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This paper is concerned with the physics of parametrized gapped quantum many-body systems, which can be
viewed as a generalization of conventional topological phases of matter. In such systems, rather than considering
a single Hamiltonian, one considers a family of Hamiltonians that depend continuously on some parameters.
After discussing the notion of phases of parametrized systems, we formulate a bulk-boundary correspondence
for an important bulk quantity, the Kapustin-Spodyneiko higher Berry curvature, first in one spatial dimension
and then in arbitrary dimension. This clarifies the physical interpretation of the higher Berry curvature, which
in one spatial dimension is a flow of (ordinary) Berry curvature. In d dimensions, the higher Berry curvature is
a flow of (d − 1)-dimensional higher Berry curvature. Based on this, we discuss one-dimensional systems that
pump Chern number to/from spatial boundaries, resulting in anomalous boundary modes featuring isolated Weyl
points. In higher dimensions, there are pumps of the analogous quantized invariants obtained by integrating the
higher Berry curvature. We also discuss the consequences for parametrized systems of Kitaev’s proposal that
invertible phases are classified by a generalized cohomology theory, and emphasize the role of the suspension
isomorphism in generating new examples of parametrized systems from known invertible phases. Finally, we
present a pair of general quantum pumping constructions, based on physical pictures introduced by Kitaev,
which take as input a d-dimensional parametrized system, and produce new (d + 1)-dimensional parametrized
systems. These constructions are useful for generating examples, and we conjecture that one of the constructions
realizes the suspension isomorphism in a generalized cohomology theory of invertible phases.
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I. INTRODUCTION

A. Parametrized quantum systems

Gapped phases of quantum matter are a source of surpris-
ingly rich physical phenomena and beautiful mathematical
structure. In particular, many gapped phases are topological,
in the sense that their universal low-energy properties are
described by a topological quantum field theory (TQFT). The
understanding of topological phases has undergone tremen-
dous advances over the past several years [1–7].

A recent prominent theme is the discovery and study of
generalizations of topological phases of matter. One general-
ization comprises topological phases in periodically driven,
many-body-localized quantum systems, sometimes referred
to as “Floquet topological phases” [8]. Another generaliza-
tion are the fracton phases, in which excitations of restricted
mobility are associated with the lack of a low-energy TQFT
description [9,10].

This paper is concerned with a different kind of general-
ization of topological phases. Namely, we study parametrized
families of gapped systems, and the universality classes
(phases) of such families. The basic idea is first to choose
a space X that we will refer to as the parameter space. In
general, X can be any topological space, but we usually
have in mind nicely behaved compact spaces such as the
n-dimensional sphere Sn. Next, for each point x ∈ X of param-
eter space, we specify a gapped finite-range Hamiltonian H (x)
defined on a d-dimensional spatial lattice, and the Hamilto-
nian is assumed to vary continuously with x. Formally, this
information can be packaged into a continuous map H : X →
GH, where GH is some space of finite-range gapped Hamil-
tonians.

We refer to such a parametrized family, with parameter
space X , as a (gapped) system over X . The spatial dimension
d , whether the system is bosonic or fermionic, and the sym-
metry that is imposed (if any), are all fixed attributes of the
system that do not vary as a function of X (even if X has multi-
ple connected components). It is important to emphasize that,
in our terminology, the parameter space X is distinct from (and
far smaller than) the space GH of gapped Hamiltonians, or an
even larger space of all finite-range Hamiltonians. These latter
spaces are also sometimes referred to as parameter space, but
to avoid confusion we will not do so in this paper. Intuitively,
it is helpful to think of X as a space of parameters that can be
tuned by a hypothetical experimentalist who can vary some
number of “knobs” that control certain terms appearing in the
system’s Hamiltonian, such as the strength of a magnetic field.

When we study ordinary gapped quantum systems, we are
usually interested in phases of such systems, and universal
properties that are the same throughout a phase. The same is
true for systems over X , where we have a related notion of
a phase over X . Roughly speaking, two systems over X are

in the same phase if they can be continuously deformed into
one another without closing the gap anywhere in parameter
space. A more detailed and precise definition of phases over
X is given in Sec. III.

Before proceeding, it is helpful to anchor our discussion
by mentioning some familiar examples. First of all, in the
case where X = pt is the topological space containing a single
point, a gapped system over X is nothing but an ordinary
gapped quantum system, which can be referred to as a system
over a point. Moreover, phases over X = pt (phases over a
point) are the same as ordinary phases.

A more interesting example is a single spin 1
2 in a Zeeman

magnetic field of fixed magnitude, where the field direction
is parametrized by X = S2 viewed as a space of unit vectors
[11,12]. This system is characterized by a nontrivial Berry
curvature and associated nonzero Chern number. Familiar
examples are not limited to zero dimensions; the Thouless
charge pump is a classic one-dimensional example with a
conserved U(1) charge [13]. The parameter space is a circle
(X = S1), and as the parameter is adiabatically cycled around
the circle, a quantized amount of charge is pumped across the
system. These two familiar examples are reviewed in more
detail in Sec. II.

A number of recent works have begun to explore the
physics of parametrized families beyond a handful of classic
examples [14–22], and these recent developments are also
reviewed in Sec. II. Among these works, Kapustin and Spo-
dyneiko’s higher Berry curvature and the associated quantized
invariant, which we refer to as the KS invariant, will play a
particularly important role in this paper [18].

There are a number of reasons that parametrized families
of gapped systems are of physical interest. Quite generally, if
we view X as a subspace of a system’s phase diagram lying
entirely within a gapped phase, the corresponding phase over
X captures universal global properties of the phase diagram.
A related idea is that we often think of ordinary gapped phases
as connected components of a space GH of gapped Hamiltoni-
ans. Nontrivial phases over X can be viewed, at least roughly,
as probing more subtle features of the topology of GH. A
more specific perspective, which applies when X = S1 (or,
more generally, X = S1 × Y ), is to observe that systems over
X are in correspondence with adiabatic pumping cycles where
the circle-valued parameter is cycled slowly as a function of
time, as in the Thouless charge pump. We may thus expect to
find quantized pumping phenomena associated with nontrivial
phases over X .

A more abstract reason to be interested in parametrized
families comes from Kitaev’s proposal that gapped invert-
ible phases are classified by a generalized cohomology
theory [23–25], which builds on earlier work on the K-
theory classification of gapped free-fermion phases [26].
Given a non-negative integer d and any topological space
X (not necessarily with the physical interpretation of pa-
rameter space), a generalized cohomology theory assigns an
Abelian group Ed (X ). Taking X to be a single point, in Ki-
taev’s proposal Ed (pt) is the group of ordinary d-dimensional
invertible phases. More generally, Ed (X ) is the group of d-
dimensional invertible phases over X . Establishing Kitaev’s
proposal remains an open problem, and we discuss its status in
Sec. VI.
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Understanding whether or not gapped invertible phases
are classified by a generalized cohomology theory, and if so
which cohomology theory, is important for illuminating the
relationship between gapped phases and quantum field theory.
Invertible topological quantum field theories (TQFTs) have
been shown to be classified by a generalized cohomology
theory [27]. It is generally believed that invertible gapped
phases are well described by invertible TQFTs, and one way
to establish this would be to show the corresponding coho-
mology theories are the same.

B. Overview of the paper

This paper consists of two intertwined threads that we
now describe; this discussion also serves as an outline of the
remainder of the paper. One of these threads, in Secs. IV, V,
and VIII, is the development of a bulk-boundary correspon-
dence for Kapustin and Spodyneiko’s higher Berry curvature,
which is a closed (d + 2)-form �(d+2) on parameter space
X , where X is a differentiable manifold and d is the spatial
dimension. This bulk-boundary correspondence clarifies the
physical interpretation of the higher Berry curvature and the
associated quantized KS invariant, and relates it to anomalous
boundary properties of nontrivial phases over X . Sections IV
and V discuss systems in one spatial dimension (1D), while
Sec. VIII discusses higher dimensions.

In a semi-infinite one-dimensional system, we show that
�(3) can be understood as a flow of 2-form Berry curvature
to/from the spatial boundary of the system (Sec. IV). This
is illustrated in a solvable 1D spin chain over S3 denoted
as H1D (Sec. IV A). Spatial boundaries of this model are
anomalous, with a single gapless Weyl point over S3, which
is impossible for a strictly zero-dimensional (0D) system
over S3. The boundary phenomena are associated with a bulk
nonzero quantized KS number of 2π , showing that H1D is in
a nontrivial phase over S3. The KS number is computed in
Sec. IV B following a review of Kapustin and Spodyneiko’s
results. The bulk-boundary correspondence, which gives �(3)

the interpretation of a flow of Berry curvature, is developed in
Sec. IV C, and is further illustrated in H1D by a “clutching
construction” in Sec. IV D. Finally, Sec. IV E presents an
inverse system for H1D, in the sense that H1D stacked with
its inverse is in the trivial phase over S3.

As a consequence of the bulk-boundary correspondence,
we should expect that it is possible to construct a 1D system
that can be understood as a Chern number pump. In Sec. V,
we construct such a system over S2 × S1, which is closely
related to the system H1D over S3. Upon cycling the periodic
parameter taking values in S1, a quantized Chern number
(over S2) is pumped to/from the spatial boundary.

More generally, in d dimensions, �(d+2) has the interpreta-
tion of a flow of (d + 1)-form higher Berry curvature to/from
a (d − 1)-dimensional spatial boundary (Sec. VIII). After re-
viewing higher Berry curvature in systems of dimension two
and higher (Sec. VIII A), we introduce a solvable 2D model
over S4 denoted H2D (Sec. VIII B). Just like H1D has a bound-
ary termination with a single gapless point that is a source of
Berry curvature (a Weyl point), similarly a boundary of H2D

has a gapless point that sources the 1D higher Berry curvature
�(3). We develop the bulk-boundary correspondence for the

higher Berry curvature �(4) in two dimensions, and use this
to compute the KS number of H2D, showing it takes the non-
trivial quantized value 2π (Sec. VIII C). H2D can be obtained
from H1D by the suspension construction (see below) and it
is not a coincidence that these two systems have the same KS
number. Indeed, in Sec. VIII D we show that upon applying
the suspension construction to a d-dimensional system over
X (where X is a (d + 2)-dimensional oriented closed differ-
entiable manifold), the resulting (d + 1)-dimensional system
has the same KS number as the input d-dimensional system.
It follows that there is a sequence of d-dimensional systems
over Sd+2, all with KS number 2π , of which the first three
members are (in d = 0) a single spin 1

2 in a Zeeman mag-
netic field, H1D and H2D. The dth system in this sequence
is obtained from the d = 0 system over S2 by applying the
suspension construction d times. Finally, in Sec. VIII E we
discuss (d + 1)-dimensional systems over X × S1 that pump
d-dimensional KS number to/from the spatial boundary.

The second thread discusses general results and expecta-
tions for gapped parametrized systems, and introduces a pair
of general quantum pumping constructions, based on physical
pictures introduced by Kitaev [23–25], that take as input a
d-dimensional parametrized system and produce a (d + 1)-
dimensional system. The key property of the output system is
a pumping or flow of the input d-dimensional system to/from
a spatial boundary. These constructions can be used to gener-
ate many examples of parametrized systems.

Section III discusses parametrized quantum systems in
general, and in particular gives a detailed account of the no-
tion of “phases over X ,” i.e., phases of parametrized systems
over the parameter space X . We also discuss the notion of
invertible systems and phases over X , discuss their expected
anomalous boundary properties, and formulate a conjectured
bulk-boundary correspondence for invertible systems. We for-
malize the idea that a system’s Hamiltonian near a spatial
boundary can depend on additional parameters that do not
affect the bulk Hamiltonian.

In Sec. VI, we discuss the expectation that phases of in-
vertible parametrized systems are classified by a generalized
cohomology theory [23–25]. First in Sec. VI A, assuming this
proposal is true, we discuss its consequences. Our focus is
on using generalized cohomology classification to guide the
construction of new examples, emphasizing the important role
of the suspension isomorphism from this perspective. Then
in Secs. VI B and VI C, we review the generalized coho-
mology proposal and sketch a potential strategy to construct
a generalized cohomology theory of parametrized invertible
phases.

The heart of the second thread is Sec. VII, where we intro-
duce the general quantum pumping constructions and study
their boundary physics. One of these constructions, which
is the suspension construction referred to above, takes as
input a d-dimensional invertible system Hd over X , and pro-
duces a (d + 1)-dimensional invertible system SHd over the
(unreduced) suspension SX . The suspension SX is a quotient
space formed from the product X × [−1, 1] by identifying
each of X × {1} and X × {−1} to single points. If X = Sn,
then SX ∼= Sn+1. Making slightly different choices, we instead
obtain a (d + 1)-dimensional system PHd over X × S1. While
the explicit examples studied in this paper are bosonic systems

125147-3



XUEDA WEN et al. PHYSICAL REVIEW B 108, 125147 (2023)

without symmetry, we emphasize that these quantum pumping
constructions are not limited to this setting, and can be applied
to invertible phases with any desired attributes. We conjecture
the suspension construction gives a concrete realization of the
suspension isomorphism in a generalized cohomology theory
classifying gapped invertible phases.

After introducing the quantum pumping constructions in
Sec. VII A, we discuss their boundary physics in Sec. VII B.
In particular we show that PHd can be viewed as a pump of
the d-dimensional phase invariant of Hd over X , from a spatial
boundary into the bulk, upon cycling the periodic parameter
in S1. Similarly, SHd can be understood in terms of flow of
the d-dimensional phase invariant from the boundary to the
bulk; the essence of this phenomenon is the same as in PHd

but is not pumping in a strict sense, due to the absence of
a suitable periodic parameter. Finally, Sec. VII C provides a
road map toward potentially establishing that the suspension
construction realizes the suspension isomorphism in a gener-
alized cohomology theory of invertible phases.

The paper concludes with a discussion in Sec. IX. Some
technical details, on computation of the KS number, properties
of the solvable models, and the locality of the higher Berry
curvature, are contained in Appendixes.

II. CHERN NUMBER, THE THOULESS CHARGE PUMP,
AND GENERALIZATIONS

Here we review two well-known examples of parametrized
quantum systems, as well as some recent work on
parametrized quantum systems and related topics. Our first
example is a 0D spin- 1

2 quantum system over S2 [11,12].
We parametrize points of S2 by w = (w1,w2,w3) with w2

1 +
w2

2 + w2
3 = 1. The Hamiltonian is

H (w) = w1σ
1 + w2σ

2 + w3σ
3, (1)

where σ 1,2,3 are the usual Pauli operators. The eigenvalues are
E± = ±1 for all w ∈ S2, so the Hamiltonian is gapped and
defines a 0D system over S2.

It is well known that there is no way to consistently define
the phase of the ground state globally over S2; the obstruction
to doing so is captured by the integral of the Berry curvature
over S2. The Berry curvature is a 2-form �(2) on S2 [see (13)
for a general expression], and for this system is given by

�(2) = sin θ

2
dθ ∧ dφ, (2)

where θ and φ are the usual spherical polar coordinates.
The Chern number

C =
∫

S2
�(2) = 2π (3)

measures the obstruction not only to defining the phase of
the ground state globally over S2, but also, at the same time,
to deforming the parametrized family H (w) to a trivial (i.e.,
constant) family over S2 without closing the gap for some
w ∈ S2. In more detail, suppose we have a homotopy H (w, t )
taking values in Hermitian 2 × 2 matrices, where t ∈ [0, 1]
and H (w, 0) = H (w). If H (w, 1) is constant (i.e., does not
depend on w), the associated Chern number would be zero,

which is only possible if H (w, t ) is gapless for some value of
(w, t ) ∈ S2 × [0, 1].

In more mathematical language, the ground states form a
line bundle over S2 which does not admit a nowhere vanishing
global section, due to the nonvanishing first Chern class which
generates H2(S2,Z). It is impossible to deform H (w) to a
family which is constant over S2 because the ground states of
a constant family of Hamiltonians form a trivial line bundle.

We note that defining the Chern number requires us to
specify an orientation on S2; this is required for the integral∫

S2 �(2) to make sense. We choose the orientation given by
the locally defined 2-form dθ ∧ dφ. This is the same as what
we refer to as the outward-normal orientation on S2, which
is given by viewing S2 ⊂ R3, and defining a basis (b1, b2) of
the tangent space TxS2 at a unit vector x ∈ R3 to be positively
oriented if (x, b1, b2) has the same orientation as the standard
orientation on R3.

Our second familiar example is the Thouless charge pump
[13]. In our terminology, this a 1D quantum system over S1

with a U(1) symmetry. A parametrized Hamiltonian for the
Thouless charge pump is

H (w1,w2) = −w1

2

∑
i∈Z

(−1)ic†
i ci +

∑
i∈2Z

g+(w2)c†
i ci+1

+
∑

i∈2Z+1

g−(w2)c†
i ci+1 + H.c., (4)

where w = (w1,w2) with w2
1 + w2

2 = 1 parametrizes points
of S1 and where the functions g±(w2) are chosen as follows:

g+(w2) =
{
w2, w2 � 0

0, w2 � 0
(5)

g−(w2) =
{

0, w2 � 0

−w2, w2 � 0.
(6)

The ci and c†
i are fermion creation and annihilation operators

indexed by lattice sites i ∈ Z, satisfying the anticommuta-
tion relations {c j, ck} = {c†

j , c†
k} = 0, and {c j, c†

k} = δ jk . The
Hamiltonian clearly has a U(1) charge conservation symmetry
at all points in parameter space. This free-fermion system is
a two-band insulator with flat bands for all (w1,w2), and is
therefore gapped at a filling of one fermion per lattice site.

This system over S1 is nontrivial because it exhibits quan-
tized charge pumping. Interpreting the S1 as a time parameter
to be cycled adiabatically, one unit of charge will be pumped
through any point of the lattice over a single cycle. It was
argued early on that this phenomenon is robust to interactions
and to disorder [28]; any deformation of the system over S1

that preserves the gap and the U(1) symmetry will pump the
same quantized amount of charge.

One simple way to understand the robustness of the quan-
tized charge pumping is to consider a semi-infinite system,
i.e., a system with a spatial boundary. For instance, one can
define a system with boundary by retaining all lattice sites
with i � N , taking N even, and dropping all terms in the
Hamiltonian that couple to sites with i > N while keeping
other terms unchanged. One finds that the energy spectrum
is gapless at the single point of parameter space (0, 1) ∈ S1
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and gapped otherwise. Upon tuning w ∈ S1 across the gapless
point, the U(1) charge of the ground state jumps by unity. As
a result, there is no way to consistently define the ground-state
charge as a function of w ∈ S1; this would be impossible for a
strictly 0D system over S1, and the boundary is anomalous in
this sense. In the semi-infinite system, such a charge jump is
allowed because it is compensated by a quantized pumping of
charge from the bulk to the boundary (or vice versa). Finally,
while modifying the Hamiltonian near the boundary can in-
troduce additional gapless points where the charge jumps, this
cannot change the total net quantized jump in charge as w is
cycled around S1.

We now briefly mention some recent works that pertain
to generalizations of the two familiar examples reviewed
above, especially in higher-dimensional interacting systems.
In free-fermion systems, higher-dimensional analogs of the
Thouless charge pump were considered by Teo and Kane [14].
Among other results, they classified parametrized families
of d-dimensional free-fermion systems, in particular over D-
dimensional spheres SD.

Building on a proposal of Kitaev [15], Kapustin and Spo-
dyneiko generalized the Berry curvature (a 2-form for d = 0
systems) to families of gapped many-body systems in d spatial
dimensions [18]. The higher Berry curvature is constructed as
a closed (d + 2)-form on the parameter space. The cohomol-
ogy class of the higher Berry curvature defines a topological
invariant which we refer to as the KS invariant. Moreover,
when the parameter space X is an oriented (d + 2)-manifold,
the higher Berry curvature can be integrated over X , resulting
in the KS number, which was argued to be quantized for
invertible systems.

Reference [19] studied generalizations of the Thouless
charge pump to d-dimensional systems with U(1) symme-
try over Sd . Reference [20] studied parametrized families of
quantum field theories and their associated topological terms,
focusing in particular on many-body diabolical points in phase
diagrams that generalize Weyl points in 0D, and on boundary
phenomena. See also Ref. [29] for a classification of topo-
logical phases with crystalline symmetry using parametrized
families of TQFTs.

Recently, the generalization of quantum pumping to
parametrized families of systems with discrete symmetries
and various types of parameter spaces X was reported in
Ref. [21]. Later in Ref. [22], the quantum pumping in in-
vertible quantum spin systems with discrete symmetries was
studied. Focusing on X = S1, it was shown that a lower-
dimensional symmetry-protected topological phase is pumped
to the boundary after a nontrivial cycle of quantum pumping.
In addition, it was shown that a symmetry-protected topolog-
ical phase in one dimension lower can be trapped at a spatial
texture in the parametrized system.

