
PHYSICAL REVIEW B 108, 125403 (2023)

Frozen-phonon method for state anticrossing situations and its application to zero-point
motion effects in diamondoids

Pablo García-Risueño,1,2,* Peng Han,1,3 Surender Kumar,1 and Gabriel Bester 1,2,†

1Institute for Physical Chemistry, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany

3Department of Physics, Capital Normal University, Beijing Key Lab for Metamaterials and Devices, Beijing 100048, China

(Received 15 March 2022; accepted 9 June 2023; published 5 September 2023)

The frozen-phonon method, used to calculate electron-phonon coupling effects, requires calculations of the
investigated structure using atomic coordinates displaced according to certain phonon eigenmodes. The process
of “freezing in” the specific phonon can bring electronic eigenstates that are energetically close in energy into an
anticrossing. This electronic anticrossing effect is, however, unrelated to electron-phonon coupling and needs
to be removed if the eigenvalues are used to obtain electron-phonon coupling. We present a procedure for
how to deal with these problematic anticrossing situations and apply it to the band gap zero-point motion
renormalization of 16 diamondoids and urotropine using different exchange correlation functionals. From the
17 structures, 5 require the correction presented here, leading to a modification of the zero-point renormalization
between 4% and 185%. We find gap renormalizations in the range of −150 to −370 meV for diamondoids but
only around −40 meV for urotropine.
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I. INTRODUCTION

Understanding the effect that the nuclear motion has on
electronic properties has been a challenging scientific problem
[1–5] and remains a central topic of solid-state physics and
quantum chemistry [6–11]. Electron-phonon (e-ph) coupling
can be studied with a computational technique referred to as
“frozen phonon” (FP). As originally proposed by Dacorogna
et al. [12] to calculate the e-ph coupling matrix elements of
bulk aluminum from first principles, the atoms are frozen into
the displaced positions they acquire during a certain vibration.
The electronic response to the distortion represents the e-ph
coupling. The method requires, however, large supercells,
especially for long-wavelength phonons, which has limited
its application. Furthermore, with the rapid development of
density functional perturbation theory [13], the frozen-phonon
approach has less frequently been used to calculate e-ph cou-
pling matrix elements [12,14]. Capaz et al. [15] extended
the ab initio frozen-phonon approach to study the renor-
malization of the band gap due to zero-point motion (ZPM
or ZPR), i.e., the modification of the electronic eigenvalues
by a nuclear quantum effect, and the temperature-dependent
band gap renormalization. Compared to the “standard” (i.e.
its original version) Allen-Heine-Cardona (AHC, sometimes
called HAC) theory [16] of ZPR [17] (recently applied to two-
dimensional systems [18,19]), the frozen-phonon approach
includes the so-called non-rigid-ion Debye-Waller (NRIA
DW [20]; also called nondiagonal Debye-Waller [21]) terms
missing in the AHC model as well as anharmonic effects
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of lattice vibration and gives a more accurate description of
ZPR [6,21,22]. In recent years, the ab initio-based frozen-
phonon approach has been used to calculate the ZPR effect
and temperature-dependent band gap renormalization in semi-
conductor nanoclusters [23]; in bulk diamond, Si, and SiC
structures [24]; in hexagonal and cubic ice [25]; and in
molecular crystals [26]. Moreover, recent developments of
the frozen-phonon method include nondiagonal supercells
[27,28] and one-shot calculation of temperature-dependent
optical spectra [29]. However, the frozen-phonon method suf-
fers, as we intend to demonstrate, from a problem that occurs
when the applied deformation (frozen phonon) leads to an
anticrossing of the electronic states.

In this paper, we propose a modification of the standard
frozen-phonon method [15] in order to properly treat the situa-
tion of state anticrossings, which can happen when eigenstates
are energetically close to the eigenstate considered and have
the same point group symmetry, allowing direct electronic
coupling of both states. In this case, the effect of the frozen
phonon perturbation can lead to an anticrossing of both elec-
tronic states [the energy of the upper (lower) state is raised
(lowered) by the perturbation]. This anticrossing is mainly the
result of a direct electronic coupling due to the perturbation
and only marginally due to the more subtle electron-phonon
interaction we seek. Both effects must therefore be disen-
tangled, which is the topic of this work. We illustrate this
problem of state mixing and show that four qualitatively dif-
ferent situations can occur. We present a method to circumvent
the problems and apply it to 16 carbon-caged nanostructures
called diamondoids and urotropine, in which the renormal-
ization of the band gap due to electron-vibrational interaction
is strong, in the range of a few hundred meV. The electronic
anticrossing situation occurs in 5 out of the 17 structures
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and requires the correction presented here. The correction
modifies the calculated ZPR by 244, 207, 495, 88, and 11 meV
for a ZPR of 368, 296, 327, 284, and 331 meV for C14H20,
C18H24, C22H28 with C2 symmetry, C22H28 with C2h symme-
try, and C38H42, respectively.

Moreover, we find that the results using hybrid functionals
[Becke three-parameter Lee-Yang-Parr (B3LYP)] are rather
different (∼25%) from those of the local-density approxima-
tion (LDA) and generalized gradient approximation (GGA)
for the renormalizations of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) individually but similar to those for the renormaliza-
tions of the HOMO-LUMO gap. The results for the HOMO
renormalization of urotropine are very different than those for
the diamondoids (significantly smaller), a fact that we explain
by the lone-pair nature of the HOMO in urotropine.

