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Topological skin modes and intensity amplification in a nonlinear non-Hermitian lattice
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Topological lattice systems combined with nonlinearity and non-Hermiticity can give rise to novel solitons,
whose exceptional properties are demonstrated in both unique quench dynamics and topological boundary states.
Especially, we focus on an Aubry-André-Harper-type lattice with nonlinear hopping and demonstrate its ability
to host distinct topological soliton states in the short-run regime and intensity amplification in the long-run
regime. Actually, these topological soliton states arise from the competition between nonreciprocal hopping and
on-site modulation, resulting in an alternating dominance between the skin effect and Anderson localization.
Notably, we find that the site intensities near the edge of the lattice are strongly enhanced in the long-run
regime due to the combination of nonlinearity and the non-Hermitian skin effect, which distinguishes it from
the previously studied nonlinear lattices. To reveal the intensity amplification effect in more detail, we explore
a time-dependent intensification factor and find that the amplification effect is more pronounced in the long-run
regime. Our results demonstrate the promising possibilities of combining nonlinearity and non-Hermiticity in
topological lattice systems to develop novel solitons with exceptional properties.
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I. INTRODUCTION

A consistent theme in condensed matter physics has been
the discovery and classification of distinct topological phases
of matter, in which the avenues for tackling the issues of
topological physics have reshaped our perspective of non-
Hermitian systems [1–6]. Recently, there has been growing
interest in non-Hermitian topological systems, which exhibit
sensitivity to boundary conditions due to their complex energy
spectra. This sensitivity is in sharp contrast to the Hermitian
case and is caused by nonreciprocal hopping or complex on-
site gain/loss [7–11]. The non-Hermiticity profoundly affects
traditional topological properties and has been extensively
investigated, leading to the discovery of non-Hermitian skin
effects (NHSEs), exceptional points, and the breakdown of
traditional bulk-boundary correspondence [12–19]. Remark-
ably, extensive efforts originating from both complex band
structures and skin boundary modes have reached the same
conclusion: non-Hermiticity profoundly extends the realm of
topological physics into open systems that interact with the
environment, but not closed systems [20–25].

However, current non-Hermitian theoretical issues are
restricted to linear topological regimes and guaranteed sys-
tem symmetries, thereby underestimating the complexity of
non-Hermitian topological systems induced by nonrecipro-
cal hopping and complex on-site potentials, mixed boundary
conditions, and Floquet topological dynamics [26–28]. This
situation has significantly improved through recent efforts
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that combine nonreciprocal hopping and nonlinear systems.
Considerable attempts have been made to investigate these
enigmatic nonlinear non-Hermitian boundary modes, which
are found to be conclusive in various physical systems
[29–35]. Nonlinearity also plays a role in nonlinear on-site
modulation and higher-order topological systems, reveal-
ing macroscopic, but counterintuitive, topological properties
that are more difficult to understand [36–40]. Meanwhile,
extensive experiments have shown that nonlinear interac-
tions have been successfully implemented and studied in
various platforms such as nonlinear optics [41–44], nonlin-
ear circuits [31,38,45,46], and nonlinear mechanical lattices
[47–50]. Among these endeavors, we should point out that
Lang et al. [38] analyzed in detail the non-Hermitian Su-
Schrieffer-Heeger (SSH)-type lattice with nonlinear hopping
and discovered a novel and intriguing phenomenon called
the “topological end breather.” Nevertheless, a key question
is whether such a phenomenon appears only in one class of
SSH models due to the existence of special end states under
open boundary conditions and whether the end breather can
maintain a stable form over a prolonged evolution.

Motivated by the ideas mentioned above, in this paper,
we explore the behavior of a one-dimensional nonlinear non-
Hermitian Aubry-André-Harper (AAH) lattice subjected to
edge-site stimulation. We demonstrate that the lattice can sup-
port oscillatory edge-localized modes in the short-run regime
and intensity amplification in the long-run regime. Although
these modes are similar to the topological end breather dis-
covered in the nonlinear non-Hermitian SSH model [38],
their forming essence is vastly different. The topological
end breather originates from the competition between topo-
logically trivial and nontrivial phases, while the oscillatory
and localized skin modes in our paper emerge from the
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FIG. 1. Schematic diagram of the AAH lattice with both nonlin-
earity and nonreciprocal non-Hermiticity under the open boundary
condition. The nonlinear nonreciprocal hopping between sites j = n
and j = n + 1 are represented as ν ± κn, and the on-site potential for
site j = n is denoted by �n.

