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Machine learning the electronic structure of matter across temperatures
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We introduce machine learning (ML) models that predict the electronic structure of materials across a wide
temperature range. Our models employ neural networks and are trained on density functional theory (DFT) data.
Unlike most other ML models that use DFT data, our models directly predict the local density of states (LDOS)
of the electronic structure. This provides several advantages, including access to multiple observables such as
the electronic density and electronic total free energy. Moreover, our models account for both the electronic and
ionic temperatures independently, making them ideal for applications like laser heating of matter. We validate the
efficacy of our LDOS-based models on a metallic test system. They accurately capture energetic effects induced
by variations in ionic and electronic temperatures over a broad temperature range, even when trained on a subset
of these temperatures. These findings open up exciting opportunities for investigating the electronic structure of
materials under both ambient and extreme conditions.
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I. INTRODUCTION

Predicting the electronic structure of matter is essential
for advancing scientific progress across various applications.
Electronic structure calculations, which typically employ den-
sity functional theory (DFT) [1,2], have become a routine tool
in materials science and chemistry due to their accuracy and
computational efficiency [3,4].

However, as the demand for high-fidelity simulation data
in emerging research areas increases, conventional DFT sim-
ulations face significant limitations. DFT calculations exhibit
unfavorable scaling with both system size and tempera-
ture [5], limiting their applicability for current scientific
challenges, particularly in studying materials under extreme
conditions and within the warm dense matter regime [6–8].
Progress in this area not only contributes to the fundamen-
tal sciences by advancing our understanding of astrophysical
objects [9–12], but also propels technological developments
by enabling the modeling of inertial confinement fusion cap-
sule heating processes [13], radiation damage processes in
reactor walls [14–17], and advanced manufacturing [18,19].
Additionally, it supports diagnostics of scattering experi-
ments conducted at free-electron laser facilities [20,21] and
promotes the emerging field of hot-electron chemistry for
accelerating chemical reactions [22,23]. A particularly rele-
vant phenomenon in these applications involves rapidly driven
electrons leading to transient nonequilibrium conditions re-
sulting in hot electrons and cool nuclei, which have also been
observed in semiconducting and dielectric materials [24,25].
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To address these computational limitations, the electronic
structure community has increasingly turned to machine
learning (ML) techniques [26]. ML algorithms can accu-
rately predict complicated relationships using tractable data
samples. The application of ML to DFT has led to numer-
ous approaches, with most focusing on predicting specific
observables of interest [27] or replacing DFT entirely with
ML interatomic potentials (ML-IAPs), which capture the
electronic total energy or total free energy landscape of a
system and enable extended simulations of ionic dynamics
[28,29]. While existing ML-based approaches show promise
in accurately predicting observables or capturing the energy
landscape of quantum systems, most of them do not provide
direct access to the electronic structure of matter. Knowledge
of the electronic structure offers several advantages, e.g., the
exploration of multiple observables beyond those targeted by
a specific ML model. In recent studies, the electronic struc-
ture has become a focus of ML models [30–32], albeit at a
conceptual level.

We have recently developed a practical formalism for
modeling the electronic structure, represented by the local
density of states (LDOS), using neural networks (NN) [33].
These models can reproduce multiple observables, such as the
DOS, electronic densities, and electronic total free energies
from the LDOS predictions. In our previous paper [34], we
demonstrated that these models can replace electronic struc-
ture calculations for systems larger than those accessible via
conventional DFT. However, to provide ab initio accuracy
for advanced scientific applications, these models must also
be able to make predictions across temperature ranges, since
conventional DFT scales cubically with the temperature [5]
and retraining ML models for each temperature of interest is
thus impractical. Applying such models across temperature
ranges is promising since it is to be expected that accurate
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modeling of systems at high temperatures requires knowledge
of the electronic structure, which our approach provides.

The models discussed in this paper are based on the for-
malism introduced in Ref. [33] and account for electronic
and ionic temperature separately. The ionic temperature enters
the model through the ionic configurations sampled during
molecular dynamics (MD) simulations and used as input to
ML inference, while the electronic temperature is an explicit
parameter in the expressions used to evaluate observables such
as the electronic density and total free energy from the LDOS.
As a result, our models can effectively handle situations where
the electronic temperature surpasses the ionic temperature,
such as in laser heating of matter. This characteristic of our
ML model responds to a growing need for approaches that
extend beyond conventional MD to tackle nonequilibrium
conditions between electrons and nuclei, as recently devel-
oped within the framework of two-temperature MD [35,36].

Up until now, only a few studies have made efforts to
incorporate electronic temperature into ML models trained
to predict DFT data, with most studies only focusing on
an explicit treatment of ionic temperature. Reference [37]
develops an ML-IAP that directly addresses the electronic
temperature, unlike typical ML-IAPs. References [38,39] use
an ML-approximated density of states (DOS), based on the
ML models introduced in Ref. [40], to capture energetic ef-
fects associated with the electronic temperature and provide
corrections to calculated observables. The framework outlined
in Refs. [38–40] shares similarities with the models discussed
in this paper. In both instances, the electronic temperature is
treated independently from ionic temperature and enters the
computation upon postprocessing of ML predicted electronic
structure quantities. Furthermore, both approaches exploit the
property of the DOS to encode information about a system of
interest at electronic temperatures higher than the DOS was
originally computed, as detailed below. However, since the
framework outlined by Refs. [38–40] is confined to the DOS,
it cannot access volumetric properties of interest, such as the
electronic density or related energy contributions. Our models
are distinct from both Ref. [37] and Refs. [38–40] since a
spatially resolved representation of the electronic structure is
predicted, which is then further processed to observables of
interest at a specific electronic temperature.

Within this paper, we showcase the transferability and use-
fulness of our approach with a case study of aluminum as
evidence that LDOS-based ML-DFT models can accurately
predict the electronic structure of matter over a range of
temperatures. To this end, we first investigate the influence
of ionic and electronic temperatures on DFT simulations and
LDOS based frameworks in Sec. III, before presenting and
analyzing ML models trained on finite-temperature DFT sim-
ulations for aluminium at different temperatures in Sec. IV.
The resulting analysis unveils that by directly predicting the
LDOS, our models inherently incorporate thermal excitation
effects. In contrast to conventional DFT simulations, our mod-
els mitigate the temperature scaling issue, requiring training
data only at a few select temperatures to facilitate modeling of
materials over a broad temperature range. This ability to inter-
polate across temperature regimes suggest that LDOS-based
ML-DFT models are particularly well suited to investigating
materials under extreme conditions.

