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Microscopic theory of spin-orbit torque and spin memory loss from interfacial spin-orbit coupling
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Despite extensive efforts it has remained elusive how the spin-relaxation and spin-precession processes
influence the spin-orbit torque and spin memory loss at heavy metal (HM)–ferromagnetic insulator (FI) het-
erostructure. Here, we study the spin transport of the spin-orbit-coupled ferromagnets based on the SU(2) gauge
field theory and reveal that the interfacial spin-orbit coupling is responsible for (i) noncollinear spin exchange,
(ii) anisotropic spin relaxation, and (iii) interfacial magnetic field. We show that the noncollinear spin exchange
can tune the damping- and field-like torques. The spin-loss conductance is analytically derived by considering
interfacial Rashba, Dresselhaus, and strain-induced spin-orbit couplings. Our theory offers a deep understanding
of the spin transport across the HM|FI interface.
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I. INTRODUCTION

The interplay of the spin-orbit coupling (SOC) and the
spin-exchange coupling (SEC) is currently a subject of
particular interest in spintronics [1–16], because it can lead
to many peculiar phenomena including anomalous Hall effect
[1], spin swapping effect [2–4], and spin-orbit torques [5–16].
This interplay is ubiquitous, for example, at the magnetic
interface [16–19], in van der Waals (vdW) ferromagnets
[20–23], and even at the interface of two nonmagnetic
materials [24,25]. The atomically thin vdW ferromagnets,
owing to sizable SOC, possess high-quality perpendicular
magnetic anisotropy up to room temperature [26–28]. Thus,
these ultrathin vdW ferromagnets emerge as prime candidates
for practical spintronic applications [29] especially offering
unprecedented opportunities for the spin-orbit torque [13]. It
has been speculated that both SOC and SEC can lead to the
spin relaxation and spin precession, but it remains unclear
how the interfacial SOC interacts with the SEC to tune the
spin-orbit torque across the heavy metal (HM)–ferromagnetic
insulator (FI) interface [30,31].

Recent theoretical efforts reveal the possible relevance of
the interfacial SOC to the spin-orbit torque [5–8] and as-
sume a full transfer of the perpendicular component of the
interfacial spin current into the local moment of FI via the
damping-like torque [9–11]. However, the unavoidable spin
relaxation from the interfacial SOC substantially reduces the
spin current arising from the spin Hall effect in the HM
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and hence suppresses the torque exerted on the local mo-
ment of FI [32], resulting in spin memory loss [32–37].
The computation of the spin memory loss was thought to
be an arduous task which could only be carried out by the
first-principle scattering calculations [35–37]. Moreover, the
previous spin drift-diffusion formalism [7,8] used for spin-
orbit torque omits the spin density-to-current conversion—a
direct conversion of nonequilibrium spin density to spin cur-
rent via the SU(2) gauge field of the interfacial SOC [38–41].
Consequently, it is desirable to develop a microscopic theory
to unify the spin-orbit torque and spin memory loss in the
presence of interfacial SOC.

In this paper, we analytically study how interfacial SOC
generates the noncollinear SEC and tunes the damping- and
field-like torques from a microscopic perspective. We ex-
plore the spin-orbit torque efficiency after considering several
sources of the spin memory effect quantified by the spin-loss
conductance that has been analytically derived by considering
interfacial Rashba, Dresselhaus, and strain-induced SOC. Im-
portantly, we demonstrate exotic spin-loss conductance zero-,
first-, and second-order to the interfacial SOC, resulting in the
spin relaxation and precession of the interfacial spin density.

We organize the remainder of this paper as follows. In
Sec. II, we not only give the system Hamiltonian of the HM–
FI heterostructure (Sec. II A) but also study the spin transport
of the itinerant electrons based on the SU(2) gauge field theory
(Sec. II B). In Sec. III, we derive the HM|FI interface spin
current (Sec. III A), which is responsible for spin-orbit torque
(Sec. III B) and spin memory loss (Sec. III C). Section IV
summarizes our findings. Finally, Appendix A presents the
derivation of SU(2) gauge fields from the interfacial SOC,
Appendix B presents the detailed derivations of the quan-
tum kinetic equation of the spin-orbit-coupled ferromagnet,
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FIG. 1. [(a), (b)] Reflections of spin current at heavy metal (HM) | ferromagnetic insulator (FI) interface. For a perfect HM|FI interface (a),
the injected spin current Jz

i is fully reflected, i.e., Jz
r = Jz

i , because electron is not able to enter a perfect insulator. Thus, no net spin current
is injected into FI to control the magnetization of FI. For an imperfect HM|FI interface (b), there is not a clear boundary between HM and
FI. Electron can interact with the interfacial local moments of the FI and lose its spin due to its exchange with local moments (black sparks).
The reflected spin current is smaller than the injected one, i.e., Jz

r < Jz
i . Therefore, the spin-orbit torque can be captured by the nonzero net

spin current at HM|FI interface Jz(0) = Jz
i − Jz

r �= 0, whose intrinsic magnetic moments is transferred into the magnetization of the FI. (c) The
sketch of a HM-FI heterostructure. We assume the HM|FI interface to be a ferromagnet (F) of thickness �F .

Appendix C gives the detailed derivations of the noncollinear
SEC, and Appendix D shows the interfacial SOC dependence
of the spin conductance.

II. MODEL AND THEORY

We consider the HM-FI heterostructure (Fig. 1), for in-
stance, EuS/Pt [42]. The intrinsic magnetic moments of the
interfacial spin current injected from HM via the spin Hall
effect transmit to the local moments of FI [Fig. 1(b)]. Thus,
spin-orbit torque and spin memory loss are captured by the
interfacial spin current [43] and illustrated by the reflections
of spin current at HM|FI interface [Figs. 1(a) and 1(b)]. For an
ideal HM|FI interface [Fig. 1(a)], the injected spin current is
fully reflected because an electron cannot enter an insulator.
As a result, no net spin current is injected into the FI to
change its magnetization. For an imperfect HM|FI interface
[Fig. 1(b)], the electron can interact with the interfacial local
moments of the FI and lose its spin due to its exchange with
the local moments. Then, the reflected spin current is smaller
than the injected spin current. Therefore, the nonzero net
spin current, whose intrinsic magnetic moments transmit to
the FI’s magnetization, captures the spin-orbit torque at the
HM|FI interface.

The purpose of this paper is to understand how the interfa-
cial SOC affects spin-orbit torque and spin memory loss. We
treat the HM|FI interface as a spin-orbit-coupled ferromagnet
(F) of thickness �F [gray region in Fig. 1(c)], where local
moments and itinerant electrons coexist and interact via
the SEC [14,44]. In this picture, F acquires magnetization
from the intrinsic magnetic moments of the interfacial spin
current and transfers its magnetization into the FI via the spin-
exchange coupling between F and FI. Notably, the FI itself can
be an atomically thin vdW ferromagnet, and our theory is also

applicable for the state-of-the-art Fe3GeTe2/Pt heterostruc-
ture [45]. Also, our theory works on other magnetic
configurations, for instance, Gd3Ga5O12/Pt [46] and
Y3Fe5O12/Pt [47].

A. System Hamiltonian

The spin exchange (loss) responsible for the spin-orbit
torque (spin memory loss) happens at the spin-orbit-coupled
F of thickness �F , as shown by the gray region in Fig. 1. Thus,
we consider an F consisting of itinerant electrons and local
moments whose total Hamiltonian is given by

H = Hm + Hint +
∫

He(r)dr. (1)

To distinguish different magnetic configurations of the FI, we
assume that the local moments of the F, i.e., the interfacial
local moments of the FI, maintain the similar magnetic con-
figurations as the FI and therefore can be described by the
Heisenberg Hamiltonian

Hm = gnμBB · Sn − 1

2

∑
n,m

JnmSn · Sm, (2)

where gn � 2 is the g factor, μB is the Bohr magneton, and B

is a uniform external magnetic field in B̂
0 = B0/B0 direction.

Sn = (Sx
n, Sy

n, Sz
n) is the spin-So operator situated on unit cell n

and Jnm is the exchange coupling constant between two local
moment spins Sn and Sm, including nearest-neighbor, next-
nearest-neighbor spin exchanges and so on.

The SEC responsible for the spin-orbit torque can be
modeled by the so-called Kondo coupling—a collinear spin
exchange between local moments and itinerant electrons
[Fig. 2(a)]. As shown in Fig. 2(b), the Peierls substitution
reveals that itinerant electron spin rotates along the spin-orbit
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FIG. 2. The sketches of (a) collinear and (b) noncollinear spin
exchange between local moments (S j , thick arrows) and itinerant
electrons (s, thin arrows), i.e., Eq. (3). The red (blue) arrows are spins
before (after) exchange. The spin rotation of the itinerant electron
along the spin-orbit magnetic field (Bso) leads to a noncollinear spin
exchange between local moments and itinerant electrons (b).

magnetic field during the exchange and therefore we reach
a noncollinear SEC between local moments and itinerant
electrons via the Schrieffer-Wolff transformation [48–50] (see
detailed derivations in Appendix C)

Hint = −
∑

n

KsSn · s̃δ(r − rn), (3)

where Ks describes the noncollinear spin-exchange coupling
strength between the itinerant electron and the local moment.
The tilde spin operator s̃a = Rabsb is described by a spin
rotation matrix R relative to the SOC [49,50] (see derivation in
Appendix C). To use powerful single-scattering and disorder-
averaging techniques to calculate the spin-relaxation time
inside the F layer, the local moments in the F is required to
be randomly distributed as a result of the imperfect magnetic
interface in real experiments. The F is strongly disordered,
such that the mean-free path l is much smaller than both the
thickness of the F �F and the spin-relaxation length �a

F . Thus,
the itinerant electrons in the F undergo a diffusive motion
and the events of interaction with the local moments located
on the F appear as spikes of short duration, randomly dis-
tributed along the semiclassical trajectory of the electron [14].
The noncollinear SEC (3) rotates the longitudinal (s‖ = s̃ · B̂

0
)

and transverse (s⊥ = B̂
0 × s̃ × B̂

0
) spin components, whose

relaxation time, within the Born-Markov and the Weiss-field
approximations, reads [14,44]

1

τm
‖

= 2π

h̄
nmνF K2

s βεLnB(εL )[1 + nB(εL )]|〈S‖〉|, (4)

1

τm
⊥

= 1

2τm
‖

+ π

h̄
nmνF K2

s 〈S‖S‖〉. (5)

Here, νF is the density of state at Fermi energy, S‖ is a spin
operator along the magnetic-field direction, nm is the density
of local moments, and nB(εL ) = 1/(eβεL − 1) is the Bose-
Einstein distribution function at effective Larmor frequency
εL = gμBB0 − ∑

n Jnm〈S‖
n〉, including the contributions from

the nearest-neighbor, next-nearest-neighbor spin exchanges
and so on. Note that the Born-Markov approximation requires

the Kondo coupling (3) to be a perturbation, and hence nmKs

should be much smaller than the effective Zeeman energy εL.
The itinerant electron Hamiltonian [third term of Eq. (1)]

can be rewritten into U(1) ⊗ SU(2) form [51–57] (see details
in Appendix A),

He(r) = v0eÂ0(xη ) + h̄2

2m
∂̂a∂̂a, (6)

where e is the charge of electron, h̄ is the reduced Planck con-
stant, m is the effective mass of the ferromagnet, xη = (v0t, x)
is four-vector coordinate, and v0 is the speed of light. Here-
after, the Greek superscript η sums over four components,
the Latin subscripts a refer to the spatial components, and the
repeated indices imply summation. The hat derivative contains
the non-Abelian gauge fields

∂̂η = ∂

∂xη
+ ie

h̄
[Âη(xη ), ·]. (7)

The SOC and magnetic exchange field are recognized as the
spatial and temporal non-Abelian SU(2) gauge fields of itin-
erant electrons [54,56,57]

Âη(xn) =
[

1

v0
�0(xn) + 1

v0
�a(xn)ŝa,−A0(xn) − Aa(xn)ŝa

]
.

