PHYSICAL REVIEW B 108, 125145 (2023)

T -linear resistivity, optical conductivity, and Planckian transport for a holographic
local quantum critical metal in a periodic potential

F. Balm®, N. Chagnet J°S. Arend, J. Aretz®, K. Grosvenor ®, M. Janse, O. Moors®, J. Post, V. Ohanesjan,
D. Rodriguez-Fernandez, K. Schalm®, and J. Zaanen
Instituut-Lorentz for Theoretical Physics, A-ITP, Leiden University, 2333CA Leiden, The Netherlands

® (Received 15 November 2022; revised 25 August 2023; accepted 29 August 2023; published 26 September 2023)

High-T, cuprate strange metals are characterized by a DC resistivity that scales linearly with 7 from the
onset of superconductivity to the crystal melting temperature, characterized by a current life time t; >~ hi/(kgT ),
the “Planckian dissipation”. At the same time, the optical conductivity ceases to be of the Drude form at high
temperatures, suggesting a change of the underlying dynamics that surprisingly leaves the T -linear DC resistivity
unaffected. We use the AdS/CFT correspondence that describes strongly coupled, densely many-body entangled
metallic states of matter to study the DC thermoelectrical transport properties and the optical conductivities of
the local quantum critical Gubser-Rocha holographic strange metal in 2 4+ 1 dimensions in the presence of a
lattice potential, a prime candidate to compare with experiment. We find that the electrical DC resistivity is
linear in 7 at low temperatures for a large range of potential strengths and wave vectors, even as it transitions
between different dissipative regimes. At weak lattice potential the optical conductivity evolves as a function
of increasing temperature from a Drude form to a “bad metal” characterized by a mid-IR resonance without
changing the DC transport, similar to that seen in cuprate strange metals. This mid-IR peak and notably its
temperature evolution can be fully understood as a consequence of umklapp hydrodynamics: i.e., hydrodynamic
perturbations are Bloch modes in the presence of a lattice. At strong lattice potential an “incoherent metal” is
realized instead where momentum conservation no longer plays a role in the transport. We confirm that in this
regime the thermal diffusivity appears to be insensitive to the breaking of translations and can be explained
by Planckian dissipation originating in universal microscopic chaos. A similar behavior has been found for
holographic metals with strong homogeneous momentum relaxation. The charge diffusivity does not submit to
this chaos explanation, even though the continuing linear-in-7" DC resistivity saturates to an apparent universal
slope, numerically equal to a Planckian rate.
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I. THE PLANCKIAN DISSIPATION MYSTERY
VERSUS COMPUTATIONAL HOLOGRAPHY

Are there states of matter that are governed by physical
principles of a different kind from those identified in the
20th century? This question arose in the study of strongly
interacting electron systems realized in condensed matter,
starting with the discovery of superconductivity at a high
temperature in copper oxides. Their metallic states exhibit
properties that appear to be impossible to explain with the
established paradigm explaining normal metals—the Fermi-
liquid theory—and these were accordingly called “strange
metals” [1,2].

An iconic signature is the linear-in-temperature electrical
resistivity [3], an exceedingly simple behavior that is at odds
with transport due to the quasiparticle physics of normal
metals. A linear temperature dependence of the resistivity
does occur naturally in conventional metals due to scattering
of the quasiparticles against thermal disorder of the lattice
above the Debye temperature. The problem in the cuprates
and related systems is that the resistivity is linear all the
way from the lowest to the highest temperatures where it
has been measured. One anticipates some powerful principle
of a new kind to be at work protecting this unreasonable
simplicity.

The measured optical conductivities reveal at lower tem-
peratures a Drude response [4-7], signaling that the electrical
conduction is controlled by a current relaxation time. Intrigu-
ingly, this time is very close to the “Planckian dissipation”
time scale t; = fi/(kgT ). Planck’s constant 7 plays a special
role in dimensional analysis, as for instance the Planck scale
of quantum gravity. Since % carries the dimension of action,
75, is a time scale associated with the thermal physics prop-
erty of dissipation, the conversion of work into heat [8,9].
The case was made based on DC data that this Planckian
time is remarkably universal also involving a variety of non-
cuprate unconventional metals exhibiting the linear resistivity
[10-12].

However, upon raising temperature further, in the “bad
metal” regime above the Mott-loffe-Regel bound optical con-
ductivity studies show that the dynamical response changes
drastically. Instead of a Drude response, a mid-infrared res-
onance develops with a characteristic energy that appears
to increase with temperature, leaving a rather incoherent re-
sponse at low energy [13]. Remarkably, there is no sign of
this radical reconfiguration of the dynamical response in the

DC resistivity that continues to be a perfectly straight line,
seemingly controlled by ;.

The occurrence of this universality of electrical conduc-
tion poses quite a problem of principle. On the one hand,
considerable progress has been made in the understanding of
dissipative phenomena in terms of quantum thermalization,
explaining it in terms of unitary time evolution and the col-
lapse of the wave function (e.g., [14]). An early result is the
identification of 75 as the characteristic universal dimension
for the dissipation time of nonconserved quantities associated
with densely many-body entangled quantum critical states
[15] realized at strongly interacting bosonic quantum phase
transitions [16,17].

This was very recently further clarified using both holo-
graphic duality (AdS/CFT correspondence) as well as studies
in the closely related SYK models that connect macroscopic
transport in such strange metals to microscopic quantum
chaos. The central issue is that thermalization leading to local
equilibrium may proceed very rapidly in densely entangled
systems compared to quasiparticle systems. Using out-of-
time-order correlators (OTOC’s) one can identify a quantum
Lyapunov time t, characterizing the microscopic time asso-
ciated with the onset of quantum chaos that turns out to be
bounded from below by ;. In strongly correlated strange
metals this microscopic time scale together with the chaos
propagation “butterfly” velocity vg can set the natural scale for
the charge/heat and momentum diffusivities controlling the
dissipative properties of the macroscopic finite-temperature
hydrodynamical fluid [18-20].

However, in ordinary metals electrical conduction is con-
trolled by total momentum conservation, as a ramification
of translational invariance: any finite-density system in the
Galilean continuum has to be a perfect conductor. A finite
resistivity is therefore rooted in the breaking of translation
invariance. But how can this ever give rise to a universal re-
sistivity controlled by 7;? This is the core of the mystery—all
explanations we are aware off rely on accidental, fine tuning
circumstances, e.g., Refs. [12,21,22].

Holographic duality is now widely appreciated as a math-
ematical machinery that has a remarkable capacity to shed
light on general principles associated with densely entangled
matter [12,15,23,24], the “scrambling” that we just discussed
being a case in point. It achieves this by dualizing the densely
entangled quantum physics into a gravitational problem in
one higher dimension that is computable with (semi)classical
general relativity. However, this is only a relatively easy math-
ematical affair for a homogeneous translationally invariant
space. When one breaks the spatial translation symmetry the
Einstein equations become a system of highly nonlinear par-
tial differential equations. If one wishes to have a full view on
what holography has to say about transport in the laboratory
systems one has to confront this challenge. Invariably a very
strong effective potential due to the background of ions is
present in the laboratory strange metals, and it is even be-
lieved to be a necessary condition to obtain strongly correlated
electron behavior [25-27]. But what has holography to tell
about the effects of strong lattice potentials on strange metal
transport?

This can only be accomplished numerically. Although rel-
atively efficient numerical relativity algorithms are available,
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FIG. 1. The thermoelectrical DC transport coefficients as functions of temperature 7" in units of the chemical potential u for the Gubser-
Rocha (GR, left column) and Reissner-Nordstrom (RN, right column) metals in a 2D square lattice harmonic background potential with
wave vector G = 0.14/2 n and a strength 0 < A < 8. 0, «, and i are the electrical conductivity, thermoelectrical cross conductivity, and the
overall thermal conductivity, respectively. The electrical conductivity of the GR metal (top left panel) shows for all potentials a nearly linear
in temperature resistivity (o = 1/o ~ T') with a slope that shows saturating behavior for large potentials.

the computations are demanding. Proof of principle was de-
livered that it can be done [28-32] and we set out to explore
this more systematically. We focused specifically on the so-
called Gubser-Rocha (GR) holographic strange metal [33].
This is unique in the regard that it is characterized by “local
quantum criticality” (a dynamical critical exponent z — 00)
as well as a Sommerfeld entropy s ~ T in the regime T < u,
generic properties that appear to be realized by the cuprate
strange metals [15]. In such strongly coupled systems this then
also predicts a linear-in-T resistivity [34]. For comparison we
also include results for the elementary Reissner-Nordstrom
holographic strange metal. This also exhibits local quantum
criticality, but it has a (pathological) finite zero-temperature
entropy.

A. Main observations and summary of the results

We consider a (2 4 1)-dimensional strongly interacting
strange metal holographically dual to the Gubser-Rocha
model in the presence of a harmonic square ionic lattice back-
ground encoded in the chemical potential

A
ux,y) = ;1(1 + E(cos(Gx) + cos(Gy))). (1)

We numerically compute the full set of DC thermoelectri-
cal transport coefficients—electrical conductivity o, thermal
conductivity &, the thermoelectrical coefficient «—up to very
large potentials (A ~ 8) and temperatures as low as T =~
0.005. For stronger potentials we sometimes resort to uni-
directional 1D potentials to maintain numerical control. In
addition, we also compute the optical conductivities. Because
of numerical difficulties we encountered this is limited to
intermediate potential strength (A < 1 — 2) and 1D lattices.

From this computational experiment we make three re-
markable observations:

(1) The DC electrical resistivity of the Gubser-Rocha
metal becomes to good approximation linear in temperature at
low temperatures, see the upper left panel in Fig. 1. Strikingly,
we find the slope of this linear resistivity to saturate for an
increasing potential strength after correcting for a spectral
weight shift. This suggests a connection with the universal
Planckian dissipation bound: Using the optical conductivity
to deconvolve this in a total spectral weight and a current
life time, the saturation value for the latter is close to tgr =
-1/ (ksT) (see Fig. 13 below).

The electrical conductivity of the Reissner-Nordstrom
(RN) metal also saturates for large potential strength at a
roughly temperature-independent value, although less perfect.
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FIG. 2. The electrical conductivity at zero heat current op— shows that as the lattice strength is increased the nonconvective current an-
chored in charge diffusion becomes the dominating conduction channel. At the largest lattice strength where A = 8, the ratio of nonconvective
to convective transport op—o/0 reaches up to 80%, signaling that momentum conservation is nearly completely destroyed. By definition, the
fraction op—o/o is equal to the ratio « /ik. The open boundary thermal conductivity ¥ anchored in thermal diffusion is rather independent of
the lattice strength, barely changing after a moderate value of A = 1 has been reached. Parameters are the same as in Fig. 1.

The gross differences in temperature dependencies of the GR
and RN metals between the electrical conductivity appear
to reflect the different temperature dependencies of the en-
tropies. We will discuss below why this is not so. Despite first
appearances, the thermoelectric () and heat (k) conductivi-
ties do not saturate at larger lattice potentials, but vanish as
1/A (see Fig. 12 below).

(2) We can separate out the convective overall transport
from more microscopic diffusive transport by considering the
heat conductivity with zero electrical currentk = ik — Ta? /o,
also known as the open boundary heat conductivity. Simi-
larly, one can define an electrical conductivity without heat
transport og—o = 0 — T /i that is a (nonperfect) proxy for
transport anchored in charge diffusion—it is proportional to
charge diffusion, but its thermodynamic scaling is also de-
termined by cross terms with the convective part. These are
shown in Fig. 2. The oy~ is also (nearly) inversely propor-
tional to temperature up to the largest potentials, similar to the
overall o. Most importantly, however, we see that for large
potentials this diffusion-anchored contribution to the conduc-
tivity dominates the transport (middle panels): up to ~80%
of the electrical currents is anchored in the diffusive sec-
tor. Similarly, the diffusion-anchored open boundary thermal
conductivity («x, lowest panels) accounts for almost the full

heat conductivity i of Fig. 1 in the large potential regime. This
signals that for the strongest potentials the system approaches
closely the incoherent metal regime addressed by Hartnoll [9]
where there is no longer a sense of momentum conservation;
it is governed instead by a “hydrodynamics” that only relies
on energy and charge conservation. A key observation is that
this is the regime, which displays the “Planckian saturation”
of the electrical resistivity highlighted above in Fig. 1. In other
words, this is the regime that should contain the clue behind
the saturation phenomenon.

(3) Computing the optical conductivities, we find for small
lattice potential at the lowest temperature a perfect Drude
peak (left panel Fig. 3). Strikingly, upon raising temperature
this evolves into a mid-IR peak, reminiscent of what is seen
in experiment. Although the dynamical response shows such
drastic changes, these do not imprint at all on the linearity
in temperature of the DC resistivity remarkably. This find-
ing is repeated in the intermediate potential case. There, the
electrical DC resistivity can even stay linear-in-7 through a
second change in relaxational dynamics from the mid-IR-peak
regime to a fully incoherent metal. Just within reach of our
numerics, the spectrum at the lowest temperature (left inset)
now already displays the mid-IR peak, and we have good
reasons to expect that at even lower temperatures, outside of
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FIG. 3. The DC resistivities for the small- (A = 0.15, left panel) and intermediate- (A = 1.1, right panel) lattice potential of the Gubser-
Rocha metal are in both cases (nearly) linear in temperature. However, in both cases the optical conductivity (insets) undergoes radical changes
when temperature increases. At the lowest temperatures in the small potential case (left panel) this consists of a simple Drude peak that
gradually turns into an incoherent “flat top” low-frequency response terminating at a developing “mid-IR peak”. The characteristic temperature
where this happens decreases for increasing potential strength. In the right panel, a full fledged mid-IR peak has already developed at a low
temperature 7 ~ 0.015u (left inset), while it is accompanied by a high-energy peak at w = ¢,G = %G that is identified to be the “umklapped
sound peak”. Upon further raising temperature, the mid-IR peak moves up in energy to eventually merge with the sound peak (right inset).

our numerical reach, a Drude response should still be present.
There is also a second peak at higher frequencies that can be
identified with the “umklapp copy” of the sound mode at an
energy @ = c;G where ¢, is the speed of sound and G the
lattice wave vector (Sec. V). Upon raising temperature the
mid-IR peak moves to higher frequency to eventually merge
with the “umklapped sound” peak, transitioning to a fully bad
incoherent metal regime (right inset), while the DC resistivity
stays essentially linear-in-7 throughout.