From the perspective of quantum field theory, so-called
anomalies in the parameter space were recently studied in
parametrized families of quantum field theories [16,17,30–
34]. In a theory with global symmetries, a ’t Hooft anomaly
can be diagnosed by coupling to background gauge fields
and finding that the resulting partition function is not gauge
invariant. In parametrized families of quantum field theories,
by viewing the scalar coupling constants as background fields,
the notion of ’t Hooft anomalies can be extended to include

these fields. Quantum field theories with such anomalies arise
as effective field theories for spatial boundaries of the gapped
invertible parametrized quantum systems that are the focus of
this paper.

III. PARAMETRIZED SYSTEMS AND PHASES

Here we give a more detailed account of what we mean
in this paper by systems and phases over X . We also discuss
the notions of trivial and invertible systems and phases over
X . We do not aim to be mathematically precise or to give a
complete discussion of all the issues that arise in attempting
to define phases. Instead, our intent is to give enough detail
for a theoretical physicist reader to understand what we mean
by systems and phases over X . Indeed, some degree of detail
is necessary given that these notions are not standard in con-
densed matter physics.

First we recall the definition of a d-dimensional gapped
quantum system over X . To specify such a system, we take the
d-dimensional lattice Zd , and place some degrees of freedom
at each lattice site, as usual for quantum lattice systems in
d dimensions. (If d = 0 the lattice is a single point.) These
degrees of freedom can be either bosonic or fermionic. We
may choose to impose some symmetry; to avoid subtleties, we
only consider unitary or antiunitary internal symmetries (i.e.,
symmetries that do not permute lattice points) throughout.
We then imagine that we have a space GH of gapped, finite-
range Hamiltonians respecting the symmetry (if any). We also
sometimes write GHd when we want to emphasize the spatial
dimension. Having made these choices, we fix a topological
space X (the parameter space), and a gapped system over X
is a continuous map H : X → GH. More generally, a (not
necessarily gapped) system over X is a continuous map H :
X → H, where H is a space of all finite-range Hamiltonians.

It is convenient to denote a system over X by H , where H
is the Hamiltonian map H : X → GH. However, it is impor-
tant to keep in mind that this is a shorthand notation. More
precisely, we should say that a system over X is specified by
the following data:

(1) The spatial dimension d .
(2) The local degrees of freedom attached to each lattice

site.
(3) The symmetry imposed, if any.
(4) The parameter space X .
(5) The continuous map H : X → GH. (Note that we sup-

pose the first three pieces of data give us the space GH.)
A system H over X is said to be trivial if the map H

is constant as a function of x ∈ X , and if the Hamiltonian
H (x) is that of a collection of decoupled zero-dimensional
systems, one for each lattice site. The ground state is thus a
product state (for bosonic systems) or an atomic insulator (for
fermions). In defining trivial systems, it might be tempting
only to require that H (x) is a collection of decoupled d = 0
systems for each x ∈ X , but not to require that H (x) is con-
stant. However, this choice is unnatural as it would cause
problems in d = 0, where it would lump the example of a spin
1
2 in a Zeeman field into the trivial phase (as defined below),
even though this system is characterized by a nonzero Chern
number.
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There is an important binary operation defined on systems
over X of the same spatial dimension referred to as stacking,
where two decoupled systems H1 and H2 are placed “on top
of one another.” For instance, in the case of bosonic systems,
the Hilbert space at each lattice site is a tensor product of the
two systems being stacked. The Hamiltonian is Hstack (x) =
H1(x) ⊗ 1 + 1 ⊗ H2(x). We often denote the stacked system
by writing H1 � H2. Note that stacking two trivial systems
produces another trivial system.

Now we can describe gapped phases over X as equivalence
classes of gapped systems over X . First of all, we do not
consider all gapped systems over X when discussing phases.
Instead we fix the spatial dimension d , whether fermionic
degrees of freedom are allowed, and the symmetry imposed
(if any). We also fix the parameter space X . Phases are
equivalence classes defined on the set of systems with the
preceding fixed characteristics. The equivalence relation is
then generated by three operations, deformation, stacking, and
isomorphism, which we describe in turn. It is helpful to think
of these operations as “moves,” and two systems are equiva-
lent when they are related by a finite sequence of such moves.
Mathematically, these operations specify a binary relation on
systems, and we take the equivalence relation generated by
this binary relation.

First, two systems H1 and H2 over X are in the same phase
if their Hamiltonian functions can be deformed continuously
into one another while keeping the gap open and preserving
the symmetry. More precisely, we have a homotopy between
the maps H1 : X → GH and H2 : X → GH. That is, we have
a continuous map H : X × [0, 1] → GH, with values writ-
ten H (x, t ), so that H (x, 0) = H1(x) and H (x, 1) = H2(x).
[Note that by demanding H (x, t ) ∈ GH, the Hamiltonian is
automatically gapped and symmetry invariant for all (x, t ) ∈
X × [0, 1].] When X = pt, this reduces to the usual notion
that two gapped systems whose Hamiltonians are joined by
a path are in the same phase, as long as the path is through
gapped, symmetry-respecting Hamiltonians.

Second, two systems H1 and H2 over X are considered to be
in the same phase when they become the same upon stacking
with trivial systems T1 and T2. That is, more precisely, H1

and H2 are in the same phase if there exist trivial systems T1

and T2 such that H1 � T1 = H2 � T2. The motivation for this
equivalence operation is the same for parametrized systems as
for ordinary systems (i.e., systems over a point). Lattice mod-
els of quantum systems are always idealizations that ignore
some effectively inert degrees of freedom, like the atomic core
levels in a solid. Whether or not we ignore some such degrees
of freedom is a choice we make in our theoretical description,
so it should not affect which phase a given system is in. This
equivalence operation ensures that phases are not sensitive to
such choices.

Finally, and perhaps least familiar, we should allow for a
notion of isomorphism between systems, and consider iso-
morphic systems to be in the same phase. Isomorphism should
capture the rough idea that two different systems as defined
above may in fact be different mathematical descriptions of
“the same” physical system. For example, we may have two
systems that are mapped into one another by a unitary trans-
formation (constant over X ), where the unitary is a product of
single-site unitary operators. Such a unitary is nothing but a

local basis change, and two systems thus related are clearly
different descriptions of the same physical system. Another
example is that two systems related by a translation of the
lattice should be considered isomorphic since the only differ-
ence between such systems is the arbitrary choice of origin.
Beyond these two examples, additional kinds of isomorphism
may ultimately be needed to give a mathematically precise
and physically sensible definition of phases (whether ordinary
phases or phases of parametrized systems). However, this
issue is not important for our present purposes and will thus
be left for the future.

We can compare phases over two parameter spaces X
and Y if we are given a continuous map f : X → Y . Then
given a system H over Y , we can form the pullback system
f ∗H over X , whose Hamiltonian map is simply H ◦ f . The
pullback gives a function f ∗ : Pd (Y ) → Pd (X ), where Pd (X )
and Pd (Y ) are the sets of d-dimensional gapped phases over
the corresponding spaces. It is straightforward to show that
if f : X → Y is a homotopy equivalence, then f ∗ : Pd (Y ) →
Pd (X ) is a bijection. It is an important point that, in this sense,
only the homotopy type of X plays a role in studying phases
over X .

The trivial phase over X is defined to be the unique phase
containing any trivial system over X . This is well defined
because any two trivial systems T1 and T2 are obviously in
the same phase because T1 � T2 and T2 � T1 are isomorphic
(trivial) systems. Note that our terminology distinguishes be-
tween the trivial phase and trivial systems, and, in particular, a
typical system in the trivial phase will not be a trivial system.

An important subset of phases are the invertible phases,
which form an Abelian group under the stacking operation.
A system H over X is invertible (or, synonymously, in an
invertible phase) if there exists another system H over X such
that H � H is in the trivial phase. In this paper, we denote the
group of d-dimensional invertible phases over X by Ed (X ). It
is easy to show that if H is invertible, then, for each x ∈ X ,
H (x) is an invertible system over a point. While the converse
statement is physically reasonable, it is not obviously true.

Physically, invertible systems over a point are character-
ized by a lack of fractional bulk excitations, and by spatial
boundaries with a range of interesting properties. Roughly
speaking, the boundary of a nontrivial d-dimensional invert-
ible phase (over a point) is anomalous in the sense that
it cannot occur on its own as a (d − 1)-dimensional quan-
tum system. Another sense in which the boundary physics
is anomalous is that a QFT description of the boundary is
characterized by a nontrivial quantum anomaly.

We expect a similar situation for invertible systems over
X , but before stating our expectations, some general remarks
about systems with spatial boundaries are needed. Suppose
we have a d-dimensional system over X (not necessarily
invertible), and we truncate the lattice to expose a (d −
1)-dimensional spatial boundary. Sufficiently far away from
the boundary, the local terms in the Hamiltonian H (x) are
the same as before the boundary was introduced. However,
the Hamiltonian near the boundary is not naturally given in
terms of H (x). Moreover, the Hamiltonian near the bound-
ary can depend on additional parameters that do not affect
the bulk Hamiltonian. This can be formalized by introducing
“bulk” and “boundary” parameter spaces Xbulk and Xbdy, with a
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surjective map π : Xbdy → Xbulk. The system with boundary is
a system (not necessarily gapped) over Xbdy. However, away
from the boundary, the local terms in the Hamiltonian only
depend on x ∈ Xbdy through π (x) ∈ Xbulk. The simplest pos-
sibility is of course Xbulk = Xbdy with π the identity map, but
other situations will arise in the discussion of later sections.

Now suppose we have a nontrivial d-dimensional invertible
system over X , in the presence of a spatial boundary, in the
simple case X = Xbulk = Xbdy. We expect that the (d − 1)-
dimensional spatial boundary is anomalous if viewed as a
(d − 1)-dimensional system over X , in the sense that some
property of the boundary is impossible for a strictly (d − 1)-
dimensional system over X . There is an important difference
from systems over a point, which is clearest when X is con-
nected and when H (x) is in the trivial phase (over a point)
for each x ∈ X . In such cases, which include the concrete
examples studied in this paper, the anomalous nature of the
boundary will only be apparent globally, i.e., by examining
the boundary physics as x varies over all of X . In contrast,
the local boundary physics in a contractible neighborhood
of some x0 ∈ X is not anomalous and can be realized in a
strictly (d − 1)-dimensional system. In different language, we
expect that a QFT for the boundary will be characterized by a
nontrivial anomaly in the space of coupling constants [16,17].

Another way to phrase our expectations is in terms of a
bulk-boundary correspondence:

Bulk-boundary correspondence. Two invertible systems H1

and H2 over X are in the same phase if and only if there exists
a trivially gapped spatial interface between them.

By a spatial interface, we mean a third system over X
whose Hamiltonian is locally that of H1 on one side of a
codimension one boundary region, and locally that of H2 on
the other side of the boundary. By trivially gapped, we mean
that the interface, in addition to being gapped, lacks fractional
excitations and spontaneous symmetry breaking for all points
x ∈ X . We obtain a special case of the bulk-boundary corre-
spondence by thinking of vacuum as a system in the trivial
phase, then the bulk-boundary correspondence implies that an
invertible system over X is in the trivial phase if and only
if it admits a trivially gapped boundary (i.e., trivially gapped
interface to vacuum).

IV. FLOW OF BERRY CURVATURE AND
BULK-BOUNDARY CORRESPONDENCE

IN 1D PARAMETRIZED SYSTEMS

In this section, we construct a parametrized family of 1D
lattice models over X = S3 (Sec. IV A), and study its bulk
and boundary properties. The spatial boundary of our model
has a single gapless Weyl point over S3, which is impos-
sible for a strictly zero-dimensional system over S3 and is
thus anomalous. In Sec. IV B, after reviewing Kapustin and
Spodyneiko’s work on the higher Berry curvature and the
associated quantized KS invariant, we compute these quan-
tities for our solvable model over S3. We then develop a
bulk-boundary correspondence relating the bulk higher Berry
curvature to the flow of Berry curvature to/from a spatial
boundary (Sec. IV C). In Sec. IV D we describe a clutch-
ing construction that provides another way of understanding
the relationship between the 1D KS invariant and the Chern

number in zero dimensions. Finally, Sec. IV E presents a
system over S3 that is an inverse to the system introduced in
Sec. IV A; the KS numbers of these two systems are opposite,
and when stacked together, they can be deformed to a trivial
system.

A. Exactly solvable 1D lattice model over S3

We consider a one-dimensional bosonic system with a sin-
gle qubit placed at each lattice site, and choose the parameter
space X = S3. This choice of parameter space is motivated
by the results of Kapustin and Spodyneiko, which lead us
to expect nontrivial phases over S3 in d = 1. In more detail,
the KS invariant is given by integrating a closed 3-form with
quantized periods over X , suggesting a Z classification over
S3. From a different point of view, it is believed that the clas-
sifying space of bosonic d = 1 gapped invertible phases is a
K (Z, 3), which also gives a classification by H3(S3,Z) ∼= Z.

The Hamiltonian has the form

H1D(w) =
∑
p∈Z

H1
p (w) +

∑
p∈2Z+1

H2,+
p,p+1(w) +

∑
p∈2Z

H2,−
p,p+1(w),

(7)
where w ∈ S3. It is convenient to view S3 as a subspace
of R4 and write w = (w1,w2,w3,w4) with the constraint∑4

i=1 w2
i = 1. The first term in Eq. (7) is a single-spin term,

with

H1
p (w) = (−1)p

(
w1σ

1
p + w2σ

2
p + w3σ

3
p

)
, (8)

where p ∈ Z denotes the lattice site, and σ 1,2,3
p are Pauli

matrices of the qubit at site p. Note that H1
p = 0 at the two

poles w4 = ±1 of S3, where w1 = w2 = w3 = 0. The second
and third terms are two-spin terms given by

H2,±
p,p+1(w) = g±(w)

∑
μ=1,2,3

σμ
p σ

μ
p+1. (9)

The real functions g±(w) are chosen as follows:

g+(w) =
{
w4, 0 � w4 � 1

0, otherwise
(10)

and

g−(w) =
{−w4, −1 � w4 � 0

0, otherwise.
(11)

We remark that H (w) is continuous but not smooth at
w4 = 0. As we will see later, with this choice, the higher Berry
curvature will not be continuous at w4 = 0. If desired, one can
of course smooth out the function g±(w) at w4 = 0 so that
the higher Berry curvature becomes continuous at w4 = 0.
However, smoothness of g±(w) will not be essential for our
purposes. In particular, the KS invariant is an integral of the
higher Berry curvature over S3, so the discontinuity at w4 = 0
will not cause problems.
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Pictorially, the Hamiltonian in (7) for different values of
w4 ∈ [−1, 1] can be visualized as follows:

(12)
We use “+” (respectively “−”) to represent a lattice site with
nonzero single-spin term H1

p∈2Z (respectively H1
p∈2Z+1), while

“•” represents a lattice site with vanishing single-spin term,
as occurs at w4 = ±1. Two-spin terms are represented by
solid lines joining pairs of lattice sites. At w4 = 0, the system
is composed of decoupled 0D quantum systems over the S2

subspace of S3 obtained by setting w4 = 0. These systems
are characterized by a Chern number of 2π (respectively
−2π ) on even (respectively odd) lattice sites. Then for 0 <

|w4| < 1, pairs of nearest-neighbor lattice sites are coupled as
represented by solid line segments. Finally, at the two poles
w4 = ±1, the single-spin terms in (8) vanish, and there are
only two-spin terms in (9).

We emphasize that the 0D example of a spin 1
2 in a Zeeman

magnetic field appears as an ingredient in the construction of
this 1D system. Indeed, this system is a special case of the
suspension construction introduced below in Sec. VII, which
starts with a d-dimensional system over X and produces a
(d + 1)-dimensional system over SX . In the present case the
parameter space of the 0D system is S2, the suspension of
which is homeomorphic to the 3-sphere, i.e., S(S2) ∼= S3.

The Hamiltonian H1D(w) is exactly solvable because the
lattice always decomposes into decoupled dimers. Therefore,
it is straightforward to verify that the bulk energy spectrum is
gapped for all w ∈ S3 (see Appendix A).

The properties of the model at a spatial boundary indicate
that the system is in a nontrivial phase over S3. We truncate
the 1D lattice at the site p = N , keeping all lattice sites with
p � N but removing those with p > N . All Hamiltonian terms
coupling to sites with p > N are dropped, and all other terms
are retained unmodified. This choice of boundary termination
does not enlarge the parameter space at the boundary, i.e., we
have Xbulk = Xbdy = S3 in the notation introduced in Sec. III.

Now taking N even, the p = N boundary site is decoupled
from the bulk for w4 � 0, and it is easily seen that the system
is gapped for all w ∈ S3 except at the pole w4 = −1, where
H1

N (w) for the boundary site has a gapless Weyl point. If on the
other hand we take N odd, then the boundary site is decoupled
from the bulk for w4 � 0, and there is a single gapless Weyl
point at the opposite pole (w4 = 1).

If we view the boundary as an effective d = 0 system, the
presence of a single Weyl point over S3 is anomalous, and
clearly cannot occur for a strictly zero-dimensional system
over S3. This can be seen by surrounding the Weyl point
with a small 2-sphere � ⊂ S3. In a strictly d = 0 system, the
Berry curvature 2-form �(2) is well defined on S3 away from
the gapless point, and

∫
�

�(2) = ±2π because � surrounds

a single Weyl point. On the other hand, if the S3 has only a
single gapless Weyl point, � can be shrunk to a point (e.g.,
the w4 = 1 pole, opposite the Weyl point), so we must have∫
�

�(2) = 0, a contradiction. This anomalous nature of the
boundary indicates that the bulk 1D system is in a nontrivial
phase over S3. Moreover, this also indicates that the model
generates (under stacking) a factor of Z in the classification of
phases, where the Z is interpreted as the total integer-valued
index of all isolated gapless points at the d = 0 boundary.

B. Higher Berry curvature and KS invariant

Given the anomalous boundary physics of our model, it
is natural to ask whether its nontrivial topological properties
can also be understood from a bulk perspective. The desired
bulk characterization is provided by the KS invariant obtained
from the recently proposed higher Berry curvature [18]. After
reviewing these concepts in Sec. IV B 1, we compute the KS
number in our model and show that it is 2π (Sec. IV B 2).

1. Review of Kapustin-Spodyneiko results

Here we briefly review Kapustin and Spodyneiko’s con-
struction of the higher Berry curvature and the associated
KS invariant [18]. For d-dimensional lattice systems over X ,
those authors constructed a closed (d + 2)-form on X with
quantized spherical cycles, the higher Berry curvature. The
d = 0 case is simply the usual Berry curvature. While the
(d + 2)-form itself depends on the details of its construction,
and moreover is sensitive to deformations of the system within
a phase, its cohomology class valued in Hd+2(X,R) is a
topological invariant. In this section we focus on the d = 1
case, discussing d � 2 in Sec. VIII D.

Consider a d = 0 gapped system over X , where X is a
differentiable manifold. It is well known that one can define
the 2-form Berry curvature as

�(2) = i

2

∮
dz

2π i
Tr(G dH G2 dH ), (13)

where H is the Hamiltonian and G = 1
z−H the Green’s func-

tion. Without loss of generality, the ground-state energy is
assumed to be constant over X , and

∮
is a counterclockwise

contour integral taken around the ground-state energy. In (13),
d denotes the exterior derivative on X , i.e., in local coordinates
λa we have dH = ∑

a dλa ∂H
∂λa .