alternating dominance between Anderson localization and
skin effects. Meanwhile, the competition between the on-site
potential and nonreciprocal hopping leads to the appearance
of these engrossing edge-localized modes. In addition, we
reveal that by adjusting the modulation phase of the on-site
potential, the topological skin modes can undergo a process
of vanishing, emergence, and recovery. Notably, we reveal a
neglected result in the long-run regime, in which the stable
oscillatory topological skin mode vanishes and the edge-site
intensities in the moment of final evolution are much greater
than that in the initial moment. This phenomenon has not been
mentioned in other studies, including those on pointlike topo-
logical solitons [44,47,48], topological end breathers [38], and
higher-order nonlinear topological lasers [32,42]. Moreover,
we define the intensity amplification factor to reveal the para-
metric relationship between the initial and final intensities;
the result demonstrates that the amplification effect appears
only in the long-run regime and not in the short-run case.
This phenomenon indicates the generality of amplification
effects in nonlinear systems and the potential for topological
lattices with nonlinearity and non-Hermiticity to be devices
for topological amplifiers and repeaters.

This paper is organized as follows: In Sec. II, we present
the model and Hamiltonian. In Sec. III, the oscillatory and lo-
calized skin modes induced by nonlinear hopping are depicted
and analyzed. In Sec. IV, the incomplete end breather theory
and topological amplifier effect in the long-run regime are
investigated and discussed. Finally, we provide a conclusion
in Sec. V.

II. SYSTEM AND HAMILTONIAN

Inspired by studies about nonlinear topological systems
[13,31,38], we consider a one-dimensional non-Hermitian
AAH lattice with nearest-neighbor nonlinear hopping, as de-
picted in Fig. 1. In the presence of the on-site modulation
potential, the total tight-binding Hamiltonian is written as

H =
N−1∑
n=1

[(ν − κn)c†
n+1cn + (ν + κn)c†

ncn+1]

+
N∑

n=1

�nc†
ncn, (1)

where c(†)
n is the annihilation (creation) operator for nth site.

The first two terms of the Hamiltonian denote the hopping

FIG. 2. (a) The IPR of the eigenstates as a function of hopping
strengths ν and the on-site modulation amplitude � for the Hamilto-
nian in Eq. (1) with κn = 0, α = 5/8, N = 8, and θ = 0. (b) Phase
diagram of skin and Anderson localized phases. The phase bound-
aries are determined by r = ±κcons (r = �/2 − ν). L-S (R-S) and
A-L denote the left-skin (right-skin) and Anderson localized phases
under the open boundary condition, respectively.

between adjacent lattice sites with nonreciprocal strength ν ±
κn, in which ν and κn are real and site-dependent nonlinear
hopping coefficients, respectively. The last term represents the
on-site modulation potential �n = � cos(2παn + θ ), where
� and θ are the on-site modulation amplitude and phase factor
and α is a positive and rational (irrational) number. For the
limited system under open boundary conditions with lattice
size N = Fn+1, if Fn is the nth number in the Fibonacci se-
quence, α is usually determined as α = Fn/Fn+1 (an irrational
number) for the quasiperiodic case. And α is a rational number
in the periodic case.

In the Hermitian limitation (κn = 0), the lattice degenerates
to a standard AAH model with the Anderson localization
occurring at �/ν = 2 because of the self-duality. This crit-
ical phase transition condition divides the localization states
into two parts [51,52]: the extended and localized states for
�/ν < 2 and �/ν > 2, respectively. This critical condition
can be confirmed by computing the inverse participation ratio,
IPR = ∑

n |ψn|4/(
∑

n |ψn|2)2, where larger values of the IPR
indicate localized states and smaller ones correspond to the
extended states. In Fig. 2(a), we demonstrate that an obvious
dividing line �/ν = 2 appears and separates the localized and
extended states. Moreover, the exponentially localized state
has the form |ψ〉 ∝ ∑

n e−ξ |n−n0||n〉, which indicates its ampli-
tude is involved with the localization center n0 and Lyapunov
exponent ξ = ln(�/ν) [13].