These observations are reminiscent of the experimental
observation that the linear-in-7" DC resistivity appears to be
completely insensitive to the change from “good metal” to
“bad metal” behavior when temperature increases. This tran-
sition can be defined using the absolute value of the resistivity
crossing the Mott-Ioffe-Regel limit but perhaps a better way is
to identify it through the dynamical response, associating the
good metal regime with a Drude response while the bad metal
has the incoherent “mid-IR peak” type of behavior as in our
computations.

To dissect these numerical results is an intensive exercise.
We therefore provide an executive summary of the paper here.
The reader interested in the details may proceed directly to
Sec. IT and skip the remainder of this Introduction.

1. The local quantum critical strange metals of holography
and hydrodynamical transport

Transport in holographic strange metals is governed by
hydrodynamics (Sec. II). Holographic strange metals orig-
inate in the quantum critical state of a nontrivial IR fixed
point and the GR metal is singled out as the one with the
right scaling properties to reproduce both the local quantum
criticality and Sommerfeld entropy of the cuprate strange
metals. The nontrivial fixed point is of a special kind in that
it still has an intrinsic correlation length £ ~ 1/u ([35] and

Appendix B). Hydrodynamics has long been utilized to de-
scribe transport in such densely entangled critical states, and
holography is no different; although it it is still an important
open question whether transport in cuprate strange metals is
hydrodynamical. In the Galilean continuum hydrodynamics is
governed by (near) momentum conservation captured by the
Navier-Stokes equations describing convective currents, also
called “coherent” in the condensed-matter and holographic
communities. However, there are also transport channels that
are controlled by only diffusive (or “incoherent”) transport.
The overall electrical (o), thermoelectric (o), and thermal
(i) transport coefficients are set by the sum of both con-
vective and diffusive transport channels. The open boundary
thermal conductivity k = ¥ — Ta?/o and the charge-without-
heat transport og—¢g = 0 — Ta?/ik can be used to disentangle
these. These zero out the dominant convective contribution.
If Planckian dissipation occurs, the natural channel is this
diffusive channel, which can reflect universal microscopic
dynamics. The convective channel is controlled by the way
translational symmetry is broken and therefore unlikely to be
universal. However, the convective channel dominates when
translational symmetry is only broken weakly, and Planckian
dissipation is therefore most natural in systems with strong
translational symmetry breaking.

2. Convective hydrodynamics in the presence
of a weak lattice potential

The presence of a lattice potential plays an important
role in cuprate strange metals and this is the obvious way
translational symmetry is broken. Placing the holographic
strange metals in a background lattice with a perturbatively
small potential strength, the nature of the linear response of
hydrodynamical transport becomes in fact familiar (Sec. III).
Hydrodynamic fluctuations must be decomposed in Bloch
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modes that umklapp at Brillouin zone boundaries. This holds
for purely diffusive as well as propagating modes. Well
known is that the translational symmetry breaking by the
lattice makes momentum relax due to shear drag with a life
time Dgpear = 7G> /(e + P) (¢ and P being the energy density
and pressure and 1 the shear viscosity). However, a careful
analysis reveals that the umklapp potential gives rise to a
mode coupling between this relaxational mode and the umk-
lapped charge diffusion mode characterized by a relaxation
rate I'charge = D.G?, where D, is the charge diffusivity. For
weak lattices A < 1 the result of this generic mode coupling
problem is an optical conductivity of the form [cf. Egs. (18)
and (31)],

Q—iw

o) @ i) + 2

@

where wy is related to the strength of the mode coupling and
I" and 2 are combinations of I"gpeqr and Icharge. Taking the DC
limit gives an overall current relaxation rate I'pc = I" + a)g /<2
controlled by two separate dissipative channels.

The above hydrodynamic analysis is only valid for lat-
tice sizes a = G~' greater than the earlier emphasized
retained correlation length £ >~ 1/u of the IR fixed point or
equivalently G < @ (Sec. IV). This length & >~ 1/ where
hydrodynamics provides the better perspective on transport
than the quantum critical power-law response set by the near
horizon geometry as elucidated by Hartnoll and Hofman [36].
In a lattice background this reflects itself in a strong change in
the transport properties when the lattice momentum G crosses
this scale. The results in the above are all associated with the
hydrodynamical regime (G < w); for large lattice momenta
(G Z ) the additional umklapp contribution to the dissipa-
tion of the currents is strongly suppressed (Fig. 11 below).

This umklapp hydrodynamics can explain our observations
at weak lattice potential (Sec. V). When |I' — Q| > 2w, the
AC conductivity displays a single peak, explaining the low-
temperature Drude-like result of Fig. 3. Only for the lowest
temperatures is this a pure Drude peak controlled by a single
pole, however. In detail it originates in two diffusive poles, the
Drude k£ = 0 sound pole and the umklapped charge diffusion
pole; for each we fully understand their temperature dynam-
ics from the underlying hydrodynamic computation and the
thermodynamical properties of the holographic strange metal.

At higher temperatures (and/or at stronger lattices) gener-
ically |I' — Q| < 2w¢ and a real, propagating part develops
in modes controlling the AC conductivity. This pole collision
explains the emergence of the mid-IR peak in the dynamical
response—the numerical results are perfectly fitted by this
form.

The same two-relaxational-current response was identified
in the context of a hydrodynamical fluid coupled to the fluctu-
ations of a damped pinned charge density wave [37]. There the
peak emerges as the temperature is lowered as it can be identi-
fied as a pseudo-Goldstone mode of spontaneous translational
symmetry breaking, that is absent at high temperatures [38].
Our discovery is that umklapp hydrodynamics gives the right
temperature evolution necessary to have a mid-IR peak appear
as temperatures increase. As emphasized in Sec. I, this same
development of a mid-IR peak in the optical conductivity as

temperatures increase is observed in the strange metal phase
of the high-T, cuprates.

As emphasized, the DC resistivity can remain linear
throughout this transition. This can be explained by the fact
that the scaling properties of the hydrodynamic parameters
are inherited from the underlying nontrivial quantum critical
IR fixed point. For the GR strange metal both relaxation rates
scale as T, whereas for the RN metal one scales as T° and
the other as T2. This manifestation of the differing detailed
expressions for both relaxation rates shows that a simple in-
terpretation of the scaling of the resistivity in terms of the
entropy fails. Instead their scaling is determined at a deeper
level by the quantum critical IR fixed point. It behooves us
to point out at this stage that we are considering a rigid
lattice only. We are at this stage not taking lattice vibrations
or phonons into account. The underlying assumption is that
in these intrinsically densely entangled system the strongly
self-interacting degrees of freedom dominate all the physics
and any phonon contribution is negligible. We comment on
this further in the conclusion.

At intermediate lattice strengths a similar scenario can
take place. Now the transport response is determined by
four modes, the two modes above and two umklapped sound
modes at Re w = +¢;G. Upon raising temperature the pole
responsible for the mid-IR peak moves up with temperature
to approach close to the umklapped sound pole, such that it
gets obscured and only one peak remains in the AC conduc-
tivity (right inset of Fig. 3). From this temperature onward
the low-frequency AC spectrum becomes roughly temperature
independent. We can track this in terms of the quasinormal
modes (Fig. 9 below) although we can no longer rely on the
perturbative expansion to enumerate it. For a large part of
this intermediate lattice regime, the DC resistivity is still ef-
fectively captured by the expression opc = w> /(T + w5/RQ),
although one needs a careful AC fit to extract the values.
Again, its temperature scaling is set by the nontrivial IR fixed
point and can remain unaffected by the change in dissipative
dynamics in the AC conductivity.

3. The incoherent hydrodynamics at large lattice potential

At large lattice potentials momentum is strongly broken
and we enter in a qualitatively different regime (Sec. VI).
Observationally this is where the numerically extracted relax-
ation rate of the DC conductivity of the GR metal saturates at
about the Planckian value Tcoprected == 27T (Fig. 13 below).
Because momentum is strongly broken, the framework to
understand whether this can be verified is the one where trans-
port is governed by only two conserved quantities, energy and
charge [9]. Their fluctuations consist of two coupled diffusive
modes with diffusion constants that are not the same as they
are in the homogeneous system. At strict 7 = 0, charge and
energy transport formally decouple and the electrical con-
ductivity is governed by one of these modes o = y D, with
x the charge susceptibility, while the thermal conductivity
k = c¢,D_ is governed by the other with ¢, is the specific
heat at constant charge density. At low but finite tempera-
ture they mix perturbatively, but are still dominated by their
T =0 scaling. From our numerics we conclude that D ~ T !
whereas D_ ~ T for the GR metal; similar behavior has been
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established in homogeneous holographic strange metals with
strong momentum relaxation (GR metal in a Q lattice) where
the homogeneous geometry allows analytical solutions [40].
It has been argued that the temperature dependence of the
thermal diffusivity empirically defined as Dy = «/c, should
be insensitive to the breaking of translations and reduces to
one of the incoherent diffusivities D_ at low temperature
and strong lattices. Moreover, it can be related to micro-
scopic chaos through a butterfly velocity v2 times a maximal
Lyapunov rate A = 27T that embodies Planckian dissipation
Dy = %vé /(2n T) [18-20]. Provided we can extrapolate from
the homogeneous result that in the nontrivial IR fixed point
of the GR metal in a strong lattice, the butterfly velocity
still scales as UIZ; ~ T?Z: this is consistent with our findings.
The puzzle is the DC conductivity and charge response. We
conjecture that the Planckian relaxation set by the maximal
Lyapunov rate should still govern charge transport as well.
Given that on dimensional grounds D ~ (v"@ed)2 /(27 T),
this can be only so if the velocity appearing in charge diffusion
is not set by the universal butterfly velocity. In other words
scrambling depends on the quantum numbers of the operators
probing chaos; there are hints that this is true [41-44]. If it
can be shown that v"2¢d ~ T this could explain not only
the observed linear-in-T resistivity at strong lattice potentials
in the GR metal, but also its saturation to the Planckian value.

We will end with a short discussion in Sec. VII of these
results with a focus on the possible relevance to experiment.
We also include a number of Appendices where we discuss
various technical details.

II. HOLOGRAPHIC STRANGE METALS, TRANSPORT,
AND TRANSLATIONAL SYMMETRY BREAKING

In the absence of a lattice, the homogeneous finite-density
strange metals [12,15,23,24] of holography are character-
ized by a nontrivial IR fixed point. These are specified by
a handful of anomalous scaling dimensions: the dynamical
critical exponent z, the hyperscaling violation dimension 6,
and the charge exponent ¢, expressing the scaling of time
with space, the scaling of the thermodynamically relevant
degrees of freedom with volume, and the running of the
charge, respectively. Experimental evidences suggest that the
cuprates are “local quantum critical” [45-47], referring to
z — 0o, while electronic specific heat measurements in the
high-temperature strange metal regime exhibit a Sommerfeld
entropy, s >~ kgT /1 (see e.g., [48]) where p is the chemical
potential taking the role of the Fermi energy. Although the no-
tion that cuprate strange metals are explained by a nontrivial
IR fixed point was put forth independently of holography, the

fixed point that shares the rough qualitative characteristics was
first discovered using AdS/CFT. Amongst the holographic
strange metals this is the so-called Gubser-Rocha strange
metal [33], being the only holographic strange metal in the
general classification that reconciles z — oo with Sommer-
feld entropy. Within the larger class of holographic strange
metals, the critical scaling at the IR fixed point insists that
the entropy should scale as s ~ T~/ For z — oo and
d — 0 finite the entropy should therefore be temperature in-
dependent, implying a zero-temperature entropy. This is the
case for the holographic strange metal dual to the Reissner-
Nordstrom black hole and the closely related SYK systems.
The GR metal is characterized by a double scaling limit
such that z, -0 — oo while —0/z = 1. This reconciles a
low-temperature Sommerfeld entropy s ~ T + ... with lo-
cal quantum criticality. For comparison we will also present
results for the Reissner-Nordstrom strange metal [12,24,49].
For a qualitative understanding of our results nothing more
than the thermodynamics of the fixed point are required
(summarized in Table I). The precise details RN and GR
holographic strange metal and the duality map are discussed
in Appendix A.

The motivation for this study is that all experimental
strange metals are known to occur in the presence of an
excessively strong effective ionic background potential felt
by the electron system, the Mottness of the cuprates being
case in point (see e.g., [25-27]). The commonality of this
lattice potential suggests an importance in observed systems
of which the effects on the holographic strange metals have
not yet been systematically investigated. We shall study the
GR and the RN AdS black holes dual to (2 4 1)-dimensional
strange metals where we break translations by either a one
dimensional or two-dimensional explicit periodic square ionic
lattice potential encoded in the local chemical potential

wip(x,y) = (1 + A cos(Gx)),
A
Mop(x,y) = ﬂ(l + E(COS(Gx) + COS(Gy))). 3

The parametrization is such that the maximal deviation from
the average is +A in both cases.