(8)

The generators of SU(2)ŝa satisfy [ŝa, ŝb] = iεabcŝc and
tr{ŝa, ŝb} = δab, where εabc is the Levi-Civita antisymmetric
tensor and δab is the Dirac delta function. The scalar [�0(xn)]
and vector [A0(xn)] potentials account for the temporal and
spatial components of the Abelian U(1) Maxwell gauge fields,
while the Zeeman [�a(xn)] and spin-orbit [Aa(xn)] interac-
tions correspond the temporal and spatial components of the
non-Abelian SU(2) Yang–Mills gauge fields [58,59]. The
natural lack of inversion symmetry at the HM|FI interface pro-
duces sizable Rashba and Dresselhaus SOC [60–62], as well
as strain-induced SOC [63–65], whose spatial gauge fields are
given by

Âx = Ax + 2m

e
[−β ŝ1 + (α − uxyλ)ŝ2 + uzxλŝ3], (9)

Ây = Ay + 2m

e
[+(−α + uxyλ)ŝ1 + β ŝ2 − uyzλŝ3], (10)

Âz = Az + 2m

e
[−uzxλŝ1 + uyzλŝ2]. (11)

Here, α, β, and λ are the constants of Rashba, Dresselhaus,
and strain-induced SOC, respectively, with ui j being elements
of the strain tensor [63].

B. Spin drift-diffusion-gauge formalism

To explore how the interfacial SOC affects the HM|FI
interface spin current, we are required to derive the spin
drift-diffusion-gauge formalism of the itinerant electrons with
U(1) ⊗ SU(2) Hamiltonian (6). The equation of motion of
the two-time density matrix for itinerant electrons ρ̂(t1, t2) =
|ψ̂ (t1)〉〈ψ̂ (t2)| [66], derived from the Schrödinger equation, is
given by [

∂

∂t1
+ ∂

∂t2

]
ρ̂(t1, t2) = i

h̄
[ρ̂(t1, t2),He]. (12)
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In a position representation we have wave function
ψ̂ (xn) = 〈rn|ψ̂ (tn)〉 and density matrix �̂(x1, x2) =
ψ̂ (x1)ψ̂+(x2). Then, the two-time master equation (12)
becomes

Ĝ (x1)�̂(x1, x2) − �̂(x1, x2)Ĝ+(x2) = 0. (13)

The propagator has U(1) ⊗ SU(2) form [51–57]

Ĝ(xn) = ih̄v0∂̂0 + h̄2

2m
∂̂a∂̂a. (14)

The Zeeman magnetic field [first term of Eq. (6)] includes the
correction from local moments

e�a(x) = gμBB0a − (nmKs/2)〈S̃a〉, (15)

and combines the time derivative of Eq. (12) to gen-
erate temporal covariant derivative—the first term of
propagator (14).

Next, we work on the quantum kinetic equation for
�̂k(X )—the gauge-invariant Wigner transformation of the
two-time density matrix �̂(x1, x2) (see detailed definition and
derivations in Appendix B)

vν
k ∂̂ν �̂k(X ) + evμ

k

2h̄
{F̂jμ, ∂k j �̂k(X )} = 0, (16)

with

F̂μν = ∂Âν

∂X μ
− ∂Âμ

∂X ν
+ ie

h̄
[Âμ, Âν], (17)

where x = (x1 − x2) and X = (x1 + x2)/2. Notably, the SU(2)
technology does not require the translation invariance, and
hence k, as the gauge-invariant Fourier transformation of
r = r1 − r2, is not a good quantum number. Here, we
have removed the higher-order terms ∂kα

∂kβ
�̂, ∂X μ∂X μ �̂,

and ∂X μ∂kβ
�̂ for simplicity [67], which results in the ap-

proximation that the velocity of the itinerant electron is
independent of the SOC, i.e., vν

k = (c, h̄k j

m ). Our quantum
kinetic equation (16) coincides with the Green’s function
method [51–57,67,68].

We then explore the nonequilibrium physics of the itinerant
electrons in the presence of the external electric field E j0

ex .
The equilibrium density matrix �̂

eq
k is defined from quantum

kinetic equation (16) at zero external electric field (E j0
ex = 0),

c∂̂0�̂
eq
k + evi

k

h̄
εil jBl∂k j �̂

eq
k + v

j
k ∂̂ j �̂

eq
k + evi

k

2h̄
εil j

Bla
{
ŝa, ∂k j �̂

eq
k

} + e

2

{(
E j0

in + E jaŝa
)
, ∂k j �̂

eq
k

} = 0, (18)

and is determined by both �μ(xn)ŝμ and Aμ(xn). Here,
we have used the following relations E ja = cF a

0 j and F ν
ji =

−ε jil Blν . The equilibrium drift term includes both the in-
trinsic electric force eE0

in responsible for charge current
and the spin electric forces eEa in charge of the spin
currents, which cause equilibrium charge and spin accu-
mulations, respectively. We are not required to solve the
complicated equilibrium density matrix defined in Eq. (18),
because we are only interested in nonequilibrium physics.
Introducing the nonequilibrium density matrix δ�̂k = �̂k −
�̂

eq
k , we reach the linear nonequilibrium quantum transport

equation

v0∂̂0δ�̂k + evi
k

h̄
εil jBl0∂k j δ�̂k + v

j
k ∂̂ jδ�̂k

+ evi
k

2h̄
εil jBla{ŝa, ∂k j δ�̂k} + eE j0

ex ∂k j �̂
eq
k = − 1

τ
δ�̂k.

(19)

We have worked in the diffusive regime and used the re-
laxation time approximation with τ being the momentum
relaxation time from nonmagnetic impurities. The Hanle ef-
fect results from the temporal covariant derivative [η = 0 of
Eq. (7)], which includes the temporal gauge field Â0, whereas
the spatial covariant derivative [η �= 0 of Eq. (7)] containing
the spatial gauge fields Â j results in the spin density-current
conversion [Eqs. (27) and (32)]. The second term is the or-
dinary magnetic force evk × B0, which is responsible for the
ordinary Hall effect, and the fourth is the spin magnetic force
evk × Ba, which is in charge of the spin Hall effects [69,70].

The nonequilibrium density tensor can be expressed in
terms of the nonequilibrium density matrix δ�̂k(X )

N̂ (X ) =
∫

dk
(2π )3

δ�̂k(X ), (20)

Derived from Eq. (19), we obtain the generalized continuity
equation [71–73]—the time evolution of the nonequilibrium
density tensor (20)

v0∂̂0N̂ (X ) + ∂̂aĴa(X ) = 0. (21)

The expression of the nonequilibrium spin current tensor is
given by

Ĵ(X ) =
∫

dk
(2π )3

vkδ�̂k(X ), (22)

to have the covariant continuity equation (21). Note that the
nonequilibrium density matrix δ�̂k(X ) in Eqs. (20) and (22) is
proportional to the drift term—the last term of the left-hand
side of Eq. (19) linear in E j0

ex , which, in principle, includes the
information of gauge fields in equilibrium density matrix �̂

eq
k

defined in Eq. (18). To simplify, we excluded the influence
of the spatial gauge fields on the equilibrium density matrix
by assuming �̂

eq
k = f (εk + e�aŝa) such that the equilibrium

spin density can be finite but the equilibrium spin current is
always zero. Here, εk = h̄2k2

2m and f (ε) = 1/[eβ(ε−μF ) + 1] is
the Fermi-Dirac distribution at the absolute temperature T and
global chemical potential μF . The solution to Eq. (19), can be
obtained by applying the ansatz [74]

δ�̂k � − f ′(εk)ŝμvν
μkν . (23)

The fields v j and v0k0 correspond to the drift velocity and
the local chemical potential of the itinerant electrons, respec-
tively. Both are proportional to the external electric field.
Then, the nonequilibrium spin density and current, Eqs. (20)
and (22), at zero temperature, reduce to

Nμ = k0νF v0μ, (24)

Jiμ = vF kF νF viμ/d, (25)
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where νF and vF are the density of state and the velocity at
Fermi energy for the d dimensional system. Here, we have
assumed vi

k = vF ki/|k|.
Next, we derive the constitutive equations—the time evo-

lution of the nonequilibrium currents. By substitutions of
Eqs. (20) and (22), we can derive a set of constitutive
equations from the linear nonequilibrium quantum transport
equation (19) [38,75],

J0 + θ0
C × J0 + θa

C × Ja = σE0 − D∇N0, (26)

Ja − εabcθb
LJc + θ0

C × Ja + θa
C × J0

= σEa − D
(
∇Na + e

h̄
εabcAbNc

)
, (27)

where Nc is the density polarized in c direction, Jiη is the
current polarized in η direction and flowing in i direction.
Each current Jη has its mechanical force eEη linear to the
external electric field Eex, where the charge (spin) electric
field E0 = κ0Eex (Ea = κaEex) accounts for nonequilibrium
drift charge (spin) current. The dimensionless coefficients κa

describe the drift charge-to-spin conversion efficiency, and
are derived from the equilibrium density matrix f ′(μF +
e�aŝa) ≡ f ′(μF )κμŝμ. The Drude conductivity is σ = eνF D,
where D = v2

F τ/d is the diffusion coefficient. For simplicity,
σ and D are assumed to be the same for all currents. The
Larmor precession of spin currents caused by the Zeeman
magnetic field (15) is described by

θL = e�τ/h̄. (28)

Ordinary and spin Hall angles owing to orbital and spin-orbit
magnetic fields are

θ0
C = evF τ

h̄kF
B0, (29)

θa
C = evF τ

h̄kF
Ba, (30)

proportional to ordinary and spin magnetic forces, respec-
tively. Solving the system of equations (26) and (27), we
express Ĵ in terms of a covariant derivative with N̂ and
generalize the nonequilibrium drift-diffusion equation [7]
into the following nonequilibrium drift-diffusion-gauge equa-
tion [38,66]

Jiη = �
iη
jνσE jν − �

iη
jνD∂ jN

ν − �
iη
jνD

e

h̄
ενbcA jbNc. (31)

The first, second, and third terms, respectively, correspond
to the standard Ohm’s, Fick’s laws, and the spin density-
to-current conversion [39,40]. The conversion of different
currents is described by a drift-diffusion-gauge tensor �

iη
jν

that is determined by spin-precession (θL), ordinary Hall (θ0
C),

and spin Hall (θa
C) angles after inverting the system of equa-

tions (26) and (27). Although the derivation of the explicit
expressions of the drift-diffusion-gauge tensor is a challeng-
ing task, we can iteratively calculate it from Eqs. (26) and
(27). Note that there is a long-standing issue in the definition
of spin current in the absence of spin conservation due to the
SOC [72,73,76–79]. Equations (20) and (22) are consistent
with their microscopic definitions [54,55,67]. The covariant
expression of current (31) is an alternative of Nη, consistent
with both diffusion equation (21) and boundary conditions

[71,73]. We can always express the spin transport relevant to
the SOC by spin density—the quantity directly measured in
experiments.

