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Flat-band optical phonons in twisted bilayer graphene
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Twisting bilayer sheets of graphene have been proven to be an efficient way to manipulate the electronic
Dirac-like properties, resulting in flat bands at magic angles. Inspired by the electronic model, we develop a
continuum model for the lattice dynamics of twisted bilayer graphene and we show that a remarkable band
flattening applies to almost all the high-frequency in-plane lattice vibration modes, including the valley Dirac
phonon, valley optical phonon, and zone-center optical phonon bands. Utilizing an approximate approach, we
estimate small but finite magic angles at which a vanishing phonon bandwidth is expected. In contrast to the
electronic case, the existence of a restoring potential prohibits the emergence of a magic angle in a more accurate
modeling. The predicted phonon band flattening is highly tunable by the twist angle and this strong dependence
is directly accessible by spectroscopic tools.
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I. INTRODUCTION

The exotic electronic, optical, and lattice properties of
graphene have been enriched in the past few years by the
additional possibility of manipulating two graphene layers
with a finite twist angle. In twisted bilayer graphene (TBG), a
complex phase diagram, including superconductivity, a Mott
insulating phase, and a novel topology of the electronic bands
have been revealed [1–4]. A key ingredient in this scenario
is the existence of a nontrivial electronic structure with very
narrow bandwidth, also known as flat bands, at the so-called
magic angle [5–7] has been analyzed using schemes based on
either tight-binding models [5,6] or continuum models [8–10].

Nevertheless, along with the investigation focused on the
electronic properties, a large interest has also recently arisen
concerning the effects of twist on the lattice dynamics. The
phonon spectrum in TBG has been studied theoretically
[11] and experimentally [12]. Optical [13,14] and acoustical
[15,16] phonons have been investigated as possible origins of
the observed superconductivity. A particular high-energy op-
tical mode at the K and K ′ points has been extensively studied
in TBG [17–19], as it gives rise to flat moiré bands and it cou-
ples strongly to electrons. Further evidence of a crucial role
of the K-point optical phonons in the superconducting pairing
has been provided in Refs. [20,21]. These modes are also cur-
rently thought to be responsible for the remarkable features in
Raman spectroscopy of single-layer and multilayer graphene
[22–26]. Concerning the possibility of a strong twist-driven
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renormalization of the phonon dispersion, calculations based
on models of elastic systems have also been carried out. In
Ref. [27], the emergence of a flat band associated with out-
of-plane flexural modes was shown. Similar results for the
out-of-plane lattice modes were predicted for twisted “arti-
ficial” graphene systems [28]. In-plane lattice modes at the
K and K ′ points, also characterized by Dirac physics, appear
as well, however, and are even more interesting. On the one
hand, these modes were initially associated with the onset of
the D and 2D Raman features [29,30]. On the other hand, the
same modes, in the presence of a symmetry breaking of the
sublattices as in h-BN or in transition-metal dichalcogenides
(TMDs), can host chiral content that enforces fundamental
selection rules [31–35]. In this scenario, it is worth mentioning
that flat bands have also been predicted in moiré structures of
twisted two-dimensional TMDs [36,37].

In this paper, we investigate the effect of twist on the main
high-energy (optical) modes at the high-symmetry points �

and K of the phonon spectrum of TBG, with a special fo-
cus on the Dirac-like in-plane lattice modes at K. Using a
force-constant (FC) model and a proper generalization of
the continuum approach for the lattice phonon modes, we
show that (i) in-plane Dirac phonons, upon twist, undergo a
strong renormalization of the effective dispersion giving rise
to flat bands, in a similar way as Dirac-like electrons do;
(ii) a “magic” angle, where the dispersion of these modes
approaches zero, can be analytically predicted, and numer-
ically observed, at twist angles remarkably larger than the
ones required for the existence of flat bands in the elec-
tronic spectrum. Furthermore, we show that the appearance
of flat bands is also predicted (at smaller twist angles) for the
high-frequency transverse-optical (TO) phonon at K and for
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FIG. 1. Force-constant model for the untwisted cases. (a) Single-layer graphene (top) and its phonon dispersion calculated using the
model. Only the elastic coupling f (solid black lines) between nearest-neighbor atoms f is retained. The colored arrows denote the lattice
displacements coupled with the two elastic components, f‖ (red) and f⊥ (green). (b), (c) AB and AA bilayer graphene, respectively. The two
further interlayer elastic couplings are shown, f ′ (dotted blue lines) and f ′′ (dashed purple lines).