If the nonlinear terms κn �= 0 but a constant κn = κcons, the
model reduces to a generalized AAH model with nonrecip-
rocal hopping. Significantly, under open boundary conditions,
we find phase transitions of NHSEs and Anderson localization
with an analytically reshaped solution �/ max(ν ± κcons) = 2,
which originates from the Hermitian counterpart, as men-
tioned before [13,16,45]. Moreover, we show this critical
phase transition condition in Fig. 2(b) under open boundary
conditions, where the blue region denotes the Anderson lo-
calized phase and the yellow regions L-S (κcons > 0) and R-S
(κcons < 0) correspond to the left-skin and right-skin phases,
respectively [13]. Because of the nonreciprocal hopping, the
asymmetric Anderson localized states tend to be center depen-
dent, apart from the NHSEs under open boundary conditions.
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FIG. 3. [(a)–(c)] The site intensities evolve with time sustained in an edge-site stimulation, and the size of system is selected as j = 100.
(a) The edge-site stimulation decays rapidly to zero, and the parameters are determined as κ0 = 0, κs = 0.3, � = 2.8, and α = √

2.2501.
(b) The steady-state skin mode is generated, in which κ0 = 0.3, κs = 0.7, � = 0.7, and α = 6/5(

√
5 − √

3). (c) The end breather-like induced
by alternating dominance between A-L and S-E appears with κ0 = 0.3, κs = 0.7, � = 3.2, and α = 3/10(

√
5 − √

3). Other parameters are set
as Iin = 103Is, ν = 1, θ = 1.41π , and Is = 1 for [(a)–(c)].

III. SKIN MODES INDUCED BY NONLINEAR
NONRECIPROCAL HOPPING
IN THE SHORT-RUN REGIME

A. Skin modes induced by nonlinear nonreciprocal hopping

To focus on the nonlinear case, the factitious alterable
nonlinear hopping is selected as [38]

κn = κs − κs − κ0

1 + In(t )/Is
, (2)

where κs and Is are adaptable real constants and saturation
intensity scales, respectively. The intensity of termination
evolution is interpreted as In(t ) ≡ |ψn(t )|2, where ψn(t ) de-
notes the time-dependent wave function for the nth site.
Subsequently, we can observe that κn → κ0 under the zero-
intensity limitation [i.e., In(t ) → 0] and κn → κs under the
high-intensity limitation [i.e., In(t ) → ∞], which indicates
the nonlinear hopping satisfies κn ∈ [κ0, κs) when κs > κ0. In
the linear regime, the appearance of NHSEs and Anderson
localization in the non-Hermitian AAH model is relevant to
the phase transition point � = 2 max(ν + κn, ν − κn). Thus,
in the nonlinear regime, Anderson localization and its behav-
ior are extensively subordinate to the nonlinear critical values
κc = −(ν − �/2) for κn > 0 and κc = ν − �/2 for κn < 0. It
is worth noting that the definition of κn in Eq. (2) imposes the
constraint that κn � 0 (although κn = 0 has been considered
before for the Hermitian case), which implies the critical
value κc = −(ν − �/2). Before delving into a comprehensive
analysis, one non-negligible perspective is that

∑
n In(t ) is

not conserved in the non-Hermitian case, and the terminal
intensity may surpass the initial stimulation after a period of
evolution [8,18,38].

We now turn to investigate the nonlinear nonreciprocal
AAH model with the first site stimulation, whose initial state
can be defined as |ψ (0)〉 = |√Iin, 0, 0, . . . , 0, 0〉 and whose
evolution is governed by the nonlinear Hamiltonian in Eq. (1).
The dynamical behavior of Anderson localization and NHSEs
is investigated under three distinct parameter regimes of in-
terest. Conceptually, high and low site occupied intensities
correspond to the localized and extended cases, respectively.
In case I, for κ0 < κs < κc, each nonlinear hopping κn is
below the critical value κc, and a swift attenuation of the

initial stimulation appears, as shown in Fig. 3(a). The rea-
son is that edge-site stimulation diffuses into the bulk due
to the dominance of the Anderson localization, leading to
the decreasing of edge-site intensity over the evolution until
it vanishes. In case II, for κc < κ0 < κs, all nonlinear hop-
pings κn are above the threshold, and the initial stimulation
generates a steady-state skin mode localized at the boundary,
as shown in Fig. 3(b). The reason is that the instantaneous
system is dominated by the skin effect, and the eigen-
states are inherently localized on the boundary even without
stimulation.

