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The DFT- 1
2 method is a band-gap correction with GW precision at a density functional theory (DFT)

computational cost. The method was also extended to correct the gap between defect levels, allowing for the
calculation of optical transitions. However, this method fails when the atomic character of the occupied and
unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and
the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied
and unoccupied defect levels and call this the decoupled DFT- 1

2 method for defects.

DOI: 10.1103/PhysRevB.108.125306

I. INTRODUCTION

Creating point defects in solids allows one to manipulate
the properties of that solid, for example, by doping the
material to obtain a P- or N-type semiconductor. The
defects themselves can also be interesting subsystems in
the context of quantum technologies, where defects like the
nitrogen-vacancy (NV) center [1,2] have the potential to be
used as a quantum sensor or as qubits, the building block
for the quantum computer [3,4]. The primary approach to
simulate these defects is density functional theory (DFT).
However, DFT is known to underestimate the band gap of
semiconductors for the local density approximation (LDA)
or generalized gradient approximation (GGA) exchange
correlation functionals. This is due to the local nature of these
approximate exchange correlation functionals, which neglects
the exchange correlation discontinuity at the band gap [5–7].
When the band gap is a property of interest, as is the case with
defects in solids, one has to rely on more advanced methods
such as meta-GGA functionals like SCAN [8] or hybrid
functionals like HSE06 [9,10] or many body theory like GW.

In 2008 Ferreira et al. [11] introduced a new method, the
DFT- 1

2 method, which rectifies the lack of self-energy of the
band gap. This is achieved by adding a self-energy potential to
the pseudopotential in such a way that the self-energy is added
to the band gap. The DFT- 1

2 method was later expanded upon
by Lucatto et al. [12] to work for defect levels. However, when
these defect levels have a similar orbital character, the DFT- 1

2
method will fail. Prior to this the DFT- 1

2 method has also been
used to calculate the formation and transition energy of an
interstitial and substitutional Mn defect and a self-interstitial
in silicon [13,14].

In this work we show that defect levels with similar orbital
characters will cause the self-energy potential to be approx-
imately zero, negating the DFT- 1

2 correction. This is first
illustrated on the tetrahedral hydrogen interstitial in diamond,
an example chosen such that the problem is maximal. The
goal of this work is to show why the self-energy potential

is zero in these cases and to introduce an alternative DFT- 1
2

technique to solve this problem: the decoupled DFT- 1
2 method

for defects. The hydrogen interstitial is first revisited using
the new method. It is then shown that the band structure
of the defect system can be reconstructed and it is compared to
the band structure obtained from calculation with the HSE06
functional, a widely used functional in high-quality defect cal-
culations [15–18]. In addition to the hydrogen interstitial the
negatively charged vacancy in diamond will also be studied
with the decoupled DFT- 1

2 method. The negatively charged
vacancy was chosen because vacancies or vacancy-related
defects are a class of defects that likely require the decou-
pled DFT- 1

2 method to calculate defect gaps. The reason for
this is that the creation of a vacancy leaves behind dangling
bonds from atoms of the host material, usually in some sort
of symmetric configuration. This makes it likely that defect
levels with similar orbital character appear.

The DFT- 1
2 method

We now give a brief overview of the DFT- 1
2 method, where

we focus on those parts that are important to introduce the
decoupled DFT- 1

2 method. More details can be found in the
original papers by Ferreira et al. [11,19] or in the recent review
of Mao et al. [7]. The DFT- 1

2 method starts with Janak’s theo-
rem and the assumption that the Kohn-Sham (KS) eigenvalue
εα of orbital α is linearly dependent on the occupation of
the orbital fα; the validity of this assumption was verified in
Ref. [20]. With this, one can derive that the band gap of a
semiconductor, which is the difference between the ionization
energy I and the electron affinity A, is equal to the difference
between the eigenvalue of the half-occupied conduction band
minimum (CBM) and valence band maximum (VBM) or

band gap = I − A (1)

= (
EN−1

tot − EN
tot

) − (
EN

tot − EN+1
tot

)
(2)

= εc( fc = 1/2) − εv ( fv = −1/2), (3)
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where the subscripts c and v denote the CBM and VBM,
respectively, and fα = 0 indicates that orbital α has the same
occupation as in the ground state and fα = ±1/2 means that
half an electron was added or subtracted from the ground-state
occupation. From Janak’s theorem a new quantity can be
derived, the self-energy Sα , which is defined by

∂εα

∂ fα
= 2Sα. (4)

