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Minimal alternating current injection into carbon nanotubes
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We study theoretically the effect of electronic interactions in one-dimensional systems on electron injection
using periodic Lorentzian pulses, known as levitons. We consider specifically a system composed of a metallic
single-wall carbon nanotube, described with the Luttinger liquid formalism, a scanning tunneling microscope
(STM) tip, and metallic leads. Using the out-of-equilibrium Keldysh Green’s function formalism, we compute
the current and current noise in the system. We prove that the excess noise vanishes when each leviton injects an
integer number of electrons from the STM tip into the nanotube. This extends the concept of minimal injection
with levitons to strongly correlated, uni-dimensional nonchiral systems. We also study the time-dependent
current profile, and show how it is the result of interferences between pulses nontrivially reflected at the
nanotube-lead interface.
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I. INTRODUCTION

Controlled electron injection in an electronic system is
an important issue, both for potential applications to elec-
tron quantum optics and for the fundamental study of the
many-body properties of the system [1–7]. More than twenty
years ago, Levitov and coworkers showed that applying a
generic time-dependent voltage to inject a charge creates a
fundamental disturbance to the system, akin to the Ander-
son catastrophe, with the creation of a divergent number of
electron-hole pairs in the Fermi sea, in addition to the in-
jected charge [8–10]. Importantly, they also showed that, by
applying a specific quantized time-dependent voltage on a
electronic conductor, it is possible to excite a single electron
above the Fermi sea, without creating any perturbation to the
system. These peculiar excitations have been called levitons
and have been realized experimentally in two-dimensional
electron gases [6,11,12]. Such injection of a single charge,
without any spurious excitation of the system, has been called
minimal injection and can be characterized by studying the
excess noise. The properties of the levitons have been studied
intensively in various systems [13–23].

Coulomb interactions can have a major impact on the
many-body state of electronic systems. This is particularly
true for one-dimensional (1D) electronic systems, where in-
teractions lead to a very specific behavior, which can be
described at low excitation energies by the Luttinger liquid
theory [24]. This applies, for example, for conducting car-
bon nanotubes [25–27], semiconductor nanowires [28,29],
edge states of the fractional quantum Hall effect [30,31], etc.
Important physical quantities of these systems, such as the
tunneling density of states and the current voltage charac-
teristics typically obey some power-law behavior, with an
exponent which is explicitly dependent on the interaction
parameter. Other remarkable behaviors of 1D interacting sys-
tems are the charge fractionalization thanks to the existence
of collective modes [32–34], spin-charge separation [35], etc.

When connected to standard, noninteracting electrodes, non-
trivial processes at the boundaries between the interacting
system and the electrodes, similar to Andreev reflection, do
occur, creating a complex behavior for the time-dependent
current [36–42].

It is thus natural to ask whether the concept of levitons
can be extended to 1D interacting electronic systems. This
question has already been given a positive answer in the case
of chiral edge states of FQHE [43]. However, in a nonchiral
system, the behavior at the interface between the interacting
system and a normal lead is much more complex, which may
modify strongly the physical response of the system to an
ac charge injection. To answer this question in the case of
a nonchiral system, in this work we consider explicitly ac
electron injection into a carbon nanotube (CNT) from a STM
tip [44–48] (see Fig. 1), and calculate the excess noise induced
by the external ac driving. While the STM-CNT coupling
is treated perturbatively as it operates in the weak tunneling
regime, we treat the Coulomb interactions and the coupling
between the CNT and the leads nonperturbatively using the
bosonization method. We show that, although interactions
have a deep impact on the behavior of the system, it is still
possible to inject a single electronic charge with zero excess
noise by using leviton pulses. Furthermore, we provide an
explicit general proof that the excess noise is zero for levitons
which inject an integer number of electrons. We also discuss
the formulas for the noise and current, which contains the
complex physics of Andreev-like reflection at the interface
with the leads.

The rest of this work is organized as follows: In Sec. II, we
briefly summarize our theoretical model for the CNT, metallic
leads, and STM tip. We also formulate the external voltage
driving through the STM-CNT coupling. In Sec. III, we show
the analytical formulas for the tunneling current, noise and
excess noise (details of the derivation of these formulas are
given in the two Appendixes). In Sec. IV, we show the nu-
merical results for the excess noise for different values of
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FIG. 1. Schematic of the system composed of a carbon nanotube,
metallic leads, and a STM tip. (a) Two-lead setup. (b) One-lead setup.
(c) A model for general theoretical description.

the relevant parameters, and discuss its properties. We also
provide an analytic proof that the excess noise is zero for
levitons with integer charge, thus answering rigorously the
initial question motivating this work. Finally, to clarify the
importance of the Andreev-like reflection at the CNT-lead
junction, we discuss the current profile as a function of time
in Sec. V. We summarize our results in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

We consider a metallic CNT connected at both ends to
two semi-infinite Fermi-liquid leads [see Fig. 1(a)] or on one
end to one Fermi-liquid semi-infinite lead [see Fig. 1(b)]. A
STM tip is placed close to the CNT, and a time-dependent
voltage V (t ) is applied between the tip and the CNT to
allow the tunneling of electrons. These two setups can be de-
scribed generally by an infinite one-dimensional system with
inhomogeneous interaction parameters as shown in Fig. 1(c),
whose Hamiltonian is given with the bosonization technique
as [44–46]

Ĥ =
∑

jδ

∫
dx

[
v jδ (x)g jδ (x)

2
(∂xφ jδ )2 + v jδ (x)

2g jδ (x)
(∂xθ jδ )2

]
.