The above explicit lattice condition appears as boundary
conditions in the dual holographic gravitational description
of the strange metal system in question. The difficulty is that
studying such explicit translational symmetry breaking is only
possible numerically outside perturbation theory. We solve
the full set of spatially dependent Einstein-Maxwell-Dilaton
equations of motion for the GR and RN strange metals using
the DeTurck gauge in a Newton-Raphson scheme [50-52].

TABLE I. IR scaling behavior in holographic strange metals of the entropy density s and the charge density n in terms of the chemical
potential o and the temperature 7. The first column highlights the general formula of holographic scaling geometries. The last two columns
focus on the two holographic models with local quantum criticality (z — o0) of interest in this paper: the Reissner-Nordstrom and the Gubser-

Rocha model. * For a discussion on this, see Sec. 4.2.4 of [12].

RN GR
IR Scaling 0=0,z=00 z,—0 =00
Entropy s/u? ~ (T /) =00 s/u* ~ (T /) s/t~ (T /)
Charge density * n/p? ~ (T/u)° n/pu? ~ (T/n)°
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A summary is given in Appendix A 3. DC transport is com-
puted by numerically solving for the Stokes flow problem
at the horizon [53-56]. All numerical computations em-
ploy a higher-order finite-difference scheme where the radial
coordinate is discretized on the Chebyshev-Lobatto nodes
(Appendix A 3).

We treat the numerical data obtained as the outcome of
an experiment. However, the framework in which to analyze
this data is known. As we already emphasized, the dense
entanglement of the quantum many-body system described
holographically by its dual gravity theory drives a very rapid
quantum thermalization. This implies that local equilibrium
sets in very rapidly, which in turn implies that in the homo-
geneous background with no lattice, transport at macroscopic
times and lengths is governed by hydrodynamics. Different
from the quasiparticles in Fermi-liquid metals, a strange metal
flows like water. It is a general hydrodynamical principle that
it can be decomposed in convective (also called “coherent”)
and diffusive (“incoherent”) flows. The former refers to the
motion of the fluid as a whole as protected by the con-
servation of total momentum in the translationally invariant
homogeneous background. When the translational symmetry
is weakly broken, introduced by hand through a momentum
decay rate I'mom.rel. = r_;mrel‘ as the largest relaxation time,
a straightforward hydrodynamic analysis yields (see e.g., the
review [57])

n? 1
o(a)) = — + Oincs
Xrw Fmom.rel.
ns 1
(x(a)) = + Qinc,
X Umom.rel.
B 2T 1 B
K(a)) = ~+ Kinc- (4)

X Umom.rel.

Here n, s of the convective terms are the charge and entropy
density respectively, and X, is the momentum suscepti-
bility. For nonrelativistic hydrodynamics x,, = nm with m
the constituent quasiparticle mass and one recognizes the
Drude model. For relativistic hydrodynamics appropriate to
strange metals where a linear dispersion relation of charged
constituents induces an emergent Lorentz symmetry, and for
holographic strange metals studied here the momentum sus-
ceptibility equals x, = € + P, the sum of the energy and
pressure density respectively. The Lorentz symmetry also de-
mands that the incoherent contributions are related to each
other by oi,c = 09, Ainc = —%UQ and Kipe = %JQ in terms of
a transport coefficient o [58].

Writing ojpe = %kinc, Uine = —ﬁkine instead, this reveals
that in a Galilean invariant system where both ¢ — oo and
u= mec® + ... > 00, only the incoherent heat contribution
survives. It is a highlight of nonrelativistic finite-temperature
Fermi-liquid theory that such a diffusive heat conduction is
present even dealing with spinless fermions, mediated by the
Lindhard continuum. This ki, = ¢,Dr, where the specific
heat at constant density (equal to the specific heat at con-
stant volume) ¢, ~ T, while the thermal diffusivity Dy =~
v%tcol where 7., >~ kER—FTth; therefore i, ~ 1/T as verified,
e.g., in the 3He Fermi liquid. In contrast, in the nonrela-
tivistic limit € + P — un ~ nmc? the electrical conductivity

becomes purely convective and one recognizes the famil-
iar Drude weight expressed in the plasma frequency as
wlz, = ne’/m.

The incoherent contributions to transport are in principle
measurable in the laboratory by zeroing out the coherent part.
This can be done by measuring heat transport in the absence
of charge transport (open circuit thermal conductivity) « or

charge transport without heat, oy—¢ equal to

. To?
K=Kk———,
o
Ta?
0p=0 =0 — T (5)

Note that in the Galilean limit when there is only an incoherent
heat conductivity x = kj,c; note therefore that in ordinary
metals the thermal conductivity consists completely of the
incoherent contribution in this language (see [60]).

These incoherent contributions are diffusive. The open
boundary combinations (5) are therefore a mixture of diffusive
and convective transport. Nevertheless, it is useful and con-
ventional to define the charge and thermal diffusivities D, =
o/x and Dy = «/c,, where y is the charge susceptibility, and
¢, the heat capacity. In the remainder of this text, we will see
that when translational symmetry is strongly broken and the
convective part is strongly suppressed, these diffusivities are
directly related to diffusion constants in transport. These “in-
coherent metal” diffusivities and diffusion constants should
not be confused with the well-known diffusion of charge D,
and energy D, in weak or vanishing translational symmetry
breaking. As we shall see in the Gubser-Rocha metal the
latter are both linear-in-7" at low temperature while they are T
independent at low temperature in Reissner-Nordstrom. In the
incoherent metal, in contrast, we will see that Dy ~ T while
D.~T7".

Will the real Planckian dissipating channel make itself known?

The point of this brief hydrodynamical exposition is to
highlight the fundamental issue we address in this article.
The above illustrates that even in the simplest Drude hydro-
dynamics there are two dissipative channels: the convective
coherent Drude term encoding the way translational symmetry
is broken, and the incoherent term related to a diffusion of
microscopic origin. For weak lattice potentials, or more gener-
ally for weak translational symmetry breaking, the convective
Drude term is much larger than the incoherent term. With the
conjecture that in strongly correlated critical points the shear
viscosity is bounded by the entropy n > s/4m, two of us,
together with R. Davison, proposed that in disordered strange
metals the usual shear viscosity based momentum relaxation
rate momrel. ~ 7 ~ § can explain a linear-in-7 resistivity
for a system with Sommerfeld entropy [34]. The connection
between the resistivity and the entropy would explain the
universality and the minimal viscosity would be the encoding
of Planckian dissipation. Moreover, this argument is also con-
sistent with a Drude response in the optical conductivity. The
counterargument is that this only holds in detail for marginal
disorder. Relevant or irrelevant disorder would significantly
limit the regime of applicability of this argument [61,62].
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Taking a step back, it actually is difficult to argue that a
universal phenomenon such as Planckian dissipation should
manifest itself through the convective channel, as this co-
herent channel will generically depend on the details of
translational symmetry breaking [18,63]. The far more natural
channel for Planckian dissipation would be the incoherent
diffusive channel. But if one takes this point of view, one
can no longer use it to explain the universal linear-in-T DC
resistivity in strange metals. These all show strong Drude
behavior in the optical conductivity, and the DC conductivity
is therefore set by the coherent response in the context of weak
translational symmetry breaking. It appears to be a Catch-22
[64]. Either a Planckian dissipation can set the universally
observed linear-in-7 resistivity in strange metals, but then
the AC conductivity ought to be Drude, or weak translational
symmetry breaking sets the resistivity, but then it is hard to
see how it can be universal.

We will resolve this conundrum by showing explicitly
that in weak lattice near a nontrivial IR fixed point, the
thermodynamics of the fixed point together with a fixed-point-
controlled scaling of transport coefficients can set the DC
resistivity in a universal sense, independent of the dissipative
channel shown in the AC conductivity. Qualitatively this is
an extension of the Davison-Schalm-Zaanen T'jom el ~ 7 ~
s result. At the same time, for large lattice strengths the
incoherent part becomes dominant and indeed shows univer-
sal Planckian dissipation as surmised by Blake and others
[18-20]. For good measure we state that there may still be
a deeper way to also understand the weak lattice results
in terms of Planckian dissipation. Even though they appear
nonuniversal, the observed scaling, together with the way the
Sommerfeld entropy is a natural bounding behavior at low
temperatures, leaves this possibility open.

III. UMKLAPP HYDRODYNAMICS
FOR WEAK LATTICE POTENTIALS

As we emphasized, in the low-frequency limit at macro-
scopic long wavelengths holography reduces to hydrody-
namics, albeit with specific transport coefficients [65]. A
fundamental principle behind the theory of hydrodynamics is
local equilibrium. The state of the fluid can be described by
a slowly spatially varying energy-momentum tensor 7,,(x)
and in the presence of a U(1) charge, a current J*(x). In
turn the local equilibrium condition implies that one can also
describe fluid behavior in the presence of a slowly spatially
varying external potential whether temperature 7 (x), pres-
sure P(x), or chemical potential @ (x) [66—-68], Suppose this
background is periodic in the coordinate x. The hydrody-
namical problem of relevance is nothing else than that of
a hydrodynamical fluid like water that is flowing through a
periodic “array” of obstacles weakly perturbing the flow, char-
acterized by a microscopic “lattice constant”. This is a rather
unusual circumstance in standard hydrodynamics and we are
not aware of any literature addressing the role of umklapp in
the AC structure of the correlators, although a beginning was
made in [69].

But it represents an elementary exercise, and the answer
is readily understood. From elementary solid state physics it
is well known that a quantum mechanical wave function in

a periodic background experiences umklapp. This is purely a
wave phenomenon and the principle therefore also applies to
classical waves as described by hydrodynamics. Both a quan-
tum mechanical wave function and linearized hydrodynamic
fluctuations around equilibrium are described by a differential
equation of the form

(0 + M(x))p(x) = 0. (6

If M(x) is periodic M(x+ ZLG") = M(x), then ¢(x)
can be decomposed in Bloch waves ¢(x)= 515
O dk'Y., ¢u(k)e® D% Taking M(x) = —Myd? + A cos

-G/2
(Gx) as canonical example, one can solve Eq. (6)

perturbatively in A. Defining ¢, (k) = ¢V (k) + Ap{V (k) +
A?qu,(f)(k) + ..., the solution to first-order A is

— 4©0) Y (V)
800 = 00+ 5ol
g% ) + ™
2G(G + 2k)M, " o

This mixing between the different Bloch waves is umklapp.
In hydrodynamics these umklapped responses have already
been observed several years ago in numerical computations of
holographic metals in explicit periodic lattices in [29,31,70].
Figure 4 in Ref. [31] shows an umklapped sound mode at
o = v;G in the optical conductivity with G the lattice mo-
mentum. However, a full treatment has been lacking.

For U(1) charged relativistic hydrodynamics the fluctua-
tion equations in the longitudinal sector in a spatially constant
background are the coupled equations [71]

—iw ik 0 Se
ikpy  Dik* —iw ikp> St | =0. (8)
—D,, k? ikps D,,k* —iw | \ én

Here §¢, én, ém, are the fluctuations in energy-, charge-, and
longitudinal momentum density respectively. The upper two-
by-two block is the sound sector with §; = ( g—’g)n. At finite
density this interacts with a charge diffusion mode in the
bottom one-by-one block through the interactions 8, = (%)e,
B3 = %3, and the diffusion constant D,,. The diffusion con-
stants equal

e e - s
_<a(a/T)> oy (57). + 7507
. (

Dn] = O’QT

9e i) (55)s — G1)a (i)
5 :UQT<8(;1/T)> o (57), + 7(55)7
’ onJe () (55)a — () (55

®

In the last two equations, the last equality leads to a seem-
ingly more complicated form, but each of these derivatives
is much simpler to compute. Barred quantities denote the
(spatially constant) equilibrium background, and 7, ¢, o are
the microscopic transport coefficients: the shear- and bulk-
viscosity and the momentum-independent contribution to the
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conductivity. As discussed, the holographic models we con-
sider have d = 2 with an underlying conformal symmetry for
which the equation of state € = 2p implies that { = 0, 8, = 0,
and B, = cf, = 1/2; we will limit our focus to conformal
hydrodynamics in the remainder.

Placing such a system in a spatially varying chemical
potential u(x) = fa(1 + A cos(Gx)) the umklapp interactions
follow from a rederivation of the fluctuation equations in
this background. A detailed derivation for both conformal
and nonconformal hydrodynamics and discussion with a natu-
ral generalization to a two-dimensional lattice p(x) = (1 +
’% cos(Gx) + %‘ cos(Gy)) is given in a companion article [72].
In summary, to maintain equilibrium with spatially constant
temperature also requires a spatially varying charge density
n(x)=rn-+ ﬁA(g—Z)T cos(Gx) + ... and pressure p(x) = p +
Afinncos(Gx) + ... to leading order in A. The exact equa-
tion of state € = 2p in a conformal fluid means the energy
density follows the pressure. By viewing the lattice as a
small perturbation on the thermal equilibrium, we can ex-
press the perturbations in terms of the chemical potential
modulation and the thermodynamic susceptibilities of the
background. These corrections to the background are respon-
sible for the Bloch decomposition and umklapp interactions
mixing them. To first order in the lattice strength A the
three modes of the longitudinal sector [73] mix with their
six umklapp copies. Our interest in this paper is how this
umklapp affects the response at low frequencies w < G and
zero momentum k = 0. At k = 0 the un-umklapped charge
diffusion mode decouples, and the remaining eight modes de-
compose into four parity-odd-in-G ones and four parity-even
modes. The latter include the k = 0 sound mode 87, two
umklapped sound modes built on 8e®) = f dx sin(Gx)de(x),
87© = [dxcos(Gx)dm(x); and one umklapped charge
diffusion mode built on 8n®® = [dxsin(Gx)én(x) that
interact as

& +M)-8¢ =R (10)
with
0 1AGR  1AGR  —3iwARps
AGR 2
~Grpm  DoC 0 0
M= - (11)
—2AG B3 0 0 -GpB;
. - G 2
—3iwABs 0 2% D, G
and
st ©® il
nS) — Byse AR S _
=1 peew |0 BT _nag e "
57 o, ®
Tx ,uA(otn + (€+p‘)c§)
(12)

where we have defined D, = D,, the charge diffusion con-

stant and where we used the coefficient o, = T(%)g,
which entered the definition of D,,. It is purely thermody-
namic and has a universal scaling behavior determined by the
scaling of entropy, as we will later highlight. We have added
to our system a perturbatively small time-varying electric field

8E.(t) = —8E e which will externally source a longitudi-
nal current §J*. This term will also enter the hydrodynamic
system as an extra term in the current constitutive relation
through o, — d,t + SE,(2).