For an infinite 1D system, the quantity in (13) may be
divergent. For example, if the 1D lattice is composed of an
infinite number of decoupled 0D quantum systems, then (13)
reduces to an ill-defined infinite sum of Berry curvatures over
the decoupled systems. A well-defined finite quantity is

F (2)
pq = i

2

∮
dz

2π i
Tr(G dHp G2 dHq). (14)

Here p, q ∈ Z, and we have written the Hamiltonian as a sum
of local terms H = ∑

p∈Z Hp, where the support of Hp lies
within some fixed distance ξ of the site p (i.e., ξ is indepen-
dent of p, so the Hamiltonian is finite ranged). For gapped
Hamiltonians H , F (2)

pq decays exponentially as a function of
|p − q| [35].
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Based on F (2)
pq , we can construct the well-defined 2-form

F (2)
q =

∑
p∈Z

F (2)
pq = i

2

∮
dz

2π i
Tr(G dH G2 dHq ). (15)

The form F (2)
q is not closed, and its exterior derivative can be

written as

dF (2)
q =

∑
p∈Z

F (3)
pq . (16)

Here, the 3-form F (3)
pq is antisymmetric under exchange of site

labels p ↔ q, and is given by

F (3)
pq = i

6

∮
dz

2π i
Tr(G2dHGdHpGdHq − GdHG2dHpGdHq)

− (p ↔ q). (17)

Similar to F (2)
pq , the 3-form F (3)

pq is a well-defined quantity
which decays exponentially in |p − q| for a gapped Hamil-
tonian H [35]. Furthermore, one can check that

dF (3)
pq =

∑
r∈Z

F (4)
r pq, (18)

where F (4)
pqr is a 4-form that is completely antisymmetric in p,

q, r.
Using F (3)

pq in Eq. (17), one can construct the higher Berry
curvature as a closed 3-form �(3), defined by

�(3)( f ) = 1

2

∑
p,q∈Z

F (3)
pq · [ f (q) − f (p)], (19)

where f : Z → R is a function which is 0 for p � 0 and 1
for p  0. The sum converges because F (3)

pq decays exponen-
tially in |p − q|, and it can be shown using Eq. (18) and the
antisymmetry of F (4)

pqr that d�(3)( f ) = 0. A simple choice of
f is a step function f (p) = �(p − a) with a ∈ Z + 1

2 , such
that f (p) = 0 for p < a and f (p) = 1 for p > a. This results
in the simple expression

�(3)( f ) =
∑

p<a,q>a

F (3)
pq . (20)

Kapustin and Spodyneiko argued that the cohomology class
[�(3)( f )/2π ] ∈ H3(X,R) is an invariant of a phase over X
[18]. This cohomology class is the KS invariant, and it can
be considered as an obstruction to continuously deforming
the family to a constant family of gapped systems over the
parameter space.

Moreover, in invertible systems, Kapustin and Spodyneiko
argued that the KS invariant is quantized [18]; in particu-
lar, if X = S3, then

∫
S3 �(3)( f ) ∈ 2πZ. In more detail, they

showed that �(3)( f ) has quantized spherical cycles (in units
of 2π ). This means that, for any smooth map φ : S3 → X ,∫

S3 φ∗�3( f ) ∈ 2πZ, where φ∗ denotes the pullback. At least
for X = S3, this allows us to view the cohomology class
[�(3)( f )/2π ] as an element of H3(S3,Z) = Z, as we now
explain. The inclusion i : Z ↪→ R induces a map on cohomol-
ogy i∗ : H3(X,Z) → H3(X,R). When X = S3, i∗ is injective,
and the property of quantized spherical cycles implies that
[�(3)( f )/2π ] lies in the image of i∗, so we can view the KS
invariant as an element of H3(S3,Z) = Z. For general closed

differentiable manifolds X it is expected, though we are not
aware of a proof, that [�(3)( f )/2π ] again lies in the image
of i∗, and is quantized in this sense. In the general case i∗ is
not injective, but its image is instead isomorphic to H3(X,Z)
modulo its torsion subgroup, so [�(3)( f )/2π ] can be viewed
as an element of this quotient group.

In addition, if X is an oriented, closed 3-manifold, we can
define the KS number as KS = ∫

X �(3)( f ) ∈ 2πZ, with the
sign depending on the orientation. More generally, if � ⊂ X
is an oriented, closed three-dimensional submanifold, we can
define KS� = ∫

�
�(3)( f ) ∈ 2πZ.

While �(3) depends on the choice of the function f , its
cohomology class and thus the KS invariant does not. Any
two functions f and f ′ differ by a function g with bounded
support on Z, and it is straightforward to check using Eq. (16)
that �(3)(g) = �(3)( f ) − �(3)( f ′) is exact.

Another arbitrary choice involved in the construction of
�(3)( f ) is the choice of local terms Hp needed to write the
Hamiltonian as H = ∑

p Hp. For a given Hamiltonian, any
two such choices can be joined by a continuous path. Because
the KS invariant depends continuously on Hp, and because
the cohomology class [�(3)( f )/2π ] is quantized as described
above, we expect that the KS invariant is again unaffected by
this arbitrary choice.

2. Computation of the KS invariant

Now we compute the higher Berry curvature and KS num-
ber of our 1D lattice model as introduced in Sec. IV A. We
show that the KS number of our lattice model is nonzero
and takes the value KS = 2π . Later, in Secs. IV C and IV D,
we discuss how the KS number is related to pumping the
Chern number of 0D quantum systems by imposing a spatial
boundary.

To compute the 3-form Berry curvature in (17), we need
to choose the local Hamiltonian terms Hp for each lattice site
p ∈ Z. As the Hamiltonian (7) is dimerized, it is convenient
to choose Hp with support only on p and its two nearest
neighbors, as follows:

Hp(w) = H1
p (w) + xH2,±

p,p+1(w) + (1 − x)H2,∓
p−1,p(w), (21)

where we take the upper (respectively lower) sign for p
odd (respectively even), and where 0 � x � 1 is a real w-
independent parameter introduced to illustrate the ambiguity
in choosing local Hamiltonians discussed at the end of
Sec. IV B 1. As discussed there, this ambiguity should not
affect the cohomology class of �(3)( f ). In fact we find that
�(3)( f ) does not depend on x at all; however, the higher Berry
curvature is expected to depend nontrivially on other variables
parametrizing different choices of local Hamiltonians.

We choose the function f needed to construct �(3)( f ) to be
a step function f (p) = �(p − a), taking either a ∈ 2Z − 1/2
or a ∈ 2Z + 1/2. We denote functions for two such choices
of a as f (p) and f ′(p), respectively. These step functions
are illustrated below in relation to the nonzero terms in the
Hamiltonian for w4 > 0:

(22)
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We see that the step in f (p) “cuts through” a dimer, while
the step in f ′(p) lies between dimers. This will have the
consequence that �(3)( f ′) = 0 for w4 > 0, while in general
�(3)( f ) �= 0 for w4 > 0.

We first compute the higher Berry curvature making the
choice f (p). Given the local Hamiltonian in (21), the higher
Berry curvature (20) can be simplified to

�(3)( f ) = F (3)
a−1/2,a+1/2. (23)

This follows from the fact that F (3)
pq = 0 for |p − q| � 2 in

our dimerized Hamiltonian with the local Hamiltonian chosen
in (21). It is also straightforward to check that �(3)( f ) is
only nonzero for 0 � w4 � 1 because for w4 < 0 there is
no overlap in the support of local Hamiltonians Ha−1/2 and
Ha+1/2.

To proceed, it is convenient to change to hyperspherical
coordinates. We write

w1 = sin α cos θ, w2 = sin α sin θ cos φ,

w3 = sin α sin θ sin φ, w4 = cos α,
(24)

where α, θ ∈ [0, π ], and φ ∈ [0, 2π ]. The higher Berry cur-
vature can be explicitly calculated based on Eqs. (17), (20),
and (A2) in Appendix A. We obtain �(3)( f ) = �

(3)
αθφ ( f ) dα ∧

dθ ∧ dφ, with

�
(3)
αθφ ( f ) = 1

2
(2 + cos α) tan2 α

2
sin θ, (25)

where 0 � α � π
2 . For π

2 < α � π , which corresponds to
−1 � w4 < 0, one always has �

(3)
αθφ ( f ) = 0. We note that the

3-form �(3)( f ) is independent of the parameter x in (21).
To discuss the KS number (denoted KS), we fix the orienta-

tion on S3 specified by the (locally defined) 3-form dα ∧ dθ ∧
dφ. In contrast to the orientation chosen on S2 in Sec. II, this
corresponds to the “inward-normal” orientation on S3, which
is given by viewing S3 as a subspace of R4 in the usual way,
and defining a basis (b1, b2, b3) of the tangent space TxS3 at a
unit vector x ∈ R4 to be positively oriented if (−x, b1, b2, b3)
has the same orientation as the standard basis of R4.
The reason we choose the inward-normal orientation is for
the aesthetic purpose of making the KS number positive; if
we instead chose the outward-normal orientation, the sign of
the KS number would be reversed.

We then have [using
∫ π/2

0 dα (2 + cos α) tan2 α
2 = 1]

KS =
∫

S3
�(3)( f ) = 2π. (26)

This takes the quantized value 2π , indicating our lattice model
is in a nontrivial phase over S3.

To illustrate the dependence of the higher Berry curvature
on the choice of function f , we now consider f ′(p) = �(p −
a) for a ∈ 2Z + 1

2 . For 0 � w4 � 1 or equivalently 0 � α �
π
2 , we find �

(3)
αθφ ( f ′) = 0. For −1 � w4 � 0 or equivalently

π
2 � α � π , we obtain

�
(3)
αθφ ( f ′) = 1

2
(2 − cos α) cot2 α

2
sin θ. (27)

The higher Berry curvature is now zero in the upper hemi-
sphere and nonzero in the lower hemisphere of S3. It can
be checked that

∫
S3 �(3)( f ′) = 2π , illustrating that the KS

number does not depend on the choice of f , as explained in
general in Sec. IV B 1.

C. Bulk-boundary correspondence

We now return to the properties of a spatial boundary,
and make a connection between the bulk KS number and the
flow of Chern number to/from the boundary. We formulate a
bulk-boundary correspondence, first for our exactly solvable
model, and then for a generic gapped 1D system over S3.
We restrict attention to the case where the boundary and bulk
parameter spaces are identical, i.e., Xbdy = Xbulk = S3.

1. Exactly solvable model

To formulate a bulk-boundary correspondence for our ex-
actly solvable model, we will need to compare two different
systems. One of these will be the infinite system we have
been focused on so far, which of course does not have a
spatial boundary. The other will be a semi-infinite system
with boundary. We consider the same boundary termination
at the site p = N introduced in Sec. IV A, and recall that the
boundary is gapless at w4 = −1 for N even, and at w4 = 1
for N odd. For concreteness, we now take N even and choose
f (p) = �(p − a) with a ∈ 2Z − 1

2 , where a < N .
In the semi-infinite system, the higher Berry curvature is

only defined on X�, the subspace of X = S3 where the spec-
trum is gapped. In this case, X� = S3\{(0, 0, 0,−1)}, i.e., S3

with the w4 = −1 pole removed. Restricting to X�, due to the
dimerized nature of our model, it is straightforward to see that
the higher Berry curvature is exactly equal to its value in the
infinite system. That is,

�
(3)
∞/2( f ) = �(3)

∞ ( f ), (28)

where �
(3)
∞/2( f ) and �

(3)
∞ ( f ) are the higher Berry curvatures

of the semi-infinite (“∞/2”) and infinite (“∞”) systems, re-
spectively. This expression does not hold as an exact equality
in a generic system, a point that we return to below.

Now we observe that, based on (20), the higher Berry
curvature of the semi-infinite system on X� can be written

�
(3)
∞/2( f ) = dω(2), (29)

where

ω(2) =
∑
p>a

F (2)
p . (30)

The sum in (30) is finite, and thus well defined, because the
system is semi-infinite.

The 2-form ω(2) can be interpreted as a boundary Berry
curvature, and its integral over a closed 2-manifold as a
boundary Chern number, where the “boundary” is considered
to be all lattice sites to the right of a. This interpretation makes
sense because, for those parameter values where the boundary
is decoupled from the bulk, ω(2) reduces to the Berry curvature
of the boundary, which is a 0D system. For such parameters
ω(2) is clearly closed, and hence �

(3)
∞/2( f ) = 0. Moreover, if

� ⊂ X� is a closed oriented 2-manifold such that the bulk
and boundary are decoupled for all x ∈ �, then

∫
�

ω(2) is
quantized. These statements all hold in a generic system.
Of course, the boundary Chern number is not quantized in
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general because for some parameter values the boundary and
bulk are coupled.

In the exactly solvable model, the bulk and boundary are
decoupled for w4 � 0, including the gapless point. For w4 �
0 we can view the (spatial) boundary as a decoupled 0D sys-
tem with a gapless Weyl point at w4 = −1, so for −1 < y � 0
we expect ∫

S2(y)
ω(2) = 2π , (31)

where S2(y) ⊂ S3 is the subspace with w4 = y, and is clearly
homeomorphic to the 2-sphere.

In order to make sense of (31), we need to specify an orien-
tation on S2(y). We do this by introducing the 3-ball D3(y) ⊂
S3 as the subspace of S3 with w4 � y, so then S2(y) = ∂D3(y).
The subspace D3(y) inherits an orientation from the given
orientation on S3. Its boundary S2(y) can be oriented by the
following general procedure, which we will employ through-
out the paper whenever it is necessary to orient the boundary
of a manifold with boundary given an orientation on its
interior.

We rely on Brown’s collaring theorem [36], which says
that any manifold with boundary X possesses a collar that is
a diffeomorphism ϕ : ∂X × [0, 1) → X onto an open neigh-
borhood of the boundary. Assuming that X is embedded in an
oriented manifold M of equal dimension m, the boundary ∂X
is oriented in such a way that a basis (b1, . . . , bm−1) of the
tangent space TxX at a boundary point x ∈ ∂X is positively
oriented if and only if (n(x), b1, . . . , bm−1) is a positively
oriented basis of TxM, where n(x) = −D(x,0)ϕ(0, 1) is the
outward-pointing vector at x defined by the collar. Note that
this definition of an orientation does not depend on the partic-
ular choice of a collar. In the following we will refer to this
procedure of assigning an orientation as the collar method.
Applying it to S2(y) = ∂D3(y) gives the outward-normal ori-
entation described in Sec. II, i.e., the same orientation as given
by the locally defined 2-form dθ ∧ dφ.

Equation (31) can be verified from an explicit computation
of ω(2) on X� (see Appendix A). We find ω(2) = ω

(2)
θφ dθ ∧ dφ,

where

ω
(2)
θφ = sin3 α sin θ

2(1 + cos α)2
, (32)

for 0 � α � π
2 (corresponding to w4 � 0). For π

2 � α < π

(corresponding to 0 � w4 > −1) we have

ω
(2)
θφ = sin θ

2
, (33)

which is nothing but the Berry curvature of the decoupled
p = N qubit at the boundary. This result can be anticipated by
observing that each decoupled dimer gives a vanishing con-
tribution to ω(2), which can be understood by noting that the
Hamiltonian for each dimer is invariant under an antiunitary
symmetry, namely, the combination of time-reversal and the
reflection symmetry exchanging the two sites of the dimer.
Therefore, for w4 � 0, ω(2) = F (2)

p=N .

From (33) we can directly check that (31) indeed holds.
Moreover, by Stokes theorem, we have∫

S2(y)
ω(2) =

∫
D3(y)

�
(3)
∞/2 =

∫
D3(y)

�(3)
∞ . (34)

This relationship between the (nonquantized) boundary Chern
number over S2(y) and the integral of the infinite system’s
higher Berry curvature over D3(y) can be viewed as a bulk-
boundary correspondence, in the special situation of our
exactly solvable model. In particular we have

lim
y→−1

∫
S2(y)

ω(2) =
∫

S3
�(3)

∞ = 2π , (35)

where the limit already attains its value for y � 0. In words,
this equation says that the boundary Chern number over a
small 2-sphere surrounding the gapless point is equal to the
bulk quantized KS invariant.

From the above relations we see that as y decreases contin-
uously from 1 to −1, the boundary Chern number increases
from zero to 2π . We can think of this change as a flow
of Chern number from the semi-infinite bulk to the zero-
dimensional boundary. The boundary Chern number only
changes, and is nonquantized, in the interval y ∈ [0, 1], where
the bulk and boundary are coupled and a nonzero flow of
Chern number is possible. Indeed, combining (29) and (28),
we have

�(3)
∞ = dω(2), (36)

which says that the higher Berry curvature measures the flow
of ordinary Berry curvature to the boundary.

2. Generic system over S3

Now we generalize the above discussion to a generic
gapped 1D bosonic system over S3. We start with an infinite
1D system, and again consider a semi-infinite system obtained
by throwing away lattice sites for p > N . For this generic sys-
tem, we do not specify any particular choice of Hamiltonian
terms near the boundary, but we do require Xbdy = Xbulk = S3.
To discuss the higher Berry curvature in both infinite and
semi-infinite systems, we take f (p) = �(p − a), with a ∈
Z − 1

2 and a < N . To simplify the discussion we first assume
the infinite system has KS = 2π and that the semi-infinite
system is gapless only at the pole w4 = −1, later discussing
more general situations.

The key difference from the exactly solvable model is
that we do not expect (28) to hold in a generic system. It is
certainly the case that �

(3)
∞/2( f ) can be influenced by bound-

ary effects when a is close to the boundary. As an extreme
example of this, suppose that the infinite system (and a) is
chosen so that for some values of w ∈ S3, there is nonzero
coupling between lattice sites lying on different sides of a.
Then, generically �

(3)
∞ �= 0. However, we can always intro-

duce a boundary termination where the lattice sites with p > a
are decoupled from the bulk for all w ∈ S3, guaranteeing that
�

(3)
∞/2( f ) = 0.

However, we can relate �
(3)
∞ and �

(3)
∞/2( f ) in a generic

system based on the observation that F (3)
pq is a local quantity.

More precisely, in Appendix C we express F (3)
pq as a three-

point imaginary-time correlation function of local operators,
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with the dominant contributions coming from regions of space
near p and q. In the limit that p and q are both taken far from
the boundary, we thus expect F (3)

pq computed for the infinite
and semi-infinite systems to approach the same value. Then,
since (20) tells us that the higher Berry curvature is dominated
by F (3)

pq for p and q near a, we conjecture that the infinite and
semi-infinite systems have the same higher Berry curvature if
a is taken sufficiently far from the boundary. That is,

lim
a→−∞

[
�

(3)
∞/2( f ) − �(3)

∞ ( f )
] = 0. (37)

We expect that the limit, and other similar limits in a below,
approaches its value exponentially fast, with the scale being
set by the system’s correlation length. Therefore, practically
speaking, we can expect that the bulk-boundary correspon-
dence below will hold to a good approximation if a is taken
to lie a few correlation lengths away from the boundary. The
expression (37) should be viewed as replacing (28) when
considering a generic system. We observe that if one considers
a finite system, the limit in (37) cannot be taken. In this case,
it is expected the integral of higher Berry curvature is not
quantized, though it should be quantized to a good approxima-
tion when the system size is much greater than the correlation
length.

We introduce the 2-form ω(2) as before, and again dω(2) =
�

(3)
∞/2( f ). But now we need to take a limit to establish a

relation with the bulk higher Berry curvature, namely,

lim
a→−∞ �(3)

∞ ( f ) = lim
a→−∞ dω(2). (38)

The integral form of the bulk-boundary correspondence,
which generalizes (34), thus takes the form

lim
a→−∞

∫
S2(y)

ω(2) = lim
a→−∞

∫
D3(y)

�(3)
∞ . (39)

Taking the limit y → −1 we obtain

lim
y→−1

lim
a→−∞

∫
S2(y)

ω(2) = lim
a→−∞

∫
S3

�(3)
∞ = 2π . (40)

More generally, a boundary termination may be gapless
at points other than w4 = −1, and the KS number may take
some value other than 2π , denoted by KS ∈ 2πZ. Supposing
we have a boundary termination that is gapless at a finite
set of points C ⊂ S3, we have X� = S3\C, and �

(3)
∞/2( f ) and

ω(2) can be defined on X�. The differential form of the bulk-
boundary correspondence (38) holds without modification. To
relate ω(2) to the bulk KS invariant, we let Aε ⊂ S3 be the
subspace constructed by removing a small open ball of radius
ε surrounding each point in C. Then the analog of (40) is

lim
ε→0

lim
a→−∞

∫
∂Aε

ω(2) = lim
a→−∞

∫
S3

�(3)
∞ = KS. (41)

Note that the integral over S3 is independent of a, so the
second limit in a can be dropped. It is straightforward to
generalize these statements to the case where X is a general
closed oriented three-dimensional differential manifold.

An important application of the generic form of the bulk
boundary correspondence is to show that the boundary must
be gapless for some points in S3 when the bulk KS number
is nonzero. We start with a gapped 1D system over S3 with

KS number KS �= 0 and introduce a boundary at p = N as
above. We can then re-introduce lattice sites with p > N , and
on these sites we place a trivial gapped system over S3. Each
individual lattice site with p > N is thus decoupled from the
rest of the system. Clearly this does not change the spectrum
of the system with boundary, which we are now viewing as
an interface between the original bulk system and a trivial
system.

Now we consider this interface as a system over S3, with
higher Berry curvature �

(3)
int ( f ), and examine two different

choices of the function f , namely, f (p) = �(p − a) and
f ′(p) = �(p − a′), where a′ > N and a � N . If the interface
is a gapped system over S3, then the KS number does not
depend on the choice of f , and in particular∫

S3
�

(3)
int ( f ) =

∫
S3

�
(3)
int ( f ′). (42)

But clearly �
(3)
int ( f ′) = 0, while

∫
S3 �

(3)
int ( f ) ≈ KS �= 0, where

the equality becomes exact in the limit a → −∞. This is a
contradiction, and so evidently the interface cannot be gapped
everywhere over S3.

It is straightforward to generalize this argument to more
general interfaces between two different gapped 1D systems
over some closed oriented 3-manifold X . One concludes that
if the two KS numbers are different, the interface must be
gapless for some x ∈ X .