(1)

Here, φ jδ (x) and θ jδ (x) are nonchiral bosonic fields which
satisfy the commutation relation

[φ jδ (x), θ j′δ′ (x′)] = −(i/2)δ j j′δδδ′sgn(x − x′). (2)

g jδ (x) is the interaction parameter, v jδ (x) = vF/g jδ (x) is the
renormalized velocity, vF is the Fermi velocity in the absence
of Coulomb interaction, j ∈ (c, s) specifies charge and spin
sectors, and δ ∈ (+,−) specifies the symmetric and antisym-
metric sectors with respect to the branch (the valley) in the
CNT. The origin of the coordinate x is set to the position of
the STM tip. Assuming that the screened Coulomb interaction
modifies only the ( j, δ) = (c,+) sector [25,27], the interac-
tion parameters are set as gc− = gs+ = gs− = 1 and

gc+ =
⎧⎨
⎩

g1, (x < −L1)
gN, (−L1 < x < L2)
g2, (L2 < x),

(3)

where L1 and L2 are lengths of the CNT separated by the STM
tip [see Fig. 1(c)]. We also define the total length of the CNT
as L = L1 + L2. The two-lead case shown in Fig. 1(a) can be
described by setting g1 = g2 = 1. On the other hand, the one-
lead case shown in Fig. 1(b) can be described by setting g1 =
0 to express an open boundary at x = −L1 while g2 (=1) is left
unchanged. We note that, for a repulsive Coulomb interaction,
gN becomes smaller than unity.

The electron operator in the CNT is given by

�rασ (x) = ηrασ√
2πa

eiqFrx+ikFαx+iϕrασ (x), (4)

where ηrασ is a Klein factor, a is a short-length cutoff, kF is
the Fermi wave number, and qF (�kF) is the momentum mis-
match associated with the two modes. Hereafter, we neglect
the Klein factor because it does not affect the results. The
bosonic field ϕrασ is described with φ jδ (x) and θ jδ (x) as

ϕrασ (x) =
√

π

2

∑
jδ

hασ jδ[φ jδ (x) + rθ jδ (x)], (5)

where hασc+ = 1, hασc− = α, hασ s+ = σ , and hασ s− = ασ .
For convenience, the STM is also modeled as a one-
dimensional noninteracting system in a bosonized form,

cσ (t ) = 1√
2πa

eiϕ̃σ (t ). (6)

The electron tunneling between the STM tip and the CNT
is described by the Hamiltonian

ĤT (t ) =
∑
rασε

ε
ε (t )� (−ε)
rασ (0, t )c(ε)

σ (t ), (7)


ε (t ) = 
 exp

[
iεe

h̄

∫ t

−∞
V (t ′) dt ′

]
, (8)

where 
 and 
ε (t ) are the tunneling amplitudes without
and with effect of the time-dependent voltage V (t ) and the
superscript ε leaves either operator unchanged (ε = +) or
transforms it into its Hermitian conjugate (ε = −). The ap-
plied voltage V (t ) is divided into dc and ac parts as V (t ) =
Vdc + Vac(t ), where by definition Vac(t ) averages to zero over
one drive period T . Here, we consider three types of the
voltage pulse:

Leviton: V (t ) = Vdc

π

∑
k

η

η2 + (t/T − k)2 , (9)

Cosine: V (t ) = Vdc(1 − cos �t ), (10)

Square: V (t ) = 2Vdc

∑
k

rect(2t/T − k), (11)

where � is the driving frequency, T = 2π/� is the period,
rect(x) = 1 for x < 1/2 (=0, otherwise) is the rectangular
function, and η = W/T (W : the half-width at half-maximum
of the Lorentzian pulse). We define the Fourier components of

ε (t ) as


−(t ) = 


∞∑
l=−∞

ple
−i(ω0+l�)t , (12)
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and 
+(t ) = [
−(t )]∗, where ω0 ≡ eVdc/h̄ and

pl ≡
∫ T/2

−T/2

dt

T
eil�t exp

[
− ie

h̄

∫ t

−∞
dt ′Vac(t ′)

]
. (13)

For the pulse shapes given in Eqs. (9)–(11), the Fourier com-
ponents are given by

Leviton: pl = q
∞∑

s=0


(q + l + s)


(q + 1 − s)

(−1)se−2πη(2s+l )

(l + s)!s!
, (14)

Cosine: pl = Jl (−q), (15)

Square: pl = 2

π

q

l2 − q2
sin

[π

2
(l − q)

]
, (16)

where Jl (z) is the Bessel function. Here, we introduced a
dimensionless quantity q defined as

q ≡ eVdc

h̄�
= ω0

�
. (17)

This quantity means that the charge injected per period is qe.

III. FORMULATION OF THE EXCESS NOISE

The current operator is expressed by the bosonic field
as [44]

Î (x, t ) = 2evF
∂xφc+(x, t )√

π
. (18)

In the Keldysh formalism, the average current is written in the
form

I (x, t ) = 1

2

∑
η

〈TK Î (x, tη )ei
∫

K HT (t1 )dt1〉

= 〈TK Î (x, t−)ei
∫

K HT (t1 )dt1〉, (19)

where TK indicates time-ordering operator along the Keldysh
contour, tη indicates time on the forward (η = +) and back-
ward (η = −) contour, and

∫
K indicates an integral over the

Keldysh contour K . In the second line, we fixed the time on
the backward contour because the current average is indepen-
dent of η. The second-order perturbation with respect to HT

gives

I (x, t ) = −1

2

∑
η1η2

η1η2

∫
dt1dt2

× 〈
TK
{
Î (x, t−)HT

(
tη1
1

)
HT

(
tη2
2

)}〉
. (20)