We can now therefore linearize the constitutive relation
8JF = név* — opld*(Su — %ST) + SE,] for the current den-
sity defined as

8T (1) 01\ 8¢(t) + opSE e !
= . lof €
) Q
I \T D,G D,G
ith = ,—aA—L= 8, pA—L—,
wi (8 ¢> (/33 pA—3 B, i dic,
1
ﬁA<ﬁ3 +5- )) (13)
noy,

We make use of the dynamical system (10), to obtain the
time evolution of the dynamical fields §¢(w) = (—iwly +
M(w))~!- (8¢t = 0) + RSE,). Since we have turned on the
external electric field, we are not interested in explicitly sourc-
ing any of the hydrodynamical variables and therefore we set
8¢(t = 0) as an initial condition such that §¢(w)  SE, and
by extension so will be §J*. Finally, the optical conductivity
can be computed as [72]

o(w) = (14)

SE,"
The inverse (—iwly + M)~ is dominated by the vanishing of
its determinant. These zeros show up as poles in the conduc-
tivity. Expanding the determinant [74] to order A2, there are
four poles at

o1 = —i(Ty +Tq) + O@AY),

wy = —i(D,G* — Ty) + O(AY),

G
wy = 13[1 — RPA%B3 + O(AY)]

1
—i5ID2G? =T, + 0N + O@G*)  (15)

with
-2
Ly = 2+,
2(e + p)D,ay,
24202 2 2 i’ 2
', =2u°A“B;D,G* = 2A“——D,,G". 16
n 128 133 s (€+ﬁ)2 b4 ( )

At low frequency w < ¢;G, the contribution from the two
sound poles wy should be negligible in the conductivity. By
expanding the expression (14) as a quadruple Laurent series

Z;

w — Wi

o(w) =0+ Z

i=1,2,+

7

and truncating the two sound modes, one finds that it takes the
form [75]

Z Z>
Ono sound (@) = 09 + +
w — w1 w— Wy
Q—iw
(T —iw)(Q — iw) + v}

= 00 + Zeft (18)
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with
o) O(A?)
——
Q =D,G* —2DG’Ty + O(G*) +O(A%),

[ =2D'G°Ty + T, + O(G) + OA"Y),
w§ = D,G’Ty[1 —2D2G* + O(G))] + O(A"),
Zett/ @ = 1 + 4p*A’BID2G? — D,Ty[4+D,(D,—4D,)G’]
+O(G*) + 0(Aah),
00 = g + O(A%), (19)

2
2

where the plasmon frequency is a)lz, =5

The form Eq. (18) is well known from studying
the hydrodynamics of decaying charge density waves
or other pseudo-spontaneously broken U (1) superfluids
[13,39,76-80]. This is not surprising as the underlying physics
is that of two damped currents cross coupled with an inter-
action wy (see Appendix F). Both a decaying (i.e., damped)
pseudo-Goldstone boson, as well as an umklapp hydrodynam-
ics interaction belong to this class.

Given an appropriate temperature scaling of I, Q, wj or
equivalently Z; », w;, it was already proposed that such a
conductivity could explain the emerging mid-IR peak at high
temperature in the cuprates. We will argue below that this
umklapp hydrodynamics in an holographic AdS, metal with
Sommerfeld specific heat provides precisely the right scaling.

IV. THE APPLICABILITY OF HYDRODYNAMICS AND
THE IMPRINT OF LOCAL QUANTUM CRITICALITY

Despite the fact that the interplay between holography and
hydrodynamics has been formidable, it is not a given that a
hydrodynamical understanding as given above applies directly
to holographic strange AdS,; metals in explicit lattices. Even
though holography describes strongly coupled systems, which
implies a large hydrodynamical regime, this regime is finite as
has been emphasized in several recent articles [81-85], and
bounded by w = 2w AT where A is the scaling dimension
of the lowest irrelevant operator from the strange metal fixed
point. This argument against hydrodynamics can be sharpened
by the fact that momentum-dependent longitudinal DC con-
ductivities at zero frequency o (w = 0, k # 0) vanish [86,87].
This is an unavoidable consequence of U (1) current conserva-
tion: @ — 0 implies G - J = 0. Naively considering umklapp
as the mixing of the o(w, 0) and o (w, k = G), would argue
that the amplitude of the mixed-in umklapp wave is thus very
small. This is illustrated by a memory matrix computation
[36,86]. The momentum-dependent density correlation func-
tion G, in a homogeneous AdS, metal, which is the operator
to consider for our choice of lattice, scales as a function of the
temperature as

Im Ghomogeneous(a) =0, k) ~ T2Uk +...,

g
1+ - -
W:——iﬂTJm+ﬁ+4Q+ﬁM2—&H4%2+mﬂ
2J2+ 1
(20)

where /) = —6 /7 characterizes the near-AdS, region and k is
a wave-vector renormalization that correctly rescales to the
emergent near horizon AdS, geometry in a lattice [31,86]. For
GR /) = 1 and for RN, #j = 0 while in both cases, k= ﬁ This
scaling of Gy follows from a near-far matching method in
the AdS; bulk, which shows that a generic Green’s function
takes the form

_A+Bg
 C+ DG

with A, B, C, D purely real and G the AdS, Green’s function
[88]

2y

(1= vl (3 + v — 572)
P14+l (5 = v = 525)

The imaginary part of the density correlator is proportional to
the imaginary part of the AdS, correlator as Im Giy» ~ ImG.
Although this scaling as a function of the temperature is
exact, it ignores the possibility that there can still be a large
amplitude as a function of the other parameters. This is in
fact what happens when one extrapolates the exact answer for
the momentum-dependent transverse conductivity o, (w, k)
to the hydrodynamic regime k < p [89]. The momentum-
dependent current-current correlation function in an AdS,
metal behaves as

G(w, k) oc T?" (22)

K*G(w)
0+ L G(w)

2}”0

Gy (w k)y=— (23)

Although the scaling is indeed captured by the Hartnoll-
Hofman result Eq. (20) one also sees that for small &k the hy-
drodynamic pole at @ = —iDk? becomes far more important
than the (w/T)?" suppression. For k < p the hydrodynamic
pole captures the physics far better than the AdS, power law.

As is clear from the mathematical expressions this is not a
sharp transition, but a smooth crossover. Nevertheless, there
is a clear transition between dominant physics regimes (AdS;
vs hydrodynamics) that can be made visible through the holo-
graphic dynamics. A finite-momentum conductivity is better
viewed as the response when the system is placed in a fixed
spatially oscillating but static electric field background. The
spatial oscillation imprints a lattice structure in the finite-
density system. The conventional RG perspective is that this
lattice is irrelevant in the RG. This is the physics behind the
power-law dependence on temperature in Eq. (20). The AdS;
fixed points of the holographic metals that we study, either RN
or GR, are so-called semilocal quantum liquids [35], however.
This means that while for 7 < p the two-point correlation
function displays power-law behavior between two time-like
separated points, it is exponentially suppressed between two
space-like separated points. This exponential suppression is so
strong that two points separated spatially by a distance |x| =
/% have no causal contact [35]. In momentum space this im-
plies that the coupling between modes with k < w is exponen-
tially small. This decoupling means that for modes k < u or
equivalently a spatially oscillating but static electric field with
G < u the RG flow becomes strongly suppressed once T de-
creases below . One can think of it as that the d-dimensional
RG-flow at T = u decomposes into individual RG-flows for
each momentum mode. Recalling that in holography the radial
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10 1.0
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FIG. 4. A holographic visualization of the crossover in response functions between G > u (left) and G < p (right). Plotted is the bulk
electric field F;, (whose boundary value is dual to the charge density) in the presence of a 1D spatially varying chemical potential pu(x) =
L + A cos(Gx) as a function of position and the AdS radial direction z. For G > u (G = 4u) one sees the lattice amplitude decrease smoothly
as one moves from the AdS boundary to the horizon at z = 1. For G < u (G = 0.051) on the other hand, one sees that the RG flow is much
slower and “halts” around z ~ 0.5. This is due to the exponential suppression of the coupling between different momentum modes at the AdS,

IR fixed point. The results are for a RN black hole at 7/ = 0.15.

direction encodes the RG-flow, we can visualize this. In Fig. 4
we plot the charge/current density as a function of location
for a modulated chemical potential. For a lattice momentum
G > p the lattice irrelevancy towards the IR is uninterrupted.
However, for an oscillating chemical potential with periodic-
ity G < 1, the RG flow “halts” around the AdS radius value
r ~ w corresponding to T ~ . For such values of G <« u the
lattice thus remains quite strong in the IR and certainly much
stronger than one would naively expect. The way to under-
stand this is that precisely in this regime it is the proximity
of the hydrodynamic pole that dominates the response rather
than the RG scaling suppression. Ultimately the RG wisdom
does holds for any lattice perturbation and even for G < u
the lattice will eventually turn irrelevant in the IR (Sec. 3.4
in [31]), and scaling again becomes the pre-eminent physical
effect but this only happens at the lowest of temperatures.

For umklapp hydrodynamics this is relevant because it im-
plies that the regime where the hydrodynamics results capture
the physics is appreciable. Below we shall verify that near
an AdS, fixed-point umklapp hydrodynamics is the better
way of understanding the physics for G < pu, whereas AdS;
Hartnoll-Hofman scaling is the better way for G > u. For the
sake of clarity, we emphasize that strictly speaking at a math-
ematical level both can be, and often are, valid simultaneously
as is evidenced by (23). However, the physical response is
generically dominated by one or the other, and relying on only
one of them is not sufficient.

There is a second reason why hydrodynamics is the more
appropriate perspective for G < . A more precise analysis
of the momentum-dependent density correlator in an AdS,
metal shows that it has multiple characteristic scaling contri-
butions [86]

Im G}]lf)jrflogeneous(w =0,k)~ c. T2 + COTZU]? + C+T2v,:r
(24)

with the additional scaling exponents

144 _
%\/1 T 4R2,

v 1+h +’A7A\/10+ﬁ+4(2+ﬁ)152+8,/1 + (24 k2.
22+ 1
(25)

0
Vi

For k=G« pn as one needs for umklapp between
Im G?f’;‘ogene(’us(o, k') for k' =0, G, all these three expo-
nents take values that are very close to each other. For such
small differences in the exponents there is observationally no
clean scaling regime. For low lattice strengths A this is the
reason that the observed weak lattice DC conductivities in
Fig. 3 do not scale exactly inversely-linear-in-7" as noted in the
Introduction. Through umklapp, the lattice DC conductivity is
related to the homogeneous density correlator (which we will
review in more details in Sec. V)

-1
h
' ImG :)nflogeneous (0), k)
1 JUJ
ODC,lattice ™~ 1m

w—0 w

1
~ . 26
e T2 4 coT?1 4 ¢, T2 -1 (26)

Figure 5 shows that the deviation from linearity is exactly due
to the contribution of the additional exponents.

V. DC VS OPTICAL CONDUCTIVITIES IN EXPLICIT
LATTICE (HOLOGRAPHIC) STRANGE METALS
FROM UMKLAPP

Having argued that hydrodynamics should dominate the
response in holographic strange metals, we now exploit our
ability to do computational experiments to confirm that umk-
lapp hydrodynamics applies when such holographic strange
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FIG. 5. The DC conductivity of the GR metal in a weak lattice
potential A = 0.05 is not perfectly inversely linear-in-7". This is due
to subleading scaling contributions computable from the AdS, fixed
point. Shown is a three parameter fit of the DC conductivity for
c_, co, ¢4 to the functional form ope = 1/(c_T?6~! + ¢oT?6~! +
cq T2 at low temperature with vg, v, vt given by Eq. (20) and
Eq. (25), with k = G, for G/ = 0.1. The values of the exponents
VG, vg, vz;' at this wave vector are 1.00015, 1.0198, and 2.53, respec-
tively. Therefore according to this fit, one expects the exponent vg to
be the dominating one only at temperatures 7/ < O(1075).

metals are placed in an explicit periodic lattice with a small
amplitude A. Then we shall describe the surprising phe-
nomenological conclusions for electrical DC and optical
electrical conductivity.

To verify the applicability of umklapp hydrodynamics in
AdS, metals, we can study the location of the poles in
linear response functions. Figure 6 shows the poles in the
optical conductivity o(w) in a GR strange metal in a 1D
ionic lattice background p(x) = fi(1 4+ A cos(Gx)). There are

0.000
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—-0.004

Im w/u

—0.006

—-0.008

-0.010

—-0.004 —0.002 0.000

Re w/u

0.002

0.004

0.000
p

—0.002 1

o g @ Pole locations
o = —iDpk?
_””... —-— W= —iDpk
-0.008 L. w= —i(Dplk £G)? = T4/2)

-0.0

multiple poles on the negative imaginary axis and two poles
with real part at the location w = £v,G. The latter are the
ones already noted by [29,31,70] and identified as umklapped
sound modes [31]. That umklapp is at work is confirmed by
tracing the behavior of the poles as a function of temperature.
Compare the behavior of the two poles on the negative imag-
inary axis closest to the origin to the analytically computed
values (15), we see that the match is very good; see Fig. 7.
Moreover, if one also studies the response functions at finite
momentum k, then one observes the characteristic umklapp
level repulsion at the edge of Brillouin zone k = G/2 (Fig. 6).