III. RESULTS AND DISCUSSIONS

A. Ferromagnetic interface spin current

Note that both spin-orbit torque and spin memory loss
can be derived from the spin current at the HM|FI interface
[14,43]. Microscopically, the ferromagnetic interface spin cur-
rent is derived from the continuity equation [14]. Thus, we
study how the interfacial SOC modifies the continuity equa-
tion through the noncollinear SEC (3) and gauge fields (8).
The spin-a components of the generalized continuity equa-
tion (21), in steady state, are

∇ · Ja = − 1

τm
a

Na + e

h̄
εabc�bNc − e

h̄
εabcAb · Jc, (32)

where we have added the spin relaxation of the itinerant elec-
trons τm

a due to its noncollinear SEC with the local moments
[Eqs. (4) and (5)]. Hereafter, we assume that the gauge fields
(8) are uniform along the z-axis direction in ferromagnet
and hybrid system is uniform in the (x, y) plane. Then, we
calculate the spin current at the HM|F interface (z = 0) by
integrating ∂3J3a in Eq. (32) over the F (z ∈ [−�F , 0]),

Jza = − 1

τm
a

N̄a + e

h̄
εabc�bN̄c − e

h̄
εabcAb · J̄c

, (33)

where X̄ = ∫ 0
−�F

Xdz and we have used the fact that the
nonequilibrium spin density and current at F|FI surface (z =
−�F ) are zero, that is, Na(−�F ) = 0 and Jza(−�F ) = 0. The
spin density at F approximately decays according to Na(z) �
Na(0)e+z/�a

F , where �a
F is the spin-a diffusion length of the

itinerant electron in the ferromagnet, arising from both SEC
and SOC (see detailed expressions in Appendix D). Thus, we
have

N̄a � �̃a
F Na(0) �

{
�a

F Na(0), �F � �a
F

�F Na(0), �F  �a
F

. (34)

The interfacial SOC modulation of the interfacial spin current
i.e., spin-orbit torque and spin memory loss, is also through
�a

F and becomes more obvious for �F � �a
F . Thus, hereafter,

we consider the case of �F � �a
F .

Substituting Eq. (31) into Eq. (33), we obtain the boundary
condition

Jza � −
(

�a
F

τm
a

+ �aa
+ + �aa

+

)
Na − |εabc|(�ac

+ + �ac
+ )Nc

+ εabc

(
e�c

F

h̄
�b − �ac

− − �ac
−

)
Nc − σ

e

h̄
εabνAib�iν

jcĒ jc.

(35)

The tensors �ac
± = (�ac ± �ca)/2 and �ac

± = (�ac ± �ca)/2
show how the spin relaxation and precession of the interfacial
spin density, due to the interfacial SOC, control the ferromag-
netic interface spin current with

�ac = −e2�c
F D

h̄2 εabμενdcAib�
iμ
jνAjd , (36)
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�ac = −D
e

h̄
εabνAib�iν

3c. (37)

The diagonal terms of the tensors (a = c) renormalize the spin
relaxation time (�aa

+ , �aa
+ ), while the off-diagonal ones (a �= c)

not only renormalize the interfacial magnetic exchange field
(�ac

− , �ac
− ) but also cause a symmetric coupling (�ac

+ , �ac
+ ). Be-

sides, the interfacial spin drift current is linearly modified by
the gauge fields [last term of Eq. (35)]. Notably, the presence
of �

iη
jν in the continuity equation (35) includes the feedback of

the Hanle (θL), ordinary (θ0
C), and spin (θa

C) Hall effects on the
spin relaxation. 1/τm

a (�aa
+ ) term has been extensively studied

for the spin-dependent (-loss) conductance [14] ([43]). So far,
little attention is paid to the fruitful new terms [Eqs. (36) and
(37)] derived from the SU(2) gauge field theory.

Hereafter, we consider the strong ordinary Hall effect
(θ0

C � θL, θa
C). Up to the first order of θ0

C , the spin drift-
diffusion-gauge tensor becomes

�ia
jb � δab

(
δi j − εik jθ k0

C

)
, (38)

which excludes the Hanle effect and spin Hall effect in
F. Expressing the nonequilibrium spin density at ferro-
magnetic interface by spin electrochemical potentials μ =

1
kF νF

(N1, N2, N3), Eq. (35) becomes

Jz = JM + JL + JS + JA + JE , (39)

where J p = (J p1, J p2, J p3) with p = (z, M, L, S, A, E ). The
interfacial drift spin current JEa = −σ e

h̄εabνAib�iν
jcĒ jc is de-

termined by both the spatial gauge fields and generalized spin
electric fields [last term of Eq. (35)].

B. Spin-orbit torques

First, JM is the interfacial spin current of the itinerant elec-
trons owing to its noncollinear SEC with the local moments
[τm

a and �b terms in Eq. (35)]

eJM � Gm
s μ + Gm

r m̃ × (m̃ × μ) + Gm
i m̃ × μ. (40)

It exerts a torque on the local moment by transferring its angu-
lar momentum, which is quantified by spin-sink conductance
Gs [80], and spin-mixing conductance G↑↓ = Gm

r + iGm
i [81]

with

Gm
s = −e2νF �

‖
F /τm

‖ , (41)

Gm
r = e2νF (�⊥

F /τm
⊥ − �

‖
F /τm

‖ ), (42)

Gm
i = −e2

h̄
νF �⊥

F nmKs〈Ŝ‖〉. (43)

where Gm
r and Gm

i arise from the interfacial anisotropic spin
relaxation and magnetic exchange field, respectively. Note
that �a

F includes the contributions from both the SEC and the
interfacial SOC, resulting in the modulation of the spin-orbit
torque with the interfacial SOC. The damping- (field-) like
torque is directly (inversely) proportional to the interfacial
SOC for the SOC-dominated �a

F and becomes independent
of the interfacial SOC for the SEC-dominated �a

F (see Ap-
pendix D). This might explain the recent experiment [16] that
finds the interfacial SOC linearly tunes the damping-like spin-
orbit torque. Gm

s and Gm
s − Gm

r , in the order of 1012 �−1 m−2

FIG. 3. Spin-orbit torques and spin memory loss. The thin arrows
show the evolution of interfacial spin current during the reflection
at HM|FI interface. [(a), (b)] The spin exchange between itinerant
electrons and local moments. Panels (a) and (b) plot the spin-orbit
torques from the collinear and the noncollinear spin exchange be-
tween local moments and itinerant electrons [Eqs. (41) and (42)].
Although the spatial gauge fields can cause spin decay [Eqs. (45) and
(46)], the corresponding spin loss can not be transferred into the local
moments, as shown in panel (c). In addition, the in-plane interfacial
spin-orbit magnetic fields [Eqs. (49) and (50)] merely induces the
spin precession of the interfacial spin density of itinerant electrons,
as shown in panel (d).

in EuS/Pt [42], respectively, show how fast longitudinal (μ3)
and transverse (μ1,2) components of the interfacial spin den-
sity are transferred to the local moments of the ferromagnet.
Gi (∼1013 �−1 m−2 in EuS/Pt [42]) exerts a field-like torque
that causes the spin precession of the local moments (m̃)
along μ direction. Therefore, we demonstrate that the interfa-
cial SOC rotates m = 〈S〉/〈Ŝ‖〉 [Fig. 3(a)] into m̃ = 〈S̃〉/〈Ŝ‖〉
[Fig. 3(b)]. However, not all intrinsic local moments of the
interfacial spin current can be transferred into the local mo-
ments of the ferromagnet [10,32,34,36]. The spin-orbit torque
efficiency can be reduced by the spin relaxation from the
interfacial SOC.

C. Spin memory loss

Next, we present the possible spin memory loss from the
spin decay and precession of the interfacial SOC. JL is the
interfacial spin current arising from the interaction of
the spatial gauge fields [�aa

+ and �ac
− terms in Eq. (35)]

eJL � Gl
sμ + Gl

r ẑ × (ẑ × μ) + Gl
i ẑ × μ

+ Gl
j x̂ × μ + Gl

j ŷ × μ. (44)
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The spin memory loss is quantified by the spin-loss conduc-
tance [43] quadratic to gauge fields [�aa

+ terms in Eq. (35)]

Gl
s = −e2νF �zz

+,0, (45)

Gl
r = e2νF

(
�xx

+,0 − �zz
+,0

)
, (46)

with

�zz
+,0 = 2�

‖
F Dm2

h̄2 [(α − u‖λ)2 + β2 + u2
⊥λ2], (47)

�xx
+,0 = �⊥

F Dm2

h̄2 [(α − u‖λ)2 + β2 + 3u2
⊥λ2], (48)

where the subscript l of �±,l means l order in ordinary Hall
angle. We have presumed a strain configuration in which
uyz = uzx = u⊥ and uxy = u‖. Both Gl

s and Gl
r account for the

spin relaxation of itinerant electrons and hence can also be
induced by the spin-flip scattering from the static disorder at
the interface [37]. For zero strain-induced SOC (u⊥ = u‖ =
0), we recover the spin-loss conductance Gl

r and Gl
s, with

the latter being Gl
r � 1.5 × 1013 �−1 m−2 in BiOx/Cu [43].

Moreover, we also find new interfacial spin-orbit magnetic
fields [�ac

− terms in Eq. (35)]

Gl
i = e2νF �

xy
−,1, (49)

Gl
j = e2νF �

yz
−,1, (50)

with

�
xy
−,1 = �⊥

F Dm2

h̄2

[
(β2 − (α − u‖λ)2)θ z0

C + (α − β − u‖λ)

× u⊥λθ
y0
C − (α − β − u‖λ)u⊥λθ x0

C

]
, (51)

�
yz
−,1 = �

‖
F Dm2

h̄2

[−(β − α + u‖λ)u⊥λθ z0
C

− u2
⊥λ2θ

y0
C − u2

⊥λ2θ x0
C

]
. (52)

Linear to the ordinary Hall angle, Gl
i, j should be an order of

magnitude smaller than Gl
r . Taking m̃ = ẑ as an example. The

spin-loss conductance Gl
s (Gl

r + iGl
i ) competes with the spin-

sink conductance Gm
s (spin-mixing conductance Gm

r + iGm
i ).

