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Super-bound states in the continuum through merging in grating
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We consider bound states in the continuum (BICs) in grating composed of infinitely long silicon rods of
rectangular cross-section. We reveal merging off-� Friedrich-Wintgen BIC with symmetry protected BIC.
We present CMT and multipole decomposition theory, complementing each other, to analyze the merging
phenomenon. The theories show a crossover of the behavior of Q factor from standard inverse square law
k−2

x,z towards extremely fast boosting law k−6
x,z in momentum space. In turn that crossover gives rise to another

crossover from Q ∼ N2 to Q ∼ N3 for symmetry protected quasi-BIC in finite grating of N rods owing to
suppression of radiation leakage of quasi-BIC mode from surface of grating. As a result, the Q factor of
quasi-BIC is determined by residual leakage from ends of grating. We show numerically that this leakage can
also be suppressed considerably if grating is stretched from the ends.
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I. INTRODUCTION

Comprehensively tailoring the resonant properties of elec-
tromagnetic resonators are of great importance in fundamental
science and applications [1]. The quality (Q) factor of an
electromagnetic resonator is a key indicator for numerous
applications. In general, there are several effective ways to
boost the Q factor, for example, whispering gallery modes
in the cavities with convex smooth boundaries such as cylin-
drical, spherical, or elliptical cavities [2,3]. Another way is
to use Fabry-Pérot resonator or hide the cavity in photonic
crystals [1,4–6]. A fundamentally different approach involves
the bound states in the radiation continuum (BICs), which
provide unique opportunity to confine and manipulate elec-
tromagnetic wave within the radiation continuum [7–13]. The
phenomenon of BICs is based on the fact that electromagnetic
power can leak into only selected directions, which are given
by diffraction orders, if dielectric cavities are arranged into
periodical array [14–16]. Although the number of cavities
N in the array can not be infinite, Q factor fastly grows
with N quadratically for symmetry protected (SP) quasi-BICs
[17–19] and cubically for accidental BICs [18,20,21]. How-
ever, all these predictions break down when the nonradiative
loss 1/Qnr of the photonic crystal (PhC) caused by material
losses [19,21,22] and structural fluctuations [23,24] surpasses
the radiative loss 1/Qr of the system because of 1/Q = 1/Qnr

+1/Qr . As a result, the nonradiative loss will impose an upper
limit of Qr factor in practice [19]. This pinpoints the impor-
tance of asymptotic behavior of the Q factor of BICs over the
number of periods N , i.e., Qr (N ) ∼ Nα , because improving
Q(N ) beyond Qnr does not make any sense.

Therefore, exploring the ability to boost the Q factor
approaching the upper bound set by the nonradiative loss
becomes very important. It is therefore appealing to develop

*Corresponding author: almas@tnp.krasn.ru

feasible mechanisms for enlarging the asymptotic factor α.
The last time the phenomenon of merging, at least, two BICs
in momentum or parametric space [22,25–36] attracted much
interest because of crossover of the index δ in the asymptotic
behavior of the Q factor Qr ∼ 1/(parameter)δ from δ = 2
towards δ = 6 where both momentum space or geometrical
dimensions of resonators can act as a parameter. In turn,
merging of BICs forms a super-BIC [22,25,37]. In Ref. [38]
the condition is derived according to which SP BIC in any
symmetric 2D structure with 1D periodicity is the super-BIC
exhibiting Q factor with degree δ = 6. To the best of our
knowledge there were no theory, which could show the mech-
anism of the crossover in the momentum space for merging
BICs. Following to Ref. [22] we present in this paper two
alternative theories complementing each other based on a
generic two band effective non-Hermitian Hamiltonian (CMT
theory) and multipole decomposition theory with application
to grating. In the framework of the CMT theory we deduce
a crossover of the index δ from 2 towards 6 for approaching
merging point that completely agrees with the results of the
multipole decomposition theory. In the framework of the latter
theory we show the crossover is the result of full suppression
of radiation from surface of grating. This result plays a key
role for a crossover of asymptotic behavior of Q factor from
Q ∼ N2 to Q ∼ N3 for finite grating. Along with that we
offer a means suppress radiation from the ends by stretching
grating that considerably boosts Q factor. The specific grat-
ing system is constituted of silicon rods of rectangular cross
section as sketched in Fig. 1. This provides a parametric
space for searching of merging BICs over aspect ratio of rods
and wave vectors kx or kz. These two wave vectors define
eigenfrequency bands in the PhC, avoiding the crossing of
resonances (ACR), which gives rise to the FW off-� BIC
along the symmetry momenta axis kx or kz. Moreover due to
the symmetry of grating each band holds robust SP BICs at �

point. Then for variation of cross section of rods we observe
merging FW BIC and SP BIC.
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FIG. 1. Two cases of gratings. (a) With the constant period L and
(b) stretched from the ends. The dielectric permittivity of rods in air
ε = 12.11.

