside the sphere and E0 is the electric field amplitude of
the incident light. In the small-particle limit, since E1(r) is
uniform over the sphere, FElocal(r) is also uniform. Omitting
the subscript and using the expression of the electric field
given by Eq. (S13) of the Supplemental Material [29], we can
simply express the uniform field enhancement factor as

FE =
∣∣∣∣ 3εm

ε(ω) + 2εm

∣∣∣∣
2

. (29)

In the same way as Eq. (5), we can write

3εm

ε(ω) + 2εm
=

(
3εm

εb + 2εm

)
ζ (ω), (30)

with

ζ (ω) = 1 + f cp
L(ω)

1 − cp f L(ω)
. (31)

Note that when A in χ (ω) [Eq. (7)] is replaced by cp, χ (ω)
becomes identical to ζ (ω). From Eqs. (30) and (31) it is clear
that FE is determined by the interference between the non-
resonant background component and the resonant excitonic
component. With the aid of FEback defined by

FEback =
(

3εm

εb + 2εm

)2

, (32)

FE can be written as

FE = FEbackFint, (33)

with

Fint = |ζ (ω)|2. (34)

An approximate expression of Fint , written as F ap
int , can easily

be obtained, when the term iωγexc in L(ω) is approximated
by iωexcγexc and the procedures for deriving F ap

sca from χ (ω)
described in Sec. II A 1 are applied to ζ (ω). In fact, we find
that F ap

int takes the form of the generalized Fano function, ex-
actly the same form as for F ap

sca [Eq. (12)], but with a different
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(c) (d) (e)

(a) (b)

FIG. 8. εm-dependencies of the fitting parameters. (a) ωF and (b) � for both the generalized Fano function and Lorentzian function, (c)
q and (d) b for the generalized Fano function and (e) a for the Lorentzian function. In (c)–(e), solid lines show behaviors of the parameters
predicted in the ES approximation. The range of εm shown in the figures corresponds to the range of xes from 1.0 to 2.0.

expression of the asymmetry parameter q,

q = f cp
ωexc

γexc
. (35)

It should be noted that in the ES approximation, in contrast
to Qsca and Qback, which depend on R through x4, the expres-
sions of FE and FEback do not contain x, and consequently,
they are independent of R. In a manner similar to Eq. (21),
q of F ap

int can be written as

q = Cint
q f int

q (t ), (36)

with

Cint
q = f

εb

ωexc

γexc
, (37)

and

f int
q (t ) = 1

1 + 2t
. (38)

The above equations predict that, for a given set of parameter
values, q takes a positive value and decreases monotonously
as t (=εm/εb) increases: this behavior is very much different
from that of q for F ap

sca, which diverges around t = 1 due to
the disappearance of the background scattering and changes
its sign caused by the π -change in the phase of background
scattering.

For the model excitonic sphere placed in air, we calculated
the spectra of FE , FEback, Fint, and F ap

int . Figure 9(a) shows the
spectra of FE and FEback, while in Fig. 9(b) the correspond-
ing spectra of Fint and F ap

int are compared. In contrast to Qback,
which obeys the 1/λ4-law of the Rayleigh scattering, FEback is
flat as seen in Fig. 9(a). Figure 9(b) shows that the spectrum of
Fint is well reproduced by the Fano function F ap

int ; the Fano line
shape was generated by a value of q = 0.61905 obtained from
Eq. (35) with the assumed values of the parameters. Note that
the positions of the peak and valley in the spectrum of Fint are
reversed relative to those of Fsca in Fig. 2(d), consistent with a

positive value of q for F ap
int and a negative value for F ap

sca. The
maximum error for F ap

int was estimated to be �max
int = 1.98%,

which is of the same order of magnitude as that for F ap
sca.