By integrating Eq. (4), Eq. (3) can be rewritten in terms of the
KS gap and the self-energy:

band gap = KS gap + Sc + Sv. (5)

Equation (3) gives the impression that one could calculate
the band gap with DFT by placing half an electron from
the valence band in the conduction band. However, since the
KS eigenstates are Bloch states, which are delocalized, the
self-energy of these states will be zero. Thus, according to
Eq. (5) this approach gives no correction to the KS gap or, in
other words, Bloch states do not accurately describe the lo-
calized holes [19]. Instead of changing the occupation within
a calculation, a potential Vs is added to the pseudopotential
as if the occupation was changed or as if the self-energy was
added. This potential Vs is called the self-energy potential and
the self-energy can be seen as a quantum mechanical average
over this potential. The self-energy potential can be calculated
as follows:

Vs = VKS( fα = 0, r) − VKS( fα = −1/2, r) (6)

with VKS the KS potentials where the dependency on the elec-
tron density is not written explicitly and only the occupation
of orbital α is considered as all other occupations remain the
same. The KS potentials of Eq. (6) are usually calculated for a
single isolated atom using an all-electron code. The Coulomb-
like tail of the self-energy and the periodic boundary condition
imposed in a DFT calculation will lead to a divergence. This
divergence can be removed by defining a new self-energy po-
tential Ṽs(r) = �(r)Vs(r), where �(r) is a trimming function
defined as

�(r) =
⎧⎨
⎩

(
1 −

(
r
rc

)n)3
, r � rc

0, r > rc.
(7)

The trimming function introduces two new parameters n and
rc to the self-energy potential. The former is usually set to 8 as
this gives a good balance between the cutoff sharpness and the
potential smoothness [7]. The parameter rc is called the cutoff
radius and should be determined by extremizing the band gap
[21]. This means that in order to calculate the band gap using
DFT- 1

2 one should sweep over multiple DFT calculations with
self-energy potentials at different cutoff radii.

II. METHOD

A. The conventional DFT- 1
2 method for defects

Since the DFT- 1
2 method only uses DFT calculations the

method has DFT computational scaling. This makes it an at-
tractive method for defect calculations where a large supercell
and a correct band gap are required. In Ref. [12] Lucatto
et al. introduced the DFT- 1

2 method for defect excitations.

FIG. 1. A schematic overview of the energies involved in exci-
tation and deexcitation of a defect. On the abscissas we have the
configuration space q with the ground-state configuration of the
defect in its ground and first excited state denoted as qGS and qEx ,
respectively. The blue and red lines are the absorption Eabs and
emission energy Eem, respectively, and can be calculated using the
DFT- 1

2 method.

In this work, the DFT- 1
2 method is used to calculate the gap

between an occupied and unoccupied defect level in the band
gap. This result can then be used to calculate the vertical
transition energy between the ground and excited states of
a defect, i.e., the absorption Eabs and emission energy Eem,
as is also illustrated in Fig. 1. By calculating the Stokes or
anti-Stokes shift, which must be done by plain DFT as this is
a difference between total energies of two different structures,
the zero phonon line (ZPL) can be obtained. The ZPL is an
important and identifying property for color centers. Lucatto
et al. [12] demonstrate this procedure for the NV− center in
diamond and find a ZPL of 1.84 eV close to the experimentally
observed 1.95 eV [22].

The DFT- 1
2 method proposed by Lucatto et al., which we

will call the conventional DFT- 1
2 method for defects from

now on, starts by dividing the atoms in the supercell into two
groups: the defect atoms which are responsible for the defect
levels and the bulk atoms which have a negligible contribution
to the defect levels and which are responsible for the valence
and conduction bands. In order to use the DFT- 1

2 corrected
band gap in a defect calculation, all bulk atoms should use the
pseudopotential determined by the DFT- 1

2 method on the pris-
tine host material of the defect. The group of defect atoms still
has an unaltered pseudopotential allowing for an additional
DFT- 1

2 correction for the defect levels to be applied by adding
a self-energy potential to these atoms. The general idea of the
conventional method is the same: half an electron should be
moved from the occupied to the unoccupied defect level in
order to add self-energy. Instead of removing half the electron
from the orbital with the largest contribution to the occupied
defect level, a smaller fraction is removed from every orbital
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of every atom contributing to the defect level. The fraction
removed from orbital φ of atom X is called

ξXφ
= 1

2 charXφ
[ψα (	)] (8)

with charXφ
[ψα (k)] the projection of KS state ψα of orbital α

onto the atomic orbital φ of atoms X . Since exactly half an
electron should be removed, ξXφ

should be normalized such
that

∑
Xφ

ξXφ
= 1

2
. (9)