II. THEORY

A. Standard frozen-phonon approach for ZPR

The phonon theory is based on the solution of the dynami-
cal equation [20]:∑

Iα

DIα,Jα′ X ν
Iα = ω2

ν X ν
Jα′ , (1)

where I, J = 1, . . . , Nat (with Nat being the number of atoms)
are atomic indices, α and α′ are their corresponding Carte-
sian coordinate indices, ν is the phononic index, and Xν are
the normal modes of vibration. The dynamical matrix D is
defined as

DIα,Jα′ = 1√
MI MJ

∂2EBO

∂RIα∂RJα′
, (2)

where MI are the atomic masses, RIα are the nuclear coor-
dinates, and EBO is the Born-Oppenheimer energy surface
[20]; ω2

ν and Xν are the eigenvalues and eigenvectors of the
dynamical matrix (ων are the phonon frequencies).

The frozen-phonon method [15] is used to calculate the
temperature-dependent renormalization of electronic eigen-
values En due to vibronic coupling, i.e., the change in the
electronic energies due to the vibrational motion of the nuclei.
This renormalization is found from finite-difference calcula-
tions and is given by

�En(T ) =
∑

ν

�E ν
n (0)

(
nB

ν + 1

2

)
, (3)

where nB = (exp[ων/T ] − 1)−1 is the Bose-Einstein distribu-
tion in atomic units. The �E ν

n (0) coefficients are

�E ν
n (0) = 1

2ων

d2

dh2
En [ x0 + hUν ]|h=0, (4)

where h is a displacement parameter (with units of 1/
√

ων),
U ν

Iα = X ν
Iα/

√
MI are the phonon eigenmodes, MI is the mass

of the Ith atom, En[x] is the nth electronic eigenvalue at
T = 0 when the nuclei are at positions given by x (which is a
vector of 3Nat components), and x0 is the set of relaxed nuclear
positions. Equations (3) and (4) result from performing an

average of the electronic eigenvalues assuming parabolic de-
pendence on the nuclear positions (harmonic approximation).
A derivation of these equations can be found in Ref. [20].
In the frozen-phonon method, the second derivatives of (4)
are solved by finite difference. In this paper we propose to
evaluate it using the standard finite-difference equation:

�E ν
n (0) = En[x0 + hUν] − 2En[x0] + En[x0 − hUν]

2 ων h2
, (5)

with h being as small as possible [30], e.g., between 2 and 10
a.u. Note that in Eq. (5) the displacement size is equal for all
the vibrational modes (it does not depend on ν because the
normal modes are normalized [30]). Our choice [Eq. (5)] is
in contrast to the generally used expression [10,15,23,31–35]
to calculate the derivatives, in which the displaced positions
used in the finite difference are xν

± = x0 ± Uν/
√

ων and thus

�E ν
n (0) = En[xν

+] − 2En[x0] + En[xν
−]

2
. (6)

Despite its popularity, Eq. (6) performs displacements which
are often too large, leading to distortion of the results because
of the appearance of crossings of the eigenvalues. In order to
remove these possible errors we propose a modified frozen-
phonon approach for the calculation of ZPR in nanostructures.

B. Modified frozen-phonon approach for ZPR

In Fig. 1 we show the highest occupied eigenvalues of
lower diamondoids (C14H20 and C18H24) as a function of
the displacement parameter h for different vibrational modes.
Different problematic situations which arise in the frozen-
phonon method include a simple level crossing [Fig. 1(a)],
a symmetric anticrossing (avoided crossing) of two levels
[Fig. 1(b)], a combined situation of crossing and anticross-
ing [Fig. 1(c)], and a double anticrossing [where three states
couple to each other, as shown in Fig. 1(d)]. The anticross-
ing situations [Figs. 1(b)–1(d)] are problematic because the
curvatures of the h-dependent eigenvalues have a dominant
component coming from the anticrossing effect itself instead
of the electron-phonon coupling. Indeed, the anticrossing has
a dominant contribution from the coupling of both electronic
states due to their compatible point group symmetries, which
allows them to interact and mix. These anticrossings are not
induced by electron-phonon coupling. This becomes obvious
from the fact that the anticrossing is happening at zero dis-
placement (h = 0), where no phonon is frozen in. As can
be seen from Figs. 1(b)–1(d), this electronic coupling effect
[e.g., the opening of a gap in Fig. 1(b) at h = 0] can be very
large and coexists with the electron-phonon coupling effect.
Further, note that the linear terms [slopes in, e.g., Fig. 1(a)] are
not the quantities required for the calculation of ZPR, but the
quadratic dependence [according to Eq. (5)], which is small
and actually not noticeable by eye in Fig. 1(b). The linear
term cancels in the thermal average. The principal aim of
this work is to derive a procedure to disentangle both effects.
In Fig. 1(a), a more trivial problem occurs where the states
simply cross. In this case one must take care, in the calculation
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FIG. 1. Eigenvalues as a function of the frozen-phonon displacements h for (a) C18H24 for a phonon with a wave number of 1131 cm−1, (b)
C18H24 for a phonon with a wave number of 1256 cm−1, (c) C14H20 for a phonon with a wave number of 1217 cm−1, (d) C14H20 for a phonon
with a wave number of 1301 cm−1, (e) bare and dressed states extracted from (d) (see text), and (f) HOMO from DFT [as in (d)] and HOMO
from the model [as in (e)] and difference between the two (dashed line). The large dots in (a)–(d) correspond to the displacements suggested
in Ref. [15] (i.e., xν

± = x0 ± Uν/
√

ων).

of the second derivative, to follow the electronic state [HOMO
in Fig. 1(a)] across the crossing and avoid mixing different
electronic states.