Among these regimes, case III, in which nonlinear hop-
ping κ0 < κc < κs, demonstrates fascinating discoveries. As
shown in Fig. 3(c), the edge-site simulation motivates a self-
sustained oscillation around the boundary, which we refer
to as “end breather-like.” It is noteworthy that this type of
skin mode is only similar in appearance to the end breather
proposed by Ref. [38] and is fundamentally distinctive. The
appearance of an end breather is induced by the competition
between topologically trivial and nontrivial phases, depend-
ing on instantaneous inter- or intracell hopping. However,
in the nonreciprocal AAH model, the competition between
on-site modulation and nonreciprocal hopping allows for the
alternating appearance of the skin and Anderson localized
phases, leading to the subsistence of end breather-like. We
notice that the non-Hermitian skin effect plays a crucial
role in the emergence of these end modes, despite the dis-
tinct intrinsic factors between the end breather-like and end
breather.

It is noteworthy that Lang’s proposition in Ref. [38] re-
garding the behavior of the end breather is intricately linked
to independent nonreciprocal hoppings. The skin effect can be
explained as the inhibitory effect of similarity transformations
of the eigenfunctions of non-Hermitian systems, effectively
constraining their deviation from the system boundary. In our
research, we are actively investigating the potential expansion
of the approach based on the similarity transformations matrix
S while considering the independence of intensity parameters
κ1, κ2, κ3, . . . . By employing distinct similarity transfor-
mation matrices S, we can establish a profound relationship
between the non-Hermitian Hamiltonian H and a correspond-
ing Hermitian Hamiltonian Hh, represented as H = SHhS−1,
where the position basis in our study can be accurately
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FIG. 4. The site intensities evolve with time. [(a)–(c)] Skin modes corresponding to θ = 0, θ = 0.3π , and θ = 0.5π , respectively. Other
parameters are set as ν = 1, κ0 = 0, � = 0.5, α = 0.4, and κs = 0.5.

denoted as

S = diag[1, λ1, λ1λ2, λ1λ2λ3, λ1λ2λ3λ4, . . . ],

λn =
√

ν − κn

ν + κn
< 1. (3)

B. The revival of skin modes induced by on-site modulation

It is widely known that the Anderson localization of the
AAH model in the noninteraction regime is determined by
the nearest-neighbor hopping and on-site modulation, regard-
less of whether the system is Hermitian or non-Hermitian.
Motivated by this perspective, we investigated how on-site
modulation affects the skin modes with edge-site stimulation.
The result of the initial edge-site stimulation with θ = 0 is
shown in Fig. 4(a), where the localized effect occurs only at
the beginning of evolution, consistent with the phenomenon in
Fig. 3(a). With the alteration of the on-site modulation phase
θ = 0.3π , the initial stimulation that disappeared in the previ-
ous regime reappears gradually, albeit with weaker intensity,
as shown in Fig. 4(b). Increasing the phase to θ = 0.5π leads
to a more obvious and swift revival of the skin mode localized
on the boundary, and the terminated intensity even reaches
the same extent as the initial one, as shown in Fig. 4(c). This
phenomenon indicates that the skin mode in the nonlinear
nonreciprocal AAH model is extremely sensitive to the on-site
potential, and the disappearance, emergence, and recovery of
these modes can be implemented by adjusting the phase of
on-site modulation.

IV. SKIN MODES AND INTENSITY AMPLIFICATION
IN THE LONG-RUN REGIME

A. The incomplete end breather in prolonged evolution

Now we focus on the behavior of skin modes in the long-
run regime. Notably, previous research [32,38,42] neglected a
significant problem, in which the dynamic behavior of stimu-
lation in the long-run regime may be different from that in the
short-run case. Therefore, we explore the behavior of the end
breather-like with a longer evolution, as shown in Fig. 5(a).
One interesting thing is that although the end breather-like is
in perfect agreement with the result in Fig. 3(c) at the begin-
ning, the periodic oscillating end mode no longer holds its
previous form, and a clear divide appears when the evolution
time is prolonged. Furthermore, for clarity, we also demon-
strate the intensity of the stimulated site on the boundary,