In the Keldysh formalism, the current fluctuations can be
written in the form

S(x, t, t ′) = 〈Î (x, t )Î (x, t ′)〉
= 〈TK Î (x, t−)Î (x, t+)ei

∫
K HT (t1 )dt1〉. (21)

The second-order perturbation gives

S(x, t, t ′) = −1

4

∑
ηη1η2

η1η2

∫
dt1dt2

× 〈
TK
{
Î (x, tη )Î (x, t−η )HT

(
tη1
1

)
HT

(
tη2
2

)}〉
. (22)

The current noise S(x) at the position x is obtained by

S(x) = lim
T →0

1

T

∫ T/2

−T/2
dt
∫ T/2

−T/2
dt ′ S(x, t, t ′)

=
∫ ∞

−∞
dt S(x, t, 0). (23)

The excess noise, which is a noise induced by ac driving, is
defined as

Sex(x) = S(x) − eĪ (x), (24)

where Ī (x) is the time-averaged current and the second term
represents the Poisson noise due to nonequilibrium currents
injected from the STM tip. Hereafter, we focus on the average
current and excess noise in the right lead (x > L2).

The results of the second-order perturbation are obtained
after a somewhat lengthy calculation, which goes beyond
the calculations found in Ref. [46]. As we are interested in
the low temperature behavior of the system, we perform the
calculations at zero temperature only. We only show the final
results for x > L2 as follows:

Ī (x) = 8e
2

Nleadπ2a2

∞∑
l=−∞

|pl |2
∫ ∞

0
dt sin [(q + l )�t]

D(t )

[1 + (vFt/a)2]
1
2

sin [F (t ) + ArcTan(vFt/a)], (25)

S(x) = 8e2
2

Nleadπ2a2

∞∑
l=−∞

|pl |2
∫ ∞

0
dt cos [(q + l )�t]

D(t )

[1 + (vFt/a)2]
1
2

cos [F (t ) + ArcTan(vFt/a)], (26)

Sex(x) = 8e2
2

Nleadπ2a2

∞∑
l=−∞

|pl |2
∫ ∞

0
dt

D(t )

[1 + (vFt/a)2]
1
2

cos [(q + l )�t + F (t ) + ArcTan(vFt/a)], (27)

F (t ) = νArcTan

[
vFt

a

]
+

∞∑
k=1

(b1b2)k

8

(
gN + 1

gN

)
ArcTan

[
2avFt

a2 + (2kLgN)2 − (vFt )2

]

+
∞∑

k=0

bk+1
1 bk

2

16

(
−gN + 1

gN

)
ArcTan

[
2avFt

a2 + ((2kL + 2L1)gN)2 − (vFt )2

]

+
∞∑

k=0

bk
1bk+1

2

16

(
−gN + 1

gN

)
ArcTan

[
2avFt

a2 + ((2kL + 2L2)gN)2 − (vFt )2

]
, (28)
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D(t ) =
(

a2 + (vFt )2

a2

)−ν/2 ∞∏
k=1

⎡
⎣(a2 + (2kLgN)2 − (vFt )2

a2 + (2kLgN)2

)2

+
(

2avFt

a2 + (2kLgN)2

)2
⎤
⎦

− (b1b2 )k

16

(
gN+ 1

gN

)

×
∞∏

k=0

⎡
⎣(α2 + ((2kL + 2L1)gN)2 − (vFt )2

α2 + [(2kL + 2L1)gN]2

)2

+
(

2αvFt

a2 + [(2kL + 2L1)gN]2

)2
⎤
⎦

− bk+1
1 bk

2
32

(
−gN+ 1

gN

)

×
∞∏

k=0

⎡
⎣(a2 + ((2kL + 2L2)gN)2 − (vFt )2

a2 + [(2kL + 2L2)gN]2

)2

+
(

2avFt

a2 + [(2kL + 2L2)gN]2

)2
⎤
⎦

− bk
1bk+1

2
32

(
−gN+ 1

gN

)
, (29)

where ν = (6 + gN + g−1
N )/8, Nlead is the number of metal-

lic leads and b1,2 = (gN − g1,2)/(gN + g1,2) are the reflection
coefficients. We note that the calculated current and current
noise are independent of x as far as x > L2. Details of the
derivation are given in Appendix A. We also note that the
current, the noise and the excess noise include a prefactor
1/Nlead which reflects the fact that the total injected current
is partitioned into the two leads in the two-lead case, while
it flows fully into the single lead in the one-lead case. The
current and noise are thus roughly two times larger in the one-
lead case compared with the two-lead one (see also Figs. 2
and 3 in the next section).

While the formulas for the F and D factors are some-
what heavy, the physical meaning of the different terms is
quite simple. For each term in the sum defining F , there is
a corresponding term in the product defining D. The first
term correspond to the contribution for an infinite nanotube,
with direct propagation from the injection point located at the
origin to the measurement point x. All the other terms corre-
spond to the propagation after a given number of reflection
on the CNT-leads interface: b1 (b2) is the reflection coefficient
at the left (right) interface, so for example a term with the
(b1b2)k corresponds to k reflection at both interface, and one
can see that this term also contains a factor 2kLgN which
stands for k times the length of one round trip along the CNT.

Note that b1 < 0 and b2 < 0 for the two leads case, which
means that the reflections are similar to an Andreev reflection,
with an electron-like excitation being reflected as a hole-like
excitation.