II. METHODS

A. Finite-temperature DFT

In the following, a brief outline of DFT simulations at
finite temperature, as they are employed for data generation
in the context of temperature-transferable ML-DFT models, is
provided. Generally, in electronic structure theory, a system of
L electrons and N ions is typically described using collective
electronic coordinates r = {r1, ..., rL} and ionic coordinates
R = {R1, ..., RN }, where r j ∈ R3 and Rα ∈ R3. Within the
framework of quantum-statistical mechanics [41], thermody-
namic properties of such a system can be obtained from the
grand potential

�[�̂] = Tr(�̂�̂), (1)

with the grand canonical operator

�̂ = Ĥ − μN̂ − kBτeŜ, (2)

where N̂ denotes the particle number operator, Ŝ the entropy
operator, μ the chemical potential, and τe the (electronic)
temperature. In the following, we will distinguish between
the ionic temperature τi and the electronic temperature τe.
In Eq. (2), Ĥ denotes the Hamiltonian that represents all
interactions between electrons and ions. In electronic structure
theory, the Born-Oppenheimer approximation [42] is typically
employed, resulting in the Born-Oppenheimer Hamiltonian

Ĥ = T̂ + V̂ ee + V̂ ei + V̂ ii, (3)

where T̂ = ∑L
j −∇2

j /2 denotes the kinetic energy oper-

ator of the electrons, V̂ ee = ∑L
j

∑L
l �= j 1/(2|r j − rl |) the

electron-electron interaction, V̂ ei = −∑L
j

∑N
α Zα/|r j − Rα|

the electron-ion interaction (with the α-th ion having the
charge Zα), and V̂ ii = ∑N

α

∑N
β �=α ZαZβ/(2|Rα − Rβ |) the

ion-ion interaction. The Born-Oppenheimer approximation
assumes that since the mass of the ions far exceeds that of
the electrons, the electrons can be assumed to reach thermal
equilibrium with each other on a comparatively small time
scale. Thus, the kinetic energy of the ions and the ion-ion
interaction can be treated classically and contribute simple
additive terms to the energy. The resulting equations thus only
depend on the ionic positions parametrically, and we will omit
the R dependence in the following.

The statistical density operator �̂ in Eq. (1) is used to
compute statistical averages. It is defined as a sum over all
L-particle eigenstates �L, j of the Born-Oppenheimer Hamil-
tonian as

�̂ =
∑
L, j

wL, j |�L, j〉 〈�L, j | , (4)

where wL, j denote statistical weights that satisfy the nor-
malization condition

∑
L, j wL, j = 1. In the grand canonical

ensemble, thermal equilibrium is defined as the statistical
density operator that minimizes the grand potential.

The framework outlined here does not provide a practical
approach for performing large-scale electronic structure cal-
culations due to the electron-electron interaction in Eq. (3)
and the dimensionality of �L, j . Instead, DFT based on the
Hohenberg-Kohn theorems [1], their generalization to finite
temperatures [43], and the Kohn-Sham scheme [2] is used to
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describe the grand potential as a functional of the electronic
density n. Specifically, the grand potential can be expressed
as

�[n] = E [n] − kBτeSS[n] − μL, (5)

with the electronic total energy

E [n] = TS[n] + EH[n] + EXC[n] + Eei[n] + Eii, (6)

where the electronic density is restricted to densities corre-
sponding to those stemming from many-body wavefunctions
�L, j . Here, TS[n] denotes the kinetic energy of the auxiliary
system of noninteracting fermions, SS[n] the noninteracting
electronic entropy, EH[n] the Hartree energy, which is the clas-
sical electrostatic interaction energy, Eei[n] the electron-ion
interaction, which reduces to the interaction of the elec-
tronic density with an external potential, while Eii refers
to the constant shift in energy due to ion-ion interaction.
EXC[n] refers to the exchange-correlation energy, which in-
corporates any electronic contributions not captured by the
aforementioned energy terms, and which needs to be ap-
proximated in practice. Consequently, the accuracy of DFT
calculations chiefly depends on appropriate approximations
for this term. A plethora of practical approximations exist,
such as the local density approximations (LDA, e.g., PW91
[2,44]) or generalized gradient approximations (GGA, e.g.,
PBE [45–47]). Furthermore, the XC functional should depend
explicitly on temperature [48]. However, this explicit tem-
perature dependence is often unclear and usually omitted in
standard calculations. Instead, the temperature dependence is
crudely included through the density in thermal equilibrium.
Recent advances [49–61] have reignited the development of
temperature-dependent XC approximations. Studies of the
electron liquid [62] and uniform electron gas [63–66] have
aided in the construction of local [67–70] and generalized
gradient approximations [71,72] to the temperature-dependent
XC contribution.

The subscript S in Eq. (5) indicates that the kinetic energy
and the electronic entropy are usually calculated via the Kohn-
Sham ansatz [2]. This ansatz employs an auxiliary system
of noninteracting single-particle wavefunctions φ j , which are
constrained to reproduce the interacting electronic density
through

n(r, R) =
∑

j

f τe (ε j )|φ j |2, (7)

where f τe denotes the Fermi-Dirac distribution, while φ j and
ε j are the eigenfunctions and eigenvalues of the Kohn-Sham
equations [− 1

2∇2 + vS(r)
]
φ j (r) = ε jφ j (r), (8)

where φ j (r) are referred to as Kohn-Sham wave functions or
orbitals. The number of Kohn-Sham eigenstates and eigenval-
ues to be considered is L for calculations at τe = 0 K, i.e.,
the sum in Eq. (7) runs from j = 1 to j = L. However, in
the finite-temperature picture, one has to account for thermal
excitations of the electrons by calculating η additional eigen-
states, where η is chosen such that f τe (ε j ) is negligible for
j > L + η. As one moves to higher temperatures, η has to be
increased, which causes the unfavorable scaling of DFT with
temperature.

The Kohn-Sham potential vS is determined self-
consistently to reproduce the interacting density via
Eq. (7). Note that several terms within the Kohn-Sham
framework implicitly depend on τe, such as the eigenstates
and eigenfunctions of Eq. (8), which are not explicitly
denoted here for readibility.

With this finite-temperature DFT (FT-DFT) framework,
which is further discussed in-depth in Ref. [51], practical
calculations at arbitrary temperatures become feasible. All
DFT simulations performed in the context of this paper were
performed at finite temperatures using the framework outlined
above. To further connect FT-DFT with dynamical studies,
one obtains the electronic total free energy with the FT-DFT
framework via Eq. (5) as

A[n] = �[n] + μL = E [n] − kBτeSS[n], (9)

which enables calculating the force acting on the αth ion
Fα = ∂A/∂Rα . These forces can be used, e.g., in MD sim-
ulations, which yield thermodynamic observables. Here, the
ionic temperature τi is once again relevant and controlled via
thermostats, such as the the Nosé-Hoover thermostat [73,74].
These thermostats ensure that thermodynamic sampling is
performed in the correct thermodynamic ensemble, such as
a canonical ensemble of ions, where N , τi, and the volume of
the simulation cell V are held constant.