But the spin loss of the former can not be transferred into the
local moments [Fig. 3(c)]. The Gl

j interfacial magnetic field
[Fig. 3(d)] couples μ3 with μ1,2 that is further transferred into
the local moments by the damping-like torque (Gm

r ) or induces
the spin precession of the local moments via the field-like
torque (Gm

i ).
Interestingly, the interplay of the interfacial SOC, as shown

in Eq. (36), results in a brand new interfacial spin-orbit mag-
netic field [�ac

+ terms in Eq. (35)]

eJS � Gn
⊥‖x̂ × μ‖ + Gn

⊥‖ŷ × μ‖ + Gn
‖‖ẑ × μ‖, (53)

which is described by a symmetric tensor (|εabc|), i.e., ‖n ×
μ‖a ≡ |εabc|nbμc. The spin-loss conductance Gn

‖ and Gn
⊥ arise

from the interaction among the Rashba, Dresselhaus and
strain-induced SOC,

Gn
‖ � −e2νF �

xy
+,0, (54)

Gn
⊥ � −e2νF �

yz
+,0, (55)

where

�
xy
+,0 = �⊥

F Dm2

h̄2 [2β(α − u‖λ) + u2
⊥λ2], (56)

�
yz
+,0 = −�

‖
F Dm2

h̄2 u⊥λ(α − β − u‖). (57)

The spin-loss conductance Gn
⊥,‖ and Gl

s,r are quadratic (linear)
in the interfacial SOC for SEC (SOC)-dominated �a

F (see
Appendix D). Thus, we expect that Gn

⊥,‖ should be the same
order as Gl

s,r . So far, all spin conductance are linear in �F .
Finally, we show the interfacial SOC itself (Aib) or its inter-

play with the ordinary Hall effect (θ0
C) produces new in-plane

interfacial spin-orbit magnetic fields [�ac
− terms in Eq. (35)]

eJA � Ga
λx̂ × μ − Ga

λŷ × μ + Ga
αnα × μ + Ga

βnβ × μ,

(58)

with

Ga
λ = e2νF

2Dm

h̄
u⊥λ, (59)

Ga
α = e2νF

2Dm

h̄
θ0

Cα, (60)

Ga
β = e2νF

2Dm

h̄
θ0

Cβ, (61)

where nα = [−θ x0
C ,−θ

y0
C , 0]/θ0

C , nβ = [θ y0
C , θ x0

C , 0]/θ0
C , and

we have used the fact �aa
+ � 0 (�ac

+ � 0) due to �aa � 0
(�ac � −�ca) [see Eqs. (37) and (38)]. The corresponding
spin-loss conductance, linear to the interfacial SOC and in-
dependent of �a

F , are responsible for the spin precession of the
interfacial spin density. The spin-orbit lengths in general are
much larger than the spin-diffusion length in the ferromagnet,
i.e., h̄/(mu⊥λ), h̄/(mα), h̄/(mβ ) � �a

F . Hence, Ga
λ is much

larger than Gl
s,r , while Ga

α,β , linear to θ0
C , is the same order as

Gl
s,r . The in-plane interfacial spin-orbit magnetic fields (58)

couple μ3 with μ1,2 that again can be further transferred into
the local moments of the ferromagnet via the damping-like
torque (Gm

r ).

IV. CONCLUSIONS

We have developed a SU(2) theory to describe the spin
transport across the HM|FI interface. It was shown that the
interfacial SOC causes the spin relaxation and precession of
the interfacial spin density that exerts damping- and field-like
torques on the local moments of ferromagnet and controls
the spin-orbit torque and spin memory loss. We derived the
spin-mixing (-loss) conductance in terms of the microscopic
parameters of the interface. Our theory demonstrates both
the noncollinear SEC that tunes the damping- and field-like
torques via rotating m ∝ 〈S〉 into m̃ ∝ 〈S̃〉 and the spin-
transfer efficiency suppression after considering the interfacial
spin-loss conductance. We envision bright experiments in
vdW ferromagnets and their heterostructures to test our pre-
dictions. The generalization of our theory to ferrimagnet,
antiferromagnet, and/or altermagnet is an appealing issue for
future study.
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APPENDIX A: DERIVATION OF GAUGE FIELDS (8)

In this Appendix, we study the interplay of the Rashba-
and- Dresselhaus-type spin-orbit coupling (SOC) as well as
the strain-induced SOC.

We start by considering the Pauli Hamiltonian, acting on
two-component spinors

H = P2

2m
+ h̄ωH B̂ · ŝ + eφ + VR + VD + VS, (A1)

with

VR = 2α(P × ẑ) · s, (A2)

VD = 2β(Pxsx + Pysy), (A3)

VS = 2λ[s1(uzxPz − uxyPy) + s2(uxyPx − uyzPz )

+ s3(uyzPy − uzxPx )], (A4)

where α, β, and λ are the constants of Rashba, Dresselhaus,
and strain-induced SOC, respectively, and e < 0 is the charge
of electron. ui j are elements of the strain tensor [63]. P =
−ih̄∇r − eA(r) is canonical momentum with a minimal cou-
pling to the electromagnetic field, which is described by the
Abelian gauge field Aν (r) = [φ(r)/c, A(r)]. Next we rewrite
the kinetic energy plus SOC as

1

2m
[p − eÂ(r)]2 − m

[
(α2 + β2) + λ2

(
u2

xy + u2
yz + u2

zx

)]
.

(A5)

Thus, the non-Abelian gauge field reads

Âμ(xn) =
[

1

c
�(xn) + 1

c
�a(xn)ŝa,−A(xn) − Aa(xn)ŝa

]
.

(A6)

The spatial components of gauge field read

Âx = Ax + 2m

e
[−β ŝ1 + (α − uxyλ)ŝ2 + uzxλŝ3], (A7)

Ây = Ay + 2m

e
[+(−α + uxyλ)ŝ1 + β ŝ2 − uyzλŝ3], (A8)

Âz = Az + 2m

e
[−uzxλŝ1 + uyzλŝ2]. (A9)

The temporal components of the gauge field read

e�(x) = eφ(r) − m
[
(α2 + β2) + λ2(u2

xy + u2
yz + u2

zx

)]
,

(A10)

e�a(x) = gμBB0a − (nmKs/2)〈S̃a〉. (A11)

The Zeeman interaction is written as the time component
of the non-Abelian gauge field Â0(x). The Hamiltonian has
U(1) ⊗ SU(2) form [51–57]

Ĥ(xn) = ceÂ0(xn) + h̄2

2m
D̂j (xn)D̂ j (xn) (A12)

with

D̂μ(xn) = ∂

∂xμ
n

+ ie

h̄
Âμ(xn). (A13)

The gauge field reads

Âμ(xn) =
[

1

c
�0(xn) + 1

c
�a(xn)ŝa,−A0(xn) − Aa(xn)ŝa

]
.

(A14)

ŝa are the generators of SU(2) with algebra [ŝa, ŝb] = iεabcŝc

and tr{ŝa, ŝb} = δab. The scalar [�0(xn)] and vector [A0(xn)]
potentials correspond to the temporal and spatial components
of the Abelian U(1) Maxwell gauge fields, while the Zeeman
[�a(xn)] and spin-orbit [Aa(xn)] interactions correspond to the
temporal and spatial components of the non-Abelian SU(2)
Yang–Mills gauge fields. The Zeeman magnetic field reads
e�a(x) = gμBBa0, where μB is the Bohr magneton, g is the
g factor, and B0 is the external magnetic field in the direction
n = B0/B0.

The spin electric and magnetic fields, respectively, are de-
rived from the gauge fields (A14)

E ja = −∂ j�
a − ∂0cAa

j − e

h̄
εabcAb

j�
c, (A15)

and

Bia = −1

2
εi jk

[
∂ jA

a
k − ∂kAa

j − e

h̄
εabcAb

jA
c
k

]
. (A16)

We first show the detailed expressions of the spin electric
fields (A15) as follows:

E1 = 2mωHλ[−uxyn3 − uzxn2,+uyzn
2,+uyzn

3]

+ 2mωH [αn3, βn3, 0], (A17)

E2 = 2mωHλ[+uzxn1,−uxyn3 − uyzn
1, uzxn3]

+ 2mωH [βn3, αn3, 0], (A18)

E3 = 2mωHλ[uxyn1, uxyn2,−uyzn
1 − uzxn2]

+ 2mωH [−αn1 − βn2,−αn2 − βn1, 0]. (A19)

Next, we also give the detailed expressions of the spin mag-
netic fields (A16) as follows:

B1 =B1 + 4m2

eh̄
λ2uyz[uyz, uzx, uxy]

+ 4m2

eh̄
λ[0, 0,−uyzα − uzxβ], (A20)

B2 =B2 + 4m2

eh̄
λ2uzx[uyz, uzx, uxy]

+ 4m2

eh̄
λ[0, 0,−uzxα − uyzβ], (A21)
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B3 =B3 + 4m2

eh̄
λ2uxy[uyz, uzx, uxy]

+ 4m2

eh̄
[λuyz(uxyλ − α), λuzx(uxyλ − α), (α − uxyλ)2]

+ 4m2

eh̄
λ[−uyzα + uzxβ,−uzxα + uyzβ,−2uxyλα]

+ 4m2

eh̄
[0, 0, α2 − β2], (A22)

where Bia = − 1
2εi jk (∂ jAa

k − ∂kAa
j ) arises from the the spatial

derivatives of the spatial components of gauge field. The spin
magnetic fields (A20), (A21), and (A22) will induce a con-
version from charge current to spin Hall currents polarized in
spin ŝ1, ŝ2, and ŝ3, respectively, whose conversion efficiencies
are respectively described by spin Hall angles

θ1
C = elF B1

h̄kF
, (A23)

θ2
C = elF B2

h̄kF
, (A24)

θ3
C = elF B3

h̄kF
. (A25)

APPENDIX B: DERIVATIONS OF EQ. (16)

In this Appendix, we give the detailed derivations of the
gauge-invariant quantum kinetic equation (13) in the main
text.

1. SU(2) gauge transformation

In this section, we introduce the SU(2) gauge transforma-
tion. Now let us consider the gauge transformation

ψ̂g(x) = R̂(x)ψ̂(x), ψ̂†
g (x) = ψ̂†(x)R̂−1(x). (B1)

The original Wigner transform depends on the “center-of-
mass” and “relative” coordinates, defined as

X = x1 + x2

2
, x = x1 − x2. (B2)

It is the Fourier transform of GF with respect to the relative
coordinates x,

�̂(p, X ) =
∫

dxe+ip·x�̂
(

X + x

2
, X − x

2

)
, (B3)

with p · x = pμxμ = p0x0 − pixi. One can rewrite it as

�ab
s1s2

(p, X ) = − i
∫

dxe+ip·x[e+ 1
2 xμ∂μψs1

(X )
]

× [
e− 1

2 xμ∂μψ†
s2

(X )
]
, (B4)

with

e+xμ∂μψs(X ) = ψs(X + x). (B5)

However, the definition above Wigner transformation (B3)
breaks the gauge invariance. This may be understood by not-
ing that the gauge transformation (B4) depends on both r1

and r2 instead of r, so that the simple Fourier transform with
respect to r necessarily breaks the gauge invariance.