B. Beyond the small-particle limit

1. Average field-enhancement factor

Beyond the small-particle limit, the local electric field in-
side a sphere is no longer uniform. In this case, it is convenient
to introduce the average field-enhancement factor obtained
by averaging the local field-enhancement factor FElocal(r)
[Eq. (28)] over the sphere volume as

FE av = 1

V

∫ R

0

∫ π

0

∫ 2π

0
FElocal(r) r2 sin θdrdθdφ, (39)

where V is the volume of the sphere. Using the expression of
E1(r) given by Eq. (S11) in the Supplemental Material [29]

(a) (b)

FIG. 9. Spectra of a model excitonic sphere placed in air
(εm = 1), calculated using the equations of the ES approximation.
(a) FE [Eq. (29)] and FEback [Eq. (32)]. (b) Comparison between
Fint obtained from Eq. (33) and F ap

int obtained from the generalized
Fano function [Eq. (12)] with a q value calculated by Eq. (35).
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. Spectra of FE av and FE av
back of the model sphere placed

in air for (a) R = 20 nm (xes = 0.2), (b) 50 nm (xes = 0.5), and
(c) 80 nm (xes = 0.8). In (d)–(f), corresponding spectra of F av

int are
compared with curves resulting from the fitting to the generalized
Fano function [Eq. (14)].

and performing the integrations over θ and φ [17], we find

FE av = 3

2

1

R3

∞∑
n=1

{|cn|2(2n + 1)Jn(R) + |dn|2[nJn+1(R)

+ (n + 1)Jn−1(R)]}, (40)

where cn and dn are the Mie coefficients describing the local
electric fields inside the sphere given by Eqs. (S9) and (S10)
in the Supplemental Material [29], respectively, and Jn(R)
represents

Jn(R) =
∫ R

0
| jn(k1r)|2r2dr, (41)

with k1 and jn(k1r) being the wave number in the sphere
2π

√
ε(ω)/λ and the spherical Bessel function of order n, re-

spectively. In the same way as Qback beyond the small-particle
limit, FE av calculated with f = 0 (no excitonic transition)
is denoted as FE av

back. In parallel with Qsca, we analyze the
spectra by introducing F av

int obtained from

FE av = FE av
backF av

int . (42)

2. Numerical results for the model excitonic sphere

For the model sphere, we performed numerical calculations
of FE av, FE av

back, and F av
int spectra using Eqs. (40) and (42).

First, we discuss the R-dependence of the spectra for the
sphere embedded in air. We found that the spectra remain
practically the same when R is increased from 1 to 10 nm.
However, for R > 10 nm (xes > 0.1) the spectra deviate ap-
preciably from those of smaller spheres, indicating that the
ES approximation is no longer valid. The spectra of FE av

and FE av
back calculated for R = 20, 50, and 80 nm (xes = 0.2,

0.5, and 0.8) are shown in Figs. 10(a), 10(b), and 10(c),
respectively, and the corresponding spectra of F av

int are shown

(a) (b)

(d)(c)

FIG. 11. R-dependencies of the fitting parameters for the gen-
eralized Fano function. (a) ωF, (b) �, (c) q, and (d) b. Values of
the parameters in the small-particle limit are presented by horizontal
broken lines.

in Figs. 10(d), 10(e), and 10(f), respectively. As can be seen
from Figs. 10(a), 10(b), and 10(c), the spectrum of FE av

back,
which is almost flat for R = 20 nm (xes = 0.2), is inclined for
larger R and the inclination increases as R increases. Along
with the change in the spectrum of FE av

back, the spectrum of
FE av changes considerably depending on R. The asymmetric
line shapes of F av

int for R = 20 and 50 nm (xes = 0.2 and
0.5) [Figs. 10(d) and 10(e)] appear to be similar, but the line
shape for R = 80 nm (xes = 0.8) [Fig. 10(f)] is considerably
different; note the change in the scale of ordinate for Fig. 10(f)
relative to that for Figs. 10(d) and 10(e). We obtained the
spectra of F av

int by varying R with a step of 5 nm in the
range 15 nm � R � 80 nm (0.15 � xes � 0.8) and fitted to
the generalized Fano function given by Eq. (14). The resulting
fit curves for R = 20, 50, and 80 nm (xes = 0.2, 0.5, and
0.8) are compared with the corresponding spectra of F av

int in
Figs. 10(d), 10(e), and 10(f), respectively. The fit parameters
obtained are plotted as a function of R in Figs. 11(a) to 11(d).