B. DFT machine learning model

While finite-temperature DFT enables practical calcula-
tions of many systems, it still has inherent computational
scaling limitations. The standard DFT approach scales with
N3, making it very difficult to simulate systems involving
more than a few thousand atoms. While there are techniques
that reduce this scaling behavior to N , such as orbital-free
DFT [75] or linear-scaling DFT [76,77] through appropriate
approximations, neither route enables a general replacement
of KS-DFT simulations.

As discussed above, more Kohn-Sham wavefunctions need
to be included in Eq. (8) at higher temperatures, leading to
an additional computational overhead that scales unfavorably
with temperature [5]. These limitations pose a challenge for
generating first-principles data for practical applications, par-
ticularly for increasingly relevant investigations into matter
under extreme conditions. As a result, ML is emerging as a
promising route for overcoming these limitations.

ML is based on algorithms that can improve their perfor-
mance through observed data, i.e., they can learn [78]. By
training models on a representative set of data, it is possible to
make predictions in a fraction of the time it would take to per-
form original data collection with conventional algorithms. In
the context of DFT, ML models can be trained on a number of
potentially costly simulations and thereafter replace the need
for DFT simulations, leading to drastically reduced simulation
times.

There are various ML approaches for DFT simulations
that differ widely in their goals and application purposes. In
Ref. [26], we have identified common avenues of research,
including ML models that directly predict quantities of in-
terest for a subset of components (e.g., Ref. [28,79,80]) and
models that predict total (free) energies and atomic forces,
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known as machine-learned interatomic potentials (ML-IAPs,
e.g., Ref. [27,81,82]). The latter can easily be integrated into
MD frameworks, replacing DFT simulations as the primary
engine for extended dynamical simulations. IAPs built on
(semi-)empirical approximations have been used in this ca-
pacity before the advent of ML. However, ML-IAPs generally
provide an even better reproduction of the electronic total free
energy surface of a system of interest, allowing for highly
accurate thermodynamic sampling of observables [83].

Current ML approaches for DFT calculations are limited
in the quantities they predict and do not provide the full
electronic structure of simulated systems. We have recently
developed an ML-DFT framework [33,84] that overcomes
this issue. It provides a spatially-resolved representation of
the electronic structure within the local neighborhood of each
point in real-space, r, for systems of arbitrary size by predict-
ing the LDOS. Based on this representation of the electronic
structure, other, fundamental observables of interest (such as
the electronic density) may be accessed. The feasibility of
such a local description of the electronic structure is based on
the assumption of nearsightedness of the electronic structure
[85]. The LDOS is defined as

d (ε, r) =
∑

j

|φ j (r)|2δ(ε − ε j ) (10)

and, from a computational point of view, is a vector in the
energy domain ε for each point in real-space r. Correspond-
ing to the Kohn-Sham system as discussed above, the upper
boundary of the summation in Eq. (10) depends on the number
of Kohn-Sham eigenstates sampled, i.e., L + η. In order for
models to be transferable in the τe domain, we choose η

such that unoccupied Kohn-Sham orbitals are included in the
LDOS as well; thus, the same LDOS can be used at higher
electronic temperatures to accurately compute energies.

Through the LDOS, the electronic density and the density
of states D are obtained as

n(r) =
∫

dε f τe (ε)d (ε, r), (11)

D(ε) =
∑

j

δ(ε − ε j ) =
∫

drd (ε, r), (12)

which are both of direct interest for electronic structure the-
ory. Moreover, the electronic total energy in Eq. (6) and the
electronic total free energy in Eq. (9) can be expressed solely
in terms of d as

E [d] = Eb[D[d]] + EXC[n[d]] − EH[n[d]],

−
∫

drvXC(r)n[d](r), (13)

A[d] =E [d] − kBτeSS[D[d]], (14)

where Eb = ∫
dε f τe (ε)εD(ε) denotes the band energy and vXC

the exchange-correlation potential. For a complete derivation
of this framework refer to Ref. [33]. Consequently, if the
LDOS of a system can be predicted accurately, it becomes
possible to determine both the electronic structure and the
energetics of the system, and automatic differentiation can be
used to obtain the atomic forces.

The LDOS can be predicted by a model M[λ] in the
form of

d̃ (ε, r) = M(B(J, r)[R])[λ], (15)

where λ represents hyperparameters that describe both the
model (i.e., type of ML algorithm, characteristic features) and
the fitting techniques (i.e., training parameters of the model,
data employed), and for which we have developed techniques
for rapid optimization [84]. In our ML models, we use neural
networks (NN) for the actual ML task. NNs can learn compli-
cated relationships between sets of data through nested linear
transformations and nonlinear activation functions, based on
individual units called artificial neurons or perceptrons [86].
The output of the l + 1th layer of an NN is calculated from
the outputs of the lth layer as

yl+1 = σ (Wlyl + bl ), (16)

where Wl and bl are the weights and biases of the lth layer,
which are the tuneable parameters, and σ is a nonlinear ac-
tivation function. The process of determining the optimal W
and b is known as training [87].

The first layer of the NN receives input data, which in the
case of our ML models are descriptors with dimensionality
Jmax with J = 1, ..., Jmax, denoted as B in Eq. (15). These de-
scriptors capture information about the ionic structure locally
around each point in space r. The locality of this mapping
is essential for scalability; since M learns to predict the elec-
tronic structure at each point rp independently of distant points
rq, the model can be applied to diverse or large-scale systems
as long as the observed descriptors B are close to those in the
training set.

We employ a grid-point generalization of bispectrum de-
scriptors [88] to encode the local ionic structure, as described
in Refs. [33,84]. The bispectrum descriptors at point r rep-
resent the atomic density around r in terms of a basis set
expansion.

This framework is transferable to different system sizes
[34] and is applicable to a wide range of systems, as long
as the LDOS can be accurately calculated via DFT for model
training. We have developed an open-source software package
called materials learning algorithms (MALA) [89], which
implements this LDOS based framework and interfaces with
popular open-source libraries such as Quantum ESPRESSO,
LAMMPS, and PyTorch. Figure 1, adapted from Ref. [34],
illustrates the framework. Additionally, the transferability of
models extends to different temperature ranges, which will be
discussed in the following.