To remove this difficulty, a gauge-invariant Wigner
transformation would be simply deduced from Eq. (B4) by
the substitution of the usual derivatives with covariant ones,
D̂μ,± [82],

�̂(p, X ) = − i
∫

dxe+ip·x[e+ 1
2 xμD̂μ,+ψ̂(X )

]
× [

ψ̂†(X )e− 1
2 xμD̂μ,−

]
, (B6)

where e±xμD̂μ,± is the covariant translation operator.
D̂μ,±(xn) = ∂

∂xμ
n

± ie
h̄ Âμ(xn) is the covariant derivatives,

where m is the mass of electron and c is the velocity of light.
Its action on fermion operator is given by [83]

eyμD̂μ,+�̂1(X ) = Ŵ (X, X + y)�̂1(X + y), (B7)

�̂2(X )eyμD̂−
μ = �̂2(X + y)Ŵ (X + y, X ). (B8)

Wilson line Ŵ (X, Z ) reads (see its derivation and properties
in Appendix B 2)

Ŵ (X, Z ) = Pe− ie
h̄

∫ X
Z dζ κ Âκ (ζ ), (B9)

where P means the path of integration is the straight line
from ζ = Z to ζ = X . Substituting Eqs. (B7) and (B8) into
Eq. (B6), one obtains

�̂(p, X ) =
∫

dxe+ip·xŴ
(

X, X + x

2

)
× �̂

(
X + x

2
, X − x

2

)
Ŵ

(
X − x

2
, X

)
, (B10)

�̂(x1, x2) = 1

V

∑
p

e−ip·xŴ
(

X + x

2
, X

)
× �̂(p, X )Ŵ

(
X, X − x

2

)
. (B11)

2. Wilson line in Keldysh-spin space

In this subsection, we introduce the definition and
properties of Wilson line in Keldysh-spin (KS) space.
The corresponding gauge-invariant Wigner transformation
reads

Ĝ(p, X ) =
∫

dxe+ip·xŴ
(

X, X + x

2

)
Ĝ

(
X + x

2
, X − x

2

)
× Ŵ

(
X − x

2
, X

)
, (B12)

Ĝ(x1, x2) = 1

V

∑
p

e−ip·xŴ
(

X + x

2
, X

)
× Ĝ(p, X )Ŵ

(
X, X − x

2

)
, (B13)

where Wilson line in KS space is given by

Ŵ (X, Z ) =
[

Ŵ (X, Z ) 0

0 Ŵ (X, Z )

]
. (B14)

Then, let us find the expression of Wilson line in spin space
(B14). It appears, when we undergo a gauge-invariant Wigner
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transformation of Green’s function

Ĝab(p, X ) = − i
∫

dxe+ip·x〈T̂K
{[

e+ 1
2 xμD̂μ,+�̂1(X )

]
× [

�̂2(X )e− 1
2 xμD̂μ,−

]}〉
, (B15)

with

D̂μ,+(X ) = ∂μ + ie

h̄
Âμ(X ), (B16)

D̂μ,−(X ) = ∂μ − ie

h̄
Âμ(X ). (B17)

Thus, one inevitably encounters the calculation

e+yμD̂μ,+(X ) = lim
n→∞[1 + �yμD̂μ,+(X )]n

= lim
n→∞

[
1 + �yμ∂μ + �yμ ie

h̄
Âμ(X )

]n

, (B18)

with �yμ = yμ/n. To realize the shift of X , we are required
to obtain a translation operator e+�yμ∂μ . Thus, Eq. (B18)
becomes

e+yμD̂μ,+(X ) = lim
n→∞

{[
1 + �yμ ie

h̄
Âμ(X )

]
e+�yμ∂μ

× [1 + O((�yμ)2)]}n

= lim
n→∞

[
1 + �yμ ie

h̄
Âμ(X )

]
. . .

×
[

1 + �yμ ie

h̄
Âμ(X + (n − 1)�yμ)

]
e+yμ∂μ,

(B19)

which can be written into integral form

e+yμD̂μ,+(X ) = Pe− ie
h̄

∫ X
X+y dzÂμ(z)e±yμ∂μ . (B20)

Hence, we reach

eyμD̂μ,+�̂1(X ) = Ŵ ı (X, X + y)�̂1(X + y), (B21)

�̂2(X )eyμD̂μ,− = �̂2(X + y)Ŵ (X + y, X ), (B22)

where the Wilson line reads

Ŵ (X, Z ) = Pie
− ie

h̄

∫ X
Z dζ κ Âκ (ζ ). (B23)

It has important properties

Ŵ (X, Z )Ŵ (Z,Y ) = Ŵ ı (X,Y ),Ŵ (X, Z )W̌ (Z,Y )

= Ŵ (X,Y ), (B24)

Ŵ+(X, Z ) = Ŵ (Z, X ),Ŵ+(X, Z ) = Ŵ (Z, X ). (B25)

It is easy to check Wilson line Ŵ (X, Z ), can be transformed
gauge invariantly as

R̂(X )Ŵ (X, Z )R̂−1(Z ) = Ŵg(X, Z ), (B26)

which lead into the gauge-invariant transform of Wilson line
in Nambu and spin space

Ř(X )W̌ (X, Z )Ř−1(Z ) = W̌g(X, Z ). (B27)

Next, let us calculate the derivative of Wilson line

∂

∂xμ
Ŵ (X, Z ) = ∂X ν

∂xμ

∂

∂X ν
Ŵ (X, Z ) + ∂Zν

∂xμ

∂

∂Zν
Ŵ (X, Z ).

(B28)

Here we follow the way of Ref. [84] to calculate the deriva-
tives of Wilson lines. Defining

Ŵ (X, ζ (λ)) = P exp

{
− ie

h̄

∫ 1

λ

Âκ (ζ )
dζ κ

dλ′ dλ′
}
, (B29)

Ŵ (ζ (λ), Z ) = P exp

{
− ie

h̄

∫ λ

0
Âκ (ζ )

dζ κ

dλ′ dλ′
}

, (B30)

we find

∂

∂X ν
Ŵ (X, Z ) =Ŵ (X, Z )

{
− ie

h̄

∫ 1

0

(
∂

∂X ν
Âκ (ζ )

dζ κ

dλ

)
dλ

}
= − ie

h̄

∫ 1

0
Ŵ (X, ζ )

(
∂

∂X ν
Âκ (ζ )

dζ κ

dλ

)
× Ŵ (ζ , Z )dλ

= − ie

h̄

∫ 1

0
Ŵ (X, ζ )

(
∂Âκ (ζ )

∂ζμ

∂ζμ

∂X ν

dζ κ

dλ

+ Âκ (ζ )
d

dλ

∂ζ κ

∂X ν

)
Ŵ (ζ , Z )dλ (B31)

where the integral path is given by

ζ (λ) = Z + (X − Z )λ, (0 � λ � 1). (B32)

Integrating by parts, one reaches∫ 1

0
Ŵ (X, ζ )

(
Âκ (ζ )

d

dλ

∂ζ κ

∂X ν

)
Ŵ (ζ , Z )dλ = Ŵ (X, ζ )

(
Âκ (ζ )

∂ζ κ

∂X ν

)
Ŵ (ζ , Z )

∣∣∣∣1

0

−
∫ 1

0
Ŵ (X, ζ )

{
∂Âκ (ζ )

∂ζμ
+ ie

h̄
[Âμ(ζ ), Âκ (ζ )]

}
dζμ

dλ

∂ζ κ

∂X ν
Ŵ (ζ , Z )dλ, (B33)

where we have used the relations

d

dλ
Ŵ (X, ζ ) = Ŵ (X, ζ )

{
+ ie

h̄
Âı

μ(ζ )
dζμ

dλ

}
, (B34)
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d

dλ
Ŵ (ζ , Z ) =

{
− ie

h̄
Âμ(ζ )

dζμ

dλ

}
Ŵ (ζ , Z ). (B35)

Equation (B33) can be simplified by using the relation

∂ζ κ (λ)

∂X ν
= λ

∂X κ

∂X ν
= λδκ

ν . (B36)

Hence, we reach ∫ 1

0
Ŵ (X, ζ )

(
Âκ (ζ )

d

dλ

∂ζ κ

∂X ν

)
Ŵ (ζ , Z )dλ = Âν (X )Ŵ (X, Z )

−
∫ 1

0
Ŵ (X, ζ )

{
∂Âν (ζ )

∂ζμ
+ ie

h̄
[Âμ(ζ ), Âν (ζ )]

}
(X μ − Zμ)Ŵ (ζ , Z )λdλ. (B37)

Substituting Eq. (B37) into Eq. (B31), we reach

∂

∂X ν
Ŵ (X, Z ) = − ie

h̄

[
Âν (X )Ŵ (X, Z ) − (X μ − Zμ)

∫ 1

0
Ŵ (X, ζ )F̂μν (ζ )Ŵ (ζ , Z )λdλ

]
, (B38)

with

F̂μν (ζ ) = ∂Âν (ζ )

∂ζμ
− ∂Âμ(ζ )

∂ζ ν
+ ie

h̄
[Âμ(ζ ), Âν (ζ )]. (B39)

Following the same way, one can obtain

∂

∂Zν
Ŵ (X, Z ) = ie

h̄

[
Ŵ (X, Z )Âν (Z ) − (X μ − Zμ)

∫ 1

0
Ŵ (X, ζ )F̂μν (ζ )Ŵ (ζ , Z )(λ − 1)dλ

]
, (B40)

where we have used the relations

∂ζ κ (λ)

∂Zν
= (1 − λ)

∂Zκ

∂Zν
= (1 − λ)δκ

ν . (B41)

Substituting Eqs. (B38) and (B40) into Eq. (B28), we find the important property of Wilson line [82,85]

∂

∂xσ
Ŵ (X, Z ) = − ie

h̄

{
∂X ν

∂xσ

[
Âν (X )Ŵ (X, Z ) + (X μ − Zμ)

∫ 1

0
dλ(0 − λ)Ŵ (X, ζ )F̂μν (ζ )Ŵ (ζ , Z )

]
− ∂Zν

∂xσ

[
Ŵ (X, Z )Âν (Z ) + (X μ − Zμ)

∫ 1

0
dλ(1 − λ)Ŵ (X, ζ )F̂μν (ζ )Ŵ (ζ , Z )

]}
. (B42)

3. Gauge-invariant Wigner transformation in Keldysh-spin space

In this subsection, we make a gauge-invariant Wigner transformation of Gorkov equation in Keldysh-Spin space

Ĝ−1
+ (x1)Ĝ(x1, x2) = h̄cδ(x1 − x2 )̂1, (B43)

Ĝ(x1, x2)Ĝ−1
− (x2) = h̄cδ(x1 − x2 )̂1, (B44)

with

Ĝ−1
± (x) =

[
Ĝ−1

± (x) 0

0 Ĝ−1
± (x)

]
. (B45)

The propagators in (B45) read

Ĝ−1
± (x) = ±ih̄cD̂0,±(x) + h̄2

2m
D̂i,±(x)D̂i,±(x) + μ, (B46)

where the covariant derivatives read

D̂μ,±(x) = ∂

∂xμ
± ie

h̄
Âμ. (B47)

Obviously, propagator Ĝ−1
− (x) are Hermitian conjugates of propagator Ĝ−1

+ (x).
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To make a gauge-invariant transformation, one is required to calculate the derivative of Wilson line. For the sake of simplicity,
we rewrite Eq. (B42) into

∂

∂xσ
Ŵ (X, Z ) = − ie

h̄

{[
∂X ν

∂xσ
Âν (X )Ŵ (X, Z ) − ∂Zν

∂xσ
Ŵ (X, Z )Âν (Z )

]
− (X μ − Zμ)

∫ 1

0
dλ

[
λ

∂X ν

∂xσ
− (λ − 1)