In order to recognize a state anticrossing (or crossing) sit-
uation we propose the following procedure. We first perform
self-consistent density functional theory (DFT) calculations
with the undisplaced nuclear position x0 and the displace-
ment x0 ± hUν to obtain the electronic eigenvalues En(x0)
and En(x0 ± hUν ). A small displacement with h ≈ 2 a.u.
is used. Next, the overlap between undisplaced |u〉 and
displaced |d〉 states χ = |〈u|d〉|2 is calculated. When the
overlap is close to 1.0 (e.g., > 0.995 for h = 2 in our case
[36]), we calculate the renormalization according to Eq. (5).
Otherwise, we recalculate the electronic eigenvalues with
different displacements h = ±1, ±3, ±4, . . .. By visual in-
spection, we identify the situation [Fig. 1(a)–1(c), or 1(d)]
and apply the corresponding correction method (as explained
below).

C. Crossing of two states

If there is a crossing, as displayed in Fig. 1(a), we must
make sure to use eigenvalues in Eq. (5) that belong to the same
branch to calculate the curvature of En vs h in order to calcu-
late the correct renormalization. For example, if we want to
find the renormalization of HOMO-1 in Fig. 1(a) (red line) and
we use h = +12, we must no longer use the second-highest
occupied eigenvalue, but the third-highest one, which is the
one which corresponds to a smooth En-vs-h curve (that is, we
need to follow the eigenvalue). The appropriate eigenvalue can

also be found from the overlap of wave functions χ (see the
Supplemental Material [30] and tutorial [37]).

D. Avoided crossing of two states

We map the simple state anticrossing situation in Fig. 1(b)
and the asymmetric anticrossing in Fig. 1(c) to the equation∣∣∣∣( E1 g

g E2

)
− I · E±

∣∣∣∣ = 0, (7)

where I is the identity matrix, E± are the eigenvalues obtained
from DFT calculations (dressed eigenvalues), and E1,2 are the
so-called bare states. E± include the ZPR with contributions
from the unwanted anticrossing effect. We therefore extract
the ZPR effect from Eq. (7) as

E 1
2

= E+ + E− ±
√

(E+ − E−)2 − 4g2

2
. (8)

The coupling parameter g is half the minimal distance be-
tween the dressed curves (E+ and E−) and is obtained from
a polynomial fit to the DFT eigenvalues. By solving Eq. (8),
we fit E1,2 vs h to a parabola and extract its second derivative
(curvature) ζ . The frozen-phonon ZPR is then calculated via
the relation �E ν

n (0) = ζ/(2ων ) [see Eq. (5)]. In Figs. 1(b) and
1(c), we show the calculated bare eigenvalues (dashed lines)
as well as the dressed eigenvalues from DFT (circles). The
solid lines are polynomial fits to the data points. Note that
in Fig. 1(b) the curvature of E1,2 are very small, leading to a
small contribution to the ZPR (0.3 meV in this case).
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FIG. 2. Degenerate HOMO of C22H28 with C3v symmetry as a
function of the displacement parameter h for a phonon with a wave
number of 1336 cm−1.

E. Avoided crossing of three states

The Hamiltonian describing the anticrossing situation [38]
in Fig. 1(d) is given by

Ĥ =
⎛⎝ � + ah g g3

g 0 g
g3 g � − ah

⎞⎠. (9)

The values of a and � used in Eq. (9) are obtained from
DFT calculations in the large h limit [via asymptotes; dashed
lines in Fig. 1(e)], and g is the minimal distance between the
HOMO and the HOMO-1 state from DFT calculations [solid
lines in Fig. 1(d)]. The numerical solution of Eq. (9) is shown
in Fig. 1(e). In the case of h = 0, the electronic eigenvalues
can be analytically written as

E+(h = 0) = 1
2 (� + g3 +

√
8g2 + (� + g3)2), (10a)

E0(h = 0) = 1
2 (� + g3 −

√
8g2 + (� + g3)2), (10b)

E−(h = 0) = � − g3. (10c)

The requirement of a crossing of states E− and E0 at h = 0,
which is dictated by the symmetry, leads to an analytic solu-
tion for the coupling g3:

g3 = 1
2 (� +

√
�2 + 4g2). (11)

Once the values of E±(h) are obtained, we extract its concav-
ity ζ and calculate the frozen-phonon renormalization using
�E ν

n (0) = ζ/(2ων ).
In Fig. 1(f) the dressed eigenvalues of the anticrossing

model E+ are shown by the solid black line, and the DFT
eigenvalues are shown as blue dots EDFT

+ . The difference be-
tween the two is shown by the dashed green line. From this
difference we extract the second derivative ζ . In the analyzed
example, the uncorrected (corrected) renormalization is 56.2
(11.8) meV.