C. Computational details

We investigate the temperature transferability of ML-
DFT models using an aluminum data set covering ionic
temperatures from 100 K to 933 K. The 933 K data cor-
responds to the solid phase and has been previously used
in Ref. [33]. For other temperatures, ionic configurations
were sampled from DFT-MD trajectories generated using the
VASP code [90–92], employing a 2 × 2 × 2 Monkhorst-Pack
[93] k grid, a plane-wave basis set with a cutoff energy of
500 eV, a PAW pseudopotential [94,95] and the PBE [45–47]
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FIG. 1. Overview of the MALA framework and the open-source
libraries used for constructing the full ML pipeline. The pictograms
below depict the individual steps of the framework, which involves
calculating local descriptors at an arbitrary grid point (green) from
atoms (red) within a certain cutoff radius (orange), a neural network,
and the electronic structure, specifically the electronic density for
a cell of aluminum atoms (red). The pictograms are adapted from
Ref. [34].

exchange-correlation functional. Further, the DFT-MD trajec-
tories were calculated with a time step of 2 f s, and in order
to select uncorrelated configurations, every 147th step was
sampled for subsequent DFT and LDOS calculations. This
number was chosen empirically but based on the intuition that
most high frequency phonons, which are strongly related to
the local ionic structure and exhibit frequencies of multiple
THz in the case of aluminium [96], should be able to perform
a few full vibrations between sampling individual configura-
tions.

The LDOS was then calculated for these ionic configu-
rations using the Quantum ESPRESSO code [97–99] with
computational parameters consistent with those in Ref. [33].
Quantum ESPRESSO has been employed for data generation
since calculation of the LDOS requires an adaptable width
for the approximation of the δ distribution with Gaussians
in Eq. (10), as detailed in Ref. [33]. The open-source nature
of the Quantum ESPRESSO code allowed for the necessary
changes to be implemented into the code, and such capability
has been made publicly available in Quantum ESPRESSO
version 7.2. For a subset of the configurations, we also per-
formed calculations at electronic temperatures that differ from
ionic temperatures. This was done to investigate effects of
the electronic temperature, as shown in Sec. III. For actual
model training, which is described in Sec. IV, the same elec-
tronic and ionic temperatures were consistently used. The full
dataset can be found in Ref. [100].

MALA version 1.2.0 [89] was used to build and train the
ML models, and the model parameters were kept consistent
with the 933 K model described in Ref. [100], with the ex-
ception being the second set of models calculated for Fig. 8
(see below), where the layer width was increased from 4000
neurons to 6000 neurons. Models and training scripts can be
obtained via Ref. [101]. Accessing individual data points in a
randomized order is essential when training neural networks,
and it is a standard practice in this field. However, for the

volumetric data used in our training scheme, loading all the
relevant data files into memory at the same time was not fea-
sible due to their size. Instead “lazy loading” was employed,
i.e., volumetric data corresponding to one ionic configuration
at a time was loaded into memory. Doing so prevents the
training code from properly randomizing data across ionic
configurations during the training process, and one only ran-
domizes the order at which ionic configurations are accessed.
For earlier applications of this framework, such as Ref. [33],
this did not constitute a problem, since the individual ionic
configurations exhibit a comparatively low variance in terms
of local ionic and electronic environments. However, for the
higher variance observed for configurations sampled across
multiple temperatures, this lack of fully randomized access
initially led to accuracy issues for ML models. To combat
these issues, we used separate scripts to read data and mix
relevant volumetric data files into new sets of randomized
files to ensure randomized access to data points for each
training experiment. The relevant scripts for this can be found
in Ref. [101].

III. LEARNING THE ELECTRONIC TEMPERATURE

The central result of this paper are LDOS based ML-DFT
models that explicitly take the electronic temperature into
account. This constitutes a fundamental difference to most
other established ML-DFT frameworks, which only consider
ionic temperature. Naturally, this brings up the question of the
orders of magnitude for energy effects arising from both τi

and τe, since changes in either temperature are expected to
have noticeable impact on total free energies. It is important
to investigate the magnitudes and relative behaviors of these
changes in energy, as the ML models discussed here aim to
recover these effects. Thus, in the following, the influence
of electronic and ionic temperature are investigated from a
theoretical point of view.

Established frameworks for learning the energy of mate-
rials, known as ML-IAPs take a set of ionic positions R and
predict the energy and often forces, which are the derivative
of the energy with respect to the positions. Usually, these
models learn the relative energy with respect to some ref-
erence configuration (e.g., isolated atoms) rather than total
energies or total free energies. The ionic temperature τi, which
can be regulated though thermostats in dynamic simulations,
determines the distributions of ionic velocities and positions.
Even though ML-IAPs are not directly dependent on the ionic
temperature, they can learn to correctly predict dynamics for
a range of temperatures once trained on ionic configurations
representative of those temperatures.

Revisiting Eq. (5) reveals that the Kohn-Sham electronic
total free energy depends on the electronic temperature τe,
both directly through the electronic kinetic energy and entropy
terms as well as implicitly through the electronic density,
which is calculated via Eq. (7) with the Fermi-Dirac distribu-
tion. Thus, for a given set of ionic positions, the Kohn-Sham
electronic total free energy can have a whole range of values
depending on the electronic temperature. In contrast, conven-
tional ML-IAPs assume that the energy depends only on ionic
positions, and thus it is impossible for them to capture the
effects of different electronic temperatures.
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FIG. 2. Changes in DFT energy when keeping electronic tem-
perature constant while varying ionic temperature. For each point
depicted, the electronic total free energy of ionic configurations sam-
pled at the given ionic temperature has been calculated and averaged.

The LDOS models discussed in Sec. II B address this short-
coming of regular ML models for finite-temperature DFT by
learning the LDOS instead of directly learning the energy.
Specifically, the electronic total free energy is obtained from
the LDOS using Eq. (14), where the direct dependence of
the electronic kinetic energy, entropy, and density on τe is
taken into account. Note that the LDOS d (ε, r) also depends
on τe implicitly through the Kohn-Sham eigenvalues and
eigenfunctions, which in turn depend on the self-consistently
determined Kohn-Sham potential. In principle, τe could be
added to the descriptors used to calculate d (ε, r) and a suitable
set of τe-dependent training data could be used to capture the
dependence of the LDOS on τe. Instead, we will investigate
the simple approximation in which the training data for the
LDOS ML model is generated with τe = τi, and the ML model
does not include any explicit dependence on τe. We will find
that this approximation captures the great majority of the
energetic effects of changing τe.