∂Zν

∂xσ

]
Ŵ (X, ζ )F̂μν (ζ )Ŵ (ζ , Z )

}
, (B48)

where ζ (λ) = Z + (X − Z )λ. Thus, the derivative of Wilson line with coordinate xμ
1 reads

∂

∂xμ
1

Ŵ (x1, X ) = − ie

h̄

[
Âμ(x1)Ŵ (x1, X ) − 1

2
Ŵ (x1, X )Âμ(X )

]
+ ie

2h̄

xν

2
F̂+

νμ(λ; x1, X ), (B49)

∂

∂xμ
1

Ŵ (X, x2) = − ie

h̄

[
1

2
Âμ(X )Ŵ (X, x2) − 0

]
+ ie

2h̄

xν

2
F̂+

νμ(λ − 1; X, x2), (B50)

∂

∂xμ
1

Ŵ (X, x1) = − ie

h̄

[
1

2
Âμ(X )Ŵ (X, x1) − Ŵ (X, x1)Âμ(x1)

]
− ie

2h̄

xν

2
F̂+

νμ(λ; X, x1), (B51)

∂

∂xμ
1

Ŵ (x2, X ) = − ie

h̄

[
0 − 1

2
Ŵ (x2, X )Âμ(X )

]
− ie

2h̄

xν

2
F̂+

νμ(λ − 1; x2, X ), (B52)

with

F̂λ
μν;+(Y1,Y2) =

∫ 1

0
dλ(1 + λ)Ŵ

(
Y1, X + x

2
λ
)

F̂μν

(
X + x

2
λ
)
Ŵ

(
X + x

2
λ,Y2

)
. (B53)

We have changed integral variables λ → 1 − λ in Eqs. (B51) and (B52).
Next, we calculate the gauge-invariant Wigner transformation of Eq. (B43). Let us calculate the first-order covariant

derivatives of GF,

Î ab
1;μ,+(x) = Ŵ (X, x1)[D̂μ,+(x1)Ĝab(x1, x2)]Ŵ (x2, X ). (B54)

By substitution of Eq. (B13), Eq. (B54) becomes

Î ab
1;μ,+(x) = 1

V

∑
p

Ŵ (X, x1)[D̂μ,+(x1)Ŵ (x1, X )e−ip·xĜab(p, X )Ŵ (X, x2)]Ŵ (x2, X ). (B55)

By substitution of Eq. (B16), Eq. (B55) becomes

Î ab
1;μ,+(x) = 1

V

∑
p

Ŵ (X, x1)

[
+ ie

h̄
Âμ(x1)

]
Ŵ (x1, X )e−ip·xĜab(p, X )

+ 1

V

∑
p

{
Ŵ (X, x1)

[
∂

∂xμ
1

Ŵ (x1, X )

]
e−ip·xĜab(p, X ) +

[
∂

∂xμ
1

e−ip·xĜab(p, X )

]

+ e−ip·xĜab(p, X )

[
∂

∂xμ
1

Ŵ (X, x2)

]
Ŵ (x2, X )

}
. (B56)

By means of Eqs. (B49) and (B50), we reach

Ŵ (X, x1)

[
∂

∂xμ
1

Ŵ (x1, X )

]
= ie

2h̄
Âμ(X ) + ie

2h̄

xν

2
Ŵ (X, x1)F̂+

νμ(λ; x1, X ) + Ŵ (X, x1)

[
− ie

h̄
Âμ(x1)

]
Ŵ (x1, X ), (B57)[

∂

∂xμ
1

Ŵ (X, x2)

]
Ŵ (x2, X ) = − ie

2h̄
Âμ(X ) + ie

h̄

xν

2
F̂+

νμ(λ − 1; X, x2)Ŵ (x2, X ). (B58)

By substitution of Eqs. (B57) and (B58), Eq. (B56) becomes

Î ab
1;μ,+(x) = 1

V

∑
p

{
ie

2h̄

[
+Âμ + xν

2
Ŵ (X, x1)F̂+

νμ(λ; x1, X )

]
e−ip·xĜab(p)

+ ie

2h̄
e−ip·xĜab(p)

[
−Âμ + xν

2
F̂+

νμ(λ − 1; X, x2)Ŵ (x2, X )

]
+ ∂

∂xμ
1

e−ip·xĜab(p)

}
. (B59)
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The first term of the right-hand side of Eq. (B56) have canceled with the last term of the right-hand side of Eq. (B57). Hereafter,
we have omitted the argument (X ) without loss of ambiguity. Defining the hat derivative as

∂̂

∂X μ
Ĝab = ∂

∂X μ
Ĝab + ie

h̄
[Âμ, Ĝab], (B60)

Equation (B59) can be written as

Î ab
1;μ,+(x) = 1

V

∑
p

e−ip·x{P̂μ,+(p) + F̂1;μ,+(p)}Ĝab(p), (B61)

with

P̂μ,+(p) =
(

1

2

∂̂

∂X μ
− ipμ

)
, (B62)

F̂1;μ,+(p)Ĝab(p) = + e

4h̄
{Ŵ (X, x1)F̂+

νμ(λ; x1, X )[∂pν
Ĝab(p)] + [∂pν

Ĝab(p)]F̂+
νμ(λ − 1; X, x2)Ŵ (x2, X )}, (B63)

where we have used relations

∂

∂xμ
1

= 1

2

∂

∂X μ
+ ∂

∂xμ
, (B64)

xν Ĝ(p, X ) = xν

∫
dxe+ip·xĜ(x1, x2) = −i

∂

∂ pν

Ĝ(p, X ). (B65)

Making the gauge-invariant Wigner transformation, Eq. (B61) becomes

Î ab
1;μ,+(k) =

∫
dxe+ik·x Îab

1,μ+(x) = {P̂μ,+(k) + F̂1;μ,+(k)}Ĝab(k). (B66)

Then, let us work on the second-order covariant derivatives of GF. A convenient method is to rewrite it as

Î ab
2;μ,+(x) = Ŵ

[
ie

h̄
Âμ

]
(D̂μ,+Ĝab)Ŵ + ∂μ[Ŵ (D̂μ,+Ĝab)Ŵ ] − (∂μŴ )(D̂μ,+Ĝab)Ŵ − Ŵ (D̂μ,+Ĝab)(∂μŴ ). (B67)

Next, one can calculate term by term. Using the relations (B51), one obtains

Ŵ

[
ie

h̄
Âμ

]
(D̂μ,+Ĝab)Ŵ − (∂μŴ )(D̂μ,+Ĝab)Ŵ = ie

2h̄

[
Âμ + xν

2
F̂+

νμ(λ; X, x1)Ŵ (x1, X )

]
Î ab
1,μ+(x), (B68)

where the second term of the right-hand side of Eq. (B51) cancels with the first term of the left-hand side of Eq. (B68). By
substitution of relation (B52), the last term of the right-hand side of Eq. (B67) becomes

−Ŵ (D̂μ,+Ĝab)(∂μŴ ) = ie

2h̄
Îab
1,μ+(x)

[
−Âμ + xν

2
Ŵ (X, x2)F̂+

νμ(λ − 1; x2, X )

]
. (B69)

Using the relation (B61), the second term of the right-hand side of Eq. (B67) reads

∂μ[Ŵ (D̂μ,+Ĝab)Ŵ ] =
(

1

2

∂

∂X μ
− ipμ

)
Î ab
1,μ+(x). (B70)

By substitution of Eqs. (B68), (B69), and (B70), Eq. (B67) becomes

Î ab
2;μ,+(x) = 1

V

∑
p

e−ip·x{P̂2
μ,+(p) + F̂2;μ,+(p) + K̂2,μ+(p)

}
Ĝab(p), (B71)

with

F̂2;μ,+(p)Ĝab(p) = e

4h̄

{
P̂μ,+(p)Ŵ (X, x1)F̂+

νμ(λ; x1, X )
[
∂pν

Ĝab(p)
]

+ P̂μ,+(p)
[
∂pν

Ĝab(p)
]
F̂+

νμ(λ − 1; X, x2)Ŵ (x2, X )

+ F̂+
νμ(λ; X, x1)Ŵ (x1, X )P̂μ,+(p)

[
∂pν

Ĝab(p)
]

+ P̂μ,+(p)
[
∂pν

Ĝab(p)
]
Ŵ (X, x2)F̂+

νμ(λ − 1; x2, X )
}
, (B72)
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K̂2;μ+(p)Ĝab(p) = e

4h̄

{
F̂+

νμ(λ; X, x1)Ŵ (x1, X )F̂1;μ,+(p)
[
∂pν

Ĝab(p)
] + F̂1;μ,+(p)

[
∂pν

Ĝab(p)
]
Ŵ (X, x2)F̂+

νμ(λ − 1; x2, X )
}
.

(B73)

Here the xν in Eqs. (B68) and (B69) is replace by a −i∂pν
acting on GF, as shown in Eq. (B65). Then, we make a Fourier

transformation of Eq. (B71), and reach

Î ab
2;μ,+(k) =

∫
dxe+ik·x Îab

2,μ+(x) = {
P̂2

μ,+(k) + F̂2;μ,+(k) + K̂2;μ,+(k)
}
Ĝab(k). (B74)

Hence, the gauge-covariance Wigner transformation of the left-hand side of Eq. (B43) reads

Î ab
+ (k) =

∫
dxe+ik·xŴ {[Ĝ−1

+ ]Ĝab}Ŵ =
{

ih̄cÎab
1;0,+(k) + h̄2

2m
Îab
2; j,+(k) + μĜab(k)

}

=
{

ih̄c[P̂0,+(k) + F̂1;0,+(k)] + h̄2

2m

[
P̂2

j,+(k) + F̂2; j,+(k) + K̂2; j,+(k)
] + μ

}
Ĝab(k). (B75)

Next, we are required to calculate the following four products:

Ŵ (X, x1)F̂λ
νμ;+(x1, X ) =

∫ 1

0
dλ(1 + λ)Ŵ

(
X, X + x

2
λ
)

F̂μν

(
X + x

2
λ
)
Ŵ

(
X + x

2
λ, X

)
, (B76)

F̂λ−1
νμ;+(X, x2)Ŵ (x2, X ) =

∫ 1

0
dλλŴ

(
X, X + x

2
(λ − 1)

)
F̂μν

(
X + x

2
(λ − 1)

)
Ŵ

(
X + x

2
(λ − 1), X

)
, (B77)

F̂λ
νμ;+(X, x1)Ŵ (x1, X ) =

∫ 1

0
dλ(1 + λ)Ŵ

(
X, X + x

2
λ
)

F̂μν

(
X + x

2
λ
)
Ŵ

(
X + x

2
λ, X

)
, (B78)

Ŵ (X, x2)F̂λ−1
νμ;+(x2, X ) =

∫ 1

0
dλλŴ

(
X, X + x

2
(λ − 1)

)
F̂μν

(
X + x

2
(λ − 1)

)
Ŵ

(
X + x

2
(λ − 1), X

)
. (B79)

with

F̂λ
μν;+(Y1,Y2) =

∫ 1

0
dλ(1 + λ)Ŵ

(
Y1, X + x

2
λ
)

F̂μν

(
X + x

2
λ
)
Ŵ

(
X + x

2
λ,Y2

)
. (B80)