F. Treatment of degenerate states

Among the 17 structures analyzed in this paper, 3 of them
have a twofold HOMO, and 8 of them have a threefold
HOMO. In Fig. 2 we show the twofold HOMO of C22H28 with
C3v symmetry as a function of the displacement parameter

h (see Figs. S10 and S11 in the Supplemental Material for
further examples [30]). In the case of degeneracy, one possi-
ble approach is to assume that all the degenerate states will
contribute equally in the light emission or absorption process.
This leads to the averaging of the different contributions, as
performed previously [39–43] as well as in this work (see
also Sec. II B of the Supplemental Material [30]). Importantly,
using the averaging procedure, there is no correction needed
from degenerate perturbation theory to the perturbation theory
of AHC (the equations in Sec. IV are valid) or to the frozen-
phonon approach.

Going beyond the averaging procedure, i.e., occupying
only or mainly the band gap state shown by thick lines (along
the dashed arrow) in Fig. 2, is not trivial. It is conceivable that
the system will undergo a dynamical transition between the
two branches (thick lines), which may be taken into account
in Floquet theory [44], where a dynamically created gap opens
up. On the other hand, the dynamics of the coupled sys-
tem with a corresponding (mixed) band edge state is readily
obtained by molecular dynamics (MD) [43,45,46]. Missing
pieces in MD are excitonic effects. In the excitonic picture,
the ground state exciton has contributions from both HOMO
states (HOMO and HOMO-1 in Fig. 2), and the exciton man-
ifold can be thermally occupied to match the experimental
situation. Such methodological developments would be inter-
esting to pursue.

Recently, the addition of a term in the AHC model as well
as in the FP approach was suggested for the case of degen-
eracies [19]. The use of degenerate perturbation theory and
the assumption that the band gap states undergo the transition
indicated by the dashed arrow in Fig. 2 with a sudden change
in wave function symmetry at h = 0 lead to a very large
nonvanishing linear correction term that we decided not to
include in our results. A discussion of this approach is given
in the Supplemental Material [30].

III. STRUCTURES UNDER INVESTIGATION

We investigated 16 diamondoids and urotropine (C6H12N4,
where four methine groups of adamantane are replaced by
nitrogen), as shown in Fig. 3 (atomic positions can be found in
[37]). Diamondoids are ideal candidates to study ZPR. These
small fragments of diamond passivated with hydrogen present
a strong ZPR [9,10,23] and can be simulated ab initio with an
affordable computational burden. Diamondoids present many
forms, like those of a cube, a cane, a disk, or a pyramid [47].
Three of the smallest diamondoids, adamantane (C10H16),
diamantane (C14H20) and triamantane (C18H24), usually called
lower diamondoids, have no isomers, in contrast to larger
higher diamondoids. The systems that we analyze in this paper
have been the object of ab initio calculations in the past to dif-
ferent extents. On the one hand, the lower diamondoids are the
object of intense computational [9,10,23,48] and experimen-
tal [49,50] research. On the other hand, higher diamondoids
have been the object of fewer experiments [51] and several
computational studies [43,48,52–60].

IV. FURTHER METHODS

We use the QUANTUM ESPRESSO (version 5.3.0) pack-
age [61] with the LDA [62] exchange correlation and
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C51H52 - Td C59H60 - Td
C87H76 - Td

C29H36 - Td

C35H36 - Td C38H42 - C3v

C26H30 - C3d C26H32 - C2v

C26H32 - Td

C18H24 - C2v C22H28 - C2 C22H28 - C2h
C22H28 - C3v

C10H16 - Td C12H18 - D3h C6H12N4 - Td
C14H20 - D3d

FIG. 3. Nanostructures investigated in this paper (16 diamondoids and urotropine). C10H16, C12H18, C14H20, C18H24, C22H28, C26H32,
C26H30, and C6H12N4 are commonly known as adamantane, iceane, diamantane, triamantane, tetramantane, pentamantane, hexamantane, and
urotropine, respectively.
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Baroni-del Corso (VBC) pseudopotentials [63] as well as
the GGA Perdew-Burke-Ernzerhof (PBE) [64] exchange cor-
relation with HGH pseudopotentials [65] and the B3LYP
[66,67] exchange correlation with Hartwigsen-Goedecker-
Hutter (HGH) pseudopotentials [65]. For the B3LYP calcu-
lations we used the relaxed geometries and normal modes
obtained at the GGA-PBE level. The plane-wave cutoffs were
30 Ry for GGA and LDA and 60 Ry for B3LYP. The forces
were converged to 10−6 Ry/bohr. The simulation cells were
cubic, with edges of 35 Å for systems up to 18 carbons, 36
Å for systems with 22 to 35 carbons, 37 Å for systems with
38 and 51 carbons, and 38 Å for the largest diamondoid. In
the Supplemental Material [30] we present an example of the
renormalization energy as a function of the size of the sim-
ulation cell and provide in [37] a downloadable step-by-step
description and necessary codes.