A. Low temperatures: Drude transport

We have claimed umklapp hydrodynamics explains the
remarkable finding summarized in Fig. 3 that the DC con-
ductivity of a strange metal in a weak lattice remains
linear-in-temperature while the mechanism governing the AC
response appears to change. We can now show this.

The DC conductivity from umklapp hydrodynamics to
lowest order in the lattice strength A equals

Zeff (1)127 2
opc = -+ 09 = ——— + Oofiset + 09 + O(A7),
-+ @y FTI +Iy — =
Q —_—— o)
OA2)

27

where, in the last equality, the first term is the leading order
and the offset term osec comes from the higher-order terms in
Eqgs. (19). The first contribution in the DC from the sound part
of the Laurent expansion (17) only comes at order O(A?) and
is therefore negligible here. These expressions already suggest
that two physical mechanisms are at play in the DC result. At
first sight this may appear contradictory to the conventional
explanation of weak lattice DC conductivity in terms of Drude

—0.00204

~0.00205 -

—0.00206 -

Im w/p

—0.00207 4

Edge of the Brillouin zone

Kl

FIG. 6. Umklapp hydrodynamics. The left panel shows the presence of both the Drude (upper) pole and the umklapped charge diffusion
(lower) pole and associated zero in the complex frequency plane at k, = 0. The right panel shows the motion of both poles as a function
of longitudinal momentum k,. The umklapp is confirmed by matching this motion to the diffusion coefficients of the un-umklapped
hydrodynamics computed in Eqgs. (23). The inset shows the level splitting near the Brillouin zone boundary at k = G/2. The results are
computed in the GR black-hole lattice at 7/ = 0.1, G/ = 0.1 with a 1D ionic lattice potential u(x) = (1 + 0.05 cos(Gx)). The deviation
at low k finds its origin in the next-order level splitting in umklapp. which our formula does not account for, similar to the level splitting near

the Brillouin zone.
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FIG. 7. The motion of the poles (points) as one increases temperature compared to hydrodynamics (dashed). As the temperature is increased
further the Drude pole eventually collides with the umklapped charge diffusion pole and gains a real part. At low temperatures where a
perturbative umklapp analysis is valid the behavior of the poles can be understood from the un-umklapped hydrodynamic analysis. Results are
in the GR and RN 1D lattices with G/ = 0.1, k, = 0 and potential strength A = 0.05.

2

. w .
momentum relaxation o = = - The momentum relaxation
rate 'nomrel. can be computed in the memory matrix formal-

ism [36,90] to equal

g2G2 mm
&+ p) o0

Im(O0)(w, k = G)

w

) (28)

1—1m0m.rel. =

where O(G) is the operator that breaks translation invariance
with coupling g. In the case of an ionic lattice with a cosine
potential as we consider, there are two operators O(G) = J',
one inserted at wave vector G and one at —G each with
coupling strength g = iA/2. Therefore the memory matrix
momentum relaxation rate for the ionic lattice is

/12A2G2 . ImGJljl ((,z), k= G)

2 + p) om0 29

l—‘mom.rel. = o

Inserting its correlation function computed in a homogeneous
background into (29) one in fact finds the exact same answer
as computed by umklapp hydrodynamics I'yomrel. = I'y + 'y
(see Appendix D for a derivation of this result). Theoretically
this can be understood through the observation that there are
two possible dissipative channels in hydrodynamics. There is
sound attenuation controlled by the shear viscosity n (and bulk
viscosity ¢) and there is charge diffusion controlled by the
microscopic conductivity op. Both are at the same order in the
lattice strength Iy, ~ AZ. This is the expansion parameter in
the memory matrix computation and explains why they both
show up.

The phenomenologically important characteristic is the
temperature scaling of the DC resistivity. Implicitly the lattice
scaling implies a scaling with temperature as the effective
lattice strength should become irrelevant in the deep IR. This
must be encoded explicitly in the scaling of both I';, and Iy,
and not in the UV strength A. However, there is a priori no
requirement that both I'; and I', will scale the same as a
function of T'. Generically they ought not. However, in holo-
graphic strange metals without a ground-state entropy they do.

For these systems at low temperatures

Ly ~n(T)~s~ T@O%,
T? as

2 2
(T—) ~ (—d_9> T@=9/2 (30)
oo(T) T z

The derivation requires a mild assumption about the low-
temperature equation of state and is given in Appendix E.
Thus for the GR strange metal I';, ~ T and I'y ~ T, whereas
for the RN metal, which has a ground-state entropy I'), ~ 70
but the first nonvanishing order for I'y is ['; ~ T2. Over the
range of validity, usually one of them will dominate, although
it is conceivable that one dissipative momentum relaxation
process switches dominance with the other. If this coincides
with a change in scaling this would show up as a change of
temperature scaling of the DC resistivity.

Two observations follow. The first is that despite the
numerical results supporting the inference from disordered
translational symmetry breaking that the momentum relax-
ation rate scales as the entropy, this is not true for the
contribution from I',.

The more important observation here and in the following
is that which term dominates does not matter. In holographic
strange metals the momentum-relaxation rate is set at a deeper
level by the nontrivial locally quantum critical IR fixed point.
As pointed out by Hartnoll-Hofman and briefly reviewed in
the previous Sec. IV, in the regime where Eq. (29) holds,
the frequency scaling enforced by local quantum criticality
also sets the temperature scaling of the DC result. For the
RN strange metal it is only I'; that is responsible for this,
whereas in the Gubser-Rocha strange metal both obey the
appropriate scaling. Since I',, also scales as G?, whereas I';
does not, one can tune the GR response to be dominated
by I'; for G « 2u, and T', to dominate for G > 2u. This
coincides with the applicability of hydrodynamics as we dis-
cussed in the previous section, confirming a correlation with
a physically observable change (see also Sec. VD below).
This very difference between I';, ~ G? and T'y ~ G° actually

Iy

~
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FIG. 8. Emergence of mid-IR peak in the optical conductivity o (w) from pole collision. At low temperatures the umklapp has negligible
consequences as the response is strongly dominated by the conventional Drude pole. At intermediate temperatures the umklapp pole causes
an additional broadening. When the temperature increases to the point where the poles collide and gain a real part the peak still looks Drude
to the eye even though it arises from two poles symmetrically arranged on both sides of the real axis. At even higher temperatures these two
poles move so far apart that the peaks separate and a mid-IR peak at finite @ appears in the optical response. For this figure the parameters are

A =0.15, G = 0.08, the same as in Fig. 3.

causes the order of importance to be opposite in disordered
systems. Because disorder can be viewed as an average over
an infinite set of lattices, in the decay rate in a disorder system
Idisorder ™~ de’ldG(F a+1T) the T’ term will generically
dominate the integral [34]. Since I';, ~ n ~ s, this explains
why in disordered systems entropy does directly control the
dissipation time scale in contrast to a lattice with a fixed lattice
momentum Gy, as we explained above.

Independent of the dissipative mechanism, both leading in
A momentum-relaxation rates I';) and Iy become vanishing
small at low temperatures suggesting Drude transport. This is
readily confirmed in the AC conductivity. Its real part displays
a characteristic Drude peak. Mathematically, however, the
peak is not exactly a (half-)Lorentzian, but follows from the
two-pole expression (18).

B. Intermediate temperatures: A mid-IR peak
in the optical response

We have just argued that the DC resistivity can remain
the same while the physical regime controlling dissipation
changes, because it is set at a deeper level by the underlying
AdS; fixed point. Although we have just noted this fact by
analyzing the analytic expressions, it is in fact dramatically
made clear at an intermediate higher temperature, as we al-
ready summarized in Sec. L.

In the regime of interest the conductivity computed from
umklapp hydrodynamics is controlled by two poles. In the

parametrization

Q—iw
(T —iw)(Q — iw) + v}

o(w)=o0p+Z 31

these are the Drude and umklapp charge diffusion poles at

—1 I
e = 5 (U + Q) + 2./ (0 = Q) — 4af

—i(T, + Tg) + O(AY),

—i i
@WUm.Ch.Diff. = 7(1" + Q) — 3 (' - Q) — 40)(2)

= —i(D,G* —Ty) + O(A").

(32

At low temperatures, the second pole (let alone the two al-
ready ignored umklapped sound poles) has a small effect.
Increasing the temperature changes this fundamentally, how-
ever. Both poles move as one increases the temperature.
However, they do not move in unison. When the argument
under the square root (I' — Q)% — 4w} becomes negative, the
poles collide. For temperatures higher than the pole-collision
temperature, the poles can now acquire a real part and move
off the imaginary axis symmetrically; see Fig. 8. Initially
this “microscopic pole collision” has little effect on the
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optical conductivity. In a formal sense it slightly broadens the
peak around w = 0 and without an insight into the complex
frequency response it is essentially indistinguishable from a
conventional Lorentzian Drude peak. However, as one in-
creases temperature further and the poles move further away
from the imaginary frequency axis, the peak will split into
two, symmetrically arranged around @ = 0. For the posi-
tive half-line w > 0 one would thus see a peak emerge in
the near IR whereas the DC value at w = 0 continues to
decrease.

This collision point is controlled by a combination of tem-
perature, lattice strength, and lattice periodicity. Already at
moderate lattice strengths, this emergence of the mid-IR peak
in the AC conductivity happens at temperatures 7 < Tgange
where the DC response is still set by the critical scaling be-
havior of the underlying AdS, strange metal. In other words,
despite the qualitatively drastic change in the AC-vs-T con-
ductivity, the DC-vs-T response is unaffected.

What is striking is that this emergence of mid-IR peak
in the optical response as temperature increases while the
DC resistivity stays linear in T is precisely what is observed
in high-T,. cuprates and other strange metals as explained
in Sec. I. Given the earlier hypothesis reviewed there that
transport in the high-7; cuprates is hydrodynamical, it is
conceivable that this is the explanation of this observed ex-
perimental finding.

The mechanism we just explained is tantalizing given its
minimalistic nature. It is in fact ubiquitous for any hydro-
dynamical fluid exposed to a microscopic umklapp potential
where the effective potential strength is rising more rapidly
than the momentum diffusivity. Notice that it does not apply
to a Fermi liquid in metallic background potentials. The onset
of equilibration is set by the quasiparticle collision time, but
typically a substantial fraction of the center of mass momen-
tum is absorbed by the umklapp impeding the total momentum
conservation required for hydrodynamics including the mech-
anism in the above.

C. Intermediate lattice strength: Towards an incoherent metal

Our computational experiments on holographic strange
metals can also provide us insight in what happens at larger
lattice strengths beyond the applicability of perturbative umk-
lapp hydrodynamics. This is best quantified by tracking the
behavior of the complex frequency poles in the AC conduc-
tivities. In Fig. 9 we show typical quasinormal mode spectrum
computed for lattice strength A = 0.15. At low temperatures
one finds that these are still dominated by the nonlinear con-
tinuation of the same two-pole structure as we identified for
small A, i.e., the Drude and umklapp charge diffusion poles
identified in umklapp hydrodynamics.

What is notable is that the pole collision has already hap-
pened at a lower temperature than for perturbatively small
A. Qualitatively this is easy to understand in terms of the
RG wisdom that the lattice becomes irrelevant in the IR. If
one starts with a stronger A in the UV, one is at a relatively
stronger strength at a temperature 7 or vice versa one is at a
comparable strength at a lower temperature 7. This may seem
like semantics, but crucially the DC conductivity linear-in-7'
scaling remains set by the local quantum critical IR fixed

point, which is less affected by an increase in A. As a result
we can again observe in the AC conductivity a transition in
the dissipative mechanism as one increases 7' during which
the resistivity stays essentially linear (Fig. 3 in the Introduc-
tion). The transition in this case is that from the mid-IR-peak
regime to an incoherent metal. The latter means that the low-
frequency AC response is no longer well described by the
“two-coupled-relaxational-current” formula. Other poles now
also influence the AC response, especially the two umklapped
sound modes. They feature prominently in the AC response;
see Fig. 9.

Although the AC conductivity really shows the emergence
of the incoherent metal regime at larger 7 and the “two-
coupled-relaxational-current” expressions fails, for most of
the temperature range the DC limit w — 0 is still well de-
scribed by its asymptotic expression

Z

Opc = 0p + (33)

a)2 '
'+
With careful fitting of the optical conductivity as well as the
complex location of the four poles, one can fit the parameters
Z, oy, I, Q, a)g as well as the parameters of the two first
umklapped sound poles as a function of A and T. For the
full four-pole ansatz, see Sec. V C. In Fig. 10 we show how
the three parameters in the denominator €2, I', and w( evolve
as function of temperature for intermediate 0.1 < A < 0.8.
One sees how these explain the observed DC conductivity
quite well. Given that the DC conductivity is so well captured
by Eq. (33), one concludes that for these potentials the DC
conductivity is still limited by the momentum life time.

D. On the applicability of umklapp hydrodynamics

We end this section with a brief check on our ear-
lier argument in Sec. IV that umklapp hydrodynamics is
the relevant perspective to understand strange metal trans-
port in a weak/intermediate lattice for G < u rather than
Hartnoll-Hofman scaling. The intuitive argument is that
momentum-dependent conductivities are strongly power-law
suppressed as a function of T for G 2 u as the RG flow is not
“halted”. Umklapping conductivities that have such marginal
weight should have negligible observable effect. Figure 11
shows that this insight is essentially correct. For a lattice with
G=10u, T/u <0.35 and A = 1.0 the AC conductivity is
Drude like, and no transitions to a mid-IR-peak or incoherent
metal are seen. An illustration that formally umklapp hydro-
dynamics still applies is that one can still notice the now very
highly suppressed umklapped sound peak. Even so, for G 2 u
the better perspective is Hartnoll-Hofman scaling. Since G/u
is large here, the various exponents in the resistivity described
in Sec. IV are not close and the lowest exponent vg of Eq. (20)
alone is enough to describe the DC conductivity at low tem-
peratures.