Considering the complexity of Eq. (B75), we here make some approximations. First, we expand F̂μν (ζ ) in Eq. (B80) around
X and only keeping zero-order term, which leads into

Ŵ (X, x1)F̂+
νμ;λ(x1, X ) � −F̂νμ(X ), (B81)

F̂+
νμ;λ−1(X, x2)Ŵ (x2, X ) � −F̂νμ(X ), (B82)

F̂+
νμ;λ(X, x1)Ŵ (x1, X ) � +F̂νμ(X ), (B83)

Ŵ (X, x2)F̂+
νμ;λ−1(x2, X ) � +F̂νμ(X ). (B84)

Hence, Eqs. (B63), (B72), and (B73) reduce to

F̂1;μ,+(p)Ĝab(p) � e

4h̄

{
F̂νμ(X ),

[
∂pν

Ĝab(p)
]}

, (B85)

F̂2;μ,+(p)Ĝab(p) � e

4h̄

[
P̂μ,+(p)

{
F̂νμ(X ),

[
∂pν

Ĝab(p)
]} + {

F̂νμ(X ), P̂μ,+(p)
[
∂pν

Ĝab(p)
]}]

, (B86)

K̂2;μ+(p)Ĝab(p) �
( e

4h̄

)2{
F̂νμ(X ),

{
F̂νμ(X ),

[
∂2

pν
Ĝab(p)

]}}
. (B87)

Furthermore, we remove the higher-order terms (∂kα
∂kβ

Ĝ ), (∂X μ∂X μ Ĝ), and (∂X μ∂kβ
Ĝ). Thus, Eq. (B86) reduces to

F̂2;μ,+(p)Ĝab(p) = −ipμ

e

2h̄

{
F̂νμ(X ),

[
∂pν

Ĝab(p)
]}

. (B88)

And Eq. (B75) becomes

Î ab
+ (k) =

[
+ i

2
h̄vν

k

∂̂

∂X ν
+ i

2

evμ

k

2
{F̂νμ, (∂kν

·)} + μ − ε(k)

]
Ĝab(k), (B89)
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with

vν
k =

(
c,

h̄k j

m

)
, (B90)

ε(k) = h̄2

2m
k2

j − h̄ck0. (B91)

Then, we follow the same way to obtain the gauge-covariance Wigner transformation of Eq. (B44). The derivative of Wilson
line with coordinate xμ

2 reads

∂

∂xμ
2

Ŵ (x1, X ) = − ie

h̄

[
0 − 1

2
Ŵ (x1, X )Âμ(X )

]
+ ie

h̄

xν

2
F̂−

νμ(λ; x1, X ), (B92)

∂

∂xμ
2

Ŵ (X, x2) = − ie

h̄

[
1

2
Âμ(X )Ŵ (X, x2) − Ŵ (X, x2)Âμ(x2)

]
+ ie

h̄

xν

2
F̂−

νμ(λ − 1; X, x2), (B93)

∂

∂xμ
2

Ŵ (X, x1) = − ie

h̄

[
1

2
Âμ(X )Ŵ (X, x1) − 0

]
− ie

h̄

xν

2
F̂−

νμ(λ; X, x1), (B94)

∂

∂xμ
2

Ŵ (x2, X ) = − ie

h̄

[
Âμ(x2)Ŵ (x2, X ) − 1

2
Ŵ (x2, X )Âμ(X )

]
− ie

h̄

xν

2
F̂−

νμ(λ − 1; x2, X ), (B95)

with

F̂−
μν (λ; X, Z ) =

∫ 1

0
dλ

1 − λ

2
Ŵ

(
X, X + x

2
λ
)

F̂μν

(
X + x

2
λ
)
Ŵ

(
X + x

2
λ, Z

)
. (B96)

The first-order covariant derivatives of GF reads

Î ab
1;μ,−(x) = Ŵ (X, x1)[Ĝab(x1, x2)D̂μ,−(x2)]Ŵ (x2, X ). (B97)

By substitution of Eq. (B13), Eq. (B97) becomes

Î ab
1;μ,−(x) =

∑
p

Ŵ (X, x1)[Ŵ (x1, X )e−ip·xĜab(p, X )Ŵ (X, x2)D̂μ,−(x2)]Ŵ (x2, X ). (B98)

Note that the derivatives of D̂j
μ,− act on GF from the left-hand side. Hence,

Î ab
1;μ,−(x) = 1

V

∑
p

e−ip·xĜab(p, X )Ŵ (X, x2)

[
− ie

h̄
Âμ(x2)

]
Ŵ (x2, X ) + 1

V

∑
p

{
Ŵ (X, x1)

[
∂

∂xμ
2

Ŵ (x1, X )

]
e−ip·xĜab(p, X )

+
[

∂

∂xμ
2

e−ip·xĜab(p, X )

]
+ e−ip·xĜab(p, X )

[
∂

∂xμ
2

Ŵ (X, x2)

]
Ŵ (x2, X )

}
. (B99)

Using Eqs. (B92) and (B93), one reaches

Ŵ (X, x1)

[
∂

∂xμ
2

Ŵ (x1, X )

]
= + ie

2h̄
Âμ(X ) + ie

2h̄

xν

2
Ŵ (X, x1)F̂νμ(1; x1, X ), (B100)[

∂

∂xμ
2

Ŵ (X, x2)

]
Ŵ (x2, X ) = − ie

2h̄
Âμ(X ) + ie

2h̄

xν

2
F̂νμ(2; X, x2)Ŵ (x2, X ) + Ŵ (X, x2)

[
+ ie

h̄
Âμ(x2)

]
Ŵ (x2, X ). (B101)

Substituting Eqs. (B100) and (B101) into Eq. (B99), we reach

Î ab
1;μ,−(x) = 1

V

∑
p

{
ie

2h̄

[
Âμ + xν

2
Ŵ (X, x1)F̂νμ(1; x1, X )

]
e−ip·xĜab(p)

+ ie

2h̄
e−ip·xĜab(p)

[
−Âμ + xν

2
F̂νμ(2; X, x2)Ŵ (x2, X )

]
+ ∂

∂xμ
2

e−ip·xĜab(p)

}
. (B102)

The first term of the right-hand side of Eq. (B99) have canceled with the last term of the right-hand side of Eq. (B101). Hereafter,
we have omitted the argument (X ) without loss of ambiguity. By dint of Eq. (B60), Eq. (B102) can be written in compact form

Î ab
1;μ,−(x) = 1

V

∑
p

e−ip·x{P̂μ,−(p) + F̂1;μ,−(p)}Ĝab(p), (B103)
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with

P̂μ,−(p) =
(

1

2

∂̂

∂X μ
+ ipμ

)
, (B104)

F̂1;μ,−(p)Ĝab(p) = e

4h̄

{
Ŵ (X, x1)F̂νμ(1; x1, X )

[
∂pν

Ĝab(p)
] + [

∂pν
Ĝab(p)

]
F̂νμ(2; X, x2)Ŵ (x2, X )

}
, (B105)

where we have used the relation
∂

∂xμ
2

= 1

2

∂

∂X μ
− ∂

∂xμ
. (B106)

Making the gauge-invariant Wigner transformation of Eq. (B103) results into

Î ab
1;μ,−(k) =

∫
dxe+ik·x Îab

1;μ,−(x) = {P̂μ,−(k) + F̂1;μ,−(k)}Ĝab(k). (B107)

Then, we work on the second-order covariant derivatives of GF,

Î ab
2;μ,−(x) = Ŵ (ĜabD̂μ,−)

[
− ie

h̄
Âμ

]
Ŵ + ∂μ[Ŵ (ĜabD̂μ,−)Ŵ ] − (∂μŴ )(ĜabD̂μ,−)Ŵ − Ŵ (ĜabD̂μ,−)(∂μŴ ). (B108)

Next, one can calculate term by term. Using the relations (B95), one obtains

Ŵ (ĜabD̂μ,−)

[
− ie

h̄
Âμ

]
Ŵ − Ŵ (ĜabD̂μ,−)(∂μŴ ) = Î ab

1;μ,−(x)
ie

2h̄

[
−Âμ − xν

2
Ŵ (X, x2)F̂νμ(−1; x2, X )

]
, (B109)

where the second term of the right-hand side of Eq. (B95) cancels with the first term of the left-hand side of Eq. (B110). By
substitution of relation (B94), the third term of the right-hand side of Eq. (B108) becomes

−(∂μŴ )(ĜabD̂μ,−)Ŵ = ie

2h̄

[
Âı

μ(X ) − xν

2
F̂νμ(0; X, x1)Ŵ (x1, X )

]
Î ab
1;μ,−(x). (B110)

Using the relation (B103), the second term of the right-hand side of Eq. (B108) reads

∂μ[Ŵ (ĜabD̂μ,−)Ŵ ] =
(

1

2

∂

∂X μ
+ ipμ

)
Î ab
1;μ,−(x). (B111)

By substitution of Eqs. (B109), (B110), and (B111), Eq. (B108) becomes

Î ab
2;μ,−(x) = 1

V

∑
p

e−ip·x{P̂2
μ,−(p) + F̂2;μ,−(p) + K̂2;μ,−(p)

}
Ĝab(p), (B112)

with

F̂2;μ,−(p)Ĝab(p) = e

4h̄

{
P̂μ,−(p)Ŵ (X, x1)F̂νμ(1; x1, X )

[
∂pν

Ĝab(p)
] + P̂μ,−(p)

[
∂pν

Ĝab(p)
]
F̂νμ(2; X, x2)Ŵ (x2, X )

− F̂νμ(0; X, x1)Ŵ (x1, X )P̂μ,−(p)
[
∂pν

Ĝab(p)
] − P̂μ,−(p)

[
∂pν

Ĝab(p)
]
Ŵ (X, x2)F̂νμ(−1; x2, X )

}
, (B113)

K̂2;μ,−(p)Ĝab(p)

= − e

4h̄

{
F̂νμ(0; X, x1)Ŵ (x1, X )F̂1;μ,−(p)

[
∂pν

Ĝab(p)
]

+ F̂1;μ,−(p)
[
∂pν

Ĝab(p)
]
Ŵ (X, x2)F̂νμ(−1; x2, X )

}
.

(B114)

Then, we make a Fourier transformation of Eq. (B112), and
reach

Î ab
2;μ,−(k) =

∫
dxe+ik·x Îab

2;μ,−(x)

= {
P̂2

μ,−(k) + F̂2;μ,−(k) + K̂2;μ,−(k)
}
Ĝab(k).