the longitudinal-optical/transverse-optical (LO/TO) modes
at the � point, thus rationalizing the numerical results of
Ref. [17]. Finally, note that our analysis does not include
the low-angle regime, where lattice relaxation leads to AB
and BA domains separated by boundaries, and the low-energy
phonons are determined by fluctuations of these boundaries
[38–43].

II. THE MODEL

A suitable continuum model for the lattice dynamics of
TBG is derived from a FC model. Following the well-known
scheme [7–9], we first construct the proper Hamiltonian for
the single layer, and for the representative limit cases of AA
and AB bilayer stacking. The lattice dynamics for the twisted
system is further obtained by including the appropriate tun-
neling between a q vector in one layer with a q + Qν vector
in the other layer, where Qν are the characteristic tunneling
momenta, just as for the electronic case. In order to focus
on the physics of the Dirac phonons, we restrict our model
to in-plane lattice displacements responsible for the Dirac
modes, defining an eightfold Hilbert basis, uα,i(q), corre-
sponding to the lattice displacements of the four atoms in the
x − y space [44]. Here, i = x, y are the Cartesian indices and
α = A1, B1, A2, B2 labels the atoms in the sublattice A, B in
layer 1, 2.

The phonon band structure is thus obtained by the solution
of the secular equation,

M ω̂2(q) · u(q) = K̂(q) · u(q), (1)

where M is the carbon mass, ω̂2(q) the diagonal matrix of
the square frequencies, and K̂(q) the dynamical matrix that
takes into account the elastic couplings between different car-
bon atoms. In order to provide the clearest analytical insight
into the manipulation of the Dirac lattice modes, we include
the minimum set of FC parameters preserving the relevant
physics. More explicitly, in a single layer, we include elas-
tic coupling only between in-plane nearest-neighbor atoms,
described by two parameters, f‖, and f⊥, ruling the relative
radial and in-plane tangential lattice displacements between
neighbor atoms at interatomic distance a [see Fig. 1(a)]. The

coupling between different layers in the AA and AB struc-
tures is thus described by two more kinds of elastic forces
[see Figs. 1(b) and 1(c)]: f ′

⊥ vertically connecting two atoms
atop each other at the distance c; and f ′′ connecting atoms
in different layers at distance R = √

a2 + c2, with the rel-
evant components f ′′

‖ and f ′′
⊥, governing, respectively, the

relative in-plane longitudinal and transverse displacement of
two atoms with respect to their joining vector. The resulting
dynamical matrix can thus be written as

K̂(q) = K̂ f (q) + K̂ f ′
(q) + K̂ f ′′

(q). (2)

III. DIRAC PHONONS AT K

The Dirac phonons at the K point are more conveniently
described by introducing a chiral basis ũα,ν (q), where ν =
R, L and ũα,R/L = (uα,x ± iuα,y)/

√
2. The dynamical matrices

for the AA and AB structures in this basis read

K̂ f (q) =
∑

ν

f̂ν σ̂0[τ̂0 − π ′
ν (q)τ̂x + π ′′

ν (q)τ̂y], (3)

K̂ f ′
AA(q) = f̂ ′

⊥[σ̂0 + σ̂x]τ̂0, (4)

K̂ f ′
AB(q) = f̂ ′

⊥[σ̂0τ̂0 − σ̂zτ̂z + σ̂x τ̂x + σ̂yτ̂y]/2, (5)