IV. EXCESS NOISE

In this section, we discuss the properties of the excess noise
as a function of q = eVdc/h̄�. We mainly focus on the excess
noise when leviton pulses are injected. We define the charge
velocity in the CNT as vN = vF/gN and the unit of time and
frequency as T0 = 2L2/vN (the time needed for an electron to
travel from the tip to the right lead and back) and �0 = 2π/T0,
respectively.

A. Two-lead case

Let us first discuss the two-lead setup shown in Fig. 1(a).
In Fig. 2(a), we show the excess noise as a function of q when
Lorentzian voltage pulses (i.e., levitons) are applied. The
interaction parameter of the CNT is set as gN = 1, 0.7, 0.5
and 0.2 and the other parameters are given in the caption.
The most striking feature is the fact that the excess noise
is zero when q is an integer, independently of the value of
the interaction parameter. This is a well-known property of a
leviton drive for a noninteracting electronic system [8,10,49].

FIG. 2. Excess noise as a function of q for the two-lead case. The unit of the noise is given by S0 = 4e2
2/π 2a2. (a) leviton pulses for
� = �0 ≡ πvN/L2 and gN = 1.0, 0.7, 0.5, and 0.2. (b) Three types of pulses for � = �0 and gN = 0.2. (c) leviton pulses for gN = 0.2 and
�/�0 = 2.5, 2.0, 1.5, 1.0, and 0.5. In all the plots, we set L1 = L/3, L2 = 2L/3, η = 0.1, and ωc = 100�0.
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FIG. 3. Excess noise as a function of q for the one-lead case. The unit of the noise is given by S0 = 4e2
2/π 2a2. (a) Leviton pulses for
� = �0 ≡ πvN/L2 and gN = 1.0, 0.7, 0.5, and 0.2. (b) Three types of pulses for � = �0 and gN = 0.2. (c) leviton pulses for gN = 0.2 and
�/�0 = 2.5, 2.0, 1.5, 1.0, and 0.5. In all the plots, we set L1 = L/3, L2 = 2L/3, η = 0.1, and ωc = 100�0.

Fig. 2(a) shows that this property remains valid even for
strongly interacting nonchiral 1D electronic systems. An ana-
lytical proof of this remarkable property is given in Sec. IV D.
For noninteger values of q, we observe that the excess noise is
reduced a little as the Luttinger parameter gN is reduced from
unity.

Figure 2(b) shows the pulse-shape dependence of the ex-
cess noise, for gN = 0.2. The excess noise vanishes only for
Lorentzian pulses, while it does not for the cosine and square
pulses. These observations confirm that the exceptional fea-
tures of the levitons compared with all other voltage drives
survive even for this interacting electron system. We note
that, contrarily to the case of quasiparticle tunneling into edge
states of the fractional quantum Hall effect [43], the excess
noise does not show a singular behavior near integer values
of q. This is because we are considering here injection of
electrons (rather than fractional quasiparticles) from the STM
tip.

Figure 2(c) shows the excess noise for gN = 0.2 as a func-
tion of q for �/�0 = 0.5, 1.0, 1.5, 2.0 and 2.5 and ωc/�0 =
100, where �0 is the unit of frequency. Although the ex-
cess noise for a noninteger value of q is almost proportional
to �, it grows a little faster than expected from linear
dependence.

B. One-lead case

Next, we discuss the one-lead setup shown in Fig. 1(b).
We show the excess noise as a function of q in Fig. 3(a) for
gN = 1, 0.7, 0.5, and 0.2, where the other parameters are the
same as Fig. 2. We find that the qualitative features of the ex-
cess noise are similar to the two-lead case; for noninteger q the
excess noise is reduced a little as the interaction parameter gN

is reduced, while it vanishes when q is an integer. This means
that the exceptional features of the levitons are also valid for
the interacting electrons systems for this setup. Figures 3(b)
and 3(c) show the pulse-shape and ac-frequency dependence,
respectively. By comparing with Figs. 2(b) and 2(c), we find
that the qualitative features are common with the two-lead

case. Compared with the two-lead case, the one-lead setup
produces only small quantitative changes in the excess noise
for noninteger values of q.

C. Interference effects

As will be discussed in Sec. V, the leviton pulses reflect
at the boundary between the CNT and the leads in a com-
plex manner and can interfere with subsequent leviton pulses
injected from the STM tip. To see this interference effect,
we show the excess noise in Fig. 4 for four geometries, i.e.,
four sets of the STM-tip position and two boundaries of the
CNT. Figures 4(a) and 4(b) shows the two- and one-lead
cases, respectively. Although the geometry of the STM-tip and
CNT boundaries controls the interference between Lorentzian
pulses, the excess noise keeps its main features; it always
vanishes when q is an integer. We find that the interference
effect causes small changes in the excess noise for noninteger
q in both the two- and one-lead cases. We conclude that the
interference between the pulses only has a minor effect on the
excess noise.

D. Proof that excess noise is zero for integer leviton

As observed in Figs. 2–4, the excess noise is always zero
for a periodic drive of levitons when q is integer, indepen-
dently of the other parameters of the system (number of leads,
position of the STM tip, frequency of the drive, etc.). We give
here an analytical proof of this property.