II. NUMERICS FOR ACR OF EIGENFREQUENCY BANDS
IN GRATING AND MERGING BICS

An interesting feature of open dielectric cavity is that
variation in its shape leads to its real parts of complex

eigenfrequencies (resonant frequencies) undergoing ACR ac-
companied by strong redistribution of the imaginary parts of
the complex eigenfrequencies. As a result, the Q factor can
be strongly enhanced [39–46] forming supercavity modes due
to hybridization of resonant modes. All these features refer to
the present system of array of rods for variation of the height
of rods that is demonstrated in Fig. 2. Insets in Figs. 2(a)
and 2(c) show hybridization of resonant eigenmodes owing
to interaction through closed radiation diffraction continua.

A grating of infinitely long rods is specified by eigenfre-
quency bands, which can be clearly seen in transmittance of
plane wave through the grating as Fig. 3 shows. Coupling of
the eigenmodes with the radiation continuum leads to ACR
of bands that in turn can give rise to Friedrich-Wintgen (FW)
BICs beyond � point [14–16,47,48]. Also the bands can be
featured by symmetry-protected BIC at � point owing to the
symmetry mismatching of the corresponding eigenmode with
the radiation continuum of the first diffraction channel [47,49–
53]. All BICs are marked in Fig. 3 where evolution of mode
profiles is shown in Figs. 2(a) and 2(c). Although ACR in
Fig. 2 is given beyond � point, quite similar ACR takes place
at the � point. Correspondingly mode profiles in Figs. 2(a)
and 2(c) are very close to the true BICs. As marked by closed

FIG. 2. ACR of two resonant modes vs height of rod b at a/L = 0.75 in the infinite grating. Insets of electric field Re(Ez ) illustrate
hybridization of resonant modes for ACR. Green closed circles mark FW BICs. kL = ωL/c is the dimensionless frequency.
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FIG. 3. (a) Transmittance of TM plane wave with electric field directed along z axis vs frequency and aspect ratio of rods at kxL =
0.25, kz = 0 where circle marks FW BIC. (b) Transmittance vs Bloch vector kx at b/L = 0.71 and kz = 0. Closed circles mark SP BICs at �

points. kL = ωL/c is the dimensionless frequency.

circles in Figs. 2(b) and 2(d) FW BICs occur in both directions
of momenta space.

In what follows we focus below on merging of BICs that
constitute the most interesting and important phenomenon. In
Fig. 4 we demonstrate as height b/L of silicon rods varies
the off-� FW BIC merges with one of SP BIC at � point
with kx �= 0 or kz �= 0. One can see an exceptionally high
sensitivity of merging to the selection of b/L ratio. Figure 5
illustrates why the phenomenon of merging is of great im-
portance because of strong crossover in the dependence of
Q factor on wave vectors kx at kz = 0 and kz at kx = 0 from
Q ∼ 1/k2

x , 1/k2
z to Q ∼ 1/k6

x , 1/k6
z as indicated by the insets,

suggesting a limit to the merging points. Beyond merging
point the Q factor can be approximated as

Q ∼ 1

k2
x (kx − kx,BIC )2(kx + kx,BIC )2

as was derived by Jin et al. by symmetry arguments [25]
and numerically by Hwang et al. [26] in 2D PhCs. Below
we derive this dependence analytically based on alternative
multipole decomposition theory. Note that similar dependence
of Q factor on kz as Fig. 5(b) shows. These results for merging

FW BIC and SP BIC are expressed as dependence of wave
vectors on structural parameter b/L of rods in Fig. 6.

III. THE CMT THEORY OF MERGING
AND SUPER-BICS

In order to qualitatively describe merging off-� FW BIC
and SP BIC we introduce a generic two-level description of
effective non-Hermitian Hamiltonian following Ref. [22],

He f f =
(
ε + ek2

x − iγ1k2
x u − i

√
γ1γ2k2

x

u − i
√

γ1γ2k2
x −ε − ek2

x − iγ2k2
x

)
+ λ

(
1 0
0 1

)
.