K̂ f ′′
AA(q) =

∑

ν

f̂ ′′
ν [σ̂0τ̂0 − π ′

ν (q)σ̂x τ̂x + iπ ′′
ν (q)σ̂yτ̂y], (6)

K̂ f ′′
AB(q) =

∑

ν

f̂ ′′
ν {[3σ̂0τ̂0 − σ̂zτ̂z]/2

−
∑

ν

f̂ ′′
ν π ′

ν (q)[σ̂x τ̂0 − (σ̂x τ̂x − σ̂x τ̂x )/2]

+
∑

ν

f̂ ′′
ν π ′′

ν (q)[iσ̂yτ̂0 − (σ̂x τ̂y + σ̂yτ̂x )/2]}, (7)

where τ̂i are Pauli matrices acting in the (A,B) sublattice
space, σ̂i are Pauli matrices acting in the layer space, and f̂ν ,
f̂ ′
ν , f̂ ′′

ν are 2 × 2 matrices defined in the (R,L) chiral space,
whose explicit expressions are reported in the Supplemental
Material (SM) [45]. The index ν runs over the three vectors
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of the in-plane nearest-neighbor B atoms with respect to an
atom A, also determining the effective phonon dispersion
by the nonlocal factors π ′

ν (q) = Re{exp[iq · δν]}, π ′′
ν (q) =

Im{exp[iq · δν]}, δ1 = (1, 0), δ2 = (−1/2,
√

3/2), and δ3 =
(−1/2,−√

3/2). Note that the term K̂ f (q) in the dynamical
matrix does not depend on the specific AA or AB (or twisted)
structure since it is purely related to intralayer physics.

Without interlayer coupling, the phonon dispersion ex-
hibits two degenerate Dirac cones at the K point, emerging
from the longitudinal-acoustic (LA) and longitudinal-optical
(LO) branches for each layer. In an AA structure, these cones
split into two, while only one survives in AB stacking and
the other one is gapped due to the interlayer coupling. To
determine the intralayer FC parameters f‖ and f⊥, we fix the
energy of the single-layer Dirac point ω0 = √

3( f‖ + f⊥)/2M
and their Dirac velocity v = ω0a( f‖ − f⊥)/4( f‖ + f⊥). The
other three interlayer elastic parameters f ′

⊥, f ′′
‖ , f ′′

⊥ can be
determined by fixing the energies of the two Dirac cones
in the AA structure, ωAA,± [46], and by the splitting energy
of the single-degenerate levels in the AB stacking, ωAB,±
[45]. Using first-principles calculations (see the Supplemental
Material (SM) [45] and the references therein [47–53]), we
obtain f‖ = 23.882, f⊥ = 19.973, f ′

⊥ = −0.143, f ′′
‖ = 0.090,

and f ′′
⊥ = 0.059meV/AA2.

Utilizing the dynamical matrix of two uncoupled layers and
that of the AA and AB structures, we construct a continuum
model in the twisted case. Here we investigate the effects
of twist on the properties of a few selected in-plane lattice
modes, namely, the Dirac phonons at the K point emerg-
ing from the LA and LO branches, and the nondegenerate
high-frequency TO mode at the K point. Furthermore, we
study the degenerate LO and TO modes at the � point. For
Dirac phonons, we restrict the analysis to the relevant fourfold
Hilbert subspace containing the left-hand chiral displacements
for the A1/A2 atoms, and the right-hand chiral displacements
for the B1/B2 atoms. The 4 × 4 dynamical matrices so ob-
tained read

K̂AA(q̃) = vσ̂0[q̃x τ̂x + q̃yτ̂y] + VAAσ̂0τ̂0 − f ′
⊥σ̂x τ̂0, (8)

K̂AB(q̃) = vσ̂0[q̃x τ̂x + q̃yτ̂y] + VAB,0σ̂0τ̂0 + VAB,zσ̂zτ̂z

−3( f ′′
‖ − f ′′

⊥)/4[σ̂x τ̂x + σ̂yτ̂y], (9)

where q̃i are wave vectors measured with respect to the K
point and where the parameters VAA, VAB,0, and VAB,z are ruled
by the interlayer force constants (for an explicit expression,
see the SM [45]).