Figures 10(d) and 10(e) reveal that the F av
int spectra for

R = 20 and 50 nm (xes = 0.2 and 0.5) are well reproduced
by the generalized Fano function. However, in Fig. 10(f) we
see that the F av

int spectrum for R = 80 nm (xes = 0.8) deviates
considerably from the fit curve indicating that the line shape
is deformed from the Fano line shape. Although it is difficult
to set precisely an upper bound value Rbound for the validity
of the generalized Fano function, we set it at Rbound = 60
nm (xes = 0.6) from close comparisons between the spectra
of F av

int and the fit curves. The fitting parameters plotted in
Figs. 11(a) to 11(d) change monotonously depending on R and
their deviations from the ES values increase as R increases. It
should be noted that the R-dependencies of q and b for F av

int
seen in Figs. 11(c) and 11(d) are quite different from those for
Fsca seen in Figs. 5(c) and 5(d); in particular, the values of q
are positive for F av

int , while they are negative for Fsca.
We also examined the εm-dependence of the spectra for

the model excitonic sphere of R = 30 nm. We calculated the
spectra of FE av, FE av

back, and F av
int by varying εm with a step of

0.2 in a range 1.0 � εm � 4.0(0.3 � xes � 0.6). The spectra
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(a)

(b)

(c)

(e)

(d)

(f)

FIG. 12. Spectra of FE av and FE av
back of the model sphere of R =

30 nm for (a) εm = 1 (xes = 0.3), (b) εm = 2.2 (=εb) (xes = 0.4450),
and (c) εm = 4.0 (xes = 0.6). In (d)–(f), corresponding spectra of F av

int

are compared with curves resulting from the fitting to the generalized
Fano functions [Eq. (14)].

of F av
int were again fitted to the generalized Fano function.

The spectra of FE av and FE av
back obtained for εm = 1.0, 2.2,

and 4.0 (xes = 0.3, 0.4450, and 0.6) are shown in Figs. 12(a),
12(b), and 12(c), respectively; the corresponding spectra of
F av

int are compared with the fit curves in Figs. 12(d), 12(e), and
12(f). In Fig. 13, εm-dependencies of the fitting parameters
are plotted; the solid lines in Fig. 13(c) and 13(d) show the
behaviors of q [calculated by Eq. (35)] and b (=1) in the ES
approximation. Figures 12(a), 12(b), and 12(c) show that the
FE av

back spectrum, which is almost linear, changes its magni-
tude and slope depending on εm; as εm increases, the overall
magnitude increases, and the spectrum initially having a posi-
tive slope for εm = 1.0 turns to be flat at εm = 2.2 (=εb), and
for further increase in εm, it takes a negative slope like that for

(a) (b)

(d)(c)

FIG. 13. εm-dependencies of the fitting parameters for the gener-
alized Fano function. (a) ωF, (b) �, (c) q, and (d) b. In (c) and (d),
solid lines show behaviors in the small-particle limit.

εm = 4.0. Along with these changes in the FE av
back spectrum,

the spectrum of FE av also changes. However, the spectra of
F av

int resulting from the factorization of FE av by FE av
back are

less sensitive to the change in εm as seen in Figs. 12(d), 12(e),
and 12(f). Good agreements between the spectra of F av

int and
fit curves seen in Figs. 12(d), 12(e), and 12(f) confirm that the
generalized Fano function is capable of well describing the
asymmetric line shape of F av

int .
The above results of analytical analyses made in the

small-particle limit and numerical calculations for the model
excitonic sphere including the range of R beyond the small-
particle limit indicate that the enhancement factor of the
internal fields after the factorization to the background can
be described by the generalized Fano function, exactly in the
same manner as for the scattering spectra. However, we found
quite different dependencies of the fit parameters q and b on R
and εm, reflecting different characteristics of the internal and
external Fano resonances. These differences can be attributed
to the differences in the nominators of the Mie coefficients.
In fact, as can be found in Eqs. (S3), (S4), (S9), and (S10) of
the Supplemental Material [29], the denominators of an and
dn are identical as are those of bn and cn, but their nominators
have different forms; the nominators of an and bn become zero
when ε(ω) = εm, while those of dn and cn do not. Recall that
an and bn are the coefficients that connect the incident field
to the scattered fields outside the sphere, which vanish when
the dielectric constant of the sphere is identical to that of the
surrounding medium. On the other hand, dn and cn connect
the incident field to the local fields confined inside the sphere,
which persist even when the scattered fields vanish. These
differences in the coefficients lead to different characteristics
of the external and internal Fano resonances.