The excess noise is defined as Sex(x) = S(x) − eĪ (x) in
Eq. (27). Using D(t ) = D(−t ) and F (t ) = −F (−t ), we can
recast Eq. (27) as

Sex(x) = 4e2
2

Nleadπ2a2
Re

∞∑
l=−∞

|pl |2
∫ ∞

−∞
dt

D(t )

[1 + (vFt/a)2]
1
2

× exp{i[(q + l )�t + F (t ) + ArcTan(vFt/a)]},
(30)
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FIG. 4. Geometry dependence of the excess noise for (a) the
two-lead case and (b) the one-lead case. We set the parameters
as (L1,�) = (L/3, 3πvN/2L) (purple line), (L/2, 2πvN/L) (green
line), (2L/3, 3πvN/2L) (blue line), and (L/2, πvN/L) (orange line).
The other parameters are set as η = 0.1, ωc/� = 100, and gN = 0.2.

where F (t ) and D(t ) are given by Eqs. (28) and (29), and Re
denotes the real part. F (t ) is composed by an infinite sum of
terms, and each term has a corresponding term in the infinite
product which composes D(t ). A typical term in F (t ) can be
written as

A × ArcTan(α(t )/β(t )) (31)

and the corresponding term in D(t ) is

{[β(t )/γ ]2 + [α(t )/γ ]2}−A/2, (32)

with α(t ) = 2avFt , β(t ) = a2 + (2kLgN)2 − (vFt )2 (or a sim-
ilar expression with 2kL replaced by 2kL + 2L1 or 2kL +
2L2), and A > 0, γ > 0 are time-independent constants. In the
integral of Eq. (30), this combination of terms appears as

exp[iA × ArcTan(α(t )/β(t ))]

{[β(t )/γ ]2 + [α(t )/γ ]2}A/2
= γ A

[β(t ) − iα(t )]A . (33)

From the expressions of α(t ) and β(t ), one can check that the
expression of Eq. (33) has poles in the t plane at

t = − ia

vF
± 2kLgN

vF
. (34)

Importantly, these two poles are in the lower half plane. The
integrand of Eq. (30) thus contains an infinite product of terms
like Eq. (33), which have poles and branch cuts in the lower
half plane only. This product is multiplied by exp[i(q + l )�t];
this factor allows us to perform the integration by closing
the contour in the upper (lower) complex plane for q + l > 0
(q + l < 0). As a leviton drive for an integer charge q is
characterized by [8–10,43,49]

pl = 0 for l � −q, (35)

one can see that only terms with q + l > 0 exist for a leviton
drive with integer charge q, which leads to a zero integral
for the excess noise as the integrand has no poles in the
upper complex plane. The excess noise for a leviton drive
with an integer charge q is thus always zero, independently
of the value of the other parameters, including the interaction
parameter gN in the nanotube. We note that suppression of the
excess noise has recently been discussed for a different setup
using the nonchiral Luttinger liquid [40].

V. CURRENT PROFILES

Indeed, as the figures for the excess noise are qualitatively
similar to those for a noninteracting system, one may think
that the system behaves overall as a noninteracting one. How-
ever, this is not the case, and it will be clear from the current
profiles which are fundamentally different from the case of
a noninteracting system. It is thus quite remarkable that the
excess noise is robust with respect to interactions, and in
particular that it goes to zero for integer value of q for a leviton
drive.

An essential element to understand the transport in the sys-
tem is the reflection at each boundary between the nanotube
and the leads. These are characterized by the reflection coeffi-
cients b1,2 = (gN − g1,2)/(gN + g1,2). For the two-lead case,
we have b1 = b2 = (gN − 1)/(gN + 1) < 0, which means
that an “electron-like” excitation is converted into a “hole-
like” excitation by the reflection. This peculiar reflection,
which is inherent to one-dimensional interacting electron sys-
tems, is called Andreev reflection in analogy with that of
a superconductor-normal junction [37,44]. For the one-lead
case, one has b1 = 1; the reflection at the right boundary
is still an Andreev reflection, while at the left boundary it
is a simple reflection. The current profile will be the result
of the interference of the injected pulses and their multiple
reflections at the boundaries.

We first consider the two-lead case. To visualize the An-
dreev reflection and interference with different leviton pulses,
we show the time-dependent current profile for L1 = L/3
and L2 = 2L/3 in Figs. 5(a)–5(c). The expressions used to
compute the time-dependent current profile are detailed in
Appendix B. The period of the ac voltage is taken as T =
4L1/vN = 2L2/vN, where vN = vF /gN is the charge velocity
in the CNT. The three curves correspond to t = 0, T/9, 2T/9
in Fig. 5(a), to t = 3T/9, 4T/9, 5T/9 in Fig. 5(b), and to
t = 6T/9, 7T/9, 8T/9 in Fig. 5(c), respectively. Figure 5(a)
shows that the applied voltage pulse at t = 0 creates two
pulses propagating in opposite directions from the STM tip at
x = 0, as indicated by the blue and red arrows. The heights
of these two pulses are different because of the resonance
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FIG. 5. Time-dependent current profile as a function of position, inside the CNT (yellow background) and inside the normal leads (light
gray background), for the two-lead case (left panels) and the one-lead case (right panels) in the case of L1 = L/3. Each panel shows the current
at three different times as indicated. The unit of the current is given by I0 = 4e
2/π 2a2. The period of the ac voltage is given T = 4L1/vN =
2L2/vN. Other experimental parameters are taken as η = 0.01, ωcT/2π = 100, and gN = 0.2.

condition T = 4L1/vN = 2L2/vN, which means that pulses
reflected one or several times at the left and right boundaries
can interfere with new pulses created periodically at the tip
position. In Fig. 5(b), the pulses are divided into a reflected
part (in the CNT) and a transmitted part (in the leads) at
the two boundaries of the CNT. We note that the current
carried by the reflected pulse has the same sign as the incident
pulse despite the reversal of the propagation direction. This
is because the electron pulses are converted into hole pulses
at the boundary due to the “Andreev” reflection characteristic
of the Luttinger liquid [44,46]. In Fig. 5(c), the reflected
pulses continue to propagate in the CNT. Here, because the
lengths L1 and L2 between the STM tip and the leads 1 or 2
are different, the timing of arrival of pulses at the origin is
also different for the two reflected pulses. For our choice of
parameters, the pulse reflected at x = L2 returns at the origin
precisely after the period T (see the blue arrow). The fact
that there is a strong interference between the pulse created

at the STM tip and the pulses reflected on the right lead, while
there is no such interference for the pulse reflected at the left
lead, explains the different current profile in the two metallic
leads; the time-dependent current is alternatively positive and
negative in the right lead, while it is always negative in the left
lead.