To quantify the influences of ionic and electronic temper-
ature, we have performed DFT calculations in which τi or
τe was kept constant while the other temperature was varied.
These calculations were conducted for 256 aluminum atoms
at 100 K, 500 K, and 933 K (melting point, solid phase) for the
ionic temperature experiments; for the electronic temperature
experiments, temperatures up to 6000 K were investigated.
The results of this investigation are shown in Figs. 2 and 3.

Figure 2 shows the impact of the ionic temperature. Here
the electronic total free energy has been calculated for ten
ionic configurations sampled at τi = [100 K, 500 K, 933 K]
with DFT and a constant τe = 100 K. Afterward, the energies
have been averaged per temperature. As expected, sampling
ionic configurations at different ionic temperatures results in a
change in energy, even when the electronic temperature is kept
constant. Figure 2 gives an insight into how large this change
in energy is to be expected for changes in the ionic temper-
ature. Here, we observe an energy change of slightly more
than 100 meV/atom for the range of 100 K to 933 K. This
result agrees well with the classical Harmonic heat capacity,
which would give a 3

2 kB(T1 − T0) = 108 meV/atom increase

in potential energy for a temperature change from T0 = 100 K
to T1 = 900 K.

In contrast, Fig. 3 shows the behavior of the electronic
total free energy and electronic total energy when electronic
temperature is varied (both in black), while ionic tempera-
ture is kept constant. As mentioned above, one advantage of
the models discussed here is their ability to treat electronic
and ionic temperature independently, which is an inherent
capability of DFT simulations not easily reproduced in ML-
DFT frameworks. This property becomes relevant, e.g., when
electrons are heated to very high temperatures by a laser
source and only subsequently heat the cold ions. In the case
of aluminium, one can estimate the electronic temperature at
which hot electrons are able to melt solid aluminium at low
temperatures at roughly 5800 K (see Appendix A). We thus
investigate electronic temperatures up to 6000 K in Fig. 3 and
further show ML inference results for this temperature range
in Sec. IV.

The black curve in Fig. 3 was calculated using ionic con-
figurations sampled at ionic temperature 100 K and DFT
simulations with increasing electronic temperature. It can
clearly be seen that overall, one observes a quadratic depen-
dence for both energies with respect to electronic temperature.
While electronic total energy increases, the electronic total
free energy decreases, due to an increase of the electronic
entropy term, which is included in the electronic total free
energy according to Eq. (9) and is negative in sign. It should
be noted that for the temperature range of 100 K to 933 K,
on which the models discussed in Sec. IV were originally
trained, the associated energy change is of the magnitude of
a few meV/atom, and thus smaller than for changes in ionic
temperature within the same range.

Additionally, Fig. 3 shows the hypothetical behavior of ML
models for changes in electronic temperatures. There, the blue
curve corresponds to the (mimicked) behavior of a regular
ML-IAP. Since ML-IAPs generally only operate on ionic con-
figuration data, any such model has no concept of electronic
temperature, and thus its energy predictions would be entirely
unaffected by changes in electronic temperature, yielding a
constant prediction. Naturally, for an actually trained ML-IAP,
this line may be shifted upward or downward, based on the
training routines; the relative behavior would be the same,
however.

Conversely, the red curve in Fig. 3 shows the effects of us-
ing a τe-independent LDOS to predict electronic total energies
and total free energies over a range of electronic temperatures.
Here, we take the LDOS calculated at τe = 100 K for each
ionic configuration and predict electronic total (free) energies
by substituting τe in Eqs. (11), (13), and (14). Ideally, this
represents the results that would be obtained from a LDOS
based ML model without any explicit dependence on τe in
the LDOS prediction. It can be seen that one almost perfectly
recovers the relative behavior of the electronic total (free)
energies with this approximation.

One might be puzzled by the approximately –4.9 meV
energy offset between the DFT energies and the LDOS-based
energies. As has been discussed in Refs. [33] and [34], this
offset is a result of replacing the Dirac δ distribution with a
finite-width Gaussian when calculating the LDOS in a practi-
cal LDOS-based model. This offset is further unproblematic,
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FIG. 3. Changes in electronic total and total free energy as defined by Eqs. (6), (9), (13) and (14) when keeping ionic temperature constant
while varying electronic temperature. Ionic temperature was kept constant by sampling ionic configurations at 100 K and not changing the ionic
structure thereafter. Data was collected either by averaging energies over 10 ionic configurations (circles) or selecting one ionic configuration
(for the temperature range above 933 K, shown as triangles). The dotted lines are quadratic fits to the entire data set. In (b) and (d), a
magnification of the results given in (a) and (c) are shown, to give more detail for the training range of the ML models and energetic differences
between LDOS and wave function based energy equations. For the grey curves, regular DFT calculations with varied electronic temperatures
were performed. The blue curves show the expected behavior of a regular ML-IAP, which reproduces the same energies for all electronic
temperatures, since the same ionic configurations are used. The red curve show the best case scenario for an LDOS based model—here, the
LDOS sampled at 100 K has been evaluated at higher electronic temperatures using Eq. (13) and (14).

since physical properties are related to energy differences, not
absolute energy values and as such, it is important that energy
predictions reproduce correct relative behaviors, which the
LDOS based models achieve.

The results shown in Figs. 2 and 3 lead to three im-
portant observations. First, it is evident that both electronic
and ionic temperature influence the calculation of the elec-
tronic total free energy, i.e., energies change considerably with
increasing temperatures. Secondly, while for lower temper-
atures changes in ionic temperature lead to larger changes
in the total free energy, electronic temperature effects be-
come relevant at higher temperatures as well. In general,
electronic effects may become dominating at high tempera-
tures for specific observables, such as the thermal conductivity

[102] (see also Appendix A). And finally, LDOS based
models, are in principle capable of recovering most ener-
getic effects related to the electronic temperature, which
is an important property when going to high-temperature
regimes.

In order to comprehend why the LDOS accurately encapsu-
lates these effects, it is crucial to recognize that the LDOS and
hence the DOS exhibit only minimal variation with electronic
temperature, as depicted in Fig. 4. This can be discerned from
the definitions of the LDOS and DOS in Eqs. (10) and (12).
Both are dependent on the electronic temperature through the
temperature dependence of the Kohn-Sham potential, which
in turn depends on the electronic temperature via the corre-
sponding Kohn-Sham orbitals and eigenvalues. Two primary
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FIG. 4. Density of states (DOS) for the same aluminum con-
figuration but varying electronic temperatures, including absolute
differences �D(ε) shown in black and red.

energy contributions influenced by the electronic temperature
are the kinetic energy, which can be accessed through the band
energy Eb, and the electronic entropy SS, both expressed using
the DOS as

Eb =
∫

dε f τe (ε)εD(ε), (17)

SS = −
∫

dε ( f τe (ε) ln [ f τe (ε)]

+ [1 − f τe (ε)] ln [1 − f τe (ε)])D(ε). (18)

Thus, provided that the (L)DOS has been sampled to include
enough (unoccupied) energy states at lower electronic tem-
peratures, the LDOS can be used to accurately evaluate the
energy at higher electronic temperatures.