For the unoccupied level the fraction of electron which will be
added to each orbital of each defect atom ζXφ

is calculated in
a similar fashion. The self-energy potential for each orbital of
each atom is then calculated as

V Xφ

S = V KS
X

(
f0 − ζXφ

) − V KS
X

(
f0 − ξXφ

)
, (10)

where only the occupation of the orbital φ is written as an
input for V KS

X as all other inputs are the same and with f0 the
ground-state occupation of that atom. As is the case with bulk
DFT- 1

2 , the self-energy potentials need to be multiplied by a
trimming function �Xφ

. In the most general case, each orbital
of each atom has its own trimming function and cutoff radius.
However, we will assume that each orbital of the same atom
has the same trimming function. Thus, the total self-energy
potential of each atom is given by

V X
S = �X

∑
φ

V Xφ

S , (11)

where �X is given by Eq. (7). To find the cutoff of each
atom, the gap between the defect levels needs to be extremized
consecutively.

The problem that can appear in the conventional DFT- 1
2

method is best illustrated on the tetrahedral hydrogen intersti-
tial in diamond.

B. Computational details

The DFT calculations were performed in the LDA ex-
change correlation potential and projector augmented wave
[23] as implemented by the Vienna Ab initio Simulation
Package (VASP) [24–26] taking (collinear) spin polarization
into account. We chose LDA because Janak’s theorem is
exact for the LDA exchange correlation functional [19]. We
calculate the lattice parameter of the conventional unit cell
of diamond using a Birch-Murnaghan fit [27] with a cutoff
energy of 520 eV and 8×8×8 k-point grid in the Monkhorst-
Pack scheme [28]. This gives us a distance between carbon
atoms and a lattice parameter of 1.53 Å and 3.54 Å, respec-
tively, which are in good agreement with the experimental
values [29]. The defect supercells were created from a 4×4×4
conventional diamond supercell with 512 carbon atoms. The
integration over the Brillouin zone was done using only the
	 point with an energy cutoff of 520 eV. Since the DFT- 1

2
method does not produce a correct total energy, all relaxations
were done using LDA. The relaxations were stopped when all
forces were below 0.001 eV/Å.

The KS potentials used for calculating the self-energy po-
tential in Eq. (6) in the DFT- 1

2 calculation were generated

using a modified version of the ATOM code [11,30]. The DFT-
1
2 band gap for diamond was calculated by stripping 1/4 of
both the s and p orbitals as suggested by Ferreira et al. [11].
This results in a band gap of 5.73 eV and a cutoff param-
eter of 2.3a0, which is in line with the results obtained in
Refs. [31,32].

C. The hydrogen interstitial in diamond
with the conventional method

In this section the electronic structure of the interstitial hy-
drogen defect in diamond is calculated using the conventional
DFT- 1

2 method. The nature of this defect makes it likely to
have at least two defect levels with the same character, namely,
the Hs,↑ and Hs,↓ orbitals localized around the hydrogen atom.
It is then demonstrated that the conventional method does not
improve the DFT defect gap.

Interstitial hydrogen in diamond can be found in a nega-
tive, positive, or neutral charged state. We will focus on the
neutral charged state, because in this charge state the defect
level has one occupied and one empty defect level, which is
required by the conventional DFT- 1

2 method. In the neutral
state, interstitial hydrogen in diamond has three stable con-
figurations. Going from lowest to highest energy, these states
are named bond center (BC), tetrahedral (T), and hexagonal
(H) [33,34]. Because the BC hydrogen defect was not suited
for the DFT- 1

2 method [35], the lowest metastable hydrogen
interstitial, tetrahedral hydrogen, in diamond was studied. In
this structure the hydrogen is located in one of the cavities of
the diamond supercell. If this cavity and the hydrogen atom
are placed along the [111] direction, then the hydrogen atom
will be closer to one of the carbon atoms along this direction.
If instead the hydrogen atom has the same distance to both
carbon atoms along the [111] direction, then the defect is in
the hexagonal state [33]. After relaxation the energy of the
hydrogen interstitial is 1.09 eV higher than the energy of the
BC configuration. This energy difference between the ground
and metastable states is similar to that found in Refs. [33,36]
and deviates somewhat from Ref. [34], although this is likely
because they use HSE06 instead of LDA.