(1)

The matrix elements have clear physical origin. Real parts
of diagonal elements respond to eigenfrequencies ±(ε + ek2)
of closed system with band structure, imaginary parts do
for decay rates γ jk2

x , j = 1, 2 into open channel of radia-
tion continuum for deviation from � point. Therefore at �

point (kx = 0) the Hamiltonian describes two SP BICs with
correspondence to Fig. 3(b). Off-diagonal matrix elements
are responsible for coupling of eigenmodes of closed system

FIG. 4. Merging FW BIC and SP BIC over Bloch wave number kx at kz = 0 (a) and wave vector kz at kx = 0 (b).
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FIG. 5. Strong redistribution of Q factor on Bloch wave vector (a) and waveguide vector kz (b) at merging.

through open
√

γ1γ2 and closed channels of the continuum
u. The parameters ε(b/L), λ(b/L), and e are responsible to
two PhC bands at � point. Although this Hamiltonian is
widely used to describe FW BICs [54–56], it, however, holds
important contribution for dispersive resonant eigenmodes of
the grating. The quantitative values for all model constants
in the Hamiltonian (1) can be extracted from numerically
calculated complex eigenfrequencies of the grating and are
given in Fig. 7 where a contribution of the trivial second part
of unit matrix is disregarded.

The complex eigenfrequencies of the effective
Hamiltonian (1)

Z1,2 = −iγ k2
x ±

√(
ε + ek2

x − iδγ k2
x

)2 + (
u − i

√
γ1γ2k2

x

)2

(2)
describe two resonances whose imaginary parts or resonant
widths versus ε, i.e., aspect ratio b/L and wave vector kx as
shown in Fig. 7. Here γ = γ1+γ2

2 , δγ = γ1−γ2

2 . At kx = 0 the
model describes two SP BICs for any ε in agreement with
Fig. 3(b). Moreover the model describes also one off-� BIC
of the Friedrich-Wintgen origin due to avoided crossing of two
bands for specific kx, which depends also on ε. That occurs at

ε = ũδγ − ek2
x,BIC, (3)

0.7 0.715 0.73
0

0.2

0.4

0.6

0.8

1

FIG. 6. The dependencies of momenta of FW BIC on a height
b/L of rods at fixed width a/L = 0.75.

where ũ = u√
γ1γ2

. This equation follows from equation for
FW BIC derived in Refs. [55–57]. Moreover, Eq. (3) predicts
square dependence of the structural parameter ε(b/L) on wave
vector of FW BIC that completely agrees with numerics pre-
sented in Fig. 6.

However, what is most important is that Eq. (3) describes
merging FW BIC with one of SP BIC at ε = ũδγ for kx → 0
as seen from Fig. 8(a). Beyond the merging point the imag-
inary parts of both resonant modes proportional to k2

x give
inverse squared behavior (δ = 2) of the Q factor as follows,
from Eq. (2). At the merging point the eigenvalues (2) are

Z1,2 = −iγ k2
x ± γ

(
ũ − ik2

x

)
×

√
1 + 2eδγ k2

x

γ 2
(
ũ − ik2

x

) + e2k4
x

γ 2
(
ũ − ik2

x

)2 . (4)

At the vicinity of � point, kx � 1 we obtain the remarkable
result of extremely large index δ = 6 for resonant width at the
merging point

Z1 ≈ −γ ũ − δγ e

γ
k2

x − i
a2γ1γ2

2ũ2γ 3
k6

x , (5)

that is, the Q factor at the merging point grows as 1/k6
x . Thus,

the Hamiltonian (1) describes the crossover of the quality
factor Q ∼ 1/kδ

x from δ = 2 towards δ = 6. This analytical
result agrees with numerical computation shown in Fig. 5(a)
and explains numerical observations presented for 2D PhCs
[25,26]. Obviously, a similar analytical result can be obtained
for Q factor versus waveguide vector kz in full agreement with
our numerical computations presented in Fig. 5(b). In the next
section we show that the crossover in suppression of leakage
at merging BICs plays an important role in the crossover of
asymptotic behavior of Q factor from N2 to N3 for quasi-SP
BIC that justifies a terminology of super-BIC [26] in grating
with finite number N of rods.