Therefore, the LDOS is a suitable target quantity for ML
models across temperature ranges and for high-temperature
regimes. The task at hand is to correctly predict the LDOS
for ionic configurations sampled at varying τi. Any model that
performs well at this task will, by default, capture most of the
relevant effects related to τe.

IV. TEMPERATURE TRANSFERABLE MODELS

Even with LDOS-based models correctly treating effects
related to electronic temperature, it remains to be determined
whether ML models can correctly learn the electronic struc-
ture of ionic configurations across a temperature range. In
the case of the models employed here, the ionic structure is
encoded in bispectrum descriptors, and naturally, these de-
scriptors change with the ionic temperature. Furthermore, we
need to assert that models can recover the LDOS accurately
enough to reproduce energy effects related to the electronic
temperature, which they in theory should be able to, as shown
in Fig. 3.

To investigate this, we construct models using different
aluminum training data sets and evaluate them across a
temperature range of 100 K to 933 K, the melting point of
aluminum, in increments of 100 K. In all DFT calculations

used to generate the training data, the ionic and electronic tem-
peratures were set to the same values. This is why τ = τe = τi

is used to represent both the ionic and electronic temperatures
in Figs. 5–8. The first step is to establish a proper baseline
for this experiment. It is expected that models trained only
on singular temperatures would struggle to accurately capture
the electronic structure of both higher and lower temperatures.
We quantified this by training models on data for either 100 K,
500 K, or 933 K representing the beginning, middle, and end
of the temperature range.

The results are shown in Fig. 5, which displays the elec-
tronic total free energy errors for models trained on only
one temperature. We trained five models per temperature to
assess the robustness of the models. Both the average and
standard deviation across the initializations are given, along
with the model that performs best. It is evident that for all
three temperature, the models become increasingly inaccurate
as one moves away from the training temperature. Specif-
ically, we seek electronic total free energy errors of below
10 meV/atom. In the best case, i.e., the models shown in
Fig. 5(b), this threshold is barely met for temperatures directly
adjacent to the training temperature, and quickly exceeded as
one moves to lower or higher temperatures.

As mentioned above, such a behavior is expected, since
NN based models usually perform poorly at extrapolation
tasks, and training a model on merely one ionic temperature
inevitably constitutes an extrapolation in the ionic temperature
domain. In order to build transferable ML models for the
electronic structure one has to take multiple temperatures into
account, and the principal question is how many and which
temperatures need to be incorporated into such a model in or-
der to produce accurate results across the selected temperature
range.

There are two conceivable ways to construct such a model.
One potential route is to take training data from the entire tem-
perature range into account. However, since ML models based
on NNs should perform well when used in an interpolative
fashion, a different strategy is to investigate the number and
proper selection of temperatures needed to train models that
perform well across the temperature range.

To this end, we have trained models using training sets
with different combinations of temperatures. In all cases,
the amount of training data per temperature has been kept
constant, and five models per approach have been trained
with different initializations, to quantify the robustness of
the method. The results are shown in Fig. 6. The computa-
tional cost for training models increases as the number of
data points and the temperature range expands. We provide
a brief discussion on this trade-off between accuracy and cost
in Appendix B.

The first type of model, shown in blue in Fig. 6, uses
training data from the beginning and end of the temperature
range. Although technically the inference across the temper-
ature range is an interpolation task, the reported accuracies
are unsatisfactory in the middle of the temperature range.
As previously observed in Fig. 5, accuracies are only suffi-
cient for 200 K around the training temperature, i.e., close
to temperatures observed in training, and thus the resulting
models cannot make accurate predictions from around 300 K
to 600 K.
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FIG. 5. Performance of MALA models when trained on single temperature data. Five models with different initializations were trained
for each temperature, where (a) shows the average and standard deviation, while (b) shows the performance of the best model. Training was
performed using data from four ionic configurations, while validation was performed with data from one ionic configuration per temperature.

An obvious solution to address this problem is to include
of training from the middle of the temperature range. A first
attempt at this is shown in Fig. 6 in orange, where training
data at 500 K was added to the model. As expected, this
substantially reduces the inference errors across the middle
of the temperature range. In fact, the resulting model achieves
competitive accuracy almost throughout the entire tempera-
ture range.

Further analysis of errors reveals two main sources of error.
Firstly, there seems to be a noticeable decrease in accuracy
between 100 K and 500 K compared to temperatures above
500 K. The reason for this lies in the fact that while diversity

within the data set increases as one moves to higher tempera-
tures, differences between temperatures become more subtle,
and conversely, differences in ionic structure are more pro-
nounced at lower temperatures. This can be further verified by
looking at the radial distribution function (RDF) [103–105],
which is calculated by averaging the ion density contained
in a shell of radius [r, r + dr] for a cell of volume V (r) and
isotropic system density ρ = N/V , i.e.,

g(r) = 1

ρ N V (r)

N∑
i=1

N∑
j=1
j �=i

δ(r − |ri − r j |). (19)

FIG. 6. Performance of MALA models when trained on multiple temperatures. Two types of models were explored: one incorporating
data from the beginning and end of the temperature range, and one additionally incorporating data from the middle of the temperature
range, i.e., 500 K. Each model was trained five times with different initializations. Panel (a) shows the average and standard deviation of
the performances across these models, while panel (b) shows the performance of the best model. For each included temperature, data from
four ionic configurations was used for training, while validation was performed with data from one ionic configuration.
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FIG. 7. Cosine similarities between an arbitrary ionic configu-
ration at reference temperatures 100 K, 500 K, and 933 K and a
different configuration at all investigated ionic temperatures. The
maximum cosine similarity per model is shown for the first two
presented multi-temperature models, providing a metric of model
performance. The pictrogram at the bottom summarizes the main
result found in this analysis, i.e., configuration diversity across tem-
peratures decreases with increasing temperature, while configuration
diversity within temperature increases with increasing temperature.