In Sec. V, we compare our results with the standard
[16] AHC theory [5,68–70]. The AHC approach is based
on the Green’s function many-body perturbation theory, and
the renormalizations are calculated as electronic self-energies.
In this theory, such self-energies consist of two terms: the
Fan self-energy and the DW self-energy. The former (	Fan)
corresponds to linear electron-phonon couplings g treated
in second-order perturbation theory [20,71], while the latter
(	DW) corresponds to quadratic couplings gDW treated in
first-order perturbation theory [5,21]. Within the framework
of that theory the renormalization of electronic eigenvalues is
not directly calculated from finite difference in the electronic
eigenvalues—as done in our frozen-phonon approach—but
from finite-difference variations of the self-consistent poten-
tial. For their calculation we follow Ref. [14]. The AHC
results that we present in Table IV below are based on the
following equations:

�En(T ) = 	Fan
n (T ) + 	DW

n (T ),

	Fan
n (T ) =

∑
ν, j �=n

|gn, j
ν |2

En − Ej

(
2nB

ν + 1
)
,

	DW
n (T ) =

∑
ν

(gDW)n,n
ν

(
2nB

ν + 1
)
,

gn, j
ν =

∑
I

√
1

2MI ων

〈 j| ∇I Ĥ
0| n〉 Xν

I , (12)

(gDW)n,n
ν =

∑
IJ

(
Xν

I

)† 〈n | ∇I∇J Ĥ0 | n〉 Xν
J

4
√

MI MJ ων

,

where En and Ej are the unperturbed electronic eigenvalues,
ων are the phonon frequencies (with ν = 7, . . . , 3 Nat, where
Nat is the number of atoms), and nB

ν is the Bose distribution.
The indices n and j correspond to electronic eigenvalues, with
|n〉 and | j〉 being the corresponding orbitals, and I and J are
the atom indices. Ĥ0 is the unperturbed Hamiltonian (eval-
uated at relaxed nuclear positions), whose first and second
derivatives with respect to the nuclear displacements deter-
mine the couplings. The summation in the electronic orbitals
[ j index in Eq. (12)] includes all the occupied and unoccupied
states except j = n; in practice the summation is truncated
and includes several hundred orbitals [7,9,21] (see the Supple-

mental Material [30]). Alternatively, one can use projectors to
avoid large summations, as explained in Refs. [20,21].

The direct calculation of the Debye-Waller term is nu-
merically heavy because it requires the evaluation of the
second derivative of the Hamiltonian with respect to nuclear
positions. A simple and efficient manner to calculate part
of it is given by the rigid-ion approximation [20,22]. This
approximation consists of considering that the (Kohn-Sham)
potential can be split into a sum of potentials which depend
on the individual nuclear (ionic) positions. Under the rigid-
ion approximation, the Debye-Waller electron-phonon matrix
elements gDW can be calculated using

(gDW)n,n
ν =

∑
Iα

I ′α′

(
U ν

I,αU ν
I,α′ + U ν

I ′,αU ν
I ′,α′

)
2 ων

×

⎡⎢⎢⎣ ∞∑
j=1
j �=n

hn, j;α,I hn, j;α′,I ′

Ej − En

⎤⎥⎥⎦, (13a)

hn, j;α,I =
∑

ν

MI
√

ων U ν
I,α gn, j

ν . (13b)

With this approximation, the Fan and DW terms require only
the calculation of gn, j

ν (e.g., using the δV approach [14]), in
addition to the phonon eigenmodes and eigenenergies.

V. RESULTS

A. Our frozen-phonon results

Our results for the renormalization of the HOMO, LUMO,
and gaps are summarized in Table I, where we also present the
renormalization of the LUMO + 1 of C14H20 and C22H28 with
C2h symmetry because the HOMO/LUMO optical transition
is forbidden due to symmetry arguments [23]. For C29H36 we
employed the geometry from GGA for the calculations with
LDA, GGA, and B3LYP.

In Table I the B3LYP results for the largest diamondoids
are lacking due to their large computation cost. In Table I
we also display (in bold font) the number of problematic
modes in the calculation of the renormalization of the HOMO
state. Note that this number depends on the chosen functional.
Since a mode can become problematic when two or more
eigenvalues are close in energy, this can well depend on the
functional used. For instance, the LDA and GGA may lead to
slightly different structural relaxations, and electronic states
that are close in energy in the LDA (creating problematic
modes) may be sufficiently far at the GGA level so that no
(or fewer) problematic modes appear. If the correction for
the anticrossings is done properly, we should, however, obtain
similar final results for the ZPR.

As shown in Table I (bold numbers), 5 (6 with B3LYP) out
of 17 structures present problematic modes and require the
appropriate correction. The failure to do so can lead to large
errors that will be presented subsequently in detail in Table III.

Moreover, Table I indicates that the renormalizations of
the HOMO and LUMO obtained at the GGA and LDA level
are very similar. For the hybrid functional B3LYP we ob-
tain similar (to LDA and GGA) renormalizations of the gap
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TABLE I. ZPR of the HOMO, LUMO, and gap of diamondoids and urotropine (in meV). The numbers in bold font indicate the number of
modes for which a correction due to an anticrossing was necessary; (2x) and (3x) indicate HOMO degeneracies. The LDA results for C59H60

are absent because the HOMO and HOMO-1 states are very close in energy using this functional, which requires a very cumbersome correction
scheme (many problematic modes).