In Fig. 2 the 	-point band structure of the tetrahedral
hydrogen defect is shown. In the case of tetrahedral hydrogen
the only significant contribution to the defect levels of Fig. 2
comes from the s orbital of the hydrogen atom, meaning
that hydrogen is our only defect atom and ξHs = ζHs = 0.50.
With this the self-energy was determined with formula (10)
and the gap between the defect levels was determined using
the conventional DFT- 1

2 method. The gap between the defect
levels seems to be unaffected by the cutoff parameter, as can
be seen in Fig. 3; the only difference is the run-to-run variance
between the DFT runs. The reason for this failure of the
conventional method will be explored in the next section.

D. The decoupled DFT- 1
2 method

The self-energy potential used in the DFT- 1
2 method is

spherically symmetric, meaning that only the s, p, or d orbital
character is looked at and the method does not differentiate
between px, py, and pz, for example. For some defects this
results in a situation where ξXφ

≈ ζXφ
, as was the case with the
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FIG. 2. The band structure at the 	 point for the tetrahedral interstitial hydrogen in diamond, using LDA with an unmodified pseudopo-
tential (left), LDA with the DFT- 1

2 -corrected pseudopotentials for bulk carbon atoms (middle), and the DFT- 1
2 correction for bulk and defect

atoms (right). The correction for the defect levels was obtained from the decoupled DFT- 1
2 method. Because the decoupled method uses a

different calculation for each defect level, the defect levels of the bulk DFT- 1
2 band structure were shifted to their correct position with respect

to the VBM and CBM as described in the text.

tetrahedral hydrogen interstitial. In these cases it follows that

V KS
X

(
f0 − ζXφ

) ≈ V KS
X

(
f0 − ξXφ

)
. (12)

By using Eq. (12) in Eq. (10) we see that both contributions
to the self-energy potential for Xφ cancel:

V Xφ

S = V KS
X

(
f0 − ζXφ

) − V KS
X

(
f0 − ξXφ

) ≈ 0, (13)

which means that almost no self-energy is added when ξXφ
≈

ζXφ
. This can be problematic when ξXφ

and ζXφ
are relatively

large and thus a large part of the DFT- 1
2 correction should

come from the self-energy potential of orbital φ of atom X .

FIG. 3. The defect gap maximization for the interstitial tetra-
hedral hydrogen defect in diamond using the conventional DFT- 1

2
method.

Because the self-energy potential is approximately zero, al-
most no correction is added to the defect gap. To put it simply,
the conventional method does not work for these cases be-
cause it removes and then adds the same electron fraction to
the defect atoms.

Generally, this cancellation of the self-energy poten-
tial is the result of the approximation that the self-energy
potential is spherical symmetric and thus this effect is un-
intended. To remove this cancellation of the self-energy the
effect of V KS

X ( f0 − ξXφ
) should be decoupled from that of

V KS
X ( f0 − ζXφ

). This can be achieved by doing two separate
calculations where either V KS

X ( f0 − ξXφ
) or V KS

X ( f0 − ζXφ
) is

added to the pseudopotential. Because ξXφ
≈ ζXφ

both the oc-
cupied and unoccupied levels will move up or down together
and the gap cannot be directly extremized as a function of the
cutoff. Instead, the defect gap should be extremized indirectly
by extremizing EVBM→unocc (the gap between the VBM and
the unoccupied level) and Eocc→CBM (the gap between the oc-
cupied level and the CBM). In Ref. [13] the cutoff parameter
of Mn is determined in a similar fashion, by following the
defect level in the density of states as a function of rc with
respect to the CBM. Both energy gaps are depicted in Fig. 4,
where the electron transfers of the conventional and decoupled
method are illustrated. Because both the valence and conduc-
tion bands have already had a bulk DFT- 1

2 correction and the
effect of the defect atoms on these bands is negligible, both of
these bands can be used as reference bands.

These two gaps and the previously calculated DFT- 1
2 band

gap can formally be written as

EVBM→unocc = ε+
unocc − ε−

VBM, (14)

Eocc→CBM = ε+
CBM − ε−

occ, (15)

Ebandgap = ε+
CBM − ε−

VBM, (16)

where E is used for energy gaps, ε for the KS eigenvalues,
and the + and – superscripts are used to denote that these
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FIG. 4. A schematic of the KS band structure with one occu-
pied and one unoccupied defect level depicted by the solid and
open circle, respectively. On the left the electron transfer of the
conventional method is shown by the blue arrow. On the right the
gaps EVBM→unocc and Eocc→CBM as well as the corresponding electron
transfers of the decoupled method are drawn by the green and red
arrows, respectively.