Differences in the RDF can best be analyzed through the
cosine similarity, which is a standard metric in data science
analysis [106] and is defined as

sC (x, y) = x · y
‖x‖‖y‖ (20)

for vectors x and y. By interpreting the RDFs of individual
temperatures as vectors of dimensionality Nr , where Nr is the
number of radii sampled for the calculation of the RDFs, one
can calculate their similarities. A similarity sC = 1 indicates
that the two RDFs are identical, while sC = 0 implies fully
orthogonal RDFs. We have carried out such an analysis for
the temperatures included in the model shown in Fig. 6. The
results are presented in Fig. 7.

It is evident that a drop in model accuracy corresponds
to areas for which none of the included configurations
at the training temperatures exhibit high cosine similarities
to the inference configurations. For instance, a clear lack of
cosine similarity can be observed in the region between 200 K
and 600 K when only considering 100 K and 933 K reference
data; this corresponds to the lack of accuracy observed for the
first model shown in Fig. 6. Similarly, even with the inclusion
of 500 K training data, such a gap persists for temperatures
of around 200 K and 298 K, which corresponds to the sudden
drop in accuracy observed for the second model in Fig. 6. Vi-
sualizing the combined maximum cosine similarity provides
a good metric of expected model performance.

Therefore, to construct a final temperature-transferable
model, we incorporate 298 K data into the model training
process. The resulting model is shown in Fig. 8, depicted
in blue. We incorporate the same amount of data for each

training temperature, and train the model with five different
initializations to quantify the robustness of the method.

The resulting models exhibit excellent performance
throughout the temperature range. For the best of the five
initializations, errors consistently remain below 10 meV/atom
throughout the entire test set, and on average, this threshold is
only slightly exceeded. While there is a small linear increase
in error when moving to higher temperatures, the models are
generally capable of delivering consistent accuracy across the
entire temperature range.

However, as mentioned above, a second issue remains with
the models both shown in Figs. 6 and 8 (blue). When consid-
ering the entire ensemble of trained models, it is apparent that
the models become less robust as temperature increases. This
can be attributed to the fact that while pronounced differences
between temperatures play an important role for lower tem-
peratures, a larger diversity of data points per temperature is
observed at higher temperatures, necessitating consideration
of more diverse ionic and electronic environments.

One way to mitigate these issues is to include more data
at the problematic temperatures, such as 933 K. However,
this approach may exceed the information capturing capacity
of the employed model for the given data. To address this,
we trained models with two additional ionic configurations
at 933 K with the results also given in Fig. 8, depicted there
in red. Slightly larger NNs were used to successfully train
these models (see Sec. II C for detailed information). The
inclusion of additional data at 933 K leads to an increase in
the systematic model robustness across the temperature range,
i.e., while the average accuracy did not change, the standard
deviation decreased. There is a slight decrease in accuracy for
lower temperatures, yet errors are in the same range and the
10 meV/atom threshold is only slightly exceeded. Overall,
models trained with additional data at 933 K demonstrate ex-
cellent accuracy and robustness across the entire temperature
range.

The models shown in Fig. 8 show good transferability
across a range of ionic temperatures. As introduced in Sec. III,
LDOS based models should further be able to accurately pre-
dict the electronic total free energy at electronic temperatures
different, esp. higher than they were originally trained on,
since the (L)DOS is roughly constant with changing electronic
temperature. To this end, one can calculate the total (free)
energies for the same configurations as used in Fig. 3. In Fig. 9
this has been done for two MALA models discussed here,
namely the model trained solely on 100 K data shown in Fig. 5
and the final multi-temperature model shown in Fig. 8. In each
case, the model initialization with the best performance as
shown in the respective figures have been used.

In Fig. 9 it can clearly be seen that overall, both MALA
models reproduce the quadratic dependence of the energy
with respect to the electronic temperature quite well. It should
be noted that this result represents an interpolation from a
pure ML perspective, since the LDOS was predicted from
ionic configurations similar to those observed in training,
while from a physics perspective, these results constitute an
extrapolation. Due to the aforementioned weak dependence of
the (L)DOS on electronic temperature, this becomes feasible.
Results for two different models are shown to illustrate the
subtle point that the accuracy of this temperature extrapolation
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FIG. 8. Performance of MALA models trained on four temperatures, i.e., 100 K, 298 K, 500 K, and 933 K. The models depicted in blue
were trained with four ionic configuration and the same model architecture used for Figs. 5 and 6. The models depicted in red were trained with
two additional ionic configurations for 933 K and a slightly larger architecture (see Sec. II C for more information). All models were trained
five times with different initializations, and per temperature included, data from four (resp. six in the 933 K case for the models depicted in
red) ionic configurations was used for training, while validation was performed with data from one ionic configuration.

depends on a model’s capability of reproducing the (L)DOS
for an ionic temperature of 100 K. Since this ionic temperature
was fixed in the results shown in Fig. 9, it is evident from

the results of an idealized LDOS model shown in Fig. 3 that
this must be the case. The model trained solely on 100 K
data thus performs slightly better at this task, almost exactly

FIG. 9. Comparison of MALA model inference with varying electronic temperature as compared to DFT, idealized LDOS models and
ML-IAPs. The same methodology and configurations as in Fig. 3 have been used, i.e., the ionic temperature was kept constant at 100 K, ten
configurations were sampled for the points denoted with circles and one for the points denoted with a triangle, while dotted lines denote a
quadratic fit. The model shown in red corresponds to the 100 K model shown in Fig. 5, while the model shown in green corresponds to the
model trained on data from four temperatures (i.e., the model shown in red in Fig. 8).
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recovering the DFT total energy in the low-temperature case
and only slightly deviating from it in the electronic total free
energy case. Conversely, the multi-temperature model, which
shows generally excellent performance across the ionic tem-
perature range, performs slightly worse in these conditions,
especially in the total free energy prediction shown in Fig. 9.
The difference in accuracy between electronic total free and
electronic total energy may be explained by the fact that for
the former, the electronic entropy is factored in; for this,
a DOS integration has to be performed with a numerically
determined Fermi energy as explained in Ref. [33], which can
lead to slight inaccuracies.

Generally, both models recover the relative energy be-
havior with increasing electronic temperature quite well.
Especially with respect to the multi-temperature model this
is an important result, since it shows that a singular ML
model can be used to predict the electronic structure of a
material at varying ionic and electronic temperatures. Both
temperatures may be varied independently of one another,
within reasonable boundaries, yet the same model can be
employed. Therefore, MALA models can replace DFT fully
in this regard, since both parameters are independent inputs
for DFT simulations as well.