System System
(symmetry) State GGA LDA B3LYP (symmetry) State GGA LDA B3LYP

C10H16 HOMO (3x) 162.4 157.3 202.9 C26H32 HOMO 200.4 185.7 236.7, 1
(Td ) LUMO −86.6 −105.3 −71.4 (C2v) LUMO −80.2 −100.8 −59.4

Gap −249.0 −262.6 −274.3 Gap −280.6 −286.5 −296.1
C12H18 HOMO (2x) 224.2 202.5 295.7 C26H32 HOMO (3x) 136.4 125.6 170.8
(D3h) LUMO −92.2 −109.9 −73.8 (Td ) LUMO −73.7 −97.6 −70.3

Gap −316.4 −312.4 −369.5 Gap −210.1 −223.2 −241.1
C14H20 HOMO 268.9, 8 279.2, 6 318.3, 8 C29H36 HOMO (3x) 175.2 188.7 187.2
(D3d ) LUMO −91.3 −113.5 −49.3 (Td ) LUMO −93.9 −115.0 −72.4

LUMO+1 −67.9 −87.9 −23.7 Gap −269.1 −303.7 −259.6
Gap (H/L) −360.2 −392.7 −367.6 C35H36 HOMO (3x) 127.5 123.4 168.7

Gap (H/L+1) −336.8 −367.1 −342.0 (Td ) LUMO −95.5 −116.9 −81.5
C18H24 HOMO 183.2, 2 221.4, 2 239.2, 4 Gap −223.0 −240.3 −250.2
(C2v) LUMO −84.2 −103.7 −57.2 C38H42 HOMO 205.7, 4 228.1, 4 255.1, 4

Gap −267.4 −325.1 −296.4 (C3v) LUMO −117.9 −115.9 −75.5
C22H28 HOMO 272.4, 22 234.2, 18 267.4, 26 Gap −323.6 −344.0 −330.6
(C2) LUMO −86.4 −106.9 −59.2 C51H52 HOMO (3x) 101.9 97.7

Gap −358.8 −341.1 −326.6 (Td ) LUMO −100.6 −92.3
C22H28 HOMO 177.5, 1 174.0, 1 239.2, 2 Gap −202.5 −190.0
(C2h) LUMO −66.5 −89.7 −44.6 C59H60 HOMO (3x) 192.8

LUMO+1 −80.7 −100.7 −83.6 (Td ) LUMO −101.1
Gap (H/L) −244.0 −263.7 −283.8 Gap −293.9

Gap (H/L+1) −258.2 −274.7 −322.8 C87H76 HOMO (3x) 96.6 79.2
C22H28 HOMO (2x) 188.8 181.1 240.6 (Td ) LUMO −61.3 −89.9
(C3v) LUMO −85.5 −100.5 −58.8 Gap −157.9 −169.1

Gap −274.3 −281.6 −299.4
C26H30 HOMO (2x) 167.2 159.2 221.2 C6H12N4 HOMO (3x) −29.5 −35.4 −11.9
(C3d ) LUMO −73.9 −102.0 −46.2 (Td ) LUMO −68.7 −82.3 −50.3

Gap −241.1 −261.2 −267.4 Gap −39.2 −46.9 −38.4

but rather different renormalizations of HOMO and LUMO
individually. Quantitatively, the average difference between
LDA and B3LYP is −30% for the HOMO and 35% for
the LUMO but only 8.6% for the HOMO-LUMO gap. This
means that, although B3LYP calculations are desirable, the
cheaper LDA and GGA provide satisfactory results in the
calculation of gap renormalizations due to ZPR. Note that
the B3LYP results can be expected to be rather accurate, as
shown in Ref. [72], where the renormalization of the LUMO
of C60 was calculated using LDA/GGA, B3LYP, and self-
consistent GW . Using the latter as a reference, the error made
by the LDA was about 30%, while the error from B3LYP was
only 10%.

In Fig. 4, we show the frozen-phonon renormalizations
of the HOMO, LUMO, and HOMO-LUMO gap for the
16 analyzed structures. We can see that the values of the
gap renormalizations lie between −158 meV (C87H76) and
−393 meV (C14H20) and are on the same order of magnitude
as for bulk diamond: between −320 and −450 meV for the
direct gap [73] and −340 and −370 meV for the indirect gap
[74,75]. We notice that the renormalizations of the HOMO are
always positive (for diamondoids, not including urotropine)
and the renormalizations of the LUMO are always negative,

which is the usual behavior [8,23]. In addition, we notice that
for diamondoids the magnitude of the HOMO renormalization
is always larger than that of the LUMO renormalization and
that the values of the LUMO renormalizations are very similar
for all the analyzed diamondoids (about −100 meV for LDA
and GGA functionals and about −70 meV for B3LYP). The
latter property is due to the fact that the LUMO states are
localized just outside the diamondoids (surface-bound states)
due to the negative electron affinity [52].

In an attempt to understand the general trends, we differ-
entiate the effect of the size (number of carbon atoms) and
the effect of the geometry (symmetry) of the structures. From
the comparison of the three structures with 22 carbon atoms
we can see that the shape/symmetry effect is not negligible,
with differences of 10% in the ZPR. The results show the
overall trend that the ZPR decreases with increasing size in
a nonmonotonous way with fluctuations we could interpret as
shape/symmetry effects. The structure C10H16 lies somewhat
outside this trend. We can tentatively understand this “outlier”
when we look at the two C26H32 structures and notice that the
one with Td symmetry has lower ZPR. The C10H16 structure
has Td symmetry as well, and we would therefore expect it to
have a lower ZPR. This symmetry/shape effect is larger than
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FIG. 4. ZPR of urotropine and diamondoids. The HOMO renormalization is shown with opposite sign. Solid symbols indicate calculations
performed with the B3LYP exchange-correlation functional; open symbols correspond to the GGA-PBE functional. The crosses indicate
renormalization of the LUMO + 1, and the plus signs are the HOMO/LUMO + 1 gap.

for other structures because of the small size and molecular
character of C10H16.