D. Clutching construction

Here we present a “clutching construction” that further
illuminates the relationship between the quantized KS number
of a 1D system over S3 and the Chern number of a 0D system.
Consider a generic gapped 1D system H over S3. If the KS
number is nonzero, then the cohomology class of �(3) is non-
trivial and we cannot write �(3) = dω(2) for a globally defined
2-form ω(2) on S3. However, we can cover S3 with charts, on
each of which there does exist a well-defined 2-form ω(2). The
cohomology class of �(3), and the KS number, is determined
by these 2-forms on the overlaps between the charts.

We choose f (p) = �(p − a), and we write the KS number
as ∫

S3
�(3) =

∫
S3

N

�(3) +
∫

S3
S

�(3), (43)

where S3
N (S3

S) are northern (southern) hemispheres of S3,
i.e., the subspaces with w4 � 0 (w4 � 0). Each hemisphere
is contractible, and because there is a trivial classification of
1D gapped bosonic phases without symmetry over a point
[37], the restriction of H to either hemisphere is a system in
the trivial phase. Therefore, we can introduce two different
boundary terminations, one gapped over S3

N, and the other
gapped over S3

S. We denote the corresponding higher Berry
curvatures by �

(3)
bdy,N( f ) and �

(3)
bdy,S( f ), respectively. By the

discussion of Sec. IV C 2 we have

lim
a→−∞ �(3)( f ) = lim

a→−∞ �
(3)
bdy,N( f ) = lim

a→−∞ �
(3)
bdy,S( f ). (44)

We introduce 2-forms ω
(2)
N,S defined on the respective

hemispheres by (30). These 2-forms can be interpreted as
boundary Berry curvatures and satisfy �

(3)
bdy,N( f ) = dω

(2)
N and
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FIG. 1. Depiction of the two boundary terminations used to con-
struct the 2-forms ω

(2)
N,S in the clutching construction of the 3-form

Berry curvature �(3) in the exactly solvable 1D model. An extra lat-
tice site is added at the boundary for w4 < 0 (southern hemisphere),
as compared to w4 > 0 (northern hemisphere). The form ω

(2)
N,S is

globally well defined on the hemisphere S3
N,S. Along the equator

w4 = 0, the difference between the boundary Chern numbers
∫

S2 ω
(2)
N

and
∫

S2 ω
(2)
S is quantized.

�
(3)
bdy,S( f ) = dω

(2)
S . Using Stokes’ theorem and taking the

limit a → −∞ we obtain∫
S3

�(3) = lim
a→−∞

[ ∫
S2

ω
(2)
N −

∫
S2

ω
(2)
S

]
, (45)

where S2 is the w4 = 0 “equator” of S3, i.e., S2 = S3
N ∩ S3

S.
The minus sign in (45) arises because, using the collar method
to assign orientations to boundary manifolds, the orientation
on S2 induced by S2 = ∂S(3)

S is opposite to that induced by
S2 = ∂S(3)

N .
The clutching construction thus expresses the KS number

as a difference of boundary Chern numbers for the two differ-
ent gapped boundary terminations. Even though the individual
boundary Chern numbers are not quantized, evidently their
difference is quantized. This is made plausible by writing

ω
(2)
N − ω

(2)
S =

∑
q>a

(
F (2)

q,N − F (2)
q,S

)
, (46)

and noting that the quantity in parentheses vanishes exponen-
tially as a function of the distance between q and the boundary.
Therefore, even in the limit a → −∞ one has a convergent
sum dominated by contributions near the boundary, which is
suggestive of the Berry curvature of a 0D system.

We now further illustrate the clutching construction by
describing it for our solvable lattice model. We consider
boundary terminations for the north and south hemispheres
as described in Sec. IV A, choosing N ∈ 2Z in the northern
hemisphere, and N ∈ 2Z + 1 in the southern hemisphere, re-
sulting in a gapped boundary in each hemisphere. Evaluating
ω

(2)
N − ω

(2)
S is straightforward, because on the w4 = 0 equator

all lattice sites are decoupled from one another, with Hamilto-
nian H1

p (w). We can thus talk about the Berry curvature of the
lattice site p, which is simply ω(2)

p = (−1)p sin θ
2 dθ ∧ dφ.

Now, choosing a ∈ 2Z − 1
2 , we see that for the southern

hemisphere boundary termination, there are an equal number
of sites p > a with p odd and p even, so ω

(2)
S = 0 (see Fig. 1).

On the other hand, in the northern hemisphere there is one

more even than odd site, and ω
(2)
N = sin θ

2 dθ ∧ dφ. Therefore,
we find

∫
S2 (ω(2)

N − ω
(2)
S ) = 2π . Choosing instead a ∈ 2Z + 1

2 ,
we have ω

(2)
N = 0 and ω

(2)
S = − sin θ

2 dθ ∧ dφ, giving the same
result for the integral of ω

(2)
N − ω

(2)
S over S2, which has no

dependence on a in the solvable model.

E. Inverse system over S3

Here we introduce an inverse H1D of the system H1D over
S3 described in Sec. IV A. These two systems are inverses
in the sense that upon stacking H1D with H1D, the resulting
system can be continuously deformed to a trivial system.
Moreover, the KS number of H1D is opposite that of H1D.
The inverse model will also be used in the construction of a
nontrivial 2D system over S4 in Sec. VIII B.

We again consider a 1D lattice with a single qubit at each
lattice site. The Hamiltonian is given by

H1D(w) = −
∑
i∈Z

H1
i (w) +

∑
i∈2Z+1

H2,+
i,i+1(w) +

∑
i∈2Z

H2,−
i,i+1(w).

(47)
Comparing with Eq. (7), the only difference between H1D

and H1D is the sign of the single-spin term, which has been
reversed here, i.e., H1

i (w) → (−1)H1
i (w).

We first compute the KS number of H1D. We choose
f (p) = �(p − a) with a ∈ 2Z − 1

2 . Following the procedure
of Sec. IV B 2, we find �(3)( f ) = �

(3)
αθφ ( f )dα ∧ dθ ∧ dφ,

with �
(3)
αθφ ( f ) = 0 for −1 � w4 < 0, while for 0 � w4 � 1

we have

�
(3)
αθφ ( f ) = −1

2
(2 + cos α) tan2 α

2
sin θ, (48)

which differs from (25) by a minus sign. We immediately
obtain the KS number∫

S3
�(3)( f ) = −2π , (49)

which is opposite that of H1D as claimed.
Next we consider the system obtained by stacking H1D and

H1D, with Hamiltonian

Hstack(w) = H1D(w) ⊗ 1 + 1 ⊗ H1D(w). (50)

We deform the Hamiltonian of the stacked system continu-
ously as a function of t ∈ [0, 1] as follows:

H (w, t ) = cos
(πt

2

)
(H1D(w) ⊗ 1 + 1 ⊗ H1D(w))

+ sin
(πt

2

)
Hint, (51)

for

Hint =
∑
i∈Z

∑
μ=1,2,3

σ
μ
i,1σ

μ
i,2, (52)

where σ
μ
i,1(2) are the Pauli operators of layer 1 (layer 2) of

the stacked system. Below we illustrate a snapshot of the
configuration of H (w, t ) in (51) for 0 < w4 < 1:

(53)
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Here, the vertical dashed lines correspond to the interaction
Hint. We note that H (w, 0) = Hstack (w), and so at t = 0 the
KS number of the stacked system is clearly zero, as it is a sum
of the opposite KS numbers of H1D and H1D.

For t ∈ (0, 1), the system in (53) is composed of decoupled
clusters, each of which contains four qubits, two from each
layer. As studied in Appendix B, the energy spectrum of each
cluster is always gapped. Moreover, H (w, 1) is independent
of w and the ground state is a product state, so for t = 1 we
have a trivial system over S3. This shows that H1D is indeed
an inverse of H1D.

V. CHERN NUMBER PUMP

Above in Sec. IV, we showed that the 1D higher Berry
curvature can be understood as a flow of ordinary Berry
curvature to/from a spatial boundary. This suggests that it
should be possible to construct a system that pumps quan-
tized Chern number to a spatial boundary, in analogy with
pumping of charge in the Thouless charge pump. Indeed, in
this section we introduce the Chern number pump as a 1D
system over S2 × S1. It is useful to think of the S1 as a “time”
parameter, and we will see that upon cycling around the S1 the
system pumps one unit of Chern number away from a spatial
boundary.

The Chern number pump is a relatively mild modification
of the system H1D over S3 introduced in Sec. IV A. As in that
system, we place a single qubit at each site of the 1D lattice.
We denote points in parameter space by pairs (v, t ) ∈ S2 × S1,
with v = (v1, v2, v3) ∈ S2. It will be convenient to consider S1

as the quotient S1 = [−1, 1]/{−1, 1}, and we think of the time
parameter as running from −1 to +1. Choosing a constant
0 < t0 < 1, for t ∈ [−t0, t0] the Hamiltonian Hcp of the Chern
number pump is given in terms of H1D. We define a map S2 ×
[−t0, t0] → S3 with values w(v, t ) given by w4(v, t ) = t/t0
and wi(v, t ) =

√
1 − (t/t0)2vi (i = 1, 2, 3). Therefore, for t ∈

[−t0, t0], we can simply write Hcp(v, t ) = H1D(w(v, t )).
For t /∈ [−t0, t0], we will choose Hcp(v, t ) to be indepen-

dent of v. This will immediately imply that the higher Berry
curvature is only nonzero on the subspace S2 × [−t0, t0] ⊂
S2 × S1. At t = ±1, we choose

Hcp(v,±1) =
∑
p∈Z

(−1)iσ z
p. (54)

For other values of t /∈ [−t0, t0], the Hamiltonian is simply a
linear interpolation in t . For instance, for t ∈ [t0, 1] we choose

Hcp(v, t ) = 1 − t

1 − t0

∑
p∈2Z+1

∑
μ=1,2,3

σμ
p σ

μ
p+1

+ t − t0
1 − t0

∑
p∈Z

(−1)pσ z
p. (55)

Finally, for t ∈ [−1,−t0] we choose

Hcp(v, t ) = 1 + t

1 − t0

∑
p∈2Z

∑
μ=1,2,3

σμ
p σ

μ
p+1

+ −t − t0
1 − t0

∑
p∈Z

(−1)pσ z
p. (56)

FIG. 2. Configurations of the Chern number pump Hamiltonian
Hcp(v, t ) in the case Xbdy = Xbulk = S2 × S1. The boundary termi-
nates at site p = N ∈ 2Z. There is a boundary phase transition at
t = −t0, where the boundary becomes gapless. The vertical dashed
line represents an arbitrary division of the system into bulk and
boundary as in the definition of boundary Berry curvature, and corre-
sponds to a = N − 1

2 . τ (respectively τ ′) denotes a lattice site p with
Hamiltonian σ z

p (respectively −σ z
p).

It is straightforward to check that the system Hcp thus con-
structed is gapped for all (v, t ) ∈ S2 × S1.

The next step in the analysis of the Chern number pump
is to establish that its KS number takes the value 2π . We
will need to fix an orientation on S2 × S1, and we choose
the orientation induced by the locally defined 3-form −dt ∧
dθ ∧ dφ. The reason for the perhaps unnatural-looking minus
sign is that with this choice of orientation, the map from
S2 × [−t0, t0] → S3 used in the construction of Hcp becomes
an orientation-preserving local diffeomorphism, for the choice
of orientation on S3 used in Sec. IV B 2. With this choice we
thus expect, and indeed find, that H1D over S3 and Hcp over
S2 × S1 have the same value of the KS number. Ultimately, the
minus sign originates from the fact that w4 = cos α decreases
as α increases.

Rather than proceeding by a direct calculation of the higher
Berry curvature, we will employ the bulk-boundary corre-
spondence as developed in Sec. IV C, which will also serve
to illuminate the physics of Chern number pumping. As in
Sec. IV A, we introduce a boundary by throwing away lattice
sites with p > N , and dropping all Hamiltonian terms cou-
pling to qubits with p > N . We take N ∈ 2Z, and observe
that the boundary is gapless on S2 × {−t0} but is otherwise
gapped. To discuss the KS invariant via the bulk-boundary
correspondence, we choose f (p) = �(p − a) with a ∈ 2Z −
1
2 and a < N , and introduce the boundary Berry curvature ω(2)

as in (30), which is defined on X� = S2 × S1\S2 × {−t0}. The
Chern number pump with the chosen boundary termination is
illustrated in Fig. 2.

Given t ∈ S1 we have the natural S2 subspace defined by
S2(t ) = S2 × {t}. Choosing the orientation on S2(t ) specified
by dθ ∧ dφ, for t �= −t0 the boundary Chern number is given
by C(t ) = ∫

S2(t ) ω
(2). Generically, the boundary Chern number

is not quantized. However, it is quantized when there is no
coupling between lattice sites on different sides of the position
a. We thus see that in the model Hcp with the given choice of
a, C(t ) is quantized except for t ∈ [0, t0].
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The KS number is given in terms of the boundary Chern
number by

KS = lim
ε→0

[ ∫
S2(−t0+ε)

ω(2) −
∫

S2(−t0−ε)
ω(2)

]
= lim

ε→0
[C(−t0 + ε) − C(−t0 − ε)], (57)

where the overall sign comes from the chosen orientations on
S2 × S1 and S2(t ). In principle we should also take the limit
a → −∞, but we will see the result has no dependence on
a. For t = −t0 − ε, the system consists of decoupled lattice
sites whose single-spin Hamiltonians have no dependence
on v ∈ S2, so clearly C(−t0 − ε) = 0. On the other hand,
for t = −t0 + ε, to the right of a there are some number of
dimerized pairs of lattice sites, as well as the p = N boundary
site with Hamiltonian H1

p=N (w). The dimerized pairs do not
contribute to ω(2), so the boundary Chern number is simply
the Chern number of the decoupled p = N boundary spin, i.e.,
C(−t0 + ε) = 2π . Therefore, we find KS = 2π , as expected.
The same result is obtained by a similar analysis if we choose
a ∈ 2Z + 1

2 .
More interesting than simply giving the expected result

KS = 2π , Eq. (57) allows us to interpret the KS number in
terms of Chern number pumping. As t is increased, starting
just above −t0 and wrapping around S1, the boundary Chern
number C(t ) decreases from 2π to zero at t = −t0 − ε. There-
fore, a 2π -quantized amount of Chern number flows from the
boundary into the bulk over one cycle of the time parameter.
Moreover, because the Hamiltonian depends periodically on
t , so that the bulk returns to its initial state after a cycle, we
can think of the system as a Chern number pump. With this in
mind, (57) tells us that KS number of this system (and indeed
of any 1D system over S2 × S1) is nothing but a measure of the
quantized amount of Chern number pumped over each cycle.

A different but closely related perspective on Chern num-
ber pumping is provided by enlarging the boundary parameter
space to Xbdy = S2 × [−1, 1], where πbdy : Xbdy → Xbulk =
S2 × S1 is the identity on S2 and on [−1, 1] is the quotient
map that identifies the two end points to a single point in S1.
In words, we have enlarged the boundary parameter space
so that t is not required to be a periodic parameter on the
boundary (but the system still depends periodically on t in
the bulk). Enlarging the parameter space in this way allows us
to introduce a fully gapped boundary termination, with the
boundary Berry curvature and Chern number thus globally
defined over Xbdy.

We again terminate the lattice at p = N with N ∈ 2Z. The
Hamiltonian is chosen as for the previous boundary termina-
tion, with the only change being the single-spin Hamiltonian
of the p = N boundary spin when t ∈ [−1, 0]. We choose that
spin’s Hamiltonian to be

H1
p=N (v, t ) = v1σ

1
N + v2σ

2
N + v3σ

3
N , (58)

which is independent of t . Note that we do not make any
changes for t ∈ [0, 1], where the p = N spin is coupled to its
neighbor at p = N − 1 in a t-dependent manner. This bound-
ary termination is illustrated in Fig. 3.

We see that initially at t = −1, the p = N boundary spin
is decoupled from the bulk, and is a nontrivial 0D system

FIG. 3. Configurations of the Chern number pump Hamiltonian
Hcp(v, t ) in the case of enlarged boundary parameter space Xbdy =
S2 × [−1, 1], for which the boundary is always fully gapped.

over S2 × {−1} with Chern number 2π . As t is increased, the
boundary spin is coupled to the bulk, and its Chern number
flows away into the bulk. At t = 1, the boundary spin is again
decoupled from the bulk, but is now a trivial 0D system over
S2 × {1} with Chern number zero. Even though the bound-
ary spin is not periodic in t (this is the price we pay for a
fully gapped boundary) the bulk is still periodic in t . Over
one cycle, the Chern number of the boundary spin has thus
disappeared into the bulk “at infinity.”

VI. CLASSIFICATION OF INVERTIBLE
QUANTUM SYSTEMS OVER X

Here we discuss the expectation that invertible phases over
a space X are classified by a generalized cohomology theory.
In Sec. VI A, we take a practical viewpoint and explain the
consequences of this expectation for guiding the construction
of new examples. Then in Sec. VI B, we explain where this
expectation comes from, put it in a broader context, and dis-
cuss its status. We also sketch a potential strategy to construct
a generalized cohomology theory of parametrized invertible
phases (Sec. VI C). We note that Secs. VI B and VI C are
not needed to follow the remainder of the paper, and can
be skipped by readers who are mainly interested in concrete
examples.

A. Consequences of generalized cohomology classification

To discuss the classification of parametrized invertible
phases, we first fix from the beginning whether we are in-
terested in bosonic or fermionic systems, and the type of
symmetry imposed (if any). Given these fixed attributes, the
set of d-dimensional invertible phases over X is denoted
Ed (X ); in fact, Ed (X ) is an Abelian group under stacking as
noted in Sec. III. The group of ordinary d-dimensional phases
is Ed (pt), where pt is the single-point topological space. As
discussed in Sec. III, Ed (X ) is homotopy invariant; that is, if X
and Y are homotopy equivalent spaces, then Ed (X ) ∼= Ed (Y ).

The expectation that invertible phases are classified by
a generalized cohomology theory means that the groups
Ed (X ) obey certain properties (the Eilenberg-Steenrod ax-
ioms) that relate groups for different spaces X and in different
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dimensions d . We do not enumerate the Eilenberg-Steenrod
axioms here, but instead focus on some particularly useful
facts.

Any generalized cohomology theory also comes with a
reduced version of the same theory. Given a space X and a
chosen base point x0 ∈ X , the reduced theory associates an
Abelian group Ed (X, x0). The reduced and unreduced theories
are related by

Ed (X ) ∼= Ed ({x0}) ⊕ Ed (X, x0). (59)

If X is path connected, then Ed (X, x0) ∼= Ed (X, x′
0) for two

different base points x0, x′
0 ∈ X . Sometimes writing out base

points is cumbersome, and the notation

Ẽ d (X ) = Ed (X, x0) (60)

is convenient, where on the left-hand side X is understood
to be a based space, i.e., a topological space together with a
chosen (but not explicitly written) base point. If we only care
about the isomorphism class of Ẽ d (X ), for path-connected
spaces we do not need to specify the choice of base point.

Both Ed (X, x0) and (59) have nice physical interpretations;
indeed, as should be apparent from the following discussion,
Ed (X, x0) can be defined and (59) argued to hold on physical
grounds. We consider an invertible system H over X with
the additional property that H (x0) is in the trivial phase over
the point {x0}. (Note that this property is a phase invariant:
if it is satisfied for one system in a given phase over X , it
holds for any system in the same phase.) We say that H is
in a reduced phase over X with base point x0, and Ed (X, x0)
is the Abelian group of such reduced phases. Equation (59)
then has the interpretation that the group of invertible phases
over X [Ed (X )] can be decomposed into reduced phases
[Ed (X, x0)] and phases that can be represented by a system
with x-independent Hamiltonian [Ed ({x0})]. Therefore, a gen-
eral invertible system over X can always be brought into a
reduced phase by stacking with a suitable constant system.
From this we see that reduced phases are the most interesting
from the point of view of finding physics beyond that of
ordinary phases (i.e., phases over a point).

Every reduced generalized cohomology theory comes with
a suspension isomorphism, which is an isomorphism of
Abelian groups for each space X with base point x0:

sX : Ed (X, x0) → Ed+1(�X, �x0). (61)

Here �X is the reduced suspension of X , and is defined
as a quotient space formed from X × [−1, 1] by identifying
the subspace X × {1} ∪ X × {−1} ∪ {x0} × [−1, 1] to a single
point. This point becomes the natural base point �x0.