as shown in Fig. 5(b). The seemingly obvious fact that the
periodic oscillating end mode exists in only the first lattice site
in the short-run regime and the end breather becomes unstable
and decays when the evolution is prolonged to t ≈ 250 can
be confirmed, corroborating the result in Fig. 5(a). We also
demonstrate the behavior of the end breather proposed in
Ref. [38] in Fig. 7(a) in Appendix A and find that the end
breather begins to decay and becomes chaotic in the long-
run regime. The same conclusion that the theory of the end
breather is not precise in the long-run regime and is applicable
only on a short timescale can be drawn from the behavior of
these end modes in the long-run regime. When introducing
relative errors with a linear or nonlinear scaling mechanism,
the system dynamics also exhibit numerous intriguing phe-
nomena (see the details in Appendix B). Significantly, the
critical time for the transition from the end breather-like re-
gion to the “vanishing breather” region remains consistent in
the vicinity of t = 250 when the time step of the simulation
is appropriately amplified (minified); the details are given in
Appendix C. From our perspective, the breakdown of the end
breather theory is closely related to the symmetry and non-
Hermiticity of the system. The introduction of nonlinearity
does not initially destroy the symmetry of the system, and the
system itself still maintains a relatively complete symmetry.
However, with increasing evolution time, the influence of
nonlinearity gradually extends to the rest of the lattice sites
and eventually leads to the breaking of the symmetry and the
disappearance of the periodic oscillating end modes.

FIG. 5. The evolution of intensity with edge-site stimulation for
the nonlinear AAH model. (a) The distribution of intensity under the
red line represents the topological end breather-like in the short-run
regime, and the distribution of intensity under the blue line denotes
the vanishing of the breather when t � 250. (b) The evolution of
intensity of the stimulated site in the long-run evolution regime. The
omitted time interval is t ∈ [150, 270]. (a) and (b) have the same
parameter conditions as Fig. 3(c), but for longer evolution time.
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FIG. 6. (a) The evolution of intensity with edge-site stimulation
in the long-run regime. (b) The relationship between the intensifi-
cation factor and evolution time for the nonlinear AAH model with
edge-site stimulation. (c) and (d) show the sections surrounded by
black and red dotted lines in (b), respectively. The set (x, y) denotes
a data point of the evolution time and intensification factor. The
omitted time intervals are t ∈ [310, 370] in (c) and t ∈ [465, 525]
in (d). Here, the parameters are set as ν = 0.5, � = 0.4, α = 0.4,
κ0 = 0, κs = 0.5, θ = 0.5π , and j = 1 in [(a)–(d)].

B. Topological intensity amplifier induced by nonlinear hopping

Next, we explore the other type of skin modes in the long-
run regime. In Fig. 6(a), we demonstrate the behavior of a
pattern of skin modes similar to that in Fig. 3(a), but with a
longer evolution time. We can see that the occupied intensity
of the initial stimulated site is extensively enhanced with in-
creasing evolution time. To highlight the disparities between
the initial and final occupied intensities of the edge site, we
introduce an intensification factor denoted by �(t0, tT ). This
factor measures the ratio of the intensity at the final time
tT = T to the intensity at the initial time t0 = 0, which is
defined as

�(t0, tT ) = |ψ j (tT )|2/Iin

|ψ j (t0)|2/Iin
, (4)

where |ψ j (tT )|2 and |ψ j (t0)|2 correspond to the intensities at
the final and initial evolution times for site j, respectively. The
relationship between the intensification factor and evolution
time is depicted in Fig. 6(b), where no intensity amplification
effect exists in 0 < t < 300 in the short-run regime. With
increasing evolution time, a result slightly greater than the
initial intensity occurs at t = 303, and the intensification fac-
tor �(t0, tT ) reaches 3.87 at t = 380, as shown in Fig. 6(c).
Despite the amplification effect, we can see that it is not
obvious when the evolution time is not long enough. No-
tably, the intensity amplification effect becomes obvious, and
the intensification factor �(t0, tT ) reaches 12.47 and 34.86
at t = 456 and t = 534, respectively, as shown in Fig. 6(d).
Our results demonstrate that the introduction of nonlinearity
induces the intensity amplification of the initial stimulation in
the long-run regime, which originates from the combination
effect of the nonlinear hopping and NHSEs. Particularly, this

result also illustrates that the nonlinearity can generate new
types of boundary states while supporting the amplification
effect of edge-site stimulation. Moreover, this phenomenon
holds universally; this amplification effect can also be found in
Ref. [38] in the long-run regime, and the amplification effect is
also demonstrated in Fig. 7(b) in Appendix A. These findings
could be useful in designing topological devices for quantum
information processing, such as topological amplifiers and
topological repeaters.