IV. MULTIPOLE DECOMPOSITION THEORY OF
SUPPRESSION OF RADIATION

AT MERGING DUE TO ACR

The definition of quality factor Q is the ratio of the energy
stored in the system to the radiated power. We consider the
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FIG. 7. Real (a) and imaginary (b) parts of two complex eigenvalues at kxL = 0.4, kz = 0. Solid lines show calculated numerically
at a/L = 0.75 while dash-dotted lines show fitted behavior to result with ε = −1.918b/L + 1.337, e = 0.027, γ1 = 0.0143, γ2 = 0.00487,

u = 0.0336.

high-refractive index rods and think that the internal energy
stored in the rods is much greater than the external energy
stored outside [58]. The radiation leakage can be evaluated
via multipole decomposition of scattering function,

Ez(x, y) =
∑

j

∑
m

amei jkxLHm(kr j )e
imφ j , (6)

where j runs over rectangular rods as sketched in Fig. 9. Here
r j and φ j are the polar coordinates of the jth radius vector,
and r j = r − jLex.

Using a relationship between the cylindrical harmonic
fields and the space-harmonic fields [59], we have for
scattering field

Ez(x, y) =
∑

m

am
2(−i)m

Lkm

∞∑
n=−∞

(kx,n + iky,n)m

ky,n

× eikx,nx+iky,ny, y > 0, (7)

where

kx,n = kx + 2πn

L
, ky,n =

√
k2 − k2

x,n, (8)

and integers n = 0,±1,±2, . . . enumerate diffraction orders,
i.e., radiation continua. In what follows we consider SP BICs
embedded into the first continuum n = 0 with the eigenfre-
quency of BICs k < 2π/L. The scattering field (7) in the far
zone can be approximated as

Ez(x, y) ≈ 2

Lk cos θ

∑
m

am(kx )e−imθ

× eikxx+ikyy = Feikxx+ikyy, y > 0, (9)

where kx = k sin θ, ky = k cos θ . Since the scattering func-
tion (7) is odd relative to x → −x we have a2m(kx ) =
−a−2m(kx ), a2m+1(kx ) = a−2m−1(kx ). Moreover, a2m(kx ) =
a2m(−kx ), a2m+1(kx ) = −a2m+1(−kx ). We thus have from

FIG. 8. [(a),(b)] The imaginary parts of two complex eigenvalues (2) of the effective Hamiltonian (1) with two SP-BICs and one off-�
FW BIC. Solid lines show SP and off-� FW BIC given by Eq. (3). Closed circle marks merging point. The parameters of Hamiltonian (1) are
chosen as follows: e = 0.15, γ1 = 0.3, γ2 = 0.1, u = 0.02.
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FIG. 9. Infinite periodical array of rectangular rods.

Eq. (9),

F = 4

Lk cos θ

[
− i

∞∑
m=1

a2m(kx ) sin(2mθ )

+
∞∑

m=0

a2m+1(kx ) cos ((2m + 1)θ )

]
. (10)

For slight deviation from the merging point, i.e., for small
θ ≈ kx/k = ξ � 1 we have the following approximate se-
ries: sin ξ ≈ ξ − ξ 3/6, cos ξ ≈ 1 − ξ 2/2. Moreover we write
the series for the amplitudes a2m(ξ ) ≈ a2m(0) + a′′

2m(0)ξ 2/2,
a2m+1(ξ ) ≈ a′

2m+1(0)ξ + a′′′
2m+1(0)ξ 3/6. A substitution of all

these series into Eq. (10) gives us

F ≈ P1kx + P3k3
x , (11)

with accuracy of cubic contribution k3
x . Thus, we have for the

Q factor, which is a ratio of stored energy U and leaking power
W = |F |2,

Q = kU

|F |2 = kU∣∣P1kx + P3k3
x

∣∣2 , (12)

where

P1 = − 4i

k2L

[ ∞∑
m=1

2ma2m(0) + ik
∞∑

m=0

da2m+1(0)

dkx

]
= − 4i

k2L
P.

(13)

In what follows we are mainly interested in qualitative
behavior of Q factor over momentum kx near merging point.
Thereby we can omit the cumbersome expression for P3 that
has no effect on crossover and therefore can be substituted
simply as complex constant C slightly independent of kx. The
only importance is that the expression P1 turns to zero owing
to merging BICs while the expression P3 does not, as Comsol
Multiphysics calculations illustrate in Fig. 10.

Also Fig. 10 shows that P1 turns to zero at merging point
with accuracy of numerical errors.