are the eigenvalues with half an electron added or subtracted,
respectively. By using Eqs. (14)–(16) the formula of the defect
gap Egap,def can be written in terms of the other energy gaps as
follows:

Egap,def = ε+
unocc − ε−

occ (17)

= (EVBM→unocc + ε−
VBM)

− (ε+
CBM − Eocc→CBM) (18)

= EVBM→unocc + Eocc→CBM

− (ε+
CBM − ε−

VBM) (19)

= EVBM→unocc + Eocc→CBM − Ebandgap. (20)

And thus with Eq. (20) the gap between defect levels, Egap,def ,
has successfully been rewritten in terms of the energy gaps
EVBM→unocc and Eocc→CBM and the defect gap can be calcu-
lated based on two decoupled calculations. Because there are
now two gaps and two cutoff parameters rc to be determined
the computational expense has doubled but the DFT scaling
remains.

Since the defect gap in Eq. (20) depends on three quantities
which are directly related to the band gap, any error made on
this band gap by the bulk DFT- 1

2 method will be carried over
multiple times to the defect gap. We now determine the error
of the defect gap as a result of the band-gap error �, where we
assume that the band-gap error is the only source of error in
the calculation, such that the energy eigenvalue of the defect
level is bound by the energy eigenvalue of the defect level
when the gap between this level and the VBM is exact and the
energy eigenvalue of the defect level when the gap between
it and the CBM is exact. The experimental band gap can be
written as follows:

Ebandgap,expt = Ebandgap,DFT-1/2 + �, (21)

where the sign of � can be either positive or negative. In
what follows � is assumed to be positive but a similar ex-
pression can be obtained when � is negative. When � = 0

FIG. 5. The maximization of the gap between occupied spin-up
level and the CBM (left) and the VBM and the unoccupied spin-down
level (right) for Hint,T used for the decoupled DFT- 1

2 method.

the predicted DFT- 1
2 gap and the actual gap are the same. In

cases where � �= 0, the DFT- 1
2 predicted gaps can have the

following values:

EDFT -1/2
VBM→unocc ∈ [EVBM→unocc, EVBM→unocc + �], (22)

EDFT -1/2
occ→CBM ∈ [Eocc→CBM, Eocc→CBM + �], (23)

where the superscript DFT-1/2 was added to denote the dif-
ference between the DFT- 1

2 gap and the actual gap. Within this
assumption the predicted values are either correct or at most a
value +� off from the real values. This leaves two worst-case
scenarios where the error on Egap,def is maximal. The first is
that both EVBM→unocc and Eocc→CBM are predicted correctly,
leaving an error of −� coming from the band-gap term in
Eq. (20). The second happens when both EVBM→unocc and
Eocc→CBM have an error of �. One of these will be canceled
by the error on the band gap while the other remains. These
two worst-case scenarios give the decoupled method an error
margin of ±� on Egap,def stemming from the band-gap error.

III. RESULTS

A. The hydrogen interstitial in diamond
with the decoupled method

Now that we have the tools to deal with cases where
ξXφ

≈ ζXφ
, we revisit the tetrahedral hydrogen interstitial in

diamond. In Fig. 5 the cutoff parameters and sizes of the
gaps for EVBM→Hs,↓ and EHs,↑→CBM are determined. With
the maximum value of EVBM→Hs,↓ , EHs,↑→CBM, and Eq. (20)
the gap between the Hs,↑ and Hs,↓ level was determined to be
2.7 eV, about three times larger than the gap of 0.9 eV when
only the bulk DFT- 1

2 correction is applied.
With the results of the decoupled DFT- 1

2 method the band
structure of the hydrogen interstitial was reconstructed start-
ing from the bulk DFT- 1

2 band structure. This bulk DFT- 1
2

band structure is obtained from a DFT calculation where
the bulk carbon atoms use the DFT- 1

2 potential for pristine
diamond and the defect hydrogen atom uses an unaltered
pseudopotential. The bulk DFT- 1

2 band structure obtained in
this matter can be seen in the middle of Fig. 2. The occupied
hydrogen level H↑ of this bulk DFT- 1

2 calculation is then
shifted down by Egap(rc = rc,max) − Egap(rc = 0) of the left
curve of Fig. 5 such that the difference between the CBM
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FIG. 6. The band structure of tetrahedral hydrogen for a 2×2×2
diamond conventional supercell using bulk DFT- 1

2 and HSE06 (left)
and bulk+decoupled, DFT- 1

2 , and HSE06 (right). The zero point of
energy was set at the VBM for all calculations.

and this level is exactly the maximum gap determined in this
curve. The unoccupied level H↓ is shifted up in the same
manner such that the gap between this level and the VBM is
that of the curve on the right of Fig. 5.