V. CONCLUSIONS

In conclusion, we studied the extended nonreciprocal non-
Hermitian AAH lattice and explored the topological soliton
states and intensity amplification induced by nonlinearity.
The phase boundaries between the Anderson localized and
skin phases were demonstrated, which serves as a foundation
for exploring the impact of nonlinearity on the topological
characteristics under non-Hermitian conditions. The analysis
of the site intensity evolution under open boundary condi-
tions revealed that nonlinearity can induce multiple types of
skin modes. We examined how the on-site potential affects
the behavior of skin modes to explore the characteristics
of these skin modes in nonlinear systems. Our findings re-
vealed that changing the phase of on-site modulation can lead
to the vanishing, appearance, and recovery of a skin mode
localized at the boundary. Moreover, it was found that the
end breather-like no longer maintains a stable oscillating form
in the long-run regime. The edge-site intensity at the end of
evolution was significantly stronger than that at the beginning
of evolution; this counterintuitive phenomenon was also ob-
served in previous work, such as Ref. [38]. Furthermore, a
time-dependent intensification factor was investigated, and it
was found that the amplification effect is more pronounced
in the long-run regime. Our work provides insight into novel
skin modes induced by nonlinearity in a non-Hermitian lattice
and the intensity amplification in the prolonged evolution
regime, highlighting the important potential of nonlinear
topological systems for topological intensity amplifiers and
repeaters.
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APPENDIX A: THE INCOMPLETE TOPOLOGICAL
END BREATHER IN THE LONG-RUN REGIME

In this Appendix, we demonstrate the time evolution of
site intensities for the SSH-type lattice with both nonlinearity
and nonreciprocal non-Hermiticity proposed in Ref. [38]. The
non-Hermitian Hamiltonian for this lattice is expressed as
follows:

HSSH =
∑

n=1,2,...

[(κ + γn)a†
2n−1a2n + (κ − γn)a†

2na2n−1

+ v(a†
2na2n+1 + a†

2n+1a2n)], (A1)
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FIG. 7. The evolution of intensity with edge-site stimulation for
the nonlinearity SSH model with the same parameter conditions
as in Ref. [38] but longer evolution time. (a) The distribution of
intensity under the red line represents the topological end breather
in the short-run regime, and the breather breaks when vt � 103.
(b) The evolution of the intensity of the edge cell in the long-run
evolution regime. The red (blue) line denotes the intensity in the
first site (second site) in the first cell. The omitted time interval
is vt ∈ [100, 250]. Other parameters are set as γ0 = 0, γs = √

7/2,
κ = √

2, and v = 1 in both (a) and (b).

where a(†)
j denotes the annihilation (creation) operator on site

j, κ ± γn denotes intracell nonreciprocal hopping, and v are
the reciprocal intercell hoppings. They have the same forms
of the initial state and stimulation as in Ref. [38]. This work
identifies specific topological end breathers that appear in
certain parameter regimes. The intrinsic cause of these end
breathers is derived from the competition between intracell
nonlinearity and intercell reciprocity hopping, which induces
an alternating appearance of localized boundary states and
generates the end breather on a short timescale.

However, this conclusion seems applicable only on a short-
term scale. To demonstrate this phenomenon, we present

the topological end breather in Fig. 7(a), but with a longer
evolution time. The short-run end breather is in perfect
agreement with the result in Ref. [38]. Notably, the periodic
and harmonious end breather breaks down when the evolution
time is prolonged. Moreover, we also demonstrate the inten-
sity of two lattice sites on the edge, as shown in Fig. 7(b).
The fact that the end breather exists at the first lattice site in
the short-run regime can be confirmed, but the end breather
becomes unstable and chaotic when evolution is prolonged to
vt ≈ 250, which indicates that the theory of end breathers is
not precise in the long-run regime. Furthermore, the intensity
at the first site is enhanced in the prolonged evolution regime,
where the intensity of the first site is far beyond the initial
one, as shown in the right half of Fig. 7(b). The above findings
indicate that the end breather no longer maintains its form in
the short-run regime and the amplification effect of edge-site
stimulation appears in the long-run regime.