Equations (8) and (9) provide the basis for assessing the
evolution of the Dirac phonons in TBG within a continuum
model. Following a similar approach as for electrons, we
describe the dynamical matrix for a twisted bilayer by inter-
polating the off-diagonal blocks of the AA and AB matrices in
Eqs. (8) and (9) [8]. We find that the equivalent of an AA and
AB interlayer tunneling is ruled by the following terms:

tAA = − f ′
⊥/3, (10)

tAB = −( f ′′
‖ − f ′′

⊥)/2. (11)

Furthermore, we notice that the diagonal elements of Eqs. (8)
and (9) give rise to effective local potentials which are

different for different local stackings, and hence in different
regions in real space corresponding to an AA, AB, or BA stack-
ing [45]. These potentials can be expanded in reciprocal lattice
vectors similarly to the way electrostatic potentials are incor-
porated into the continuum model for electronic bands of TBG
[54]. Including these local potentials in this scheme, we show,
in Figs. 2(a) and 2(b), the evolution with the twist angle of the
phonon dispersion close to the in-plane Dirac energies in the
moiré Brillouin zone. We can notice an overall upward energy
shift of all the phonon frequencies, stemming from the pres-
ence of such local potentials. Moreover, the phonon dispersion
still shows a dispersive Dirac behavior close to K for θ = 4◦,
with a linear dispersion velocity comparable with the single
layer. Interestingly, such dispersion appears much flatter at
θ = 1.05◦, signalizing a remarkable band renormalization. In
order to get a qualitative estimate of a possible “phonon magic
angle,” we can employ the standard approach of truncating the
interlayer tunneling only to the first set of three momenta Qν

[7] and we get θ̄LO/LA ≈ 2.1◦ (see SM [45]). Such a picture is
supported by a quantitative analysis based on multi-interlayer
scattering, including local potentials. Within this framework,
following Ref. [7], the flattening of the LO/LA phonon bands
can be parameterized in terms of the renormalization factor
R = V ∗/V of the Dirac phonon velocity V ∗ in the twisted case
with respect to the one in the single layer, V . The twist-angle
dependence of R for the full multiscattering continuum model
is plotted in Fig. 2(c), showing a marked depletion for twist
angles � 2◦. Nevertheless, such depletion, for these as for
other lattice modes, never reaches a perfect flattening because
of the role of the local potentials; the qualitative estimate of
the phonon magic angle can properly capture the correct range
of twist angles where a strong phonon band renormalization
occurs.

IV. TO PHONON AT K

The analysis done for Dirac phonons at K can be also
extended to the TO phonon at K, which induces intervalley
scattering for the electrons [17]. Following the usual scheme,
the phonon wave function is expanded in plane waves in the
two layers, where the plane wave in one layer is transferred as
a superposition of three plane waves in the neighboring layer
(see SM [45] for more details). The main differences with
respect to the LO/LA modes are the following: (i) The mono-
layer TO phonon is not degenerate at K, so that the spinor
(sublattice) degree of freedom disappears. (ii) The dispersion
in the monolayer is quadratic in q̃. The coupling between
layers includes a diagonal restoring term, which changes from
the AA to the AB and BA regions, and a single interlayer
coupling, which also depends on the position within the unit
cell. This coupling is finite in the AA region, and it vanishes
in the AB and BA regions [45]. Hence, the model includes
four parameters, which can be readily obtained from the FCs
discussed above. The model used here resembles those used
for the conduction band edge of MoS2 (located at the K and
K ′ points) [55,56]. The representative plots of the TO phonon
dispersion in the moiré Brillouin zone are shown in Figs. 2(d)
and 2(e), and the angle dependence of the appropriate band
renormalization for the TO modes is depicted in Fig. 2(f). Us-
ing the standard approximate model restricted to the first star
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FIG. 2. Evolution with the twist angle of the phonon dispersion in the moiré Brillouin zone for the LO/LA modes at K (top panels), the TO
mode at K (middle panels), and the TO modes at � (bottom panels). Left panels are for twist angle θ = 4◦; central panels are for θ = 1.05◦.
Dark-blue solid and light-blue dotted lines represent the results with and without interlayer coupling, respectively. In panel (b), the relevant
Dirac modes in the twisted cases are highlighted in red. In the right panels, we show the band renormalization factor R for each mode as a
function of twist angle.