IV. CONCLUSION

The spectra of scattering, absorption, and extinction ef-
ficiencies, Qsca, Qabs, and Qext, respectively, of a dielectric
sphere that supports an excitonic transition were studied
systematically based on the exact Mie theory and its ES ap-
proximation. Resonant behaviors of the enhancement factor
of electric fields induced inside the sphere were also studied.
The excitonic sphere is characterized by a dielectric func-
tion consisting of a background dielectric constant εb and
a Lorentzian excitonic response. First, assuming a sphere
much smaller than the wavelength of light (small-particle
limit), line shape functions were derived analytically within
the ES approximation. After factorizing the efficiencies by
a background scattering efficiency Qback, which describes
the Rayleigh scattering in the small-particle limit, it was
shown that the spectra of absorption are described by the
Lorentzian function, while those of scattering and extinction
are described by the generalized Fano function (external Fano
resonance). Following the same procedures, it was also shown
that the spectra of the internal field-enhancement factor can
be described by the generalized Fano function (internal Fano
resonance). The equations appearing in the derivations clearly
indicate that the asymmetric line shapes in both the external
and internal Fano resonances are generated by the interference
between a nonresonant component corresponding to a broad
background and a resonant component associated with the
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excitonic transition. Analytical expressions obtained for the
asymmetry parameter q of the Fano line shape and amplitude
a of the Lorentzian line shape are useful for predicting the line
shape changes caused by changes in the system parameters. In
particular, we showed that the dependence of q and a on the
dielectric constant of surrounding medium (εm) can generally
be described as a function of t = εm/εb by unified functions.
For a model sphere, which mimics a polymer sphere doped
with J-aggregates of excitonic molecules, it is shown that the
spectra obtained within the ES approximation can be well
reproduced by the line shape functions.

Based on the exact Mie theory, the calculation of the effi-
ciency spectra as well as that of the internal field-enhancement
factor was extended to the range of R beyond the small-
particle limit. Although Qback was found to deviate from that
of Rayleigh scattering due to the contribution of higher-order
electric and magnetic modes of the sphere, the Lorentzian and
generalized Fano functions were shown to be still successful
for reproducing the optical spectra, provided that R is smaller
than a certain upper bound Rbound. The same conclusion could
be drawn also for the internal Fano resonance. Even though
both the external scattered fields and internal confined fields
exhibit Fano-resonant behaviors, their dependencies on the
system parameters were found to be quite different reflecting
different characteristics of the Mie coefficients describing the
external scattered fields and internal confined fields.

Although low-index dielectric nanoparticles not showing
distinct Mie resonances have not attracted much attention so
far, they can be good candidates of elements for resonant
nanophotonics once the excitonic transition is incorporated.
The Fano line shapes generated in their scattering and ex-
tinction spectra as well as in the spectra of internal fields can
easily be controlled by the background dielectric constant and
parameters of the excitonic transition. The present analytical
and numerical results provide a firm basis for discussing the
formation of the Fano line shapes in optical responses and
spectra of internal fields of the excitonic sphere. Since the
Rayleigh scattering or broad background scattering is a gen-
eral characteristic of a small-enough particle or a particle with
a small-enough background dielectric constant, irrespective
of the particle shape, the conclusions drawn here for the
spherical nanoparticle may be generalized to nanoparticles of
arbitrary shape; further detailed studies in this direction are
required.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant
No. 22K04967. This work was also partially supported
by Kobe University Strategic International Collaborative
Research Grant (Type B Fostering Joint Research).

[1] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano res-
onances in nanoscale structures, Rev. Mod. Phys. 82, 2257
(2010).

[2] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P.
Nordlander, H. Giessen, and C. T. Chong, The Fano resonance
in plasmonic nanostructures and metamaterials, Nat. Mater. 9,
707 (2010).

[3] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S.
Kivshar, Fano resonances in photonics, Nat. Photon. 11, 543
(2017).

[4] M. F. Limonov, Fano resonance for applications, Adv. Opt.
Photon. 13, 703 (2021).

[5] G. Mie, Beitrage zur Optik trüber Medienspeziell Kolloidaler
Metallösungen, Ann. Phys. 330, 377 (1908).

[6] C. E. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (John Wiley & Sons, New York,
1983).

[7] M. I. Tribelsky and B. S. Luk’yanchuk, Anomalous Light
Scattering by Small Particles, Phys. Rev. Lett. 97, 263902
(2006).