APPENDIX B: THE DYNAMICAL BEHAVIORS WITH
LINEAR AND NONLINEAR NUMERICAL ERRORS

Here, we define the relative errors of each evolution unit
step tstep as fluctuating values, represented as tstep ± δ (δ =
random[0, x], x ∈ (0, 1)). By adjusting this parameter, we can
effectively regulate the extent of the relative error and its
impact on the end breather’s behavior. The relative error is
influenced by the number of evolutionary steps, denoted as
f (n), where n represents the evolution steps. We can define
the unit evolution time as t̃n = tstep ± δ f (n). The relative error
can take various forms, including a linear scaling form when
f (n) = kn + C (k and C are both constants) and nonlinear
scaling forms in terms of f (n) = √

n and f (n) = n2, as well
as other distinct patterns.

FIG. 8. The evolution of intensity |� j (t )|2/Iin and the relative numerical errors |� j (t )|2/Iin under different linear error scaling forms
f (n) = n. [(a)–(c)] correspond to different amplitudes of fluctuations, with δ = [0, 0.001], δ = [0, 0.01], and δ = [0, 0.3], respectively.
[(d)–(f)] show the magnitude of the numerical errors. The parameters are determined as κ0 = 0.3, κs = 0.7, � = 3.2, α = 3/10(

√
5 − √

3),
ν = 1, and θ = 1.41π .
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FIG. 9. The evolution of intensity |� j (t )|2/Iin and the relative numerical errors |� j (t )|2/Iin under different nonlinear error scaling forms:
[(a)–(c)] f (n) = 2

√
n and [(d)–(f)] f (n) = n2. [(a)–(c)] and [(d)–(f)] correspond to different amplitudes of fluctuations, with δ = [0, 0.001],

δ = [0, 0.01], and δ = [0, 0.1], respectively. [(g)–(i)] show the magnitudes of the numerical errors. The red and blue lines correspond to the
nonlinearly scaling forms f (n) = 2

√
n and f (n) = n2, respectively. The parameters are the same as in Fig. 8.

For the linearly scaling mechanism, we delve into the
influence of relative errors on the dynamical behaviors ex-
hibited by the system. The evolution of intensities governed
by the linearly scaling function f (n) = n is visually repre-
sented in Figs. 8(a)–8(c), accompanied by distinct amplitudes
of fluctuations δ. Notably, for relatively small amplitudes
of fluctuations δ = [0, 0.001], as depicted in Fig. 8(a), the
intensity distribution continues to exhibit oscillatory forms
akin to the case without fluctuations. However, when the
amplitude of fluctuations increases to δ = [0, 0.01] and δ =
[0, 0.3], as demonstrated in Figs. 8(b) and 8(c), the inten-
sity distribution deviates from stable oscillations and enters
a regime of chaotic dynamics. This phenomenon highlights
that the introduction of linear fluctuations disrupts the os-
cillatory behavior of the end breather-like. Furthermore, we
investigate the behaviors of numerical errors under multi-
ple iteration steps in Figs. 8(d)–8(f). Here, |� j (t )|2/Iin and
|ψ j (t )|2/Iin represent the intensity evolution with and without
relative errors, respectively. The numerical errors associated
with the simulated time step are denoted as |� j (t )|2/Iin =

|� j (t )|2/Iin − |ψ j (t )|2/Iin. When the amplitude of fluctuation
is small, the error manifests in a manner resembling Rabi
oscillations, as depicted in Fig. 8(d). However, as the ampli-
tude of fluctuation increases, the relative error of the system
becomes more intricate during the initial stages of evolution
but gradually converges over an extended evolution time, as
illustrated in Figs. 8(e) and 8(f).