VI. OBSERVATIONS AT STRONG LATTICE POTENTIALS:
PLANCKIAN DISSIPATION AND INCOHERENT METALS

A. The remarkable ubiquity of Planckian dissipation

We now switch to analyzing our numerical results at large
lattice potentials A > 1. As we reviewed in Sec. II, for small
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FIG. 9. Optical conductivity (right) and the quasinormal mode spectra (left) for intermediate lattice strength GR lattices forA = 1, G/u =
0.1 at three different temperatures. Compared to small A the pole collision (see Sec. V B) has already happened even at lowest 7/ = 0.02.
As one increases 7 the umklapped sound poles, which stay almost fixed at Re w = £¢,G = :I:J%G (and others not shown) become more
important and their dominance in the AC conductivity signals the transition to an incoherent metal regime.

lattice potentials A < 1, Planckian dissipation is unlikely to be
universal as it will depend on the details of how translational
symmetry is broken [19,63]. At finite density one must be in
a regime where translation is broken strongly and long time
transport is controlled by another dissipative mechanism than
translational symmetry breaking.

Performing this numerical experiment where we increase
the lattice strength, one sees not only a beautiful sharper
linear-in-7" resistivity, but also a saturating behavior in that
the resistivity appears to become independent of the lattice

strength A, highlighted in the Introduction (Fig. 1). Although
the thermoelectric and heat conductivity also appear to sat-
urate, they do not. Replotting the results as a function of
the inverse lattice strength 1/A rather than A, one sees that
they asymptote to zero as 1/A; see Fig. 12. One also notes
that the electrical conductivity does not saturate but turns
over when inspected this precisely. Treating the numerical
results as a purely experimental finding, a naive Drude anal-
ysis does suggest that the dissipative process saturates—even
though this does not apply for strong momentum relaxation.
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FIG. 10. [(a)—~(c)] The evolution of the phenomenological parameters I'/u, 2/, wo/Ap as present in the “two-coupled-relaxational-
current” expression (31) as a function of A and T/u at G/u = 0.12 in the 1D Gubser-Rocha model. These parameters are extracted from
a four-pole fit to the optical conductivity that includes the two lowest-order umklapped sound peaks, which reside at Re w &~ £c¢,G. Both
Q/p and wy/Ap show little A dependence, whereas I' /i depends strongly nonlinearly on A. In (a), the arrows labeled 1 and 2 point to the
temperatures at which the pole collision happens at A = 0.1 and A = 0.2, respectively. For the stronger lattices, the pole collision has already
happened at lower temperatures than we have access to in our numerics. (d) Comparison of o7yo.pole, the conductivity reconstructed from only
the “two-coupled-relaxational-current” part of the spectrum in figures to opc, the observed DC conductivity. At larger values of A, it becomes
clear that one must include more information, such as the umklapped sound modes, in order to accurately reconstruct the DC conductivity at

all temperatures.

Increasing the lattice potential A has two effects, it changes
the strength and possibly mechanism of dissipation, but it can
also shift degrees of freedom from lower to higher energy and
vice versa. In simple Drude language where one postulates
opc = a)lz7 /T, increasing the lattice strength cannot only affect
I', but also the Drude weight a)lz,. Again, the Drude formula
does not necessarily apply at large A, of course. Nevertheless,
to focus on the dissipation we must also account for possible
shifts in the weight. Because the total weight of the optical
conductivity is protected and conserved, a more appropriate
measure of the dissipation is to normalize the measured DC
conductivity by the total weight fOAda)a(w) and study the

o ed = 0pc/ [i dwo (). Figure 13 shows
both the bare naive Drude rate Fb’aie = OpC /a)ﬁ and the cor-
rected rate. Indeed, in terms of the naive Drude rate even at
the largest A the saturating behavior in the conductivity is not
exact. However, when corrected for a possible spectral shift,
the postulated relaxation rate does start to saturate. Not only

resultant rate '~

does this relaxation rate appear to start to saturate, as Fig. 13
shows, it does so at a value that is numerically close to the
Planckian dissipation rate I'corected = 277 /Ts = 22 T. A naive
Drude weak momentum relaxation analysis applied in the
strong lattice regime may therefore inadvertently lead one to
conclude to have detected Planckian dissipation. However, to
understand whether Planckian dissipation is really occurring,
we must resort to a different theoretical framework.

B. An incoherent metal explained with microscopic scrambling

How to understand transport in a system where translation
invariance is badly broken was discussed in detail by Hartnoll
[9], and its connection with Planckian dissipation was set out
in a series of papers [18-20,40,93] in the context of systems
with strong translational disorder. The essence is that in this
regime only energy and charge are the conserved currents that
survive at long distances. For this section we shall not just fo-
cus on the electrical conductivity but on the full thermoelectric
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FIG. 11. The AC conductivity of the GR model at G = 1.0u and
lattice strength A = 1.0 for a large temperature range. The low-w
response is of the Drude form for all values and no transition to
a mid-IR-peak or an incoherent metal is seen in contrast to lat-
tice momenta G < p. The small rise at w/u = %g = % is the
umklapped sound mode, which now has barely noticeable height at
low temperatures. The inset shows that the DC conductivity obeys
leading-order Hartnoll-Hofman scaling at low temperature, which is

expected to go as (T /u)~>% at low temperatures.

transport matrix

J o aoT E
()-C o) o

with j, = L(T% — uJ?). Here k& = k + TT"‘Z is the heat con-
ductivity in the absence of electric field, and « is the heat
conductivity in the absence of electric current (open boundary
heat conductivity). Figure 1 shows the result for all con-
ductivities for increasing lattice strength into the incoherent
regime, both in the Gubser-Rocha (sgr ~ T + ...) and in the
Reissner-Nordstrom AdS, metal (sgy ~ co + 1T +...). The
conductivities are rescaled such that their dominant power-

law scaling with T is scaled out. In detail one observes also
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10 A

0.0 0.2 0.4 0.6 0.8 1.0
1/A

that the thermoelectric and the heat conductivity conform
sharper to the conjectured appropriate temperature scaling as
A increases, culminating again in a saturating behavior for
large A.

It is tempting to view this scaling of the thermoelectric
conductivities as validating that the system is dominated by
a single common relaxation time that scales like the entropy
at low temperatures, even though it does not apply here as
A is large. Single relaxation time Drude theory would suggest
thato = a)lz,/F, o = >0,and % = ;—220. IfT" ~ s(T) as naively
guessed above, it is consistent with the above observations. As
we will now explain, and confirmed with counterexamples in
studies of strong translational disorder, this single relaxation
time description is not correct.

To extract possible relaxation rates in an incoherent metal
with strong translational symmetry breaking, one posits con-
stitutive relations for the two remaining currents and does a
hydrodynamic analysis. One finds that the DC conductivities
are the zero-frequency limit of the dynamics of two indepen-
dent diffusive modes with diffusion constants D, and D_.

These are
K o Tofa a5 2
—+—+ —— |\ = )
cn X c, \o on/
K o

D,D_ = —-. (35)
Cn X

D, +D_

Here ¢, = T(;—;),, is the specific heat at fixed charge density,
an

X = (_u)T is the isothermal charge compressibility, and the

conductivities o, k are both the transport coefficients as well
as the DC values. One recognizes a charge diffusion and a
heat/energy diffusion mode (the remnant of sound in absence
of a nearly conserved momentum), cross coupled through
the combination g = 7;-;’ £ — (&)7)% If we are to make the
case that a single dissipative mechanism dominates, this cross
coupling is important, as in its absence, charge and energy
diffusion are clearly independent. Figure 14 shows what the

strength of this coupling is numerically. As was shown in

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1/A

FIG. 12. (Left) Absence of exact saturation of the conductivities as a function of lattice strength at fixed temperature in the 2D GR model
is made quite clear when they are plotted as a function of 1/A instead of A. The electrical conductivity o reaches a minimum and then starts to
grow again at larger A, whereas the thermoelectric o and heat conductivity & scale as 1/A rather than saturate. (Right) The open boundary heat
conductivity k at first instances does appear to be independent of the lattice strength A for most of the computed values. However, at the largest
A it does show a downturn, asymptoting to i, which vanishes as 1/A — 0. In this large A regime, these asymptotes k — & and og—¢9 — o
indicate the increased dominance of the diffusive channel. These results are for the 2D GR lattice with T = 0.06, G = 0.1+/211.
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FIG. 13. At large lattice potential one can construct a naively defined relaxation rate I
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0.0

[ Corrected

1.4+

[ pare

—1

e = ODC /wf,. Strictly speaking this is only valid

for weak lattices. Persisting in the analysis nevertheless, the change in I' is not just given by the change in opc. The integrated optical
conductivity FSum(A) = fOAcr(a))dw shows that the spectral weight a)ﬁ also increases with A. We can account for this effect by normalizing

the Drude weight to this integrated spectral weight. The resulting corrected relaxation rate I"

-1

corrected = 0nc/FSum(A) does appear to show a

saturating behavior compared to the bare rate Fb’a]m = opc /a)lz,. Furthermore, this rate is remarkably close to the Planckian value of 277 /.
From inspection a cut-off value A/u = 0.4 is sufficient to account for all the spectral weight in any Drude or umklapped sound peaks.
Tantalizing as these results may be, a correct analysis at large lattice strengths eschews the use of a momentum relaxation rate altogether as it
is no longer the unique longest timescale. The results above are taken in the 1D GR model with 7 = 0.061, G = 0.12u.

[20], this coupling behaves as g/o ~ T “+4=9/Z if the scaling
of the homogeneous nontrivial IR fixed point remains valid
in the presence of strong translational symmetry breaking. For
the GR metal this means g ~ 7. Compared to o /x ~ T~
it is therefore small and can be treated perturbatively in the
low-temperature limit.

Solving for o, k in the limit where the terms in the cross
coupling %: ~T, i—:‘(%) ~ T and %(2—;)? ~ T are small
compared to o ~ T~!, one finds [91]

_ , .
° _plis L (@ = Dx(5)r)
X X Di(D-—Dy)
e _ |1 @-pa(®),)]
—=D_|[1- (36)
Cn e Di(D-—Dy)
05 2.00
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To lowest order in the temperature the electrical and heat con-
ductivity are therefore determined by independent diffusion
constants; see Fig. 14. The electrical conductivity is deter-
mined by Dy ~ T~! and the heat conductivity by D_~T.
There is therefore no simultaneous explanation for both con-
ductivities in terms of universal Planckian dissipation. In
holographic models with strong translational disorder there
are systems where both conductivities are set by Planckian
dissipation [18,19]. This happens when the charge susceptibil-
ity is relevant. For irrelevant or marginal charge susceptibility,
the electrical conductivity is set by a different dissipative
mechanism. The Gubser-Rocha model with strong disorder
belongs to this class [40], and so does our strong ionic lattice
model with x ~ T©.

Despite the existence of two independent dissipative mech-
anisms, the heat conductivity can be explained from Planckian
dissipation. Very strongly coupled systems are similar to

3.0

—— D*

D, =olx

257 o Dc,0=0=00=0/X

—a— Dr =kK/c,
2.0 —&
1.5
1.01
0.51
0.0 T T T T T T T
0.00 0.25 050 0.75 1.00 125 1.50 1.75 2.00

1/A

FIG. 14. (Left) The cross coupling between the heat and electrical conductivity in the strongly coherent regime is governed by the

combination g = T2 (% — (£
.

))? respectively at low temperatures. Clearly g decreases linear in temperature at low T, but it also decreases

with stronger lattice potential A. (Right) As a consequence the diffusivities at low 7" in a strong lattice become independent. Shown are the

00-0
90=0 — "y

~. D

o’

empirical combinations D, = %, Dy =

as a function of 1/A for fixed T /u = 0.05.
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weakly coupled dilute classical gases in that their macroscopic
transport can be understood from microscopic processes. For
weakly coupled dilute gases this is through the Boltzmann
equation summing microscopic scattering; for ultrastrongly
coupled systems this is through parameters of microscopic
scrambling as measured through the out-of-time-ordered
correlation function C(¢, x) = (W, x)V(O)W (¢, x)V (0))7 ~
e*=*/v8) [92]. In holographic systems this connection mani-
fests itself in that the OTOC is equivalent to computing the
hydrodynamic response function (of longitudinal sound) at
imaginary @ and k [94]. The Lyapunov exponent A and the
butterfly velocity vp can then be read off from a skipped pole
in the hydrodynamic dispersion relation [94]. One finds that
in holographic systems A saturates the Maldacena-Shenker-
Stanford unitarity bound A < 27 /T . The butterfly velocity is
more sensitive to the theory. On general grounds it scales near
(translationally invariant) quantum critical IR fixed points as
v3 ~ T272/% The fact that both macroscopic transport and the
scrambling parameters A, vg are encoded in the hydrodynamic
response means that they are not 7unrelated. In particular the
thermal diffusivity Dy = CL =F LTB withE = % for AdS, z —
oo metals in strong disorder [19,20,93]. Since the natural
units of diffusivity are vt, this is interpreted as Planckian
dissipation with T = ,IT = ﬁ The RN metal is a special
case. As explained in [93], there the butterfly velocity is
controlled by a dangerously irrelevant operator instead of uni-
versal scaling. A careful computation reveals that for the RN
strange metal vg ~ /T . Combined with Planckian dissipation
T = % = ﬁ, this explains the observed RN thermal diffusiv-
ityD_ = £ =T~ vzr.