The reader may wonder about the relationship between
�X and the (unreduced) suspension SX mentioned in Sec. I.
Recall that SX is also formed from X × [−1, 1] by identifying
each of the subspaces X × {1} and X × {−1} to (distinct)
single points. In fact, under some reasonable assumptions
about the base point of x0 ∈ X , SX , and �X are homotopy
equivalent. (For example, this holds if x0 ∈ X has a neighbor-
hood that deformation retracts onto x0. In particular, this holds
for any point x0 of a manifold X , or for any vertex in a CW
complex.) Therefore, for most of our purposes in this paper,
it is not important to distinguish SX and �X ; we introduced
�X here to allow for a precise statement of (61). In particular,

noting that both �X and SX are always path connected, we
have Ẽ d (SX ) ∼= Ẽ d (�X ).

In Sec. VII we give a proposed physical construction
of the suspension isomorphism. This provides a powerful
tool to construct new examples of parametrized invertible
systems from existing ones, as we now explain. First we
note that the suspension of a sphere is homeomorphic to
a sphere in one higher dimension: �Sn ∼= Sn+1. Therefore,
we can apply the suspension isomorphism n times to ob-
tain Ẽ d+n(Sn) ∼= Ẽ d (S0). But S0 is just the two-point discrete
space, so Ẽ d (S0) = Ed (pt), i.e., Ẽ d (S0) is isomorphic to
the classification of ordinary nonparametrized d-dimensional
phases. As a result we have

Ẽ d+n(Sn) ∼= Ed (pt), (62)

telling us that the classification of (d + n)-dimensional re-
duced phases over Sn is the same as that of ordinary
d-dimensional phases. With an explicit realization of the
suspension isomorphism and a sufficient understanding of
ordinary d-dimensional phases, this allows us to construct an
example system for any (d + n)-dimensional reduced phase
over Sn.

Equation (62) can be applied to obtain Ẽ d (Sk ) whenever
d � k. On the other hand, if d < k, we instead have

Ẽ d (Sk ) ∼= Ẽ0(Sk−d ), (63)

where the right-hand side is the classification of zero-
dimensional reduced phases over Sk−d . For example, for
bosonic systems with no symmetry, zero-dimensional systems
over S2 have a Z classification indexed by the Chern num-
ber, and Ẽ0(S2) ∼= Z. Then (63) implies that Ẽ d (Sd+2) ∼= Z,
where the d = 1 case corresponds to the KS invariant as
discussed above, and for d > 1 there are higher KS invariants
discussed below in Sec. VIII.

To summarize, (59), (62), and (63) can be used to obtain
Ed (Sn) quite generally, as long as one understands the classifi-
cations of ordinary phases and zero-dimensional systems that
appear. With the construction of Sec. VII, beyond merely ob-
taining the groups Ed (Sn), one can construct example systems
and explore their physical properties. While this paper focuses
on bosonic systems with no symmetry, forthcoming work
will consider other settings, including fermionic systems and
systems with symmetry. As we explain in Sec. VII, the physics
of the reduced phases in Ẽ d (Sn) can be viewed in terms of flow
of a lower-dimensional invertible phase invariant to/from a
spatial boundary, just as 1D systems over S3 with nonzero KS
number can be understood in terms of flow of Chern number.

In this paper, we also study systems over X × S1, which
can be interpreted as pumps of a system over X in one dimen-
sion lower. From the properties of generalized cohomology
theories, it is straightforward to show that

Ẽ d+1(X × S1) ∼= Ẽ d+1(X ) ⊕ Ed (pt) ⊕ Ẽ d (X ).

So, (d + 1)-dimensional phases over X × S1 come in three
flavors, corresponding to each summand:

(1) A (d + 1)-dimensional phase over X which is propa-
gated in a constant way over S1, i.e., it is possible to choose a
representative system whose Hamiltonian does not depend on
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the S1 parameter. This comes from the map

Ẽ d+1(X ) → Ẽ d+1(X × S1),

induced by the map of spaces pX : X × S1 → X which sends
(w, t ) �→ w.

(2) A d-dimensional phase over a point, which is sus-
pended to a (d + 1)-dimensional system over S1 using the
suspension construction of Sec. VII:

Ed (pt) ∼= Ẽ d (S0) ∼= Ẽ d+1(S1)

and propagated in a constant manner over X (i.e., the Hamil-
tonian is chosen to have no X dependence).

(3) A d-dimensional phase over X , which is put on X × S1

by first using the suspension construction to get a (d + 1)-
dimensional phase over �X , and then put on X × S1 by
precomposing the resulting system H : �X → GH with the
quotient map q : X × S1 → �X . In cohomology, this corre-
sponds to the composite

Ẽ d (X )
sX−→∼= Ẽ d+1(�X )

Ẽ d+1(q)−−−−→ Ẽ d+1(X × S1).

Physically the last summand is the most interesting. Ev-
idently, for any reduced phase in Ẽ d+1(�X ), there is a
corresponding reduced phase over X × S1. That is, there
is an injective map from Ẽ d+1(�X ) to Ẽ d+1(X × S1). If
a phase over �X is characterized in terms of flow of a
given d-dimensional invertible phase over X to/from a spa-
tial boundary, then the corresponding phase over X × S1 is a
pump of the same d-dimensional invertible phase, which we
discuss in Sec. VII. The Chern number pump over S2 × S1

(Sec. V), and its close relation to the solvable 1D model
over S3 of Sec. IV A, is an illustration of this more general
correspondence.

Finally, we briefly note the comparison with cohomolog-
ical classifications of phases, focusing on bosonic phases
without symmetry. Already, general techniques in stable ho-
motopy theory combined with what we know about bosonic
phases with no symmetry imply that for any parameter space
X , there is a map Hd+2(X ;Z) → Ed (X ). The existence of
phases “beyond cohomology” tells us this map is not an
isomorphism. We note, however, that when X is a mani-
fold, the differential form underlying the KS invariant gives
a map Ed (X ) → Hd+2(X ;R). It has been argued [18] that in-
tegrals of this form over spheres Sd+2 → X are integer valued.
Extending this argument to integrals over arbitrary smooth
simplices �d+2 → X would give comparison in the other
direction, namely, a map from Ed (X ) to the group Hd+2(X ;Z)
modulo its torsion.

B. Generalized cohomology: Context and status

We now briefly discuss where the generalized cohomology
proposal comes from, put it in a larger context, and comment
on its current status. In a series of talks, Kitaev proposed that
gapped invertible systems form what is known as an � spec-
trum in homotopy theory (not to be confused with the energy
spectrum of a Hamiltonian in quantum mechanics) [23–25].
These ideas were further developed by others [38–40]. We
first summarize some of the ideas that have been circulating

on this topic, and then emphasize a perspective offered by the
study of parametrized systems.

For simplicity, we focus on bosonic systems without sym-
metry; the discussion for fermionic no-symmetry systems is
identical. We note that the arguments for an � spectrum of
no-symmetry invertible systems apply equally well to invert-
ible systems with a fixed symmetry. Moreover, it was argued
that a simplification occurs, where the classification of phases
with symmetry group G is identical to that of parametrized no-
symmetry systems over the classifying space BG [23–25,38].

One supposes the existence of a classifying space of in-
vertible gapped phases in d spatial dimensions, denoted Ed .
This means in particular that Ed is a topological space whose
path components correspond to invertible phases of systems.
Here, by “system” we mean a system over a point, i.e., a single
gapped Hamiltonian (in contrast to a parametrized system).
But the space Ed will also record other nontrivial topological
properties of phases. An initial observation about Ed is that
only the homotopy type of Ed matters, so that there may be
different constructions or models for Ed that give the same
classification.

We describe E0 as an example. A 0D gapped bosonic
system without any symmetry over X is a continuous family
of self-adjoint n × n matrices with unique ground states. The
ground states assemble into a line bundle over X , whose
first Chern class in H2(X,Z) is a complete phase invariant.
(When X is a closed oriented 2-manifold, this invariant is
computed using the Berry curvature 2-form �(2) by

∫
X �(2),

as discussed in Sec. II.) So the space E0 can be chosen to
be the infinite complex projective space [i.e., a K (Z, 2)], the
classifying space for complex topological line bundles. (More
generally, it is expected that all the information about what
phase a system is in should be contained in its ground states.
This perspective has been emphasized in this context by Ki-
taev [24] and embraced in recent related work by Kapustin,
Sopenko, and Yang [41].)

Now, we turn to what it means for Ed to form an � spec-
trum. By definition, this means that we have maps

ρd : Ed
�−→ �Ed+1

which are homotopy equivalences. Here �Ed+1 is the space
of loops in Ed+1 based at a point representing the phase of
a trivial system. This map ρd can be loosely interpreted as
taking a d-dimensional system to a loop in the space (d + 1)-
dimensional systems. In Refs. [23–25,38], physical pictures
were given to motivate these maps and their homotopy in-
verses, and these pictures form the basis for the constructions
of Sec. VII.

Given the structure of the � spectrum, there exists a gen-
eralized cohomology theory of gapped invertible phases, as
briefly (and incompletely) described above in Sec. VI A. The
groups Ed (X ) arise as homotopy classes of maps, in particular

Ed (X ) = [X, Ed ], (64)

where the notation [X,Y ] means the set of homotopy classes
of continuous maps f : X → Y .

Clearly, the generalized cohomology proposal has prac-
tical value, for example, to understand the classification of
invertible phases over Sn as described in Sec. VI A. From a
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broader perspective, the proposal is important given questions
about the relationship between gapped phases of matter and
topological quantum field theories (TQFTs). Such questions
have become newly pressing given recent progress on frac-
ton phases [9,10], which are gapped but noninvertible phases
that lack a TQFT description. Fracton phases are thus coun-
terexamples to prior conventional wisdom that every gapped
phase should be well approximated by a suitable TQFT at low
energies. These examples make it clear that the relationship
between TQFT and gapped phases is poorly understood from
both physical and mathematical perspectives.

Invertible phases appear to be simpler, and it is believed
that the universal properties of invertible phases of matter are
captured by suitably defined invertible TQFTs. Building on
work of Kapustin [42–44], the work of Freed and Hopkins
shows that certain families of invertible TQFTs are classified
by an � spectrum [27]. This reduces the classification of
phases of matter to computations of generalized cohomology
theories familiar to stable homotopy theorists.1 The computed
low-dimensional classifications agree with results from the
physics literature, but it is not known whether the correspon-
dence between invertible phases and invertible TQFTs holds
in arbitrarily high dimension. Determining whether gapped in-
vertible systems indeed form an � spectrum, and if so whether
the resulting cohomology theory is the same as that obtained
for invertible TQFTs, would represent important progress in
better connecting gapped phases and TQFTs.

This brings us to the status of the generalized cohomology
proposal, which has not been rigorously established so far.
One way forward would be to construct the � spectrum and
the maps ρd . For example, one could think of constructing
Ed as a space whose points are quantum systems, or ground
states, and try to construct the maps ρd based on the phys-
ical pictures of Refs. [23–25,38]. Some difficulties do arise
in interpreting these physical pictures literally: as noted in
Sec. VII A, this construction depends on more data than the
input d-dimensional system alone, and thus does not define a
function with domain Ed . Work thus remains to prove that the
additional data can be chosen consistently and continuously
for each point of Ed . Therefore, at this point, a more complete
physical argument for the existence of an � spectrum of
gapped invertible phases is still needed.

Here, we do not attempt to construct the � spectrum,
but rather study directly the generalized cohomology theory
of parametrized invertible phases that would arise from the
existence of such an � spectrum. Although some of this has
already been explained in Sec. III, we summarize a strategy
for a construction of this cohomology theory directly below
in Sec. VI C. Note that the existence of an � spectrum follows
automatically from the existence of the cohomology theory
by the Brown representability theorem [45]. The difficulties of
directly constructing the classifying spaces Ed are temporarily
avoided. However, understanding their homotopy type re-
mains the key problem for computing classifications.

1With our indexing conventions, the classifying spectrum for
bosonic (fermionic) phases with no symmetries is expected to be
�2IZMSO (�2IZMSpin), where here IZ is the Anderson dual and
MSO (MSpin) is the oriented bordism (spin) spectrum.

C. Establishing the generalized cohomology proposal:
Sketch of a strategy

We continue to assume the existence of a space GHd of
gapped Hamiltonians. For example, GHd may be modeled as a
subset of those bounded, finite-range interactions that give rise
to gapped Hamiltonians [46], equipped with an appropriate
topology. Here the term “interaction” does not have its usual
physics meaning, but instead refers to a mathematical object
that packages the parameters (i.e., coefficients of local oper-
ators) defining the Hamiltonian. Giving a precise definition
of GHd is a concrete mathematical problem which we do not
undertake here.

For suitable spaces X (e.g., spaces with the homotopy type
of a finite CW complex), gapped systems over X are then
continuous maps from X to GHd , the set of which is denoted
C0(X,GHd ). If X is a manifold, differentiability conditions
may facilitate the study of the system, as for our analysis of
the KS invariant, but we do not impose such conditions here.

In Sec. III we defined a phase as an equivalence class
on C0(X,GHd ) generated by deformations (i.e., homotopies
of systems), isomorphism, and stabilization with respect to
stacking with trivial systems. The stacking operation descends
to an operation on phases, and those phases that have an
inverse together form an Abelian group Ed (X ), the group of
invertible phases over X .

At this point, it is already clear that the assignment X �→
Ed (X ) satisfies many of the properties required of a gen-
eralized cohomology theory, e.g., functoriality, homotopy
invariance, and additivity. Suitable restrictions on the kind
of Hamiltonians one considers as points of GHd may be
needed to dispense with systems that would not be physically
relevant.

The missing, nonformal ingredient and the key to the
program is the suspension isomorphism, which establishes
a relationship between phases in dimension d and those in
d + 1. The general quantum pumping construction of Sec. VII
is a concrete proposal for this isomorphism. It is a straight-
forward reinterpretation Kitaev’s description of the homotopy
equivalences Ed � �Ed+1 for the � spectrum of invertible
gapped phases. But casting this problem as the construction
of a map from Ẽ d (X ) to Ẽ d+1(�X ) makes it particularly
concrete.

VII. GENERAL QUANTUM PUMPING CONSTRUCTIONS

In this section we introduce and study constructions that
start with a d-dimensional invertible system Hd over X , and
produce (d + 1)-dimensional invertible systems SHd over the
suspension SX and PHd over X × S1. These constructions
generalize the 1D models over S3 and S2 × S1 introduced
in Secs. IV A and V, respectively. In the language of the
general constructions, one obtains those models by choosing
the zero-dimensional system H0 over S2 to be a single spin 1

2
in a Zeeman magnetic field (see Sec. II). Then one obtains 1D
systems SH0 over S(S2) ∼= S3 and PH0 over S2 × S1.

We propose that the construction Hd �→ SHd realizes the
suspension isomorphism in a generalized cohomology theory
of gapped invertible phases, as discussed in Sec. VI. We thus
also refer to this construction (distinguished from Hd �→ PHd )
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as the suspension construction. Both constructions, which
are very similar to one another, are described in Sec. VII A.
Physically, PHd can be understood as a pump of Hd from a
spatial boundary into the bulk, and, roughly, SHd can be un-
derstood in the same way. We make this precise in Sec. VII B;
some of the discussion there is a generalization of results on
Chern number pumping described in Sec. V. In Sec. VII C
we discuss some expected properties of the constructions, that
follow from assuming that Hd �→ SHd realizes the suspen-
sion isomorphism. These properties would imply in particular
that the pumping phenomena of SHd and PHd are char-
acteristic of nontrivial (d + 1)-dimensional phases over SX
and X × S1.

Hd may be either a bosonic or fermionic system, with or
without some internal symmetry (including time reversal).
Spatial (i.e., crystalline) symmetries of Hd may introduce
some subtleties, and while we expect much of our discussion
will still apply, for simplicity we do not consider spatial sym-
metries.

The constructions of SHd and PHd are based on Kitaev’s
ideas that gapped invertible phases form an � spectrum in ho-
motopy theory (see Sec. VI B) [23–25]. In particular, the key
idea enabling these constructions is Kitaev’s physical picture
motivating the homotopy equivalences ρd : Ed → �Ed+1.

A. Systems over SX and X × S1

Here we start with a d-dimensional gapped invertible sys-
tem Hd over X , and construct (d + 1)-dimensional systems
SHd over SX and PHd over X × S1. The strategy to con-
struct both these systems will be to first construct a (d +
1)-dimensional system H̃ over X × I (with I = [−1, 1]), and
then exploit the fact that SX and X × S1 can be obtained from
X × I as a quotient space.

To explain the strategy in more detail, we discuss the case
of SX , which we recall is the quotient space obtained from
X × I by collapsing X × {1} and X × {−1} to single points.
Let πS : X × I → SX be the corresponding quotient map. We
construct H̃ so that H̃ (x, t ) is independent of x for t = 1 and
also for t = −1. That is, H̃ (x, t ) is constant over the subspaces
of X × I that are identified to single points in forming the
quotient space SX . Therefore, we can think of H̃ (x, t ) as a
function with domain SX , and we thus have a system over SX .
More formally, there is a unique map HS : SX → GHd+1 that
satisfies H̃ = HS ◦ πS . The map HS defines the Hamiltonian
of the desired system SHd over SX .

The case of PHd proceeds very similarly. We view X × S1

as the quotient space obtained from X × I by identifying
(x, 1) with (x,−1) for all x ∈ X , and let πP : X × I → X ×
S1 be the corresponding quotient map. In this case, H̃ is
chosen to satisfy H̃ (x, 1) = H̃ (x,−1) for all x ∈ X , so we can
think of H̃ as a system over X × S1. Or, again more formally,
there is a unique map HP : X × S1 → GHd+1 satisfying H̃ =
HP ◦ πP, and which defines the system PHd .

As illustrated in Fig. 4, we now construct H̃ as a one-
dimensional lattice of d-dimensional layers, with layer index
i ∈ Z. At t = 0, the layers are decoupled and alternate be-
tween Hd and Hd , where Hd is an inverse for Hd . This gives

FIG. 4. Construction of H̃ and SHd . The vertical axis shows the
parameter t ∈ I = [−1, 1] used to construct H̃ over X × I . At t = 0,
the system alternates between d-dimensional layers of systems Hd

and Hd over X . For t ∈ [0, 1], these systems are coupled in pairs
(shaded regions) and deformed to trivial systems τ+

2 at t = 1. Sim-
ilarly, systems are coupled via the opposite pairing in bilayers for
t ∈ [−1, 0], with trivial systems τ−

2 at t = −1.

the Hamiltonian

H̃ (x, 0) =
∑
i∈2Z

Hd,i(x) +
∑

i∈2Z+1

Hd,i(x). (65)

Now consider a bilayer of adjacent d-dimensional layers, with
layer indices (i, i + 1) and i odd. At t = 0, we can think of
this bilayer as the stack Hd � Hd , so by construction it is
in the trivial d-dimensional phase over X . There thus exists
a deformation of Hd � Hd to a trivial system τ+

2 . In other
words, there exists a homotopy H+

i,i+1 : X × [0, 1] → GHd ,
between the Hamiltonians for Hd � Hd and τ+

2 . (In order to
construct such a homotopy it may first be necessary to stack
Hd � Hd with a trivial system, but we can absorb this into the
definition of Hd .) We use this homotopy to construct H̃ (x, t )
for t ∈ [0, 1], letting

H̃ (x, t ) =
∑

i∈2Z+1

H+
i,i+1(x, t ), (66)

where

H+
i,i+1(x, 0) = Hd,i(x) + Hd,i+1(x) (67)

and

H+
i,i+1(x, 1) = Hτ+

2
(x), (68)

the x-independent Hamiltonian for the trivial system τ+
2 .

The Hamiltonian for t ∈ [−1, 0] is constructed similarly,
but in terms of the opposite pairing into bilayers. That is,
we consider bilayers (i, i + 1) with i even. There exists a
homotopy H−

i,i+1 along which Hd � Hd deforms into τ−
2 , a

trivial system on the bilayer. The Hamiltonian for t ∈ [−1, 0]
is given by

H̃ (x, t ) =
∑
i∈2Z

H−
i,i+1(x, t ), (69)

where

H−
i,i+1(x, 0) = Hd,i(x) + Hd,i+1(x) (70)
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FIG. 5. Construction of PHd . As compared to the construction of
SHd illustrated in Fig. 4, the trivial systems τ+

2 and τ−
2 are chosen so

that the Hamiltonian is periodic in t ∈ [−1, 1].

and

H−
i,i+1(x,−1) = Hτ−

2
(x). (71)

Note that we do not require any relationship between the
homotopies H+ and H−. This completes the construction
of H̃ .

We now observe that H̃ (x, 1) and H̃ (x,−1) are indepen-
dent of x, so as discussed above we obtain from H̃ the system
SHd over SX .

To instead obtain PHd , we need to modify H̃ so that
H̃ (x, 1) = H̃ (x,−1). The necessary modification is to choose
τ±

2 so that the (d + 1)-dimensional trivial systems at t = +1
and −1 agree with one another. That is, we choose τ+

2 =
τ ′ � τ and τ−

2 = τ � τ ′, so that at t = ±1 we have the triv-
ial system τ (respectively τ ′) on all even (respectively odd)
layers. The construction of PHd is illustrated in Fig. 5.