Urotropine, which in contrast to the diamondoids contains
nitrogen atoms, shows qualitatively different renormaliza-
tions. We can understand this difference from the electronic
structure of the HOMO. In urotropine, the HOMO is com-
posed of the lone pairs and is very different and much more
delocalized than, e.g., in the case of adamantane, in which
the HOMO is well localized inside the structure. We present
the HOMO states of adamantane and urotropine at the bottom
of Fig. 5. The ZPR in urotropine is therefore similar for the
HOMO (lone pair states [76]) and the LUMO (surface-bound
state [52]).

B. Comparison to available ab initio results

In Table II we compare our results to available ab initio
calculations [10,43,48] (we are not aware of experimental
results). In Ref. [10] the ZPR was calculated as the summa-
tion for vibronic modes

∑
ν (h̄/2)(ωs,ν − ω0,ν ), where ω0,ν

and ωs,ν are the phonon frequencies for the ground state
and the excited singlet state (index s). In Ref. [48] the ZPR
was calculated using the standard AHC theory (as presented
above in this paper), using DFT (GGA) and G0W0. For the
comparison, we assume that the results for C22H28 and C26H32

presented in [48] correspond to the C2h and Td symmetries,
respectively. The calculations of Ref. [43] were based on ab
initio molecular dynamics simulations.

The general agreement between the different theoretical
results is rather good for most of the structures. The differ-

ences between our results and the AHC results can be partially
explained by the NRIA DW contribution which is intrinsically
included in our FP but not in the AHC model. However, for
adamantane the disagreement with Ref. [48] is rather large
(−430 vs −249 meV) and may not be attributed to the NRIA
DW contribution alone, so we remain uncertain about the
reasons for the large discrepancy. Our own AHC calculations
(see also Sec. V E) for this structure yield −273 meV, which
is, again, in good agreement with the FP results. It is also
interesting to note that G0W0 [48] changed the results in a
significant manner, reducing the magnitude of ZPR by about
20% (compared to the PBE results), while B3LYP made a
rather moderate impact of around 7% in the opposite direc-
tion, increasing the magnitude of ZPR.

C. Temperature dependence of the band gap and comparison
with bulk diamond

In Fig. 6 we plot the temperature dependence of the band
gap renormalization (calculated at the LDA level) of the
different diamondoids and diamond. Note that our calcula-
tions do not include changes in the bond lengths (lattice
thermal expansion), which contributes to a minor band gap
renormalization [15,77]. Since we have no information about
experimental results for ZPR in diamondoids, we plot the
experimental results for bulk diamond from Ref. [73] (solid
triangles and circles; two different data sets are presented in
this paper) for the direct band gap and Ref. [74] for the indirect
band gap (solid squares). These experiments estimated ZPRs
of 0.32 and 0.45 eV for Ref. [73] and 0.37 eV for Ref. [74],

125403-8



FROZEN-PHONON METHOD FOR STATE ANTICROSSING … PHYSICAL REVIEW B 108, 125403 (2023)

(a) (b)

(c) (d)

FIG. 5. The electronic states of (a) adamantane (C10H16) and
(b) urotropine (C6N4H12) obtained from DFT-LDA calculations are
arbitrarily aligned at the lowest eigenvalue. The square of the HOMO
wave function is shown as an isosurface in (c) for adamantane and in
(d) for urotropine.

and these values are used in the plot. The ZPRs of the dia-
mondoids are in the same energy range as that of diamond,
which has very large values compared to other materials [75].
The temperature dependence seems less pronounced than in
diamond for almost all the structures, except for C14H20 and
C38H42, in which it is very similar to that of diamond.

FIG. 6. Temperature dependence of the HOMO-LUMO gap
(LDA), neglecting lattice expansion effects. Experimental results for
bulk diamond are taken from Ref. [73] (exp. 1 and exp. 2, direct gap)
and Ref. [74] (exp. 3, indirect gap).

D. Magnitude of the correction

In Table III we present the magnitude of the applied cor-
rection for the five structures affected. The 12 other structures
show no anticrossing and therefore require no correction.
Only the HOMO was affected for our structures; since the
LUMO is energetically well separated from the LUMO + 1,
the anticrossing situation did not occur. The HOMO is, for
all the structures presented, nondegenerate (onefold). All the
calculations in Table III were performed at the B3LYP level.
The corrections can obviously be very large, especially for
C22H28 (C2), for which we corrected a total of 29 frozen
phonon modes and obtained a correction term that surpasses
the ZPR itself (26 modes with anticrossing, 3 modes with

TABLE II. Comparison between different ab initio results for the ZPR of the band gap. In the first column in the parentheses we give the
symmetry (Sym.) and degeneracy (Deg.) of the HOMO, and the asterisk indicates structures which have undergone a correction (Corr.) due to
anticrossing(s). Calculations were performed at the LDA level with a 30 Ry energy cutoff.

Ref. [10] Ref. [43] Ref. [48] This This Ref. [48] This
Structure (Franck- MD (AHC, paper paper (AHC, paper
(Sym., Deg., Corr.) Condon) center PBE) (AHC, PZ) (FP, PBE) G0W0) (FP, B3LYP)

C10H16 (Td , 3x) −320 −430 −273 −249 −380 −274
C14H20 (D3d , 1x, *) −270 −340 −360 −280 −367
C18H24 (C2v , 1x, *) −250 −310 −267 −260 −296
C22H28 (C2h, 1x, *) −290 −244 −190 −284
C26H30 (C3d , 2x) −290 −241 −240 −267
C26H32 (Td , 3x) −220 −300 −210 −250 −241
C87H76 (Td , 3x) −220 −158 −190
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TABLE III. Corrections (Corr.) due to crossing (cross.) and
anticrossing (AC) effects. The last column gives the anticrossing
correction as a percentage of the final value of the HOMO ZPR. The
calculations are done at the B3LYP level of DFT. The HOMO of all
the structures is nondegenerate.