The band structure has to be constructed in this way
because the decoupled DFT- 1

2 method uses two different pseu-
dopotentials, one for each defect level. This means that there
is no single calculation that can provide these eigenvalues and
more importantly no wavefunction.

To test whether the decoupled method produces a correct
gap between the defect levels, the band structure for the hy-
drogen interstitial was calculated for a 2×2×2 supercell using
the decoupled method and a DFT calculation based on the
HSE06 functional [9,10]. Because this calculation is meant
as a comparison between the electronic structure of the two
different methods, the same LDA relaxed supercell was used
for both calculations. In Fig. 6 the HSE06 band structure is
compared with both the bulk and the bulk plus the decoupled
DFT- 1

2 method. The band structure of the decoupled DFT- 1
2

method on the right was again constructed by shifting the
defect levels (the solid blue and red lines in Fig. 6) of the
bulk DFT- 1

2 band structure by Egap(rc = rc,max) − Egap(rc =
0) such that the gaps between these levels and the VBM and
CBM are correct, according to the decoupled method. Due to
the small size of the supercell, the defect levels show some
dispersion for both the DFT- 1

2 and the HSE06 calculations.
Since the HSE06 and the DFT- 1

2 band gap for diamond differ
by about 0.3 eV this is only a qualitative comparison. For
both calculations we placed the zero point of energy at the
VBM. The HSE06 calculation finds a gap between defect
levels of about 2.1 eV, which more closely matches the gap
of 2.7 eV found by the decoupled method, as opposed to the
gap found by the bulk DFT- 1

2 method of 0.9 eV. The position
of the defect levels with respect to the VBM and CBM of the
decoupled method also matches the HSE06 result the closest.
This leads us to conclude that if the conventional method fails,
the decoupled method results in a qualitatively better result
than applying no correction at all.

FIG. 7. The eigenvalues in the 	 point for the negatively charged
vacancy in diamond using DFT (left) and bulk DFT- 1

2 (right), where
the defect atoms are the four carbon atoms around the vacancy.

Although the decoupled method was introduced as a solu-
tion for when the conventional method fails to determine the
gap between two defect levels, it is demonstrated in Fig. 6
that the entire band structure can be corrected by calculating
EVBM→unocc and Eocc→CBM for all unoccupied and occupied
defect levels, respectively.

B. The negatively charged vacancy in diamond

The negatively charged vacancy V (−) consists of five elec-
trons, four coming from the dangling carbon bonds and one
from the extra negative charge. Experimentally it has been
shown that in the ground state V (−) has the 4A2 many-body
state with Td symmetry [37]. Only the single-particle configu-
ration a1(↑,↓)t2(↑,↑,↑) contributes to the 4A2 many-body
state [15,37,38], which is stable against Jahn-Teller distor-
tion [38]. The negatively charged vacancy is also responsible
for the GR1 band and the corresponding ZPL at 3.15 eV
[39]. This ZPL is associated with the transition 4A2 → 4T1,
where the excited 4T1 state can be written in terms of
a1(↑)t2(↑↓,↑,↑) single-particle states [15,38]. Besides the
negative charged state the vacancy can also be found in the
neutral charge state with a ZPL of 1.67 eV [39], and theoret-
ically it is also shown that the vacancy can be stable with a
charge ranging from −2 to 2 [15].

In what follows we try to determine the ZPL of V (−) with
the DFT- 1

2 method similar to what Lucatto et al. did for the
NV− [12]. We show that the conventional method of Lucatto
et al. will not work for this defect and the decoupled method is
required. However, the decoupled method also has difficulties
with this defect. We provide an explanation for the problems
that the decoupled method faces with this defect and offer a
solution.

As a first step the electronic structure of V (−) was calcu-
lated using DFT and bulk DFT- 1

2 , as depicted in Fig. 7. For
the bulk DFT- 1

2 calculation the four carbon atoms closest to
the vacancy Cvac were treated as defect atoms. In the DFT-
1
2 band structure both the a1 and triple degenerate t2 levels
can be recognized, while the DFT band structure only has
the triple degenerate t2 levels. This makes the need for the
band-gap correction for this defect apparent, because without
this correction the a1 levels are hidden in the valence band.
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TABLE I. The electron fraction for the transition 4A2 ↔ 4T1 of
V (−).