We note that the construction Hd �→ SHd (respectively
Hd �→ PHd ) depends on more data than just the invert-
ible system Hd , and so cannot be thought of as giving a
function from d-dimensional invertible systems over X to
(d + 1)-dimensional systems over SX (respectively X × S1).
Specifically, beyond the choice of Hd , one needs to choose the
inverse Hd and the homotopies H+ and H−.

B. Boundary physics and quantum pumping

Here we discuss the boundary physics of the systems SHd

and PHd , and in particular its interpretation in terms of pump-
ing of the invertible phase Hd from the boundary of the system
into the bulk. Our use of the term “pumping” is somewhat
loose in the case of SHd because the bulk does not depend
periodically on the pumping parameter.

We first examine the boundary physics of PHd , in the
case of identical bulk and boundary parameter spaces (i.e.,
Xbdy = Xbulk = X × S1), as illustrated in Fig. 6. We denote the
coordinate of S1 by t ∈ [−1, 1], identifying t = 1 and −1. To
introduce a boundary, we consider a semi-infinite lattice of
d-dimensional layers, indexed by i with −∞ < i � N , taking
N even. For t ∈ [0, 1] the Hamiltonian is given by

H (x, t ) =
∑

i<N,i odd

H+
i,i+1(x, t ). (72)

FIG. 6. Boundary physics of the system PHd , in the case of
boundary parameter space Xbdy = X × S1. The dashed line shows the
division of the system into bulk and a boundary layer, with the i = N
boundary layer immediately to the right. The bulk extends infinitely
to the left. The boundary phase transition between τ and Hd occurs
at t = t0, denoted by ×. Shaded regions indicate coupling between
neighboring layers.

For t ∈ [−1, 0], on the other hand, we modify the Hamiltonian
on the boundary, i.e., on the i = N layer:

H (x, t ) =
∑

i<N,i even

H−
i,i+1(x, t ) + Hbdy

N (x, t ). (73)

Here Hbdy
N (x, t ) is the Hamiltonian for the i = N layer.

For consistency with the Hamiltonian chosen for t ∈ [0, 1],
we must have

Hbdy
N (x, 0) = Hd,N (x) (74)

and

Hbdy
N (x,−1) = Hτ,N (x), (75)

where Hτ,N is the Hamiltonian for the trivial system τ . That
is, the N th layer goes from the trivial system τ at t = −1,
to Hd at t = 0. Moreover, the N th layer is decoupled from
the rest of the system for all t ∈ [−1, 0]. Therefore, if Hd is
in a nontrivial phase, the boundary must become gapless or
undergo a first-order phase transition for some (x, t ) with t ∈
(−1, 0). For concreteness, we assume the simplest scenario,
where this only occurs for a single value t0 ∈ (−1, 0).

Therefore, for small positive ε, as t increases from t0 + ε

to t0 − ε, we can think of the d-dimensional phase invariant
of Hd as being pumped into the bulk, leaving the boundary
layer in the trivial phase over X . Note that we can just as well
think of the inverse Hd as being pumped from the bulk and
to the boundary. This pumping can occur without closing a
gap for t /∈ (t0 − ε, t0 + ε) because, when the boundary layer
is coupled to the bulk, d-dimensional phase invariants of the
boundary layer are not well defined. At the same time, these
invariants are well defined when the boundary layer is de-
coupled from the bulk for t ∈ [−1, 0], and the d-dimensional
boundary layer phases at t0 ± ε can be meaningfully com-
pared.

By enlarging the boundary parameter space, we can access
essentially the same physics, but avoiding the complication of
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FIG. 7. Gapped quantum pumping at the boundary of PHd , in
the case of boundary parameter space Xbdy = X × I . The dashed line
again shows the division of the system into bulk and a boundary
layer, with the i = N boundary layer immediately to the right. The
boundary layer begins at t = −1 as the d-dimensional system Hd ,
and ends, after coupling to the bulk, as the d-dimensional trivial
system τ at t = 1. Note while the bulk is periodic in t , the boundary
layer is not. We see that the nontriviality of PHd is manifest as a con-
flict between having a trivially gapped boundary and the periodicity
of the S1 in the boundary parameter space, in the sense that both these
properties cannot hold simultaneously.

boundary phase transitions, as illustrated in Fig. 7. Keeping
Xbulk = X × S1, we take Xbdy = X × I , with πbdy : Xbdy →
Xbulk the map that identifies the end points of I = [−1, 1]. We
proceed as above, choosing H (x, t ) to be of the same form as
in Eqs. (72) and (73). We modify only the choice of Hbdy

N (x, t )
for t ∈ [−1, 0], which we now take to be

Hbdy
N (x, t ) = Hd,N (x), (76)

independent of t (for t ∈ [−1, 0]). Clearly, the gap remains
open for all (x, t ) ∈ X × I .

This modified system realizes gapped quantum pumping,
where the d-dimensional phase invariant of Hd is pumped
into the bulk as t is increased from −1 to 1. At t = −1, the
boundary layer is decoupled from the system and is the system
Hd over X . As t is increased, bulk and boundary are coupled
for t ∈ (0, 1), and at t = 1 the boundary layer is in the trivial
system τ . Meanwhile, the bulk is periodic in t ; that is, the bulk
system over X is the same for t = −1 and 1.

The boundary physics of the system SHd over SX can also
be somewhat loosely understood in terms of gapped quantum
pumping. We have Xbulk = SX , and take Xbdy = X × I , with
πbdy : X × I → SX the usual quotient map. Once again, t ∈ I
will play the role of time in a pumping process. Strictly
speaking, referring to such a system as a pump is an abuse of
terminology because the bulk is not periodic in t . Nonetheless,
the physics is very similar to that of PHd , so we freely use the
language of pumping. Alternatively, we can speak of a flow
of a d-dimensional phase invariant from the boundary into the
bulk (or vice versa).

We again consider a semi-infinite lattice with −∞ < i �
N with N even. For t ∈ [−1, 0], we take the Hamiltonian to

FIG. 8. Boundary physics of SHd , in the case of boundary param-
eter space Xbdy = X × I . The dashed line again shows the division of
the system into bulk and a boundary layer, with the i = N boundary
layer immediately to the right. The boundary layer begins at t = −1
as the d-dimensional system Hd , and ends, after coupling to the
bulk, as the d-dimensional trivial system τ at t = 1. A boundary
termination in the case Xbdy = Xbulk can be obtained from the same
picture by choosing the Hamiltonian of the boundary layer to be
strictly zero at t = −1 (blue circle), as described in the text. Here,
similar to PHd , we see the nontriviality of SHd manifests as a conflict
between a trivially gapped boundary and choosing the boundary
parameter space to be the same as the bulk parameter space.

be

H (x, t ) =
∑

i<N,i even

H−
i,i+1(x, t ) + Hbdy

N (x, t ), (77)

with H−
i,i+1(x, t ) as in Eqs. (70) and (71), and Hbdy

N (x, t ) =
Hd,N (x), independent of t . It is important to note that this
choice of Hbdy

N (x, t ) may be x dependent at t = −1, which
would not have been well defined if we had Xbdy = Xbulk =
SX . For t ∈ [0, 1] we have

H (x, t ) =
∑

i<N,i odd

H+
i,i+1(x, t ), (78)

where H+
i,i+1(x, t ) is as in Eqs. (67) and (68). We write τ+

2 as a
stack of trivial systems on bilayers τ+

2 = τ ′ � τ , as illustrated
for the (N − 1)th and N th layers in Fig. 8. We see that the
i = N boundary layer goes from the system Hd at t = −1 to
the trivial system τ at t = 1, and we can think of the phase
invariant of Hd as flowing into the (d + 1)-dimensional bulk.

Finally, we complete our discussion by considering the
boundary physics of SHd with Xbdy = Xbulk = SX . The only
modification needed to the case above is to ensure that
Hbdy

N (x, t ) is independent of x at t = −1. In fact, if Hd is
a constant system over X , then no modification is needed.
Therefore, if Hd is constant, SHd admits a trivially gapped
boundary to vacuum when Xbdy = Xbulk, so based on the
bulk-boundary correspondence as formulated in Sec. III, we
expect SHd is in the trivial phase in this case. (Indeed, with-
out assuming the bulk-boundary correspondence, this can be
straightforwardly shown by exhibiting a homotopy to a trivial
system.) However, if Hd is not constant over X , we need to
modify the Hamiltonian for the boundary layer. One simple
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choice, albeit one that results in highly fine-tuned boundary
physics, is to take (for t ∈ [−1, 0])

Hbdy
N (x, t ) = (1 + t )Hd,N (x). (79)

This gives Hbdy
N (x,−1) = 0, so that the boundary is gapless

and in general highly degenerate at t = −1. While, more
generically, this degeneracy must be split somehow, as long
as SHd is in a nontrivial phase, the bulk-boundary correspon-
dence tells us it should not be possible to trivially gap the
boundary. As discussed below, we expect, but have not yet
established, that SHd is in a nontrivial phase if Hd is in a
nontrivial reduced phase.

C. Universality and properties of quantum
pumping constructions

At this stage, it is not clear to what extent the vari-
ous pumping phenomena above are universal, or are special
nonuniversal features of the systems PHd and SHd . This issue
is closely related to a number of properties of the quantum
pumping constructions that follow if we assume our proposal
that Hd �→ SHd realizes the suspension isomorphism in a
generalized cohomology theory of invertible phases. These
properties are simple consequences of the above assump-
tion, but we list them here explicitly to give a kind of road
map to what one might want to prove to make progress
towards establishing the generalized cohomology proposal.
We note that property No. 1 is straightforward to show if
one assumes the bulk-boundary correspondence as stated in
Sec. III. If properties Nos. 1–3 indeed hold, the quantum
pumping phenomena of SHd and PHd are associated with
nontrivial (d + 1)-dimensional phases over SX and X × S1,
respectively. These properties will not be used in the remain-
der of the paper, except as a part of the motivation for the
construction of solvable models in d > 1.

(1) The constructions Hd �→ SHd and Hd �→ PHd give
well-defined functions on invertible phases denoted sX :
Ed (X ) → Ed+1(SX ) and pX : Ed (X ) → Ed+1(X × S1). This
means that the phase of SHd (and of PHd ) is invertible and
only depends on the phase of Hd .

(2) The constructions respect the stacking operation, and
thus sX and pX are homomorphisms of Abelian groups. As-
suming No. 1, this is easily shown to hold.

(3) SHd is in a nontrivial phase whenever Hd is in a
nontrivial reduced phase. Moreover, if Hd is in a nontrivial
(not necessarily reduced) phase, then PHd is in a nontrivial
phase. In other words, pX is injective, and sX is injective when
restricted to the group of reduced phases Ed (X, x0) ⊂ Ed (X )
for any base point x0 ∈ X . We note that it is easily shown that
if Hd is a constant system (possibly in a nontrivial phase), then
SHd is in the trivial phase.

(4) sX : Ẽ d (X ) → Ẽ d+1(SX ) ∼= Ẽ d+1(�X ) is an isomor-
phism. Given the above properties, this could be established
by exhibiting a (two-sided) inverse construction, which may
be possible based on Kitaev’s proposal for the homotopy
inverse mapping �Ed+1 → Ed [23–25].

VIII. HIGHER BERRY CURVATURE FLOW
AND PUMPING IN HIGHER DIMENSIONS

In this section, we consider the higher-dimensional descen-
dants of the one-dimensional systems introduced in Secs. IV
and V. That is, we discuss systems with nonzero KS num-
ber in 2D and higher-dimensional lattice systems. These are
d-dimensional systems over a parameter space which is a
(d + 2)-manifold. One family of such systems can be con-
structed by repeatedly applying the suspension construction
to the 0D system over S2 of a spin 1

2 in a Zeeman magnetic
field.

We first give a review of (d + 2)-form higher Berry cur-
vature and KS invariant in families of d-dimensional lattice
systems (Sec. VIII A). In Sec. VIII B, based on the sus-
pension construction as introduced in Sec. VII, we give an
explicit construction of a 2D lattice system over S4 that has
nonzero KS number, and argue that its spatial boundaries are
anomalous. We establish that the KS number of this system
is nonzero in Sec. VIII C via the bulk-boundary correspon-
dence, which also gives the higher Berry curvature �(4) the
interpretation of a flow of 1D higher Berry curvature to/from
the spatial boundary. The corresponding interpretation also
holds in arbitrary dimensions as discussed in Sec. VIII D,
where we show that a gapped invertible d-dimensional system
Hd over a closed oriented (d + 2)-manifold X has the same
KS number as the (d + 1)-dimensional system SHd over SX
obtained from the suspension construction. In general, SX is
not a topological manifold (except when X is a sphere), so this
requires us to generalize slightly the definition of KS number.
Finally, we discuss the system PHd over X × S1 as a pump of
KS number in Sec. VIII E.

A. Review of higher Berry curvature in higher dimensions

Kapustin and Spodyneiko constructed the (d + 2)-form
higher Berry curvature and associated KS invariant in d-
dimensional lattice systems [18]. Here we give a brief review
focusing on those results needed below.

The 2-form F (2)
p in (15) is related to a sequence of n-forms

F (n)
p0...pn−2

by the descent equations

dF (n) = ∂F (n+1). (80)

Here n � 2 is an integer, and F (n) is a shorthand notation for
the n-form F (n)

p0...pn−2
, which depends in a totally antisymmetric

manner on the n − 1 lattice sites p0, . . . , pn−2. Here d is
the usual exterior derivative, and the operator ∂ is defined
by (∂F )p1...pn = ∑

p0
Fp0 p1...pn . Similar descent equations were

found earlier by Kitaev in the context of Euclidean lattice sys-
tems [15]. Below, we discuss how the higher Berry curvature
(d + 2)-form �(d+2) is constructed from F (d+2).

In Ref. [18], explicit formulas for F (n) were given that
solve the descent equations and generalize the expression for
F (2) given in (15). Taking F (2) as given by (15), there is an
ambiguity in using the descent equations to obtain F (n) with
n > 2 that we now discuss. We imagine solving the descent
equations iteratively, starting with F (2) and obtaining F (3),
then obtaining F (4), and so on. At each stage of this procedure,
F (n) is determined in terms of F (n−1) up to the ambiguity

F (n)
p0...pn−2

→ F (n)
p0...pn−2

+ B(n)
p0...pn−2

, (81)
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where ∂B(n) = 0. Kapustin and Spodyneiko have argued that
the equation ∂B(n) = 0 has only “trivial” solutions of the
form B(n) = ∂C(n) [47]. If we shift F (n) → F (n) + ∂C(n), the
descent equation at level n is modified to

dF (n) = ∂ (F (n+1) − dC(n) ). (82)

This change can be compensated by shifting F (n+1) →
F (n+1) + dC(n), which does not affect descent equations at
higher levels since d2 = 0. It is also natural to allow for an
ambiguity in F (2), namely, F (2) → F (2) + ∂C(2), since in a
d = 0 system this does not affect the Berry curvature �(2) =∑

q F (2)
q . Therefore, given a sequence F (n) (n � 2) of solu-

tions to the descent equations, the full ambiguity is

F (2) → F (2) + ∂C(2), (83)

and, for n > 2,

F (n) → F (n) + dC(n−1) + ∂C(n). (84)

Based on the discussion of Appendix C, we expect that
F (n)

p0...pn−2
is a local quantity, in a sense that we now describe.

First of all, for n = 2 and 3, F (n)
p0...pn−2

is expressed as a sum
of imaginary-time-ordered correlation functions of n local
operators, where n − 1 of the local operators are supported
near the lattice sites p0, . . . , pn−2, and the remaining lo-
cal operator comes from a sum of local operators over all
sites. It is expected that similar expressions hold for all n,
but become more complicated as n increases. Moreover, it
is also expected that F (n)

p0...pn−2
decays exponentially if any

two points of p0, . . . , pn−2 are far away from each other
compared to the correlation length of the system [18]. For
n = 2 this is an empty statement, and for n = 3 it follows
from the discussion of Appendix C, and in fact is proved
rigorously based on Ref. [35]. For each n > 3 this statement
could in principle be shown by expressing F (n)

p0...pn−2
in terms

of imaginary-time-ordered correlation functions and studying
the resulting expression, although this brute-force method will
rapidly become impractical with increasing n. We leave a
careful study of these issues for future work.

To construct the higher Berry curvature, it is convenient
to employ the language of homology and cohomology. More
specifically, as noted in Ref. [18], the relevant mathematical
theory appears to be that of coarse homology and cohomology
[48], although connecting this theory with the treatment of
Ref. [18] in a fully precise way is an open problem. Here
we give only a very brief description of some key aspects of
the chain and cochain complexes that arise. A more thorough
discussion can be found in Ref. [18].

We consider a chain complex whose k chains are totally
antisymmetric functions Ap0...pk of k + 1 lattice sites, taking
values in some real vector space V , which is a fixed property
of a given chain complex (i.e., the vector space V is the
same for all chains in a given complex, independent of the
chain degree). It is required that k chains decay exponentially
away from the diagonal p0 = · · · = pk . As above, ∂ is given
by (∂A)p1...pk = ∑

p0
Ap0...pk ; this lowers the chain degree by

one, and it is easily seen that ∂2 = 0. Now, we view F (n)

as a chain of degree k = n − 1, in a chain complex where
the vector space V is the space of differential n-forms on
the parameter space X . It should be noted that F (n) and F (m)

for n �= m belong to different chain complexes with different
vector spaces of n-forms and m-forms, respectively.

The k-cochains are bounded, totally antisymmetric real-
valued functions of k + 1 lattice sites. This is similar to the
definition of k-chains, with V = R. However, an important
difference between chains and cochains is that the exponential
decay condition on chains is replaced with a condition on the
support of cochains described in Ref. [18]. There is a pairing
between k-chains and k-cochains given by

〈A, α〉 = 1

(k + 1)!

∑
p0,...,pk

Ap0,...,pk α(p0, . . . , pk ). (85)

There is a coboundary operator δ on cochains, so that if α is
a k-cochain, δα is a (k + 1)-cochain, and δ2 = 0. The above
pairing satisfies

〈∂A, α〉 = 〈A, δα〉. (86)

Using this language, the higher Berry curvature �(d+2) is a
(d + 2)-form on X given by the following formula [18]:

�(d+2)( f1, . . . , fd ) = 〈F (d+2), δ f1 ∪ · · · ∪ δ fd〉. (87)

Here, δ f1 ∪ · · · ∪ δ fd is a d-cochain that we now describe. We
choose d-bounded, real-valued functions of a single lattice
site, with values written fμ(p) (μ = 1, . . . , d). We assume
that fμ(p) = f (xμ(p)) and xμ(p) is the μ coordinate of
p. Moreover we assume that fμ(p) = 0 for xμ(p) � 0 and
fμ(p) = 1 for xμ(p)  0. For simplicity, one may choose step
functions fμ(p) = �[xμ(p) − aμ], where aμ ∈ Z + 1

2 . From
each of these functions we construct a 1-cocycle δ fμ, defined
as

(δ fμ)(p, q) = fμ(q) − fμ(p). (88)

Even though we use the notation of the coboundary operator,
δ fμ is not exact because fμ does not have finite support and
thus does not satisfy all the conditions to be a 0-cochain. How-
ever, δ fμ is a cocycle, i.e., δ(δ fμ) = 0. Finally, δ f1 ∪ · · · ∪
δ fd is a d-cocycle obtained as a cup product of 1-cocycles as
defined in Ref. [18].

The higher Berry curvature is a closed form, i.e.,
d�(d+2) = 0, which is easily checked using Eqs. (80), (87),
and (86). We also note that the ambiguity in F (d+2) given in
Eq. (84) results in the shift

�(d+2) → �(d+2) + d〈C(d+1), δ f1 ∪ · · · ∪ δ fd〉. (89)

This is a shift of the higher Berry curvature by an ex-
act form, so the cohomology class of �(d+2) is unaffected.
In addition, the cohomology class does not depend on the
choice of the functions fμ (1 � μ � d) in (87), as long
as fμ(p) = 0 for xμ(p) � 0 and fμ(p) = 1 for xμ(p)  0.
In more detail, if two choices fμ(p) and f ′

μ(p) differ by
a function gμ(p) with compact support, then one can find
�(d+2)( f1, . . . , fμ, · · · , fd ) and �(d+2)( f1, · · · , f ′

μ, . . . , fd )
differ by an exact form dω(d+1).

The KS invariant is precisely the cohomology class
[�(d+2)/2π ]. If X is an oriented (d + 2)-dimensional mani-
fold, then the KS number can be defined as

KS =
∫

X
�(d+2). (90)
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For invertible systems, it is argued that the KS number over
X = Sd+2 is always quantized in units of 2π [18]. There-
fore, since F (d+2) and hence �(d+2) depends continuously on
x ∈ X , the KS number can be considered as an obstruction
to deforming a system over Sd+2 to a constant system. For
invertible systems over general closed oriented differentiable
manifolds, it is also expected that the KS number is quantized
in units of 2π , though we are not aware of a proof.