of Bloch waves and neglecting the diagonal restoring forces,
we can also obtain, for these modes, an estimate for the magic
angle at which the prefactor of the quadratic dispersion at K
vanishes [45]. We obtain θ̄T O ≈ 1.0◦, which is qualitatively
consistent with the results shown in Fig. 2(f).

V. OPTICAL PHONONS AT �

The continuum model for the optical phonons at � in TBG
is particularly simplified by the fact that each plane wave in
one layer just tunnels into a single plane wave in the other
layer. As detailed in the SM [45], the interlayer forces thus
separately couple the LO and the TO modes. One can further
divide modes with even and odd symmetry with respect to the
vertical axis. The LO and TO modes of the single layer thus
evolve in TBG into four independent bands with a quadratic
dispersion which is ruled by different combinations of the FC
parameters, and hence with four different behaviors for the
band renormalization [45]. The model resembles electronic
models used for the valence band edge of MoS2 (located
at the � point) [57–59]. The plots of the phonon dispersion
of the TO modes with even and odd symmetry for different
twist angles are shown in Figs. 2(g) and 2(h), and the angle
dependence of the effective band renormalization in Fig. 2(i).
Similar results (not shown) are obtained for the LO modes.

VI. DISCUSSION

We have analyzed the optical phonons of TBG, by intro-
ducing proper continuum models originally devised for the
electronic structure. For all three cases studied, i.e., LO/LA

modes at K, TO modes at K, and LO/TO modes at �, we find a
remarkable flattening of the superlattice phonon bands at low
twist angles, starting at higher values than the “magic angles”
where electronic flat bands appear. The possibility of inducing
flat optical-phonon bands in a twist range different from the
magic angle for electronic bands can have interesting conse-
quences on the role of these modes in the superconducting
pairing, opening the possibility of controlling independently
flat bands in the electronic and lattice degrees of freedom. In
this regard, it is interesting to notice the recent observation of
remarkable replicas of the electron bands with a well-defined
energy spacing, ω0 ∼ 150 meV [20,21]. Such replicas have
been ascribed to a strong electron-phonon coupling with the
TO modes at K, whereas the evidence of replicas with a
well-defined energy ω0 supports a scenario with a disper-
sionless Einstein mode. The onset of flat phonon bands is
also expected to tune the optical properties of TBG in the
infrared frequency range, providing a possible tool for twist
characterization. LO/TO modes are directly probed by one-
phonon Raman and infrared spectroscopy in bilayer graphene
[60], with intensities and selection rules that crucially depend
on the bilayer stacking order and on the z-axis symmetry
[61–65], and hence on twisting [66–69]. The sensitivity to
gate-induced symmetry breaking can also provide a further
tool for characterizing different flat branches’ [70] TO modes,
and their dispersions close to the K point are also commonly
observed by means of double-resonance processes D and 2D
[22–26]. Finally, although a direct contribution of the LO/LA
modes at K to the Raman phonon spectroscopy is not well
assessed [22,24,29,30], these modes bear a promising rele-
vance for quantum devices since, obeying a similar Dirac
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quantum structure, they are expected to show a similar rich
complexity as the electronic degree of freedom. It is also
worth mentioning that the same modes in the presence of
mass disproportion (e.g., in h-BN) host chiral phonon states
supporting a finite lattice angular momentum [31–34], with
possible application towards suitable (lattice-based) quantum
two-level systems [36,37].
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