Ground state Excited state

ξXφ
ζXφ

ξXφ
ζXφ

Cvac,s 0.00 0.01 0.00 0.01
Cvac,p 0.12 0.11 0.12 0.12

To calculate the ZPL one not only requires the ground state
but also the first excited state (see Fig. 1), which is created by
exciting an electron from a1,↓ to the t2,↓ state. The many-body
excited state was approximated by placing one electron in
one of the three triple degenerate t2,↓ levels using constrained
DFT. Then the electron fractions ξ and ζ for the transition
a1,↓ ↔ t2,↓ were determined for both the ground and excited
states, which can be found in Table I. To obtain the defect
gap correction only the decoupled method can be used since
ξC,p ≈ ζC,p.

In what follows we focus on the calculation of the ab-
sorption energy with DFT- 1

2 and the problems that come
with it. The same story applies to the emission energy.
In Fig. 8 the gaps EVBM→unocc and Eocc→CBM are deter-
mined for the absorption energy. For the gap Eocc→CBM an
unreasonably large cutoff of 5.6a0 was found, keeping in
mind that the bond length between bulk carbon atoms is
about 2.9a0 in our calculations. A cutoff this large encom-
passes the nearest neighbor of the Cvac, the entire spherical
bulk self-energy of the nearest neighbor, the next-nearest
neighbors, and the next-next-nearest neighbors. The absorp-
tion energy and the ZPL based on the maximum gaps of
Fig. 8 are 4.0 eV and 3.9 eV, respectively. This deviates
far from the previously mentioned experimental results. For
the gap EVBM→unocc a more reasonable cutoff of 3.2a0 was
found.

We suspect that this unreasonably large cutoff is due to
the other carbon atoms that are located close to the vacancy
and which also contribute to the occupied defect level. The
curve of the gaps occ → CBM of Fig. 8 seems to have a kink
at rc = 4.0a0 due to two competing effects working on the
defect gap, one with a maximum between 2.5a0 and 4.0a0

and one with a maximum around the global maximum of
5.6a0. The first maximum incorporates the nearest neighbors

FIG. 8. The maximization of the gaps EVBM→unocc and Eocc→CBM

for the absorption energy of the V (−) center. An arrow was added to
the Eocc→CBM curve to highlight the kink in the curve.

FIG. 9. The gap extremization of the absorption energy of V (−)
using the conventional DFT- 1

2 method.

and most of the spatial region of its self-energy since the bulk
cutoff is 2.3a0. The second maximum incorporates the next-
and next-next-nearest neighbors of the Cvac atoms. It is as if
adding self-energy to these neighboring atoms also increases
the gap between the defect levels. It should be noted that the
self-energy potential added to the neighbors of the Cvac atoms
is not the correct self-energy potential for these atoms and
these atoms already have a self-energy potential stemming
from the bulk DFT- 1

2 correction.
Upon closer inspection some other carbon atoms located

near the vacancy have a nonzero contribution to the defect
levels. If these atoms were to be included in the defect atom
group they would have a ξ and ζ of the order of 0.01. The
gaps EVBM→unocc and Eocc→CBM were recalculated with the
extra defect atoms in an attempt to prevent the large cutoff
parameter by adding the correct self-energy potential to these
atoms. However, this did not improve the results. Therefore,
the neighboring atoms might not be the only reason for the
large cutoff rc, or the incorrect self-energy was not the cause
of the problem.

Since the cutoff parameter for Eocc→CBM cannot be found
by maximizing this gap, the bulk parameter rc = 2.3a0 was
used instead for both EVBM→unocc and Eocc→CBM. We argue
that the cutoff parameter should be transferable and will not
change much in different chemical environments, as is the
case for the cutoff parameter in the bulk DFT- 1

2 method [11].
Even in cases where the cutoff parameter can be calculated,
taking a small deviation from this value by choosing the
bulk cutoff parameter will not influence the gap greatly since
close to the maximum the value of the gap is approximately
constant. In Ref. [13] the cutoff parameter is determined for a
Mn interstitial and substitutional defect in Si. This was done
by following the energy of the defect level in the density of
states with respect to the CBM as a function of rc, similar to
the occ → CBM in this work, resulting in a cutoff of 3.0a0 for
Mn. This cutoff for Mn was also found in Ref. [40] where they
use DFT- 1

2 on GaMnAs. We further motivate this approach
by determining the cutoff parameter using the conventional
method, as seen in Fig. 9. Since ξC,p ≈ ζC,p in the case of
V (−) but not ξC,p = ζC,p, the effect on the gap of the DFT- 1

2
approach is severely reduced but the method still produces the
correct cutoff parameter of around 2.2a0 which is close to the
bulk cutoff of 2.3a0.