B. 2D lattice model over S4

Now we construct a nontrivial 2D lattice system H2D over
S4 based on the suspension construction as introduced in
Sec. VII. To make the suspension construction, we need an
input 1D system, and we choose H1D over S3 introduced in
Sec. IV. We then argue that a spatial boundary of H2D is
anomalous, suggesting that H2D is in a nontrivial phase over
S4. This is confirmed in Sec. VIII C where the KS number is
found to be 2π .

We consider a 2D square lattice with sites labeled by
p = (x1, x2) ∈ Z × Z, and place a single qubit on each site.
Given a lattice site p, sometimes it is convenient to denote the
two coordinates by x1(p) and x2(p). The parameter space is
S4, and we denote points w ∈ S4 by w = (w1, . . . ,w5) with∑5

i=1 w2
i = 1. On the “equator” S3 ⊂ S4 defined by w5 = 0,

the system is chosen to be a lattice of 1D layers, with each
layer a column extending along the x2 direction. The layers
alternate between the systems H1D (for x1 even) and H1D (for
x1 odd) over S3.

The Hamiltonian is

H2D(w) =
∑

x1∈2Z

H1D,x1 (w) +
∑

x1∈2Z+1

H1D,x1 (w)

+
∑

x1∈2Z+1,x2∈Z
H2,+

(x1,x2 );(x1+1,x2 )(w)

+
∑

x1∈2Z,x2∈Z
H2,−

(x1,x2 );(x1+1,x2 )(w). (91)

Here the first two terms are Hamiltonians for the 1D layers
summed over even and odd x1 coordinates, with H1D,x1 (w) and
H1D,x1 (w) defined in (7) and (47), respectively. While these
Hamiltonians are defined for w ∈ S3 with w = (w1, . . . ,w4),
they are given explicitly as functions of the coordinates
w1, . . . ,w4, which continue to make sense when w2

1 + · · · +
w2

4 < 1. Note in particular that H1D,x1 (w) = H1D,x1 (w) = 0
when w5 = ±1.

The remaining terms couple neighboring layers and are

H2,±
(x1,x2 );(x1+1,x2 )(w) = h±(w)

∑
μ=1,2,3

σμ
x1,x2

σ
μ
x1+1,x2

, (92)

where σ 1,2,3
x1,x2

are Pauli matrices of the qubit at site (x1, x2). The
real functions h±(w) are chosen as follows:

h+(w) =
{
w5, 0 � w5 � 1

0, otherwise
(93)

and

h−(w) =
{−w5, −1 � w5 � 0

0, otherwise.
(94)

FIG. 9. Illustration of the dependence on w5 of the 2D lattice sys-
tem H2D of (91). At w5 = 0, the 2D lattice is composed of decoupled
1D lattice systems H1D and H1D running along the vertical direction.
These 1D systems are coupled in neighboring pairs for w5 �= 0, with
two different pairings appearing, depending on the sign of w5.

It can be checked that H2D(w) is gapped everywhere on S4

(see Appendix B).
Similar to the 1D case as discussed in Sec. IV A, H2D(w)

is not smooth at w4 = 0 and w5 = 0, which may result in a
discontinuous distribution of higher Berry curvature. One can
always smooth out the functions g±(w) and h±(w) at w4 = 0
and w5 = 0, respectively, and then the higher Berry curvature
becomes continuous at w4(5) = 0. Here we are mainly inter-
ested in the cohomology class of the higher Berry curvature as
measured by the KS number, and therefore the discontinuity
of the higher Berry curvature will not cause any problems.

The dependence of the Hamiltonian on w5 is visualized
in Fig. 9. At w5 = 0, the system is composed of decoupled
1D quantum systems over the equatorial S3 ⊂ S4. These 1D
systems are characterized by a KS number of 2π (respectively
−2π ) on even (respectively odd) layers.

Now we impose a spatial boundary by truncating the lattice
to a half-plane, retaining only those sites with x1 � N (see
Fig. 10). All Hamiltonian terms coupling to sites with x1 > N
are dropped, and all other terms are retained unmodified. This
choice of boundary termination does not enlarge the parame-
ter space at the boundary, i.e., we have Xbulk = Xbdy = S4 in
the notation of Sec. III.

If N is even, the x1 = N boundary layer is decoupled from
the bulk for w5 � 0 (see Fig. 10). The energy spectrum of
the 2D system with boundary is gapped everywhere except at
w5 = −1, where the Hamiltonian for the boundary layer goes
to zero and the system is gapless. Similarly, if N is odd, the
boundary layer is decoupled from the bulk for w5 � 0, and
there is a single gapless point at the opposite pole w5 = 1.

The gapless point in the system with boundary is closely
analogous to the gapless Weyl point appearing when H1D

FIG. 10. The 2D lattice model with a spatial boundary termi-
nated at the layer x1 = N ∈ 2Z. The red dashed lines indicate the
steps in the functions f1(p) and f2(p).
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over S3 is studied in a semi-infinite system, as discussed in
Sec. IV A. In the 1D case, we argued that the 0D spatial
boundary is anomalous because a single Weyl point cannot
occur for a strictly 0D system over S3. This also led us
to expect that the bulk 1D system is in a nontrivial phase
over S3.

We now give a parallel discussion for the 2D lattice model,
leading to the conclusion that the 1D boundary is anomalous.
For concreteness we take N even. We view the boundary as
an effective 1D system, and note that it is gapless only at
the pole w5 = −1, where w1 = w2 = w3 = w4 = 0. Now we
consider the family of S3 subspaces defined by fixing w5, for
any w5 ∈ (−1, 0]. For such values of w5, the x1 = N bound-
ary layer is decoupled from the bulk, and has a well-defined
higher Berry curvature �(3). As studied in Sec. IV B one has∫

S3 �(3) = 2π . However, we can shrink the S3 subspace to a
point (for instance by continuously increasing the fixed value
of w5 until w5 = 1), upon which we must have

∫
S3 �(3) = 0.

In a strictly 1D system this is a contradiction because the
value of

∫
S3 �(3) is quantized. Therefore, the 1D boundary is

anomalous, as it exhibits behavior impossible in a strictly 1D
system. As we will see below in Sec. VIII C, this anomaly is
related to the topologically nontrivial nature of the 2D bulk.

C. Calculation of KS invariant from bulk-boundary
correspondence

Now we study the KS number of the 2D lattice system H2D

over S4. For a 2D lattice system defined on an infinite plane,
according to (87), the 4-form higher Berry curvature can be
expressed as

�(4) = 〈F (4), δ f1 ∪ δ f2〉. (95)

We choose f1 and f2 to be step functions depending on x1

and x2, respectively, namely, f1,2(p) = �[x1,2(p) − a1,2], with
a1,2 ∈ Z + 1

2 . The cup product of the two 1-cocycles δ f1 and
δ f2 is given explicitly by

(δ f1 ∪ δ f2)(p0, p1, p2)

= 1

6

∑
σ∈S3

(sgn σ )[ f1(pσ (1) ) − f1(pσ (0) )]

×[ f2(pσ (2) ) − f2(pσ (1) )], (96)

where the sum is over permutations of the three-element set
{0, 1, 2}.

To determine �(4), we need to make a choice of local
Hamiltonians Hp so that H = ∑

p Hp. We choose Hp to have
support only on the site p = (x1, x2) and its four nearest-
neighbor sites as

Hp(w) = H1
(x1,x2 )(w) + xH2,±

(x1,x2 );(x1,x2+1)(w)

+ (1 − x)H2,∓
(x1,x2 );(x1,x2−1)(w) + yH2,±

(x1,x2 );(x1+1,x2 )(w)

+ (1 − y)H2,±
(x1,x2 );(x1−1,x2 )(w), (97)

where the single-spin and two-spin terms can be found in (8),
(9), and (92), and where 0 � x, y � 1 are real w-independent
parameters introduced to illustrate the ambiguity in choosing
local Hamiltonians. In the discussion below, we will only need

to use the fact that when w5 = 0, the support of Hp lies within
the 1D layer containing p.

It is quite involved to obtain an analytical expression for
�(4), so we instead evaluate the KS number KS = ∫

S4 �(4)

using the bulk-boundary correspondence. We first discuss
the bulk-boundary correspondence for a general gapped 2D
parametrized system over X , and then specialize to the spe-
cific system H2D over S4.

We consider both infinite and semi-infinite systems, i.e.,
systems without and with a boundary. We choose fμ(p) =
�[xμ(p) − aμ] with μ = 1, 2. For concreteness, we take the
boundary to run along the vertical direction; that is, the system
with boundary is defined by retaining only those lattice sites
with x1 � N . We focus on the case X = Xbdy = Xbulk, where
X is a differentiable manifold.

The higher Berry curvatures in the infinite and semi-infinite
systems are denoted �

(4)
∞ and �

(4)
∞/2, respectively. These 4-

forms are both defined on the subspace X� ⊂ X for which the
semi-infinite system is gapped. We have

lim
a1�N

[
�

(4)
∞/2( f ) − �(4)

∞ ( f )
] = 0, (98)

where the limit means that a1 is taken deep inside the bulk, far
away from the spatial boundary.

The formula (98) is expected to hold for a general gapped
2D parametrized system. To see this, we first observe that the
two step functions f1 and f2 divide the 2D plane into four
quadrants meeting at the point (a1, a2). Moreover, by (96),
(δ f1 ∪ δ f2)(p, q, r) is only nonzero when the lattice sites p,
q, and r all lie in different quadrants. We next consider the
expression

�(4) = 1

3!

∑
p,q,r

F (4)
pqr (δ f1 ∪ δ f2)(p, q, r), (99)

and observe that the expected exponential decay of F (4)
pqr as

discussed above in Sec. VIII A implies the sum is dominated
by contributions where p, q, and r are all near the point
(a1, a2). Finally, the expected locality of F (4)

pqr (see Sec. VIII A)
implies that, in the limit where (a1, a2) is far away from the
spatial boundary, the dominant local contributions to �(4) in
the infinite and semi-infinite systems become the same, and
we have �

(4)
∞/2( f ) − �

(4)
∞ ( f ) → 0.

Next, using (86) and (80), we express �
(4)
∞/2 in terms of a

3-form defined by ω(3) = 〈F (3), f1 ∪ δ f2〉 by writing

�
(4)
∞/2( f ) = 〈F (4), δ( f1 ∪ δ f2)〉 = 〈∂F (4), f1 ∪ δ f2〉

= 〈dF (3), f1 ∪ δ f2〉 = d〈F (3), f1 ∪ δ f2〉
= dω(3)( f ). (100)

These manipulations only make sense in the semi-infinite
system because the sum in the pairing defining ω(3) would be
divergent in an infinite system. This can be seen noting that

( f1 ∪ δ f2)(p0, p1) = 1
2 [ f1(p0) + f1(p1)][ f2(p1) − f2(p0)].

(101)

This is nonzero whenever x2(p0) and x2(p1) lie on opposite
sides of a2, and if x1(p0) > a1 or x1(p1) > a1. In a semi-
infinite system, the finite width of the strip with a1 < x1 � N
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combined with the exponential decay of F (3)
p0 p1

ensures that
ω(3)( f ) is well defined.

We can view ω(3)( f ) as a 3-form boundary higher Berry
curvature, where in this case the effectively one-dimensional
“boundary” is considered to be all lattice sites with x1 > a1.
This point of view is justified by considering the situation (at
some value of parameters) where the boundary is decoupled
from the bulk (i.e., lattice sites with x1 < a1), so the boundary
is truly a one-dimensional system. In this case, F (3)

p0 p1
= 0 if

p0 lies in the boundary and p1 lies in the bulk (or vice versa).
Then we have

ω(3) = 〈F (3), δ f2〉 = 1

2

∑
p0,p1

[ f2(p1) − f2(p0)]F (3)
p0 p1

, (102)

where the sum is over sites lying in the boundary, i.e., those
with x1 > a1. This is nothing but the 3-form higher Berry
curvature for the (decoupled) one-dimensional boundary. In
particular, dω(3)( f ) = 0 whenever the boundary is decoupled
from the bulk.

To summarize, (98) and (100) provide us with a bulk-
boundary correspondence relating the bulk 4-form higher
Berry curvature to the 3-form boundary higher Berry curva-
ture. In particular, �(4) can be interpreted as a flow of 3-form
higher Berry curvature to/from a spatial boundary.

We now specialize again to the system H2D over S4 and use
these results to compute the KS number. In order to proceed,
we need to give S4 an orientation. We do this by viewing S4 as
the suspension S4 ∼= S(S3), taking the orientation on S3 given
in Sec. IV B 2, and using this to specify an orientation on S(S3)
as described in a more general situation below in Sec. VIII D.
Here, we specifically note that the coordinate t in the sus-
pension construction can be identified with the coordinate w5

when we view S4 as a subspace S4 ⊂ R5; if we start with
S4 and remove the two poles w5 = ±1, the resulting space is
homeomorphic to the product S3 × (−1, 1). When that space
is endowed with the product orientation of the given one on S3

and the upward one on (−1, 1), the homeomorphism equips
S4 minus the poles with an orientation which can be extended
to S4 and is the one we choose.

We impose a spatial boundary as described in Sec. VIII B
(see Fig. 10), taking N even for concreteness. Moreover, we
choose a1 ∈ 2Z − 1

2 with a1 < N . We note that (98) holds
without taking the limit a1 � N because neighboring 1D lay-
ers are only coupled in pairs. At w5 = 0, we have decoupled
1D systems H1D and H1D running along the x2 direction,
and the boundary higher Berry curvature is simply a sum
of higher Berry curvatures of these decoupled systems. As a
result we have ω(3)( f ) = �

(3)
1d ( f2), the higher Berry curvature

of H1D. This is so because, apart from the x2 = N layer on the
boundary, the systems H1D and H1D come in pairs with equal
and opposite contributions to ω(3)( f ).

Now we let S3(y) ⊂ S4 be the subspace defined by set-
ting w5 = y, and similarly define D4(y) ⊂ S4 as the subspace
with w5 � y. We have S3(y) = ∂D4(y), which gives S3(y) an
orientation inherited from that of S4 by the collar method of
Sec. IV C 1. The discussion above implies that

∫
S3(0) ω

(3)( f ) =
2π ; this is nothing but the expression for the KS number of

H1D. More generally, we have∫
S3(y)

ω(3) = 2π for − 1 < y � 0. (103)

This holds because for −1 < w5 � 0 there is no coupling
between boundary and bulk, so we can think of y as
parametrizing a deformation of the gapped 1D boundary sys-
tem over S3. Under such a deformation, the 1D KS number is
invariant.

Using (100) and applying Stokes theorem gives∫
S3(y)

ω(3) =
∫

D4(y)
�

(4)
∞/2 =

∫
D4(y)

�(4)
∞ . (104)

Finally, taking the limit y → −1, we obtain the KS number∫
S4

�(4)
∞ = lim

y→−1

∫
S3(y)

ω(3) = 2π. (105)

That is, the boundary KS number over a small 3-sphere sur-
rounding the gapless point equals the quantized KS number of
the bulk.

We remark that the same analysis applies if we start with a
general invertible gapped 1D system H over X , where X is a
closed oriented differentiable 3-manifold, and consider the 2D
system SH over SX obtained by the suspension construction.
That is, the 2D KS number of SH is equal to the 1D KS
number of H .

We further remark that the clutching construction of
Sec. IV D can be generalized to the present setting of a 2D
gapped invertible system H over S4, with higher Berry cur-
vature �(4). In the 2D case, we need the further assumption
that H is in a reduced phase (see Sec. VI A); recall this means
that H (w) is in a trivial phase over {w} for any w ∈ S4. We
cover S4 with two subspaces S4

N and S4
S defined by w5 � 0

and w5 � 0, respectively. These subspaces are contractible,
and using the assumption that H is in a reduced phase, it
follows that the restrictions of H to S4

N and S4
S are in the triv-

ial phase. Therefore, we can introduce two different gapped
semi-infinite systems HN,S over S4

N,S, whose Hamiltonians are
identical to H in the bulk, and differ only near the spatial
boundary, which for concreteness we define by retaining only
lattice sites with x1 � N . The higher Berry curvatures of the
semi-infinite systems satisfy

�
(4)
N,S = dω

(3)
N,S, (106)

where the 3-forms ω
(3)
N,S have the interpretation of boundary

1D higher Berry curvatures. Then the KS invariant is given by

KS =
∫

S4
�(4) = lim

a1�N

[ ∫
S3

ω
(3)
N −

∫
S3

ω
(3)
S

]
, (107)

where S3 = S4
N ∩ S4

S. For the system H2D, and more generally
for any 2D system obtained via the suspension construction,
the clutching construction provides an alternative method to
compute the KS invariant.

D. KS number in (d + 1)-dimensional lattice
systems from suspension construction

So far we have given an explicit construction of 1D and 2D
lattice models that have nonzero KS number. One can go on to
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use these lower-dimensional lattice models and their inverses
to construct higher-dimensional systems with nonzero KS
number, based on the suspension construction as introduced
in Sec. VII. Here, given a d-dimensional gapped invertible
system Hd over X , and the (d + 1)-dimensional system SHd

over SX obtained from Hd by suspension construction, we will
show that

KSd+1(SHd ) =
∫

SX
�(d+3) =

∫
X

�(d+2) = KSd (Hd ), (108)

where �(d+2) is the higher Berry curvature of Hd and �(d+3)

is that of SHd . That is, the KS number of the (d + 1)-
dimensional system SHd over SX is identical to that of the
d-dimensional system Hd over X .

Here we assume that X is a closed oriented differentiable
manifold, with orientation specified by a nowhere-vanishing
(d + 2)-form τ . There is a subtlety because in general SX is
not a topological manifold; in fact, SX is a closed topological
manifold if and only if X is a sphere. Therefore, in order to
make sense of the claim (108), we have to give a definition
of the KS number on SX and show it is a phase invariant.
Below, we first discuss the simpler case where X is a sphere,
employing the clutching construction (see Secs. IV D and
VIII C). Next, we treat the general case where X is an arbitrary
closed oriented differentiable manifold.

Now letting X = Sn, the result (108) holds trivially if n �=
d + 2 since both KS numbers are zero. Therefore, we assume
X = Sd+2. We fix the orientation on SX ∼= Sd+3 by choosing
the (d + 3)-form −dt ∧ τ , which is defined away from the
t = ±1 poles. Below, while we do assume X = Sd+2, we write
X and SX instead of Sd+2 and S(Sd+2) ∼= Sd+3, to help make
contact with the more general discussion to follow.

As described in Sec. VII, SHd can be viewed as a
one-dimensional lattice of d-dimensional layers. We choose
coordinates so that the layers are stacked along the x1 di-
rection. Let us consider a semi-infinite system over SX by
terminating the system at layer x1 = N . Taking a1 < N in
the step function f1(p) = �[x1(p) − a1], and restricting to the
subspace of SX over which the semi-infinite system is gapped,
we have

�(d+3)
∞ = �

(d+3)
∞/2 , (109)

where �
(d+3)
∞ and �

(d+3)
∞/2 denote the higher Berry curvatures

of the infinite and semi-infinite systems, respectively. Here,
the equality is expected to be exact without taking the limit
a1 � N because layers are only coupled in pairs. The re-
sult (109) relies on the expectation that F (d+3) (in �(d+3) =
〈F (d+3), δ f1 ∪ · · · ∪ δ fd+1〉) is a local quantity in the sense
discussed in Appendix C.

In the semi-infinite system, the higher Berry curvature can
be written

�
(d+3)
∞/2 = 〈F (d+3), δ( f1 ∪ δ f2 ∪ · · · ∪ δ fd+1)〉

= d〈F (d+2), f1 ∪ δ f2 ∪ · · · ∪ δ fd+1〉
= dω(d+2), (110)

where the (d + 2)-form

ω(d+2) = 〈F (d+2), f1 ∪ δ f2 ∪ · · · ∪ δ fd+1〉 (111)

is a boundary higher Berry curvature, and is expected, with
appropriate choice of local Hamiltonian terms Hp, to reduce
to the higher Berry curvature of a d-dimensional system for
parameters where the boundary region (x1 > a1) is decoupled
from the bulk (x1 < a1). In the second step of (110), we have
used (80) and (86). The relations (109) and (110) can be
considered as a bulk-boundary correspondence for the higher
Berry curvature, and tell us that the (d + 3)-form higher Berry
curvature measures the flow of (d + 2)-form Berry curvature
to the boundary.