[8] M. I. Tribelsky, A. E. Miroshnichenko, and Y. S. Kivshar,
Unconventional Fano resonances in light scattering by small
particles, Europhys. Lett. 97, 44005 (2012).

[9] B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov,
A. E. Miroshnichenko, and Y. S. Kivshar, Suppression of
scattering for small dielectric particles: Anapole mode and in-
visibility, Phil. Trans. R. Soc. A 375, 20160069 (2017).

[10] M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach,
and Y. S. Kivshar, Light Scattering by a Finite Obstacle and
Fano Resonances, Phys. Rev. Lett. 100, 043903 (2008).

[11] A. Miroshnichenko, Fano resonances in light scattering by fi-
nite obstacles, in Fano Resonances in Optics and Microwaves,
Springer Series in Optical Sciences, Vol. 219, edited by E.
Kamenetskii, A. Sadreev, and A. Miroshnichenko (Springer,
New York, 2018), Chap. 20, p. 473.

[12] M. I. Tribelsky and A. E. Miroshnichenko, Giant in-particle
field concentration and Fano resonances at light scattering
by high-refractive-index particles, Phys. Rev. A 93, 053837
(2016).

[13] K. Koshelev and Y. Kivshar, Dielectric resonant metaphotonics,
ACS Photon. 8, 102 (2020).

[14] H. Sugimoto and M. Fujii, Colloidal Mie resonators for
all-dielectric metaoptics, Adv. Photon. Res. 2, 2000111
(2021).

[15] Y. Kivshar, The rise of Mie-tronics, Nano Lett. 22, 3513
(2022).

[16] H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang,
Fano resonance in (gold core)-(dielectric shell) nanostructures
without symmetry breaking, Small 8, 1503 (2012).

[17] T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, Unconventional
Fano effect and off-resonance field enhancement in plasmonic
coated spheres, Phys. Rev. A 87, 043841 (2013).

[18] L. Jule, V. Mal’nev, T. Mesfin, B. Senbeta, F. Dejene, and K.
Borro, Fano-like resonance and scattering in dielectric(core)-
metal(shell) composites embedded in active host matrices,
Phys. Status Solidi B 252, 2707 (2015).

[19] Z. Wang, B. Luk’yanchuk, L. Yue, B. Yan, J. Monks, R. Dhama,
O. V. Minin, I. V. Minin, S. Huang, and A. A. Fedyanin, High-
order Fano resonances and giant magnetic fields in dielectric
microspheres, Sci. Rep. 9, 20293 (2019).

125408-13

https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nphoton.2017.142
https://doi.org/10.1364/AOP.420731
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1103/PhysRevLett.97.263902
https://doi.org/10.1209/0295-5075/97/44005
https://doi.org/10.1098/rsta.2016.0069
https://doi.org/10.1103/PhysRevLett.100.043903
https://doi.org/10.1103/PhysRevA.93.053837
https://doi.org/10.1021/acsphotonics.0c01315
https://doi.org/10.1002/adpr.202000111
https://doi.org/10.1021/acs.nanolett.2c00548
https://doi.org/10.1002/smll.201200032
https://doi.org/10.1103/PhysRevA.87.043841
https://doi.org/10.1002/pssb.201552221
https://doi.org/10.1038/s41598-019-56783-3


SHINJI HAYASHI et al. PHYSICAL REVIEW B 108, 125408 (2023)

[20] I. V. Minin, O. V. Minin, and S. Zhou, High-order Fano res-
onance in a mesoscale dielectric sphere with a low refractive
index, JETP Lett. 116, 144 (2022).

[21] I. V. Minin, O. V. Minin, and B. S. Luk’yanchuk, Mesotronic
era of dielectric photonics, Proc. SPIE 12152, 121520D (2022).

[22] B. S. Luk’yanchuk, A. R. Bekirov, Z. B. Wang, I. V. Minin,
O. V. Minin, and A. A. Fedyanin, Optical phenomena in dielec-
tric spheres several light wavelengths in size: A review, Phys.
Wave Phen. 30, 217 (2022).

[23] F. Muckel, K. N. Guye, S. M. Gallagher, Y. Liu, and D. S.
Ginger, Tuning hybrid exciton-photon Fano resonances in two-
dimensional organic-inorganic perovskite thin films, Nano Lett.
21, 6124 (2021).

[24] E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat,
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