Moreover we present in Fig. 10 the first two decomposition
coefficients a2(0) and a4(0) calculated via integrals over cross
section of rods [60],

am = iπk2

2

∫
d�Jm(kr)

e−imφ

√
2π

(ε(x) − 1)E∗
z (x)d�. (14)

One can see that a2(0) undergoes critical behavior owing
to ACR through which the lowest contribution in multipole
radiation P1 turns to zero in accordance with Eq. (13).
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3

FIG. 10. Behavior of the first two decomposition coefficients
a2(0), a4(0) and the magnitude P1 in Eq. (13) vs aspect ratio of rods
b/L. Dash line corresponds to merging point.

In view of last considerations we present the coefficients in
Eq. (12) as

P1 = β(b − bc), P3 = C, (15)

where b is the structural parameter shown in Fig. 1. As a result
we obtain

Q ∼ 1∣∣β(b − bc)kx + Ck3
x

∣∣2 . (16)

Thus, for infinite grating we obtain that Q factor turns to
infinity, i.e., BIC

k2
x = β

C
(bc − b). (17)

Rigorously speaking this equation gives us complex mo-
mentum kx. However, in order for the Bloch BIC solution
exp(ikxx) to be meaningful we have to take that both complex
constants have the phase difference equal to zero or π . As
Fig. 6 shows the phase difference equals to π to give

k2
x = |β|

|C| (b − bc). (18)

Thus, at the merging point b = bc we have

Q ∼ 1

k6
x

. (19)

It is remarkable, from Eq. (16) we have

Q ∼ 1

k2
x

∣∣ − β(b − bc) + Ck2
x

∣∣2

= 1

βk2
x (kx + kBIC )2(kx − kBIC )2

, (20)

where kBIC = √
β(b − bc)/C that fully agrees with numerical

derivations presented in Fig. 5 as well as with numerically
derived expressions by Jin et al. [25] for 2D PhC.
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FIG. 11. Behavior of coefficients C2 (right) and C3 (left) in de-
pendence of the Q factor Q = C2N2 + C3N3 vs the number of rods
in grating N . Closed circles and crosses show Comsol calculations,
solid lines show interpolation at the interval of N = 10 till N = 100.
Dashed line corresponds to merging point.

Now we consider grating with finite number of rods N and
argue that a change of the index δ in asymptotical behavior
of the Q ∼ 1

kδ
x

for merging BICs results in the change of the
behavior of Q factor over the number of resonators from
quadratic to cubic. We assume that the EM power radiates
from surface of finite grating, which has the same origin as
leakage calculated above and from the ends of grating, thus
we have for the quality factor [17]

1

Q
= 1

Q⊥
+ 1

Q‖
. (21)

Here the first contribution Q⊥ is the contribution of quasi-SP
BIC, which is a standing wave with the wave number kx =
π/NL [17,19]. Therefore aside radiation from the surface of

finite grating gives us

1

Q⊥
∼ D2

N2
+ D6

N6
, (22)

according to Eq. (12) in agreement with the above derivations
of crossover at a vicinity of merging. At the merging point
the first contribution vanishes to become negligibly small
compared to radiation from the ends of finite grating to write
D2 ∼ |b − bc|. It was already derived that Q‖ ∼ N3 by use
of the tight-binding approximation [20,61–63]. The crossover
can be traced in numerics by fitting Q = C2N2 + C3N3 in the
interval for N from 10 till 100 as Fig. 11 illustrates.

Therefore at merging SP BIC and FW off-� BIC we obtain
crossover for Q factor from Q ∼ N2 to Q ∼ N3 resulting in
super-quasi-BIC as Comsol MultiPhysics calculations illus-
trate in Fig. 12.

Moreover we employ an additional method to considerably
boost the Q factor by adjustment of additional buffer grat-
ings to the ends of grating [62,64–67]. These buffer grating
have either the period Lb slightly different from the period
L of basic grating or the period of buffer gratings gradually
stretching as sketched in Fig. 1(b) and shown in Fig. 13. That
gives rise to strong suppression of the wave function near the
ends of grating as shown in Figs. 13 and 14. Moreover Fig. 13
demonstrates crucial enhancement of Q factor owing to
stretching at merging point caused by suppression of radiation
from ends of grating. One can see that in spite of very small
stretching of grating we observe suppression of wave function
at the ends of finite gratings. As a result we have strong
boosting of the Q factor for increasing the period of grating
by 1% at merging as Comsol MultiPhysics simulations of Q
factor show in Fig. 15. One can also see from this figure that
Q factor is boosting much stronger at the merging because of
suppression of surface radiation while radiation from the ends
is suppressed by stretching.