If the KS number KSd+1(SX ) = ∫
SX �

(d+3)
∞ is nonzero,

then the cohomology class of �
(d+3)
∞ is nontrivial, and ω(d+2)

is not globally well defined over SX . Our strategy is to cover
SX by two charts as SX = SX+ ∪ SX−, where SX+ (SX−) de-
notes the subspace of SX with t � 0 (t � 0). On each chart a
gapped boundary termination can be chosen (i.e., we consider
two different gapped semi-infinite systems, one over each
chart), and we have well-defined (d + 2)-forms ω

(d+2)
± on

SX±. More concretely, on SX+ (SX−), we choose the bound-
ary terminated at layer x1 = N ∈ 2Z (x1 = N − 1 ∈ 2Z − 1),
which results in gapped systems over SX± (see Sec. VII).
Denoting the higher Berry curvature on SX± by �

(d+3)
± , we

have

�
(d+3)
± = dω

(d+2)
± . (112)

The KS invariant of SHd can then be expressed∫
SX

�(d+3)
∞ =

∫
SX+

�
(d+3)
+ +

∫
SX−

�
(d+3)
− , (113)

where we have used (109). Then, by (112) and Stokes theo-
rem, we obtain∫

SX
�(d+3)

∞ =
∫

X
ω

(d+2)
+ −

∫
X

ω
(d+2)
− , (114)

where X = SX+ ∩ SX− is the t = 0 “equator” of SX . The mi-
nus sign in (114) arises because the orientation on X induced
by X = ∂ (SX−) according to the collar method is opposite to
the given orientation of X .

At t = 0, the system SHd is composed of decoupled layers
that alternate between Hd and Hd . Therefore,∫

X
ω

(d+2)
+ =

∑
x1∈Z,a1<x1�N

(−1)x1

∫
X

�(d+2),

∫
X

ω
(d+2)
− =

∑
x1∈Z,a1<x1�N−1

(−1)x1

∫
X

�(d+2), (115)

where �(d+2) is the higher Berry curvature of Hd . Here we are
assuming the local Hamiltonian terms Hp are chosen so that,
at t = 0, the support of Hp lies within the d-dimensional layer
containing p. We are also assuming for notational convenience
that Hd has higher Berry curvature (not just KS number) equal
and opposite to that of Hd ; this assumption is easily relaxed.
From (114) it then follows that

KSd+1(SHd ) = KSd (Hd ), (116)

which is the desired relation between KS invariants in the case
where X = Sd+2.

We now address the case when X is not a sphere. In this
case, SX is not a closed manifold: the north (t = 1) and south
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(t = −1) poles are singular points. We consider a general
d-dimensional reduced invertible system H over SX . Provided
that H is differentiable away from the singularities of SX ,
we can enlarge our definition of the KS invariant so that the
results above continue to hold.

For 0 < ε < 1, define a function r : SX → SX by

r(x, t ) =

⎧⎪⎨⎪⎩
(x, (1 − ε)−1t ), |t | < 1 − ε

N = {X × {1}}, t � 1 − ε

S = {X × {−1}}, t � −1 + ε

(117)

where N and S are the equivalence classes of points repre-
senting the north and south poles. The system H ◦ r is locally
constant and trivial outside of the subset X × [−1 + ε, 1 − ε].
Furthermore, H ◦ r is in the same phase as H , as can be seen
by tuning ε back to zero in the definition above.

For H ◦ r, the higher Berry curvature �(d+2)( f ) is defined
on X × (−1, 1). It is a closed compactly supported differential
form on the noncompact manifold X × (−1, 1). So, we get an
element of Hd+2

c,dR[X × (−1, 1)], where the subscripts denote
compactly supported de Rham cohomology. But this group is
isomorphic to Hd+2([X × (−1, 1)]∗, {∗}), where the asterisk
denotes both the one-point compactification and the single
added point (see Lemma 11 of Chap. 6, Sec. 6 in Ref. [49]),
and in turn Hd+2([X × (−1, 1)]∗, {∗}) ∼= Hd+2(SX ) for all
d � 0. The latter group is where the KS invariant should live.

The KS number is then defined by

KS =
∫

X×(−1,1)
�(d+2)( f ), (118)

which is well defined because �(d+2)( f ) is compactly sup-
ported. We argue that KS is quantized in integer multiples
of 2π , making the assumption that the KS number of an
invertible system over a closed oriented manifold is similarly
quantized. The idea is to obtain a system over the manifold
X × S1 whose KS number is equal to KS defined above. We
introduce a continuous function hNS : [0, 1] → GHd so that
hNS(0) = H (N) and hNS(1) = H (S); this is possible because
both H (N) and H (S) are trivial systems over a point. We then
define a new system H̃δ over SX by

H̃δ (x, t ) =
{

hNS
(
δ t−(1−ε)

ε

)
, t � 1 − ε

H ◦ r(x, t ), t < 1 − ε
(119)

where δ ∈ [0, 1]. Since H̃0 = H , we see that H̃δ is in the
same phase as H ◦ r by tuning δ to zero. Now at δ = 1 we
have the property H̃1(S) = H̃1(N) = H (S). Therefore, we can
view H̃1 as a system over X × S1. Moreover, the higher Berry
curvatures of H̃δ and H are same for all δ; for t > 1 − ε the
Hamiltonian only depends on t and thus the higher Berry
curvature is zero there. The KS number of H is thus the same
as that of H̃1 viewed as a system over X × S1.

Next we need to verify that KS is an invariant for phases
over SX . If H can be deformed to H ′ via a continuous homo-
topy h : SX × I → GHd , then h ◦ r deforms H ◦ r to H ′ ◦ r
via a homotopy of systems which are equal to a constant
trivial system outside of X × [−1 + ε, 1 − ε]. Because the
KS number is quantized, it follows that the systems H ◦ r and
H ′ ◦ r have the same KS number.

With this definition of the higher Berry curvature and KS
number for a system over SX , the discussion above applies
to any closed manifold X , giving the relationship between the
KS numbers of Hd and SHd stated in (108). We note that the
boundary higher Berry curvature ω

(d+2)
+ on SX+ is compactly

supported on X × [0, 1 − ε] ⊂ SX+, because the semi-infinite
system over SX+ is trivial and constant outside X × [0, 1 − ε].
The analogous result holds for ω

(d+2)
− on SX−. Equation (114)

thus continues to hold because, e.g., the integral of ω
(d+2)
+ over

X × {1 − ε} vanishes.
Different choices of conventions would result in the

slightly different relationship KSd+1(SHd ) = −KSd (Hd ). For
instance, the minus sign appears if we reverse the chosen
orientation on SX . Another way to get a minus sign is to ex-
change the roles of Hd and Hd in the suspension construction.

E. KS number pump in (d + 1) dimensions

In Sec. V, we studied a 1D system Hcp over S2 × S1 that
we interpreted as a Chern number pump. Upon adiabatically
cycling the coordinate of the S1, a quantized 2π Chern number
over S2 was pumped from the boundary of the system into
the bulk. This was generalized in Sec. VII B, where given
a gapped d-dimensional invertible system Hd over X , we
showed that the (d + 1)-dimensional system PHd over X × S1

can be interpreted as a pump of the d-dimensional phase
invariant of Hd from the boundary into the bulk. Therefore, if
Hd is characterized by the d-dimensional KS number KSd , we
expect that PHd is a KS number pump. That is, for each cycle
around S1, PHd pumps a d-dimensional KS number KSd from
the spatial boundary into the bulk. We now briefly establish
this expectation.

We consider a gapped boundary termination with Ybdy =
X × [−1, 1] and Ybulk = X × S1, as described in Sec. VII B
and illustrated in Fig. 7. We suppose X is an oriented closed
differentiable (d + 2)-manifold, with orientation given by a
nowhere-vanishing (d + 2)-form τ . We then give X × [−1, 1]
the orientation specified by the (d + 3)-form −dt ∧ τ , where
t ∈ [−1, 1]. This also gives X × S1 an orientation by viewing
S1 = [−1, 1]/{−1, 1}.

We let �
(d+3)
∞/2 denote the higher Berry curvature of the

semi-infinite system, and observe that the cohomology class
of �

(d+3)
∞/2 is trivial for dimensional reasons. This is so because

Ybdy = X × I is homotopy equivalent to the (d + 2)-manifold
X . Therefore, �(d+3)

∞/2 = dω(d+2), where ω(d+2) is globally well
defined on Ybdy and has the interpretation of boundary higher
Berry curvature.

Now we let �(d+3) be the higher Berry curvature of
the infinite (d + 1)-dimensional system PHd . Applying the
bulk-boundary correspondence and Stokes theorem, we
have

KSd+1 =
∫

X×S1
�(d+3) =

∫
X×[−1,1]

�
(d+3)
∞/2

= −
∫

X×{1}
ω(d+2) +

∫
X×{−1}

ω(d+2) = KSd . (120)

The last equality holds because the system is trivial at t = 1,
while at t = −1 the system is trivial apart from the x1 = N
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boundary layer, which is in the d-dimensional system Hd . Not
only do we see that KSd+1 = KSd , but we also see that KSd+1

can be interpreted as the d-dimensional KS number pumped
from the spatial boundary into the bulk over a single cycle of
the S1 parameter.

IX. DISCUSSION

In this paper, we explored the physics of parametrized
quantum systems, focusing in particular on invertible phases
of parametrized systems. We developed a bulk-boundary
correspondence for the Kapustin-Spodyneiko higher Berry
curvature, which clarifies its physical interpretation. More-
over, we introduced a pair of quantum pumping constructions
that take as input a d-dimensional invertible system over
X and produce a (d + 1)-dimensional system either over
the suspension SX , or over X × S1. These constructions can
be used to generate many examples, and we used them in
our discussion of d-dimensional systems over Sd+2 with
nonzero KS invariant. Moreover, the construction producing
a system over SX , referred to as the suspension construc-
tion, is proposed to realize the suspension isomorphism in
a generalized cohomology theory of parametrized invertible
phases.

It is emphasized that there are also nontrivial phases in
one-dimensional parametrized bosonic systems without sym-
metry that cannot be detected by KS numbers. The topological
invariants of such parametrized systems take values in the
torsion part of H3(X,Z) and cannot be obtained by integrating
over the higher Berry curvature. These torsion phases have
been considered in recent works [50,51].

Many related directions remain to be explored in future
work on parametrized quantum systems. For instance, some
results on invertible such systems with discrete symmetries
have been reported, which are also related (under duality) to
parametrized systems with spontaneously broken symmetry,
and (upon gauging symmetry) to parametrized noninvertible
systems [21,22]. Much work remains to be done in under-
standing the bulk and anomalous boundary properties of such
systems. More generally, parametrized noninvertible systems
are even less explored and understood than their invertible
counterparts.

We close with a brief remark on interfaces between sys-
tems with different KS numbers. As discussed at the end
of Sec. IV C 2, for two 1D systems over the same closed
oriented 3-manifold X , if their KS numbers are different, then
an interface between them must be gapless for some x ∈ X .
For d-dimensional systems over a closed oriented (d + 2)-
dimensional manifold X , we argue that this conclusion is still
true, i.e., the (d − 1)-dimensional interface must be gapless
for some x ∈ X (or, there must be a first-order interface phase
transition for some x ∈ X ) if the two d-dimensional systems
have different KS numbers. We note that a similar conclusion
was reached in Ref. [20] for systems over Sd+2. In partic-
ular, this rules out the possibility of having a topologically
ordered system on the (d − 1)-dimensional interface. This is
in contrast to invertible phases over a point, where the inter-
face between two invertible systems in different phases can
sometimes host a gapped, anomalous topologically ordered
system if d � 3.

The argument is as follows. We consider two gapped (but
not necessarily invertible) d-dimensional systems over X as
introduced in Sec. VIII D, with an interface between them
located near the hyperplane x1 = 0. We suppose the interface
is gapped everywhere over X , and consider higher Berry cur-
vatures defined for two different choices of a1 in the function
f1 = �(x1 − a1). In one case we choose a1 � 0, and in the
other we choose a1  0, so that the two higher Berry curva-
tures (as local quantities) are those of the two d-dimensional
systems and do not depend on the properties of the interface.
These two (d + 2)-forms differ only by an exact form, and
thus must give rise to the same KS number. We emphasize
that these arguments continue to hold if the interface is gapped
but topologically ordered. Therefore, if the two systems have
different KS numbers, their interface must become gapless at
some x ∈ X , or a first-order phase transition must occur at the
interface for some x ∈ X .
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APPENDIX A: HIGHER BERRY CURVATURE
OF 1D LATTICE MODEL

Here we give some details on the calculation of the higher
Berry curvature in the 1D lattice model H1D studied in Sec. IV.
For the Hamiltonian H1D(w) in (7), one can find the energy
spectrum is gapped everywhere over S3. Recalling that for any
w = (w1, . . . ,w4) ∈ S3, spins are only coupled in dimers, it is
enough to check the energy spectrum for a single dimer. This
is easily found to be

En = −2 − |w4|, |w4|, |w4|, 2 − |w4|. (A1)

Therefore, the system is gapped for all w ∈ S3. At the w4 = 0
equator, the spins are decoupled, and the energy spectrum for
a each spin is En = ±1, which reproduces (A1) for a pair of
spins (at w4 = 0).

To obtain the higher Berry curvature �(3), we consider the
3-form F (3)

pq in (17). By inserting complete sets of basis and
performing the contour integral, one can obtain

F (3)
pq = i

6

[−2
〈
dH G2

0 dHp G0 dHq
〉 − 〈

dH G0 dHp G2
0 dHq

〉
+ 2

〈
dHp G0 dHq G2

0 dH
〉 + 〈

dHp G2
0 dHq G0 dH

〉
+ 〈

dHq G2
0 dH G0 dHp

〉 − 〈
dHq G0 dH G2

0 dHp
〉

+ 3
〈
dH G3

0 dHp
〉〈dHq〉 − 3

〈
dHq G3

0 dH
〉〈dHp〉

]
− (p ↔ q), (A2)
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where 〈. . . 〉 denotes the ground-state expectation value, and
we have defined

G0 =
∑
n �=0

|n〉〈n|
E0 − En

, (A3)

where
∑

n �=0 denotes the summation over all excited states, E0

is the ground-state energy, and Em �=0 is the energy of the mth
excited state. Finally, Hp is the local Hamiltonian defined in
(21).

Using (A2), we evaluated �(3) as expressed in (23), and
obtained the explicit expression (25). The same procedure can
be used to obtain the higher Berry curvature for other choices
of a in the step function f (p) = �(p − a), and for the inverse
system H1D discussed in Sec. IV E.

Now we consider the boundary Berry curvature 2-form
ω(2) as studied in Sec. IV C and defined by (30) in terms
of F (2)

q = ∑
p∈Z F (2)

pq . By inserting complete sets of energy
eigenstates in Eq. (13) and performing the contour integral,
one can rewrite the 2-forms F (2)

pq explicitly as

F (2)
pq = i

2

[〈
dHp G2

0 dHq
〉 + 〈

dHq G2
0 dHp

〉]
. (A4)

Since H1D is composed of decoupled dimers, the energy
eigenstates are tensor products over dimers, and it is straight-
forward to check that F (2)

pq = 0 if |p − q| > 1. For w4 � 0,

the expression (30) for ω(2) can be simplified to ω(2) = F (2)
a+1/2

because decoupled dimers that lie fully to the right of a give
vanishing contributions. Similarly, for −1 < w4 � 0 we have
ω(2) = F (2)

N . Using Eq. (A4), we obtained ω(2) as given in (32).

APPENDIX B: ENERGY SPECTRUM
OF FOUR-SPIN CLUSTERS

Here we show that the energy spectrum of H (w, t ) in
(51) is gapped for arbitrary w ∈ S3 and t ∈ [0, 1]. In fact, the
spectrum of H (w, t ) is directly related to the energy spectrum
of the 2D lattice model H2D introduced in Sec. VIII B, by
identifying w5 = sin πt

2 in (91). It is noted that the lattice
models in (51) and (91) are always composed of decoupled
clusters (each of which contains four sites). Therefore, it is
enough to study the energy spectrum of a single cluster.

Consider the cluster composed of four sites at (i, j) where
i, j ∈ {1, 2} in (91). By making a unitary transformation
to rotate the onsite magnetic field �w = (w1,w2,w3) to the
positive-z direction, the Hamiltonian has the simple form

H =
∑

i, j∈{1,2}
(−1)i+ jw σ 3

i, j

+w4

∑
μ=1,2,3

σ
μ
1,1σ

μ
2,1 + w4

∑
μ=1,2,3

σ
μ
1,2σ

μ
2,2

+w5

∑
μ=1,2,3

σ
μ
1,1σ

μ
1,2 + w5

∑
μ=1,2,3

σ
μ
2,1σ

μ
2,2, (B1)

where w =
√

1 − w2
4 − w2

5 , and w4, w5 ∈ [0, 1]. We com-
puted the energy spectrum of the Hamiltonian in (B1)
numerically, as shown in Fig. 11, and found that the spectrum

FIG. 11. Energies of the ground state and the first excited state
of the Hamiltonian in (B1) as a function of w4 and w5, with w4, w5 ∈
[0, 1].

is gapped everywhere. While the plot is for positive w4 and
w5, the same property holds when when w4 or w5 is negative.

APPENDIX C: LOCALITY OF THE HIGHER
BERRY CURVATURE

Here we express both F (2)
q and F (3)

pq in terms of imaginary-
time-ordered correlation functions of local operators. These
expressions show that these quantities are local, in the sense
that they are dominated by contributions from regions of space
near q, or near p and q, respectively. The result for F (3) is used
in Sec. IV C 2 to obtain a bulk-boundary correspondence for
generic parametrized systems in d = 1. It is expected from the
derivation of these results that similar local expressions exist
for F (n) when n > 3.

We first consider F (2)
q = ∑

p∈Z F (2)
pq , which from (A4) can

be written

F (2)
q = i

2

(〈
dHG2

0dHq
〉 + 〈

dHqG2
0dH

〉)
. (C1)

Moreover, defining d̃H = dH − 〈dH〉 and d̃Hq = dHq −
〈dHq〉, we have

F (2)
q = i

2

(〈
d̃HG2

0d̃Hq
〉 + 〈

d̃HqG2
0d̃H

〉)
. (C2)

For operators A and B with vanishing ground-state expec-
tation value, the identity

〈
AG2

0B
〉 =

∫ ∞

0
dτ τ 〈A(τ )B(0)〉 (C3)

=
∫ ∞

0
dτ τ 〈Ae−τH B〉 (C4)

can be established by inserting complete sets of energy eigen-
states and evaluating the τ integral. Here, for instance, A(τ ) =
eτH Ae−τH .

Using (C4) in (C2), we obtain the result

F (2)
q = i

2

∫ ∞

0
dτ τ [〈d̃H (τ )d̃Hq〉 + 〈d̃Hq(τ )d̃H〉]. (C5)
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Because d̃H is a sum of local operators, this expresses F (2)
q

in terms of a sum of imaginary-time-ordered correlation
functions of local operators whose ground-state expectation
values vanish. Therefore, we see that the dominant contri-
butions to F (2)

q come from regions of space near q, while
far-away contributions are exponentially suppressed in a
gapped system.

Now we proceed to obtain a similar result for F (3)
pq . Starting

from (A2) we have

F (3)
pq = i

6

[−2
〈
d̃HG2

0d̃H pG0d̃Hq
〉 − 〈

d̃HG0d̃H pG2
0d̃Hq

〉
+ 2

〈
d̃H pG0d̃HqG2

0d̃H
〉 + 〈

d̃H pG2
0d̃HqG0d̃H

〉
+ 〈

d̃HqG2
0d̃HG0d̃H p

〉 − 〈
d̃HqG0d̃HG2

0d̃H p
〉

− (p ↔ q)
]
. (C6)

Each term in this expression can be written as an imaginary-
time-ordered correlation function of local operators with
vanishing ground-state expectation value. This is easily seen

via the identity〈
AGa

0BGb
0C

〉 = (−1)a(−1)b

(a − 1)!(b − 1)!

∫ ∞

0
dτ1

×
∫ ∞

0
dτ2τ

a
1 τ b

2 〈A(τ1 + τ2)B(τ2)C〉, (C7)

where A, B, and C are operators with vanishing ground-state
expectation value, and where a and b are positive integers.
The identity can be established by inserting complete sets of
energy eigenstates on the right-hand side, and evaluating the
integrals. The quantity in (C7) decays exponentially to zero if
any two operators of A, B, and C are far away from each other
in space. See, e.g., Ref. [35] for a more detailed discussion. So
we see that F (3)

pq is dominated by contributions of space from
regions near p and q.

We expect that similar expressions can be obtained for ar-
bitrary F (n)

p0...pn−2
. In more detail, starting from the expression in

Eq. (21) of Ref. [18], we expect an expression similar to (C6)
can be obtained. In turn, it should be possible to express each
term in the resulting expression as an imaginary-time-ordered
correlation function of d̃H and the n − 1 operators d̃H pi for
i = 0, . . . , n − 2.
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