This result is established and confirmed in the many stud-
ies cited above on connecting scrambling to hydrodynamics
for vanishing, weak momentum relaxation or “homogeneous”
momentum relaxation both in holography [95-103] and in
other strongly-correlated systems [104-107]. We postulate
that the same applies in the explicit strong lattice systems
studied here. This need not be, for computing the butterfly
velocity vp in a nontranslationally invariant system is not
straightforward (the Lyapunov exponent on the other hand is
universally A = 27 /T [113]). At the same time the scaling we
observe for strong lattice potentials is the same as that which
is observed for strong translational disorder. This is strong
evidence in favor of the argument that the same should apply
here.

Within the framework of incoherent metals there is no
universal explanation of the observed inverse-in-7 scaling
of the conductivity for the Gubser-Rocha metal. Its tanta-
lizing behavior o ~ s(T)~! or rather o ~ rl on the other
hand does suggest that some type of universaﬁity is at work.
This is confirmed by the RN results. The obvious conjec-
ture is that D_ = (vheed)2 /) where the velocity vchareed
relevant for diffusion of charged objects differs from the but-
terfly velocity for neutral objects. Some evidence that this
can be the case is presented in [41-44]. If vh@eed were in-
dependent of temperature, this would explain the observed
incoherent metal phenomenology in the large lattice GR and
RN metals in terms of a single Planckian relaxation time,
but differing scrambling velocities. We leave this for future
research.

C. Saturating behavior and Planckian dissipation

The diffusivities in the incoherent regime should be insen-
sitive to the details of translational symmetry breaking. This is
what allows them to expose universal dissipative physics. This
resulting explanation of universality in terms of microscopic
scrambling also makes physical sense: The onset of chaos is
controlled by the short-range interactions and is not expected
to be influenced significantly by a background lattice. The
data we present is obviously dependent on the lattice strength
A. For most values of A we are therefore not in the universal
regime. However, as A increases to the largest value we can
observe in our numerical data, there is a saturating behavior
in the electrical conductivity that together with its sharper
single power behavior argues strongly that we are close to
this universal incoherent limit. Such saturating behavior in
the incoherent electrical conductivity at large lattice strength
was already noted in [114]. That study focused on the regime
where the dimensionless combinations % — 0, % fixed and

large. Here we focus on the regime where both £ and %’L are
fixed and large with the latter parametrically larger.

We can use our numerical results to directly check these
assertions. Rather than observing the conductivities we do so

for the diffusivities

o K 0p=0
Dy==, Dr=—, Dg,=-—2" (37
X Cn X
We have introduced here a charge-without-heat diffusivity
Dy, , = OQX:O as this is the appropriate counterpart to the heat-

without charge open boundary thermal diffusivity Dr =k /c,.
Figure 14 shows indeed how the charge diffusivities Dy, Dy,,_,
not only both saturate, but also become approximately equal.
The latter shows indeed that we have entered the incoherent
regime. A more detailed depiction of the saturation is given in
Fig. 15.

We have already shown in the Introduction that the
crossover into the incoherent sector can also be seen in the
conductivities directly (Fig. 2). The open boundary thermal
conductivity « starts to comprise more than 80% of the full
heat conductivity. A stronger statement extrapolated from the
incoherent metal considerations is that the open boundary heat
conductivity « is rather insensitive to momentum relaxation
for any translational symmetry breaking potential irrespective
of its strength [20]. According to Fig. 12 this is indeed the case
in the perturbative small A case. Upon pushing the potential to
extremely large values we do observe that some changes in «
start to arise. This is fully in the incoherent regime, where
we can equate k = ¢,Dr with one of the physical diffusion
constants k = ¢,D_. This diffusion constant also changes
from A independent to slight decaying behavior, explaining
the change in behavior in . We conclude that at least for Dy
our computations confirm the universal nature of the diffusion
constants.

VII. DISCUSSION: IS IT RELEVANT
FOR CONDENSED MATTER PHYSICS?

We started this paper with just presenting the data as
these rolled out of the computer. As such these are highly
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FIG. 15. Electrical and thermal diffusivities as a function of T for various A. The 7' dependence shows how they become more single-power
like at larger A. The A cross section shows the saturation for large A for the charge diffusivity, but an increasing A dependence for the thermal

diffusivity. These results are in the GR lattice at G = 0.1p.

suggestive. We focus in on a holographic strange metal that
fulfills minimal conditions that appear to be imposed by
experiment: local quantum criticality (z — oo) and a Fermi-
liquid like thermodynamics in the form of a Sommerfeld
entropy (s ~ T'). We then invoke a lattice potential that may
become very strong, again a minimal requirement suggested
by experiment. For a wave vector of the potential that is not
too large (smaller than the inverse local length) we find a resis-
tivity that is to good approximation linear in temperature for
a large range of potential strength. Ramping up the potential
the slope of the linear resistivity saturates at a value that is
consistent with a Planckian (z5) current life time. Although
the dynamical range in temperature and potential strength is
limited in our computations, we can track the temperature
evolution of the optical conductivity in the regime where the
saturation is setting in. This temperature evolution is also
suggestive with regard to experiment: at low temperature we
find a simple Drude response that turns into an incoherent
mid-IR peak, and this gross change does not imprint on the
DC resistivity that stays linear. Taken together, this shines
an unusual light on three problems of principle in strange
metal transport: (a) Why is the resistivity linear in temperature
down to the lowest temperatures? (b) Why is the empirically
extracted current relaxation time so close to the Planckian
rate 7;? (¢) Why does the crossover from good metal (Drude
optical conductivity) to bad metal (the mid-IR-peak response)
not affect the DC resistivity at all?

The question remains whether the resemblances between
numerical observations from this holographic toy model and
the complicated reality of the copper oxide electron systems
are just a coincidence or whether they reveal a truly uni-
versal principle governing transport that supersedes all the
differences between them. To get a better understanding,
we focused in on both the small and large lattice potential
regimes. We showed that in the perturbative small potential
regime the transport behavior can be completely reconstructed
on basis of the thermodynamics and transport properties of
the unbroken homogeneous system. This is based on hydro-
dynamical flow behavior in the presence of a weak periodic
potential and we discovered a generic principle governing

linear response: next to the usual shear drag, a mode cou-
pling emerges with the umklapped charge diffusion mode.
As we increase temperature the coupling between two relax-
ation modes can account for a second new phenomenon: the
two poles can collide and this explains the emerging mid-IR
peak in the AC conductivity. Even though the temperature
dependence of the DC resistivity is formally set by the same
thermodynamic quantities, the underlying nontrivial IR fixed
point constrains these in such a way that the DC resistiv-
ity temperature scaling can be independent of the dynamical
change in the AC conductivity.

The large lattice potential regime on the other hand is
where the resistivity slope saturates. Our numerics indicate
that this happens in the “incoherent metal” regime where mo-
mentum conservation does not play any role. Accordingly, the
temperature dependence of the resistivity should be inversely
proportional to the charge diffusivity. This charge diffusivity
in the incoherent regime D_ ~ T ~! should not be compared
with the hydrodynamical charge diffusivity for weak or zero
momentum relaxation, which scales as D, ~ T. The thermal
diffusivity Dy ~ T on the other hand is essentially insensitive
to the strength of the lattice potential. It scales similarly for
both small and large potential, although only at large potential
can it be explained in terms of microscopic chaos anchored in
a saturated Lyapunov bound I' = A = 27T having a Planck-
ian magnitude. Although this is presently not well understood
this is consistent with the analytical findings in a homoge-
neous holographic strange metal with momentum relaxation
(Q lattice).

Although this does shed light on various aspects we do not
claim a complete understanding of our numerical results. The
above suggests that there are quite different forms of physics
at work pending the strength of the potential. Nevertheless,
we do find that the evolution of the transport quantities is of a
strikingly smooth kind. Another striking aspect is the contrast
between the GR and RN results in Fig. 1: The differences in
temperature dependencies appear to be entirely linked to the
different temperature dependence of the entropy. The above
analysis, where we can expose the different origins in the
weak and large lattice potential regime, does make clear that
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this connection with entropy is almost certainly a coincidence,
although we cannot exclude that some yet to be identified
greater universality may be at work linking the dissipative
properties in the convective and diffusive regimes together
where entropy may play a crucial role.

To use this to explain the experimental observations, the
critical holographic input is in the form of the current be-
ing controlled by “generalized” hydrodynamics (including the
incoherent metal) that in turn requires (a) an existence of hy-
drodynamics up to microscopic length scales shorter than the
lattice spacing, (b) thermodynamical behavior that is anchored
in a nontrivial IR fixed point, and (c) a saturation of the chaos
bound (with a charge-dependent butterfly velocity v§“).

In fact, the most critical question is whether experimental
strange metal transport is governed by hydrodynamics, and
not by the usual quasiparticle transport. In this regard our
finding that hydrodynamics provides a most natural explana-
tion for the temperature evolution of the DC and AC charge
response is encouraging: it is an elementary mechanism that
offers a minimal and simple explanation for this otherwise
mysterious affair [115]. However, to prove it one would like
to mobilize the mesoscopic transport devices of the kind that
have proven successful in this regard observing hydrodynam-
ical flow behavior in graphene (e.g., [116]).

The next issue is, are the hydrodynamical modes surviving
down to length scales of order of the microscopic lattice
spacing 1/G? We found this to be a special property of the
local quantum critical holographic metals, but is this also at
work in the cuprate strange metals? This is far from obvious.
Besides the umklapped charge diffusion mode, we also saw
the sharp and prominent umklapped sound peak in the optical
conductivity when the potential becomes sizable. This relates
directly to a first discrepancy between our results for the opti-
cal conductivity and the experimental results in the cuprates.
We find that for the strongest potentials that our numerics
can handle, the optical response rather abruptly switches off
at frequencies above the umklapped sound peak (Fig. 9). In
experiment no sound peak is seen, and a power-law (branch
cut) tail is found instead, extending all the way up to u =~
1eV [6,7,117]. Our holographic results do not shed any light
on this matter, although one could imagine that perhaps an
umklapped overdamped sound channel could conspire to give
rise to such a quasicritical behavior. But the issue is whether
the charge diffusion hydro-mode that is responsible for the
mid-IR peak in holography may survive up to large momenta
in the experimental systems. Different from sound, this mode
is nonconvective and perhaps less sensitive to translational
symmetry breaking. Presently we have no answer to this ques-
tion. It could be interesting to study the optical conductivity
of the cuprate metals experimentally at high temperatures.
The data in so far available are sketchy and it would be
interesting to find out what a systematical and high precision
study would reveal regarding for instance the way in which
the mid-IR peak depends on temperature. Alternatively the
sound contribution to the density-density response can been
measured directly by EELS [47,118], with the caveat that
sound is promoted to a plasmon in the presence of dynamical
electromagnetism. This may be hard, because the plasmon is
damped stronger in strange metallic states than ordinary Fermi

liquids [119-122]. The results are at this moment inconclu-
sive, and need to still be found consistent with the AC optical
conductivity.

Perhaps the most delicate issue relates to the connec-
tion with microscopic chaos. The connection with Planckian
dissipation requires a saturation of the Maldacena-Shenker-
Stanford bound on the Lyapunov exponent of the OTOC A <
2n T . It appears that a necessary condition for this to happen is
in the form of dense many-body entanglement. One may argue
that this is the secret of the experimental strange metals: these
are born from strongly interacting fermion systems at a finite
density and it may well be that the concomitant sign problem
enforces dense entanglement in the non-Fermi-liquids [15].
But this may not be a sufficient condition. The chaos bound is
known to saturate in matrix large N systems at strong coupling
with a holographic dual as well as the disorder averaged SYK
models. These systems are characterized by dense matrix
interactions.

However, the Hubbard models that are the community
standard as microscopic point of departure for the cuprate
electrons are characterized by local interactions and the asso-
ciated Hamiltonians correspond with rather sparse matrices.
As with regard to the transport properties, the present bench-
mark is in the form of finite-temperature quantum Monte
Carlo computations for the resistivity [123]. The temperatures
that can be reached are still quite high (=~1000 K) but arguably
approaching the linear-resistivity regime. However, the out-
comes are quite different from what we find.

The Hubbard models are of course in their own way toy
models, capturing the largest scales in the problem but ig-
noring a lot of other physics. Could it be that long range
interactions arising. e.g., from Coulomb interactions and/or
phonon mediated interactions are crucial to support the rapid
scrambling near the Lyapunov bound given their nonlo-
cal nature [124]? Could there be a direct relation to SYK
physics associated with the observation of spin glass physics
[125,126], with the obvious difficulty that this has only been
observed in the spin striped 214 system?

At the least, holography inspires to ask quite unusual ques-
tions to experiment: it suggests a physics that is tantalizingly
different from the usual Fermi-liquid quasiparticle physics.
Eventually, it should be possible by targeted experimentation
to reach a verdict. This is not easy: the cuprates have been
subjected to unprecedented experimental scrutiny over the last
35 years but on basis of the available information it is still
impossible to decide the issue.

An example of this “law of Murphy” that insightful results
may be the hardest to obtain experimentally is the thermal
transport. So much is clear that the thermal conductivity «
of the GR metal acquires a universal temperature dependence
that is up to very high lattice potentials independent of the
potential strength. Numerically we observe that x ~ T2. But
this in gross contrast with the thermal conductivity in a Fermi
liquid, where Dy ~ 7. where 7. ~ 1/T? is the quasiparticle
collision time such that « ~ 1/T [127]. There is a large dif-
ference of the order T3 in the temperature dependence of
the thermal conductivity between the holographic metal and
a Fermi liquid!