The time-dependent current profile for the one-lead case is
shown in Figs. 5(d)–5(f) for the same geometry. In contrast
with the two-lead case, the system has one open boundary at
x = −L1, where the reflection is a standard one which keeps
the sign of the charge excitation unchanged. Therefore, the
current carried by the pulse changes its sign after reflection at
x = −L1 [see Fig. 5(e)] as in a usual reflection. This change
in the reflection properties affects the sign of the current in the
right lead; the current is always positive there in contrast with
the two-lead case [see Figs. 5(a)–5(c)].

We further show the current profile for a different geom-
etry with L1 = 2L/3 and L2 = L/3 in Fig. 6. Although the
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FIG. 6. Time-dependent current profile as a function of position, inside the CNT (yellow background) and inside the normal leads (light
gray background), for the two-lead case (left panels) and the one-lead case (right panels) in the case of L1 = 2L/3. Each panel shows the
current at three different times as indicated. The unit of the current is given by I0 = 4e
2/π 2a2. The period of the ac voltage is given T =
2L1/vN = 4L2/vN. Other experimental parameters are taken as η = 0.01, ωcT/2π = 100, and gN = 0.2.

reflection properties at the boundaries of the CNT are the
same as the previous case, the geometry affects the current
profile in the metallic leads due to the modifications of the
interference conditions between pulses. For the two-lead case
[Figs. 6(a)–6(c)], the current is now always positive in the
right lead, while it can be both negative and positive in the
left one. This result is the inverse of what was observed
with the previous geometry [Figs. 5(a)–5(c)]. Also for the
one-lead case [Fig. 6(d)–6(f)], the current can now be nega-
tive in the right lead, in contrast with the previous geometry
[Figs. 5(d)–5(f)].

VI. SUMMARY

We theoretically studied the effect of electron correlations
in single electron injection into a carbon nanotube (CNT)
coupled with metallic leads. We formulated the current and
the excess noise induced by an ac voltage driving by de-

scribing the CNT in terms of a Luttinger liquid, and studied
how electron correlations modified (or not) the property of
minimal excess noise for Lorentzian pulse (leviton) injection.
We showed both analytically and numerically that the excess
noise vanishes when each leviton pulse includes an integer
number of electrons, as observed in noninteracting electron
systems. This indicates that the electron correlations in the
CNT do not change the physics of minimum noise pulses, i.e.,
levitons, at all. For a noninteger electron injection, the excess
noise depends on both the geometry of the system and the ac
driving frequency. We also showed that the time-dependent
current profile depends on the geometry and the ac frequency
through the interference condition between injected pulses.
We demonstrated that injected pulses induces Andreev-like
(normal) scattering at the junction with a metallic lead (at
the open boundary). This affects the excess noise in nonin-
teger electron injection. Our findings show the universality of
the minimum noise properties for the leviton pulses, which
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holds even in interacting electron systems. Detailed setup and
estimate for experimental verification of our results are left
as a future problem. Our calculations could also apply to
artificially created nonchiral Luttinger liquid systems in the
quantum Hall effect [50].
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APPENDIX A: GREEN’S FUNCTIONS

In this Appendix, we show the main steps of the calcu-
lation to obtain the Green’s function of the bosonic fields
for an inhomogeneous infinite one-dimensional system, with
an interaction parameter being a piecewise constant function
defining three different regions, without any assumption of
spatial symmetry [46].

Let us first consider the imaginary-time Green’s functions
defined by

GXY
jδ (x, x′, τ ) = 〈Xjδ (x, τ )Yjδ (x′, 0)〉, (A1)

for 0 < τ < h̄β, where X,Y = θ or φ and Xjδ (x, τ ) =
eHτ/h̄Xjδ (x)e−Hτ/h̄ indicates the imaginary-time evolution.
From the Hamiltonian (1), the Green’s functions, Gφφ

jδ (x, x′, τ )
and Gθθ

jδ (x, x′, τ ), obey the following equations:

−
(

g jδ (x)

v jδ (x)
∂2
τ + ∂xv jδ (x)g jδ (x)∂x

)
Gφφ

jδ (x, x′, τ )

= δ(x − x′)δ(τ ), (A2)

−
(

∂2
τ

v jδ (x)g jδ (x)
+ ∂x

v jδ (x)

g jδ (x)
∂x

)
Gθθ

jδ (x, x′, τ )

= δ(x − x′)δ(τ ), (A3)

where δ(x) is a δ function. The mixed Green’s functions, Gφθ

jδ

and Gθφ

jδ , can be obtained from Gφφ

jδ and Gθθ
jδ as

i∂τ Gφθ

jδ (x, x′, τ ) = v(x)

g(x)
∂xGθθ

jδ (x, x′, τ ), (A4)

i∂τ Gθφ

jδ (x, x′, τ ) = v(x)g(x)∂xGφφ

jδ (x, x′, τ ). (A5)

Using the fact that the interaction parameters gjδ (x) and the
velocities v jδ (x) are piecewise constant functions, with three
different domains: x < −L1 (left lead), −L1 < x < L2 (nan-
otube), and x > L2 (right lead), one can solve for the Green’s
functions Gφφ

jδ and Gθθ
jδ in the Matsubara frequency space.