In both cases the effect of suppression of radiation from
the ends of grating originates from quantum tunneling through
potential barrier [62]. Consider SP BIC at � point shown by
closed red circles in Fig. 3(b), which are positioned at bottoms
of frequency bands. In finite grating of N rods with period L
this BIC transfers into quasi-BIC. Assume that two auxiliary
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FIG. 12. Dependence of the Q factor on the number of rods in finite grating. (a) Far from merging point at b = 0.7425L and (b) at merging
b/L = bc/L = 0.7148, a/L = 0.75.
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FIG. 13. The periods between rods Lb( j) of buffer gratings in
terms of the constant period of inner grating L. Inset shows maximal
values of mode amplitudes Ez( j) = max(|Ez(x, y)|) inside jth rod.

gratings of Nb rods with the period Lb are attached to ends of
primary grating. For Lb > L the bands in the auxiliary gratings
descend by � ≈ (Lb − L)/L relative to the bands in primary
grating. For the specific case in Fig. 13 we obtain numerically
e = −0.047,� = 0.012, the shift of bottom of frequency
band equals −0.705�. Therefore the frequency of quasi-SP
BIC of primary grating, which is close to zero will enter
the bandgap of auxiliary grating at point 0.705� − ek2

x = 0.
Hence the solution of BIC in bandgap of auxiliary grating de-
cays as exp(ikxLbNb) = exp(−√

0.705�/eLbNb). Inverse of
this exponential factor defines boosting of Q factor by a value
of 1/0.014 ≈ 71 times. As far as the grating stretched linearly
from the ends shown in Fig. 1(b) the physical mechanism of
suppression of radiation from the ends is similar. Simple qual-
itative estimations given above are applicable, however, with
correction related to asymptotic behavior of the Eiry solution.

V. SUMMARY

We developed a concept of super-BIC [25,27,37] as a result
of merging “usual” Friedrich-Wintgen off-� BIC with SP BIC

FIG. 14. (a) The profiles of the solutions (Re[Ez(x, y)]) in finite
gratings with the constant period L, the grating is shielded by two
gratings with the period Lb/L = 1.015 (b) as shown by squares in
Fig. 13, and the grating is gradually stretched from the ends (c) as
shown by open circles in Fig. 13. Because of symmetry only the half
of mode profiles are shown.
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FIG. 15. Q factor of buffered grating vs period of buffers. Solid
line corresponds to the merging point while dotted line does beyond
merging point.

at � point in the case of grating constituted of silicon rods of
rectangular cross section. The merging phenomenon reported
recently in application to different systems [22,26,27,29–
31,33–36] has attracted much interest because of crossover of
asymptotic behavior of Q factor over critical parameter. Wave
vector, which defines frequency bands in PhCs attracts partic-
ular interest as this parameter because of importance of the
merging applied to real finite photonic systems of finite size
LN where L is the period and N is the number of elementary
cells. The smallest value of wave vector π/LN responsible
for quasi-SP BIC defines the asymptotical behavior of Q⊥
factor over N of the quasi-BIC mode because of leakage from
surface of grating [17,19]. We presented an analytical theory
based on multipole decomposition of this radiation loss. For
merging of FW off-� BIC and SP BIC at � point for limiting
of the wave vector to zero a surface radiation is completely
suppressed leaving smaller radiation from the ends of finite
grating, which decreases with the number of rod as 1/N3

[20,61–63]. That transforms asymptotical behavior of Q factor
from standard law k−2

x,z to superhigh Q factor behavior k−6
x,z

that justifies it to be termed super-BIC [25,27,37,68]. Thus
for finite grating we obtain the crossover of Q factor from
standard square law N2 towards cubic one N3. Moreover,
Jun [25] first established link between topological charge
of BIC and critical index for Q 1/k2δ

x,z in 2D PhCs with
symmetries C4v and C6v . It was shown that the degree δ is in-
creased for annihilation of nine [25] and five [69] topological
charges.

In addition, we presented a simple analytical theory based
on a generic non-Hermitian effective Hamiltonian (CMT
model) accounting for two frequency bands of PhC, which
explains all the above-described phenomena. Our approach
constitutes a important difference compared to Ref. [70] in
which CMT theory was explored to consider ACR of two
off-� BICs. Owing to generic form of Hamiltonian (1) the
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model is applicable to arbitrary PhC system in which merging
of BICs was observed [22,25–27]. The theory completely
agrees with multipole decomposition theory and numerical
Comsol Multiphysics results.
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