Now, we pay attention to the relative errors characterized
by a weak nonlinear scaling mechanism, denoted as f (n) =
2
√

n and depicted in Figs. 9(a)–9(c), and a strong nonlinear
scaling form, denoted as f (n) = n2 and shown in Figs. 9(d)–
9(f), considering various fluctuation amplitudes δ. Notably,
when δ takes values within the ranges of δ = [0, 0.001] and
δ = [0, 0.01], as depicted in Figs. 9(a) and 9(b), the intensity
evolution of the system consistently retains an oscillatory
form. Only when the amplitude of fluctuation surpasses a cer-
tain threshold, for instance, δ = [0, 0.1], as shown in Fig. 9(c),
does the intensity distribution of the system transition into a
chaotic regime. Our observations reveal that the relative errors
limit sensitivity to weak nonlinear scaling.
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FIG. 10. The evolution of the intensity with edge-site stimulation for different amplified time steps of the simulation. [(a)–(c)] show
the dynamical behaviors with time steps of the simulation tstep = 1000/900 = 1.11, tstep = 1000/700 = 1.43, and tstep = 1000/100 = 10,
respectively. Here, the parameters are determined to be κ0 = 0.3, κs = 0.7, � = 3.2, α = 3/10(

√
5 − √

3), ν = 1, and θ = 1.41π in [(a)–(c)].

The situation takes a distinct turn when we consider the
strong nonlinear scaling mechanism, which is evident in
Figs. 9(d)–9(f). Furthermore, we quantify the numerical error
associated with the simulated time step in Figs. 9(g)–9(i),
with the red and blue lines representing the nonlinear scaling
forms f (n) = 2

√
n and f (n) = n2, respectively. In line with

the observations made for the linearly scaling case, we find
that the relative errors gradually converge over prolonged
evolution times, irrespective of their distinct error evolution
forms.

APPENDIX C: THE DYNAMICAL BEHAVIORS WITH
MAGNIFIED OR MINIFIED EVOLUTIONARY STEPS

It is crucial to provide clarification of the definition of the
unit time step in the simulation in the main text. We define
the unit time step as tstep = T

NT
, where T represents the total

evolution time and NT denotes the number of intervals. In
our study, we specifically set T = NT , resulting in a unit time
step of tstep = 1 within our analysis. It is noteworthy that a
distinct divergence in behavior is observed between the end
breather-like and vanishing breather phenomena, particularly
around t = 250. Based on the preceding information, we
delve into the behavior of the critical time tc when the time
step of the simulation is either minified or magnified. Notably,
the relationship between the total evolutionary time Ttotal and
evolutionary step tstep along with the number of steps Ntotal

can be expressed as Ttotal = tstepNtotal, which signifies that the
representation of evolutionary time is no longer solely reliant

on the discrete count of evolutionary steps, but rather takes the
form of tstepNT , particularly when tstep �= 1.

For the magnified case, we explore the scenario where
the unit evolutionary step is magnified, with fixed to-
tal evolution time T = 1000 but varying interval numbers.
Drawing from the aforementioned analysis, we demon-
strate the dynamical behavior of the system in the case
of a magnified evolutionary step. Specifically, we focus on
the cases where tstep = 1000/900 = 1.11, tstep = 1000/700 =
1.43, and tstep = 1000/100 = 10 in Figs. 10(a)–10(c), respec-
tively. Our results reveal that the critical time for the transition
from end breather-like to vanishing breather is around tc =
250, which indicates the magnification of the step does not
significantly affect the critical evolution time tc. Regarding
the scenario with the minified step, we delve into cases
where tstep = 1000/1100 = 0.91, tstep = 1000/1800 = 0.55,
and tstep = 1000/10000 = 0.1 in Figs. 11(a)–11(c), respec-
tively. Within the scope of these findings, we have observed
analogous outcomes, where the critical evolution time re-
mains in the vicinity of t = 250, despite minor deviations.
Although there are slight discrepancies in their critical times,
they remain on the same order of magnitude, implying that
this phenomenon arises from the evolution of a nonlinear
system. This suggests that such variations are unlikely to exert
a substantial impact on the physical behavior of the system.
Consequently, we conclude that appropriate magnification or
minification of the evolutionary steps will not have a signifi-
cant impact on the critical time tc.

FIG. 11. The evolution of the intensity with edge-site stimulation for different minified time steps of the simulation. (a)–(c) show the
dynamical behaviors with time steps of the simulation tstep = 1000/1100 = 0.91, tstep = 1000/1800 = 0.55, and tstep = 1000/10000 = 0.1,
respectively. The parameters are the same as in Fig. 10.
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