Corr. due Corr. due Corrected AC
Structure to AC to cross. HOMO ZPR Corr.
symmetry (meV) (meV) (meV) (%)

C14H20 (D3d ) −244 0 318 −77
C18H24 (C2v) −207 0 239 −87
C22H28 (C2) −495 −280 267 −185
C22H28 (C2h) −88 0 239 −37
C38H42 (C3v) −11 0 255 −4

crossing, B3LYP). Due to the small displacement parameter
used (h = 2), only one structure underwent a crossing. This
is an advantage of using small displacement parameters that
lead to very few cases of state crossing.

E. Comparison of our corrected frozen-phonon results
with AHC theory

In Table IV we present the results from our corrected
frozen-phonon approach and from the AHC perturbation the-
ory for a selection of diamondoids. All calculations were
performed with the Perdew and Zunger exchange correlation
functional and with VBC pseudopotentials [63], a plane-wave
cutoff of 30 Ry, and a displacement parameter of h = 2. In the
AHC calculations we use the finite-difference δV approach to
calculate the matrix elements, following Ref. [14]. For the cal-
culation of the HOMO renormalizations, we used 400 orbitals
[index j in Eqs. (12) and (13a)], which seems to give con-
verged results [30]. For the LUMOs, a much larger number of
orbitals was necessary. For adamantane and C26H32 with C2v

symmetry we went up to 2000 orbitals to achieve convergence
[30]. A Sternheimer projection formalism [21] was not used
but would be advisable and may solve this problem. Since the
comparison between our FP method and the AHC model is not
the main objective of our paper, we did not perform the numer-
ically demanding calculations for the other diamondoids and
have no reliable results to present for the LUMO renormaliza-
tion of C22H28 (C2h) and C14H20 (D3d ) (entries marked with

TABLE IV. ZPR of the HOMO and LUMO of diamondoids
obtained from our frozen-phonon method (FP, LDA, 30 Ry cutoff)
and from the Allen-Heine-Cardona (AHC) theory (Fan and rigid-ion
Debye-Waller self-energies) and the difference between the two. For
the entries marked with a dash (—) we have no reliable converged
results. All values are in meV.

Structure HOMO LUMO

(symmetry) FP AHC Diff. FP AHC Diff.

C10H16 (Td , 3x) 157 198 −41 −105 −75 −30
C14H20 (D3d , 1x) 279 256 −23 −114 – –
C22H28 (C2h, 1x) 174 259 −85 −90 – –
C22H28 (C3v, 2x) 181 195 −14 −101 – –
C26H32 (C2v, 1x) 186 272 −86 −101 −65 −36
C26H32 (Td , 3x) 126 166 −41 −98 – –

a dash in Table IV). The renormalization provided by the FP
approach includes the Fan and Debye-Waller (both diagonal
and nondiagonal, also called non-rigid-ion) renormalizations
from the AHC formalism [20,21]. The Debye-Waller self-
energy 	DW in the AHC approach [calculated using Eq. (13)]
lacks a non-rigid-ion part [20]. Therefore, the renormaliza-
tion calculated using this standard form of the AHC theory
[16] presents two drawbacks: (i) a high number of orbitals
[maximum j in Eqs. (12) and (13a)] is commonly necessary
for appropriate accuracy; (ii) the non-rigid-ion part of the
self-energy is missing. Both drawbacks are avoided by using
the frozen-phonon method that we present in this paper. From
Table IV we see that the NRIA-DW self-energies, which cor-
respond mainly to the difference between the FP and AHC
results, are negative, with values between −23 and −86 meV,
which is on the same order of magnitude as for the diatomic
molecules presented in Ref. [21]. This rather large difference
reinforces the usefulness of the frozen-phonon approach.

VI. CONCLUSION

We have introduced a method to perform accurate frozen-
phonon calculations of the ZPR when eigenstates of the
appropriate symmetry are energetically close to the HOMO
or LUMO so that an electronic coupling—evidenced by
an anticrossing—overshadows the electron-phonon coupling.
This procedure is certainly more laborious than the original
procedure [15] since it requires a wave function projection to
identify the problematic cases and a subsequent case-by-case
correction of the specific modes. However, since it seems
that relatively few modes (at least for most of the investi-
gated structures) require postprocessing, the method remains
reasonable and competitive. We provide in [37] a complete
step-by-step description as well as the necessary codes, which
should facilitate further use of the approach.

The application of our method to the ZPR of 16 diamon-
doids and one modified diamondoid (urotropine) shows that
the correction is necessary for 5 (6 with B3LYP) out of the 17
structures, with changes in the ZPR up to 185% (for C22H28

with C2 symmetry). Generally, we confirmed rather strong gap
renormalizations for the diamondoids (170 to 370 meV) and
predicted a smaller renormalization for urotropine (38 meV).
The LDA and GGA results for the band gap renormalizations
lie close to those obtained with B3LYP, although the individ-
ual HOMO/LUMO results differ by up to 35%.
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