(B115)

Hence, the gauge-covariance Wigner transformation of the left
hand side of Eq. (B44) reads

Î ab
− (k) =

∫
dxe+ik·xŴ {Ĝab[G−1

− ]}Ŵ

=
{

−ih̄cÎab
1;0,−(k) + h̄2

2m
Îab
2; j,−(k) + μĜab(k)

}

=
{

− ih̄c[P̂0,−(k) + F̂1;0,−(k)] + h̄2

2m

[
P̂2

j,−(k)

+ F̂2; j,−(k) + K̂2; j,−(k)
] + μ

}
Ĝab(k). (B116)

Considering the complexity of Eq. (B116), we here
make some approximations. First, we expand F̂μν (ζ ) in
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Eq. (B96) around X and only keeping zero-order term, which
leads to

Ŵ (X, x1)F̂νμ(1; x1, X ) � +F̂νμ(X ), (B117)

F̂νμ(2; X, x2)Ŵ (x2, X ) � +F̂νμ(X ), (B118)

F̂νμ(0; X, x1)Ŵ (x1, X ) � −F̂νμ(X ), (B119)

Ŵ (X, x2)F̂νμ(−1; x2, X ) � −F̂νμ(X ). (B120)

Hence, Eqs. (B105), (B113), and (B114) reduce to

F̂1;μ,−(p)Ĝab(p) = e

4h̄

{
F̂νμ,

[
∂pν

Ĝab(p)
]}

, (B121)

F̂2;μ,−(p)Ĝab(p) = e

4h̄

[
P̂μ,−(p)

{
F̂νμ,

[
∂pν

Ĝab(p)
]}

+ {
F̂νμ, P̂μ,−(p)

[
∂pν

Ĝab(p)
]}]

, (B122)

K̂2;μ,−(p)Ĝab(p) =
( e

4h̄

)2{
F̂νμ,

{
F̂νμ,

[
∂2

pν
Ĝab(p)

]}}
.

(B123)

Furthermore, we remove the higher-order terms
(∂kα

∂kβ
Ĝ ), (∂X μ∂X μ Ĝ), and (∂X μ∂kβ

Ĝ). Thus, Eq. (B122)
reduces to

F̂2;μ,−(p)Ĝab(p) = +ipμ

e

2h̄

{
F̂νμ,

[
∂pν

Ĝab(p)
]}

. (B124)

By substitution of Eqs. (B121) and (B124), Eq. (B116)
becomes

Î ab
− (k) =

[
− i

2
h̄vν

k

∂̂

∂X ν
− i

2

evμ

k

2

{
F̂νμ,

(
∂kν

· )}
+ μ − ε(k)

]
Ĝab(k). (B125)

By substitution of Eqs. (B89) and (B125), we reach
the gauge-invariant Wigner transformation of Gorkov equa-
tions (B43) and (B44) [56,57]

+ i

2
Ĝ−1

0 (k, X )Ĝ(k, X ) + [μ − ε(k)]Ĝ(k, X ) = +h̄c1̌,

(B126)

− i

2
Ĝ−1

0 (k, X )Ĝ(k, X ) + [μ − ε(k)]Ĝ(k, X ) = +h̄c1̌,

(B127)

with

Ĝ−1
0 (k, X ) =

[
Ĝ−1

0 (k, X ) 0

0 Ĝ−1
0 (k, X )

]
, (B128)

where

Ĝ−1
0 (k, X ) = h̄vν

k

∂̂

∂X ν
+ evμ

k

2

{
F̂νμ,

(
∂kν

· )}
. (B129)

Finally, we obtain the gauge-invariant quantum kinetic equa-
tion

Ĝ−1
0 (k, X )Ĝ(k, X ) = 0. (B130)

Integrating Eq. (B130) over k0, we reach

Ĝk(X )�̂k(X ) = 0, (B131)

with

�̂k(X ) =
∫

dk0

2π
�̂k (X ), (B132)

Ĝk(X ) = vν
k

∂̂

∂X ν
+ evμ

k

2h̄

{
F̂jμ,

(
∂k j · )}

, (B133)

where we have assumed

�̂k (X )|k0=+∞ − �̂k (X )|k0=−∞ = 0, (B134)

to remove the F̂0μ term. Notably, the SU(2) technology does
not require the translation invariance, and hence k, as the
gauge-invariant Fourier transformation of r = r1 − r2, is not
a good quantum number.

APPENDIX C: DERIVATION OF NONCOLLINEAR
SPIN EXCHANGE (3)

In this Appendix, we derive the noncollinear spin ex-
change, Eq. (10) in the main text.

The detailed derivations of the noncollinear spin exchange
[Eq. (4) of main text], in principle, can be conducted by fol-
lowing Refs. [49,50], where the SOC introduces a rotation of
the spin operator of magnetic moments {Eq. (9) of Ref. [49]}.
This is because the itinerant electron spin rotates along the
spin-orbit magnetic field during the exchange {Eq. (2) of
Ref. [86]}

ti j → ti j exp

(
ie

h̄c

∫ r j

ri

dr′ · Â(r′)
)

. (C1)

This is the so-called Peierls substitution in the presence of
SOC, i.e., SU(2) gauge fields Â(r′). Note that the imperfection
of the ferromagnetic interface causes the complicated SOC,
i.e., SU(2) gauge fields [Eqs. (9)–(11) in main text]. In spite
of this complicity, we can always include the effect of the SOC
with a rotation of the spin operator of local moments, which
is treated as a phenomenological parameter for simplicity

R−1 = e+iAso·s/2 ← exp

(
ie

h̄c

∫ r j

ri

dr′ · Â(r′)
)

. (C2)

Thus, the hybrid itinerant electron and local moments system
can be described by the following Hamiltonian:

H = H0 + H1, (C3)

with

H0 =
∑
k,s

εkc†
kscks + εD

∑
ns

d†
nsdns + U

∑
n

d†
n↑dn↑d†

n↓dn↓,

(C4)

H1 =
∑
kss′

tc†
ksR

−1
ss′ dns′ + H.c. (C5)

Here, we have ti j = t is assumed to be independent of k
for simplicity. cks is the annihilation operator of the itinerant
electron with momentum k, spin s, and energy spectrum εk,
while dns′ is annihilation operator of the local moment in site
n with energy level εD.

Following the standard way of the Schrieffer-Wolff trans-
formation [87], we attain the Kondo coupling in the absence
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FIG. 4. Detection of the noncollinear spin exchange via the
anomalous Hall effect. (a) The sketches of skew scattering from the
spin-orbit magnetic field that is responsible for anomalous Hall ef-
fect. (b) The angular dependence of Hall conductivity. The solid and
dash lines correspond to collinear and noncollinear spin exchanges
between itinerant electrons and local moments, respectively.

of the spin rotation from the spin-orbit coupling (Aso = 0),

V = −
∑

j

KsS j · sδ(r − r j ), (C6)

with

Ks � 2t2

(
1

εD
− 1

εD + U

)
. (C7)

The effect of spin-orbit coupling can be simply captured by
a spin rotation of the spin basis of the local moments (taking
S = 1/2 as an example)[

d̃n↑
d̃n↓

]
= R−1

[
dn↑
dn↓

]
. (C8)

Following the same procedure as the case of Aso = 0, we
obtain [49,50]

V = −
∑

j

KsS̃ j · sδ(r − r j ) = −
∑

j

KsS j · s̃δ(r − r j ).

(C9)

The tilde spin operator of itinerant electrons s̃a = Rabsb, where
3 × 3 spin-rotation matrix Rab in read space can be calculated
from a 2 × 2 spin rotation matrix in spin space R = e−iAso·s/2.
The interfacial SOC rotates m = 〈S〉/〈Ŝ‖〉 [Fig. 2(b) in the
main text] into m̃ = 〈S̃〉/〈Ŝ‖〉 [Fig. 2(c) in the main text].
The relative tilde magnetization δm̃ = m̃ − m quantifies the
noncollinear effect and can be modified by the interfacial SOC
in a linear manner, i.e., δm̃ ∝ Ai

so.
The noncollinear spin exchange in principle can be de-

tected by the anomalous Hall effect [1]—the conversion
of a charge current into a transverse polarized charge
current in a ferromagnet [Figs. 4(a) and 4(b)]. The effec-
tive Zeeman magnetic field contains a correction from the
noncollinear spin exchange e�a = gμBB0a − (nmKs/2)〈S̃a〉

with 〈S̃a〉 = R−1
ab 〈Sb〉 [14]. The external electric field drives

a longitudinal spin drift current Ja = σκaEex due to the
different density of state for sa = +1/2 and sa = −1/2 elec-
trons. The drift charge-to-spin conversion efficiency κa �
−[ln ν(μF )]′(nmKs/2)〈S̃a〉 is approximately proportional to
the magnetization of the ferromagnet 〈S̃a〉 when Ba → 0 T.
Then, the longitudinal spin drift current is converted into a
transverse charge current via the inverse spin Hall effect, J0 �
−θ3

Cẑ × J3 as depicted by the skew scattering in Fig. 4(a),
where we consider the spin Hall angles from the Rashba
SOC θa

C = δa3θ
3
Cẑ due to the inversion asymmetry at the inter-

face or surface [60]. Thus, the anomalous Hall conductivity
becomes σH/σ � [ln ν(μF )]′(nmKs/2)θCR−1

3b 〈Sb〉. The mag-
netization of the local moments follows the magnetic field
direction and hence σH can oscillate for the magnetic field
rotating along z direction for the noncollinear spin exchange,
while becomes constant for collinear spin exchange with
R−1

3b = δ3b as shown by Fig. 4(b). We can obtain the tilde di-
rection 〈S̃3〉 = R−1

3b 〈Sb〉 corresponding to angular-independent
Hall conductivity.

APPENDIX D: INTERFACIAL SOC DEPENDENCE
OF THE SPIN-DEPENDENT CONDUCTANCE

In this Appendix, we show the interfacial SOC dependence
of the spin-dependent conductance for spin-orbit torque.

For simplicity, let us consider out-of-plane magnetic field
as and omit the noncollinear effect of the spin-exchange
coupling. Thus, the longitudinal (‖) and transverse (⊥) spin
components are out-of-plane and in-plane directions, respec-
tively. Note that the total spin relaxation time in the spin-orbit-
coupled ferromagnet includes two contributions, i.e.,

1

τF
‖,⊥

= 1

τ SEC
‖,⊥

+ 1

τ SOC
‖,⊥

. (D1)

Here, 1/τ SEC
‖,⊥ comes from the SEC [Eqs. (4) and (5)]

1

τ SEC
‖

= 2π

h̄
nmνF K2

s βεLnB(εL )[1 + nB(εL )]|〈S‖〉|, (D2)

1

τ SEC
⊥

= 1

2τm
‖

+ π

h̄
nmνF K2

s 〈S‖S‖〉, (D3)

and 1/τ SOC
‖,⊥ arises from the interfacial SOC [Eqs. (47) and

(48)]

1

τ SOC
‖

= 2Dm2

h̄2 [(α − u‖λ)2 + β2 + u2
⊥λ2], (D4)

1

τ SOC
⊥

= Dm2

h̄2 [(α − u‖λ)2 + β2 + 3u2
⊥λ2]. (D5)

The latter is quadratic in the interfacial SOC.
For SEC-dominated regime (τ SEC

‖,⊥ /τ SOC
‖,⊥  1), we have

τF
‖,⊥ � τ SEC

‖,⊥ and hence spin diffusion length in the ferromag-

net �F
‖,⊥ =

√
DτF

‖,⊥ is almost independent of the interfacial
SOC. The spin-dependent conductance Gm

x is linear in �F
‖,⊥

and hence is independent of the interfacial SOC. For SOC-
dominated regime (τ SEC

‖,⊥ /τ SOC
‖,⊥ � 1), we have τF

‖,⊥ � τ SOC
‖,⊥

and hence �F
‖,⊥ is inversely proportional to the interfacial SOC.

Then, the spin-dependent conductance (Gm
x ∝ �F ) is inversely

proportional to the interfacial SOC.
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