For calculation of the current and current noise, the Green’s
functions at x = x′ = 0 (which is the injection point) and its
spatial derivatives in which x or x′ is set as zero are required.

Since the full derivation is rather lengthy, we only explain
here the calculation of Gφφ

c+(x, x′, τ ). The other types of the
Green’s functions can be calculated in a similar way. By the
Fourier transformation of Eq. (A2), we obtain(

gc+(x)

vc+(x)
ω2 − ∂xvc+(x)gc+(x)∂x

)
Gφφ

c+(x, x′, ω)

= δ(x − x′), (A6)

where ω is a Matsubara frequency, that can be regarded as a
real number at zero temperature, and

Gφφ
c+(x, x′, ω) =

∫
dτ Gφφ

c+(x, x′, τ )eiωτ . (A7)

It is straightforward to solve this differential equation with
respect to x. For example, the Green’s function in the range
of −L1 < x′ < L2 is obtained as

Gφφ
c+(x, x′, ω)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(x′)e
|ω|x
v1 , (x < −L1)

B(x′)e
|ω|x
vN + C(x′)e− |ω|x

vN , (−L1 < x < x′)
D(x′)e

|ω|x
vN + E (x′)e− |ω|x

vN , (x′ < x < L2)

F (x′)e− |ω|nx
v2 , (L2 < x),

(A8)

where

A(x′) = 2gN

g1 + gN
e

|ω|L1
v1

− |ω|L1
vN B(x′), (A9)

B(x′) = 1

2gN|ω|
e− |ω|

vN
x′ + γ2e

|ω|
vN

x′

1 − γ1γ2
, (A10)

C(x′) = γ1B(x′), (A11)

D(x′) = γ2E (x′), (A12)

E (x′) = 1

2gN|ω|
e

|ω|
vN

x′ + γ1e− |ω|
vN

x′

1 − γ1γ2
, (A13)

F (x′) = 2gN

g2 + gN
e

|ω|L2
v2

− |ω|L2
vN E (x′). (A14)

Here, the coefficients, γ1 and γ2, are given as

γ1 = gN − g1

gN + g1
e

−2|ω|L1
vN ≡ b1e− 2|ω|L1

vN , (A15)

γ2 = gN − g2

gN + g2
e

−2|ω|L2
vN ≡ b2e

−2|ω|L2
vN . (A16)

By setting x, x′ → 0, we obtain

Gφφ
c+(0, 0, ω) = 1

2|ω|gN

(1 + γ1)(1 + γ2)

1 − γ1γ2
. (A17)

Here, we further use the expansion

1

1 − γ1γ2
=

∞∑
k=1

(b1b2)ke− 2kL|ω|
vN , (A18)

where k can be regarded as the number of round trips of
a pulse in the CNT. The inverse Fourier transformation can
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easily be performed by using the formula

∂τ

∫ ∞

0

dω

ω
eω(x±iτ ) = ∓i

x ± iτ
, (A19)

and by the analytic continuation τ = it + a/vF the Green’s
function is calculated as

G̃φφ
c+(0, 0, t )

= − 1

2πgN

{
ln (1 + ivFt/a) +

∞∑
k=1

(b1b2)kI+(2kL)

+ 1

2

∞∑
k=0

b1(b1b2)kI+(2kL + 2L1)

+ 1

2

∞∑
k=0

b2(b1b2)kI+(2kL + 2L2)

}
, (A20)

where

I±(x) = ± ln

(
1 + ivFt

a + ixgN

)
+ ln

(
1 + ivFt

a − ixgN

)
.

(A21)

Here, the real-time Green’s function is defined as

G̃XY
jδ (x, x′, t ) = 〈Xjδ (x, t )Yjδ (x′, 0)〉,−〈Xjδ (x, t )2〉

− 〈Yjδ (x′, 0)2〉, (A22)

where X,Y = θ or φ and Xjδ (x, t ) = eiHt/h̄Xjδ (x)e−iHt/h̄ in-
dicates the real-time evolution. In a similar way, the other
Green’s functions can be calculated from Eqs. (A3)–(A5) as

G̃θθ
c+(0, 0, t )

= − gN

2π

{
ln (1 + ivFt/a) +

∞∑
k=1

(b1b2)kI+(2kL)

− 1

2

∞∑
k=0

b1(b1b2)kI+(2kL + 2L1)

− 1

2

∞∑
k=0

b2(b1b2)kI+(2kL + 2L2)

}
, (A23)

G̃θφ
c+(0, 0, t ) = − 1

4π

{ ∞∑
k=0

b1(b1b2)kI−(2kL + 2L1)

−
∞∑

k=0

b2(b1b2)kI−(2kL + 2L2)

}
, (A24)

G̃φθ
c+(0, 0, t ) = 1

4π

{ ∞∑
k=0

b1(b1b2)kI−(2kL + 2L1)

−
∞∑

k=0

b2(b1b2)kI−(2kL + 2L2)

}
, (A25)

For other modes, i.e., ( j, δ) = (c,−), (s,+), (s,−), the
Green’s functions are easily obtained from the above results
by setting g1 = g2 = gN = 1 (the two-lead case) or g1 = 0
and g2 = gN = 1 (the one-lead case).