V. DISCUSSION AND OUTLOOK

In summary, our study has demonstrated the potential of
ML models in replacing DFT calculations for electronic struc-
ture predictions across a range of temperatures. By targeting
the LDOS, we have shown that ML models can accurately
reproduce the electronic structure of ionic configurations at
temperatures unseen during the training process, and are fur-
ther capable of extrapolation in the electronic temperature
domain. This is due to the fact that the LDOS by default
recovers effects at higher electronic temperatures than it was
originally calculated at. Thus, any model that is capable of
predicting the LDOS at arbitrary ionic configurations will be
less susceptible to errors due to changes in electronic temper-
ature. This only holds true if the model actually reproduces an
accurate LDOS for an arbitrary ionic configuration and if the
LDOS has been sampled for large enough energies in the en-
ergy domain. The resulting models are capable of reproducing
DFT fully within the temperature ranges for which they apply,
and one may use them to model any combination of ionic and
electronic temperatures.

We have also investigated the number and selection of tem-
peratures needed to train transferable ML models. We found
that a careful selection of temperatures, aided by analyzing the
RDFs of the system, can lead to highly accurate and robust
models.

While our study focusses on the simple system of alu-
minum in the solid phase up to the melting point, our findings
provide a foundation for future investigations into more com-
plicated systems and conditions, such as warm dense matter.
In these cases, more elaborate descriptors and powerful model
representation may be necessary, and we look forward to
further exploration in these areas. Overall, our paper high-
lights the potential of ML models in accurately predicting the
electronic structure across a range of temperatures, with broad
implications for materials science and beyond.
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APPENDIX A: ESTIMATION OF RELEVANT
ELECTRONIC TEMPERATURES FOR ALUMINIUM

As discussed in Secs. III and IV, we have investigated the
behavior of the electronic total (free) energy when keeping
ionic temperature fixed at relatively small values, while in-
creasing electronic temperature. The overarching motivation
for this kind of experiment are conditions in which electrons
are heated to temperatures far exceeding ionic temperatures,
e.g., by means of laser heating. As our models extend only to
solid ionic configurations, we have selected the upper limit
for electronic temperature as the temperature at which the
electrons would be just hot enough to melt the material. Natu-
rally, this is only a rough estimate based on classical formulas
intended to guide the temperature range investigated.

One can make such an estimation by first calculating the
electronic thermal energy as

Ee(τe ) = 1
2γ τ 2

e . (A1)

This derivation is based on the free electron model [107],
in which the electronic volumetric heat capacity is given as
cv = γ τe, with the material constant γ . Conversely, the ionic
thermal energy above the Debye temperature (which is 433 K
in the low-temperature limit for aluminium [108]) can be
expressed as

Ei(τi ) = 3
2 NAkBτi, (A2)

according tothe Dulong-Petit law [109], to which, e.g., the De-
bye model [110] reduces at high temperatures. Equation (A2)
implies a constant ionic volumetric heat capacity, which is
a central assertion of the Dulong-Petit law. Based on these
simple approximations one can estimate the heat energy nec-
essary to heat electronic and ionic systems. It is further evident
that via these assumptions, the electronic contributions to
the thermal conductivity dominate at high temperatures. To
quantify the heat energy needed to melt a material, one further
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TABLE I. Training times and data volumes for models trained in
Sec. IV. All models were trained on a single GPU, so the reported
timings in hours (h) also correspond to the computational cost in
GPU-hours. Timings are averaged over all five model initializations
per experiment. Data volume includes the total size of both the
training and validation data sets used in the model training.

Model Training Data
time [h] volume [GB]

Model 1 3.24 107.50
100 K
(Fig. 5)
Model 2 2.19 107.50
500 K
(Fig. 5)
Model 3 2.05 107.50
933 K
(Fig. 5)
Model 4 7.51 215.00
100 K, 933 K
(Fig. 6)
Model 5 15.19 322.51
100 K, 500 K, 933 K
(Fig. 6)
Model 6 14.19 430.01
100 K, 298 K, 500 K, 933 K
(Fig. 8)
Model 7 24.21 473.01
100 K, 298 K, 500 K, 933 K
(more 933 K data, Fig. 8)

needs to factor in the heat of fusion Efusion, i.e., the energy
associated with the phase change from solid to liquid phase.

With these considerations, the energy necessary to melt
aluminium purely through electronic heating can be defined
as

Emelt
e = Ee

(
τmelt

e

)
,

= Ei(933 K) + Ee(933 K) + Efusion. (A3)

Thus, Eq. (A3) states that the electronic thermal energy neces-
sary to melt initially solid aluminium at τi = τe = 0 K is equal
to the sum of both ionic and electronic thermal energies at the
melting point as well as the heat of fusion itself. Conceptually

speaking, the external heating of the electrons would have to
provide sufficient heat energy to heat both ionic and electronic
systems to 933 K and provide the heat of fusion.

With the experimentally determined values γ = 1.35 ×
10−3 J/(mol K) [111] and Efusion = 10431.1 J/mol [112], one
can determine Emelt

e as Emelt
e = 22654.8 J/mol. This corre-

sponds to a temperature τmelt
e = 5793.3 K.

Therefore, we show both DFT and ML results for elec-
tronic temperatures up to 6000 K and, in doing so, assert that
our models are capable of reproducing the correct physics up
to physically relevant temperatures.

APPENDIX B: MODEL TRAINING TIMES
AND DATA VOLUME

The models presented in Sec. IV can be evaluated in terms
of their accuracy-cost trade-off, which is typical for ML mod-
els. More accurate models, such as those depicted in Fig. 8,
generally require a larger computational effort for training.
Hence, we provide the associated training times and data
volume in Table I. The reported training times are averaged
over all five model initializations per model type, while the
data volume represents the cumulative size of the training and
validation configuration data used during training.

The relationship between the computational cost for train-
ing a model and the number of training data points associated
with a given temperature is nearly linear, with a few notable
exceptions. For instance, the initial four-temperature model
(Model 6) shown in Fig. 8 can be trained in less time com-
pared to the three-temperature model (Model 5) illustrated in
Fig. 6. This discrepancy arises from the use of early stopping
during the training process, where training is terminated once
the accuracy on the validation data set no longer improves.
This indicates that a model has effectively captured all the
necessary information from the training data set. A more
balanced data set in Model 6 allows it to reach this point
earlier than Model 5, which includes fewer temperature data
points. Moreover, the four-temperature model incorporating
the additional 933 K data (Model 7) requires relatively longer
training times due to the utilization of a larger neural network
compared to the other models listed in Table I. Nevertheless,
the increase in computational effort needed to tune temper-
ature transferable models is moderate when considering the
enhanced accuracy demonstrated in Figs. 5, and 6, 8.
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