125306-7



CLAES, PARTOENS, AND LAMOEN PHYSICAL REVIEW B 108, 125306 (2023)

TABLE II. The ZPL of V (−) calculated based on the absorption
and emission energy using the bulk cutoff parameter. The last column
contains the Stokes and anti-Stokes shift depending on which is
required to calculate the ZPL.

Optical transition ZPL shift (eV)

Eabs 3.64 3.47 0.16
Eem 3.08 3.30 0.22

The gaps EVBM→unocc and Eocc→CBM were then calculated
using the bulk cutoff parameter for both the ground and ex-
cited states such that the absorption and emission energies
could be calculated using formula (20). With this the ZPL
was calculated for the V (−) center. The values of the optical
transitions can be found in Table II. In the best case we find
a ZPL equal to the one found in Ref. [15] using HSE06. Our
results seem to overestimate the optical transition energies,
which is likely due to the approximated cutoff parameter and
the error caused by the bulk DFT- 1

2 correction which is about
±0.23 eV in the case of diamond.

C. The general procedure of the decoupled DFT- 1
2 method

We now give a brief overview of the decoupled DFT- 1
2

method.

1. Preparation of DFT- 1
2

(1) Use the DFT- 1
2 method to correct the band gap of the

host material.
(2) Make the supercell with the defect and relax it with

DFT.
(3) Categorize all atoms in the supercell either as defect or

bulk atoms.
(4) Perform a DFT calculation where the bulk atoms use

the DFT- 1
2 pseudopotential obtained in step 1, while the defect

atoms use their unaltered pseudopotential.
(5) Use the orbital contribution of each defect atom to the

occupied and unoccupied level from the previous calculation
to determine the electron fractions ξXφ

and ζXφ
.

(6) If there are orbitals for which ξXφ
≈ ζXφ

use the decou-
pled DFT- 1

2 method. Otherwise use the conventional method
as described by Lucatto et al. [12].

2. The decoupled DFT- 1
2 method

For each group of symmetrically equivalent atoms X (or
orbitals Xφ) follow the steps below and use the DFT- 1

2 pseu-
dopotential obtained for these atoms while performing the
calculations for the next group of atoms.

(1) Make two sets of DFT- 1
2 pseudopotentials, one where

the electron fraction ξXφ
is added to Xφ for every value of the

cutoff parameter rc and one set where the ζXφ
is added.

(2) Determine the optimal cutoff parameter for each set
of pseudopotentials by running separate DFT calculations for
each value of rc in each set. The optimal cutoff parameter for
ξXφ

is the one which extremizes the gap between the occupied
defect level and the CBM. The optimal cutoff for ζXφ

should
extremize the gap between the VBM and the unoccupied
defect level.

(3) Calculate the gap between the defect levels with the
two extremes from the previous step and Eq. (20).

(4) Repeat the process for the next defect atom (or orbital).

IV. CONCLUSIONS

To summarize and conclude, the conventional DFT- 1
2

method for defects has been shown to fail in cases where the
occupied and unoccupied defect levels have a similar orbital
character. This is due to the cancellation of the self-energy
potential of the unoccupied level by the occupied level. When
the electron fractions ξX,φ and ζX,φ are large this can be prob-
lematic and one should use the decoupled DFT- 1

2 method,
which overcomes this problem by decoupling the effect of
ξX,φ and ζX,φ . The decoupled method was tested on a tetrahe-
dral hydrogen interstitial and the negatively charged vacancy
in diamond. In the case of the hydrogen interstitial, it was
shown that the decoupled DFT- 1

2 method increases the gap
between defect levels significantly which was qualitatively
more in line with the HSE06 results. This comparison with
HSE06 also showed that the decoupled DFT- 1

2 method can be
used to correct the entire band structure. For the negatively
charged vacancy no proper cutoff parameters could be found
because the localization of the defect atoms extended further
than the nearest neighbors. Instead, the bulk cutoff parameter
was used. The addition of this self-energy potential still leads
to a ZPL similar to those calculated with HSE06. Although
the decoupled method works in cases where the conventional
DFT- 1

2 method for defects fails, it also has flaws. The decou-
pled method is sensitive to errors made by the bulk DFT- 1

2
method; it sometimes does not find an appropriate cutoff as
was the case with V (−) and it doubles the computational cost.
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