Next, we calculate spatial derivatives of the Green’s func-
tions for the channel ( j, δ) = (c,+). For simplicity, we drop

the subscripts assigning the mode hereafter. By solving the
Fourier transformation of Eqs. (A2)–(A5), we obtain

Gφφ (x, 0, ω) = Gφφ (0, x, ω) = 1

gN + g2

1

|ω|G+(x), (A26)

Gθθ (x, 0, ω) = Gθθ (0, x, ω) = gNg2

gN + g2

1

|ω|G−(x), (A27)

Gφθ (x, 0, ω) = gN

gN + g2

1

ω
G−(x), (A28)

Gφθ (0, x, ω) = − g2

gN + g2

1

ω
G+(x), (A29)

Gθφ (x, 0, ω) = g2

gN + g2

1

ω
G+(x), (A30)

Gθφ (0, x, ω) = − gN

gN + g2

1

ω
G−(x), (A31)

G±(x) = 1 ± γ1

1 − γ1γ2
e−b|ω|/vN−(x−b)|ω|/v2 , (A32)

for x > L2. By using the same techniques for the calculation of
∂τ GXY (0, 0, τ ), the spatial derivatives can be calculated. For
example, we obtain

∂xGφφ (x, 0, t ) = ∂xGφφ (0, x, t )

= − 1

2π (gN + g2)v2

×
∞∑

k=0

(b1b2)k

[
1

αk (x) + t − iτ0

+ 1

αk (x) − t + iτ0

+ b1

βk (x) + t − iτ0
+ b1

βk (x) − t + iτ0

]
,

(A33)

αk (x) = 2kL + L2

vN
+ x − L2

v2
, (A34)

βk (x) = αk (x) + 2L1

vN
, (A35)

after analytic continuation τ = it + τ0, where τ0 = a/vF is a
short-time cutoff.

The Green’s functions obtained above can be related to the
Keldysh Green’s functions defined as

GXY
K (x, x′, t ) = 〈TK{X (x, tη1 )Y (x′, 0η2 )}〉, (A36)

where η1, η2 (= ± 1) represents the forward (+1) or backward
(−1) contours. The Keldysh Green’s functions are expressed
in a matrix form as

GXY
K (x, x′, t ) =

(
GXY

(++)(x, x′, t ) GXY
(+−)(x, x′, t )

GXY
(−+)(x, x′, t ) GXY

(−−)(x, x′, t )

)

=
(

GXY (x, x′, |t |) GXY (x′, x,−t )

GXY (x, x′, t ) GXY (x′, x,−|t |)

)
.

(A37)
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The current and current noise are calculated combining these expressions for GXY
(η1η2 )(x, x′, t ) with the results given in Ref. [46].

The Keldysh Green’s functions of the bosonic field describing the STM tip is calculated as

gσ (η1η2 )(t1 − t2) = 〈
TK
{
ϕ̃σ

(
tη1
1

)
ϕ̃σ

(
tη2
2

)}〉 = − ln

[
1 + i(η1 + η2)

vF |t1 − t2|
2a

− i(η1 − η2)
vF (t1 − t2)

2a

]
. (A38)

APPENDIX B: CURRENT PROFILE

The calculation of I (x, t ) for arbitrary time and position is a rather long, tedious, but straightforward extension of that in
Refs. [44,46]. We only show the final expression as follows:

I (x, t ) = −8ievF 
2

π2a2

∑
l,l ′

pl p∗
l ′e

i(l−l ′ )�t

×
⎡
⎣ iθ [(l ′ − l )�]

(gN + g2)v2

⎛
⎝ 1 + b1e−i

2(l−l′ )�L1
vN

1 − b1b2e−i
2(l−l′ )�

vN
L

e−i (l−l′ )�L2
vN e−i (l−l′ )�

v2
(x−L2 ) − c.c.

⎞
⎠X1,(ll ′ )

− i

(gN + g2)v2

⎛
⎝ 1 + b1e−i

2|(l−l′ )�|L1
vN

1 − b1b2e−i
2|(l−l′ )�|

vN
L

e−i
|(l−l′ )�|L2

vN e−i
|(l−l′ )�|

v2
(x−L2 )

⎞
⎠X2,(ll ′ )

⎤
⎦, (x > L2), (B1)

I (x, t ) = −8ievF 
2

π2a2

∑
l,l ′

pl p∗
l ′e

i(l−l ′ )�t

×
⎡
⎣ iθ [(l ′ − l )�]

2vF

⎛
⎝ 1 + b1e−i

2(l−l′ )�L1
vN

1 − b1b2e−i
2(l−l′ )�

vN
L

(
e−i (l−l′ )�

vN
x − b2ei (l−l′ )�

vN
(x−2L2 ))− c.c.

⎞
⎠X1,(ll ′ )

− i

2vF

⎛
⎝ 1 + b1e−i

2|(l−l′ )�|L1
vN

1 − b1b2e−i
2|(l−l′ )�|

vN
L

(
e−i

|(l−l′ )�|
vN

x − b2ei
|(l−l′ )�|

vN
(x−2L2 ))⎞⎠X2,(ll ′ )

⎤
⎦, (L2 � x � 0), (B2)

X1,(ll ′ ) =
∫ ∞

0
dτD(τ ) sin

[(
ω0 + l + l ′

2
�

)
τ

](
sin

(
l−l ′

2 �τ
)
e−iF (τ )

1 + ivF τ/a
− Im

[
ei(l−l ′ )�τ/2e−iF (τ )

1 + ivF τ/a

])
, (B3)

X2,(ll ′ ) =
∫ ∞

0
dτD(τ ) sin

[(
ω0 + l + l ′

2
�

)
τ

](
sin

(
l−l ′

2 �τ
)
eiF (τ )

1 − ivF τ/a
+ Im

[
e−i(l−l ′ )�τ/2e−iF (τ )

1 + ivF τ/a

])
. (B4)
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