This should be the smoking gun but why can this not be
used? The reason is that at the high temperatures where the
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strange metal is realized (>100K) the thermal transport is
rather completely dominated by the phonons. The phonon
heat conduction short circuits the heat transport and it is vir-
tually impossible to extract the electronic contributions. The
same problem is there for a measurement a charge transport
without heat op—o. Aside from the experimental hurdle of
zeroing out heat transport cleanly, the definition of op—¢ =
o — Ta?/k implicitly refers to the electronic component of
the heat transport only.

Finally, there is one thermoelectrical transport coefficient
that is readily available experimentally: the Seebeck coeffi-
cient enumerating the thermopower. This is given by s = /0.
According to Fig. 1, o ~ T and o ~ 1/T, and we predict
s ~ T although for different reason this is the same tempera-
ture dependence generic for a Fermi liquid (the Mott formula),
this is indeed the scaling that has been observed in cuprate
strange metals, e.g., Refs. [128,129].
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APPENDIX A: ADS RN AND GR BLACK HOLES

We will be interested in perturbations of both Reissner-
Nordstrom and Gubser-Rocha black holes.

1. Reissner-Nordstrom
The RN black holes start from the Einstein-Maxwell action

L2
b F”“”:| (A1)

/d%f[ S(R—2A) —

with 2k2 = ¢ = L? = 1 and A = —3. The equations of mo-
tion are

R, — Ag =l|:F F"—lg F Fp"i|
v w = 5 Fuply g Smvtioo ’

V. F* =0. (A2)
These equations admit an electrically charged black hole solu-
tion, the AdS-Reissner-Nordstrom (RN) solution in asymptot-
ically AdS, space-time, for which the metric and gauge field

are given by [130]

1 dz?
ds* = g, dx"dx’ = — dt* + — +dx* +d
57 = guvdx"dx z2[ f@) 7 T y}
A = A, (2)dt,
(A3)
where

M223
4

f(Z)Z(l—Z)<1+Z+ZZ— >, A (z) = u(l —2).

(A4)
The radial coordinate z can be scaled such that the horizon
is located at z; = 1 and the boundary of the space-time is at
z = 0. The temperature of the black hole can be computed by
considering the surface gravity of the horizon, and is given by

12 — u?

R
_’ 4r | 16w (A3)

2. Einstein-Maxwell dilaton

For the dilatonic black holes, we depart from the Einstein-
Maxwell dilaton action [33,70]

= o [t 20

1 2
22 5 0ud)” + V(¢)}.

(A6)

The potentials Z, V are given by

6
Z($) = exp(¢/V3), V($)= 2 cosh(¢/+/3). (A7)
The cosmological constant is given by A = =V (0)/2 = —
Setting 2k> = L? = 1, the equations of motion for this system

are given by

VA 1 1
R;w (2¢) [F va 4g/4vF2i| + §8u¢av¢
1
+ Eguvv(¢)v
VulZ($)F"'] =0,
z
06 = V@) + 2 F (A8)

where we used that on-shell R = -2V (¢) + %(8¢>)2. This
setup also has an analytic solution, which is given by a metric,
gauge field, and nontrivial scalar ¢ in the form of

ds* = g,dx"dx"
1 1
= |:—h(z)dt2 + —d? + g(z)(dx2 + dyz):|,
z h(z)

A= V30Qz(1 + Qz) (1 —2/w) ,,

Zn 140z
V3

¢ = TIOg(l + 02),

(A9)
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where

h(z) = m[l + (14302 + (1 +30z(1 + 0z1)
8(2) Zn

(5)]

X - s
Zn

g(z) = (1 + 02)*2.

The parameter Q encodes the charge of the black hole.
The chemical potential is given by u = /30z,(1 + Qzx)/zn.

The near-horizon form of the potentials in equation (A6)
corresponds to a scaling behavior of z, —6 — o0, also iden-
tified by y, —8 = 1/+/3 in [132]. The temperature here is
given by

(A10)

h/(l)‘ 31+ 0z,
4 | '

All
47z, ( )

Tcr =

3. Lattice backgrounds

The translational symmetry of the black hole backgrounds
is broken by applying a periodic ionic lattice in the boundary
field theory through the modulation of the chemical potential
[28]. In the gravitational theory, this corresponds to imposing
a boundary condition on the gauge field

Ai(x,y,2=0) = (1 + A, cos(Gyx) + Ay cos(G,y)).
(A12)

A, , parametrize the strength of the lattice, while G, , are the
reciprocal lattice dimensions, respectively. Our computational
domain in (x, y) is chosen to always contain a whole number
of lattice periods, i.e., x ~x +2mn,/G,, y ~y+27n, /G,
where ny, n, € Z. Throughout this paper, we take G, = G, =
G and A, = A, = Ap/2 in a 2D lattice and A, = Ap, A, =0
for a 1D lattice.

This breaking of translational symmetry influences the so-
lutions dramatically. The additional curvature generated by
the periodic lattice means that in principle all the off-diagonal
components of the metric as well as all components of the
gauge field will become nontrivial.

For RN, the ansatz for the fields is adapted from
reference [131],

2 __ l(_ 2 2 2 sz 2)
ds® = 2 Qttf(z)r]t + Qxxnx + ny’ly + @) n: |

n; = dt,

N = dx + Qxydy + Q.. dz,
ny =dy + Qy.dz,

n, =dz,

A= (1l —2)Adt. (A13)

Our EMD ansatz looks similar and is given by

1/ 2 2 2y, Q=
ds” = z2< OQuh(@)n; + 82)(Quns + Qyyny) + h(z)nz>,

n; = dt,
Ny =dx+ Qxydy + Oy.dz,
ny = dy + Qyde,

n. =dz,
uw(l —2) 3
= —A,dt, = -1 1 . Al4
110z ¢ > og (1 + ¢Q0z) (A14)

For both types of solutions, we are interested in stationary
solutions, and therefore all functions F = {Q;;, A;, ¢} are
functions of (x, y, z), each periodic in (x, y) with a periodicity
of L, = 2mn, ,/G. . The equations of motion (A2) and (A8)
form very complicated systems of nonlinear partial differen-
tial equations in three dimensions, which in general cannot be
solved analytically. For numerical convenience, the DeTurck
trick and another gauge fixing term for the gauge field can
be used to turn this set of equations into an elliptic boundary
value problem [51,52,131]. The UV boundary conditions on
the radial coordinate come from imposing an asymptotically
AdS solution while imposing that the dilaton be a marginal
operator with no source, as was highlighted in [133]. The
horizon boundary conditions arise from requiring regularity at
the horizon, which means that in a series expansion in powers
of (z — 1) we can relate each d,F; to all functions and their
tangential derivatives at the horizon,[134] together with the
condition that Qy|,_; = Q|- [135].

The boundary value problems are solved using a self-
developed software package in C, using the PETSc li-
brary [136,137]. A Newton line-search algorithm employing
second- and third-order finite-difference schemes on rectan-
gular grids is used to find solution to the nonlinear problem.
The computational grids are either uniformly spaced or have
the radial coordinate run over the Chebyshev-Lobatto nodes
for increased accuracy near the boundaries of the problem.
Typical grid sizes for the simulations run between N, X
N, x N; =40 x 40 x 60 to 80 x 80 x 120. For convergence
checks, the vanishing of the norm of the DeTurck vector pro-
vides a good measure [52]. Due to the large number of degrees
of freedom involved [O(107) for the largest lattices] most of
the numerical work was done using the ALICE cluster at Lei-
den University and the Dutch national Cartesius and Snellius
supercomputers with the support of SURF Cooperative. The
code is publicly available [138,139].

4. DC conductivity

The DC conductivity is computed by solving a Stokes flow
problem on the black hole horizon [53-56]. Using a set of
time-independent perturbations, one can show that the bulk
linear response problem of computing (thermo)electric DC
conductivities can be reduced to a linearized version of the
Navier-Stokes equations for an auxiliary fluid that lives on a
static black hole horizon background. The equations take a
similar form for both EMD and RN black holes, and can be
written as [55]

N (=2V/ V) + 30V, 0V, ") — dx V0 — P
= pOE A+ V) + T “”( - v )
1Y ( + /w)+ s C An T ’

3J' = 0.

30" =0, (A15)

The superscript (0) indicates that these are background quan-
tities evaluated at the horizon. These are the values we
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extract from the numerical solutions to the background lat-
tices described above [140]. The Stokes equations (A15) is
then a set of four equations for the four unknown func-
tions vy, vy, w, p. The currents Q, J and transport coefficients
p©@ nO® O O can be written in terms of these four func-
tions, the background horizon quantities, and the induced
metric on the horizon hg.)) [55]. E;, & source the electric field
and thermal gradient, and are taken to be constant over the unit
cell. The thermoelectric DC conductivities are then extracted

by evaluating
J (o aT E
o)  \ar kT)\Z)

where J, 0 are here the spatial averages of the solutions
when evaluating equation (A15). These averaged values do
not renormalize when lifted to the boundary to be interpreted
in the field theory. As a result, the thermoelectric conductivity
matrix defined in Eq. (A16) is that of the field theory.

In previous studies, e.g., [56], these equations have been
used to study simpler systems that do not fully break spa-
tial translational symmetry or break it in a homogeneous
way. That simplification allows for a largely analytic treat-
ment of these equations. The systems we are interested in do
not permit us such luxuries and therefore we have to solve
this coupled linear PDE in two periodic dimensions numer-
ically. For this, we developed a package in Python, which
can solve coupled (non)linear partial differential equations for
backgrounds as well as perturbations. This package is rather
flexible, in that it can make use of both (pseudo)spectral and
arbitrary-order finite-difference methods to solve the equa-
tions. This package will be made available publicly at a later
date.

(A16)

APPENDIX B: SEMILOCAL CRITICALITY
AND AN INDUCED IR LENGTH SCALE

Semilocal quantum liquids can be defined by a “self-
energy” that is either a power law in frequency ¥ ~ w?'®)
or exponential ¥ ~ exp(—kz(:,”) with z the dynamical crit-
ical exponent. In the limit z — oo the latter reduces to the
former [49]. Both w and k are dimensionless frequencies and
momenta in units of the chemical potential . As emphasized
in [35] the spatial structure of such semilocal quantum liquids
is that the spread of local perturbations decays very rapidly
and is bounded by an emergent length scale & oc .

Although the emergence of this semilocal physics is poorly
understood from a conventional point of view, its emergence
bound is surprisingly clear from a dual holographic perspec-
tive. It is a direct consequence of the existence of a maximal
distance, xmax ~ 1/§, that two light rays emitted from near
the AdS black hole horizon can spread [35]. It implies that a
local perturbation in the IR can only originate from/influence
a finite-spatial region (in the UV variables).

This Appendix shows how this maximal distance arises.
A light ray parametrized by X*(r) follows a null
geodesic, i.e.,

g X"X" = 0. (B1)

Consider a generic z = 0o metric

_2‘1 R2 )
ds* = (%) ' I:—/Lszrzdtz + —22er + Mszdx,-dx’i|.
r
(B2)

The parameter n = —g is the remnant of the hyperscaling

violation exponent ¢ in the limit z — 0o and R, = R/+/6 is
the emergent AdS, radius. For a geodesic emanating from
the horizon we can use the radial r coordinate as the affine
parameter t, and the physical gauge X" = r. Then solving
the geodesic equation D, X" = 0 subject to the null length
constraint, one finds for the motion in the transverse directions

U;R rv
Xi+(r)= xi(o) + 2 gan! (
MURv

—_— ], B3
) o

with v2 = )", v7. Two light rays starting from the same point

xl@) one pointing to the left and one to the right therefore arrive

at the boundary (r = 00) a distance 2% £ _L_ apart.
v uR tan(i)

We are now interested in the intersection of two light-cones
x; + and x; _, which can be found from

0)
v . Rux:
Xi4 (r03x? = 0) = x; _ (ro;x¥) = ro = — sin ('u d >
v

21},‘R2
(B4)

After combining (B3) with (B4), we find that the maximal
allowed distance is

R R
ximax) — _27_[ cos 6, x;max) — R_zn sinf, (BS)

where we have chosen the parametrization for the initial
velocity components along (xj, x;) as vy = v cosf, vy =
v sin @, where 0 € [0, /2] is the initial angle, measured with
respect to the x; axis.

The relative initial distance between the two geodesics As

reads
(max)o (max)o R,
As =4/x; + X, = —m, (B6)
Rp

which is universal and does not depend on the initial condi-
tions. It coincides with the result presented in [35].

In Fig. 16, we plot the causal structure for two light rays
separated by a certain initial distance. For an initial separation
larger than the critical distance, Eq. (BS), both light rays are
not causally connected anymore. To illustrate this, we have
chosen as a dialing parameter the external time 7. After some
computations, we get

1) = —

Rov Rv
20 cot [ E20 (o — x|, (B7)
HRv, ViR,

which is plotted in the Fig. 16. From here, we highlight that
any geodesic that starts at an initial relative distance As <
7, will be causally connected, whereas if As > 7, it will be
causally disconnected.
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FIG. 16. (Left) Causal structure for two light rays separated at a relative distance xo = w. The x axis corresponds to the x, (¢), while the y
axis to the r(¢) coordinate. The external time has been taken as the dialing parameter, along the z axis in the figure. For the present purposes,
we have considered no motion along the x, direction, and we have also set R, = R = u = 1. (Right) Causal structures for three light-cones
as functions of (x(¢), x2(¢)). The z axis corresponds to time, for which we have set # = 1 as the time that the geodesics reach the boundary.
Those geodesics that start at any point within the disk of radius 7 will be causally connected, while disconnected if otherwise.

Based on Eq. (B6) and on the fact that the two-point corre-
lation function G ~ 1/&, ~ m, we conclude that the maximal
correlation distance in Planckian dissipation is related to the
existence of this maximal causality distance in geodesic.

APPENDIX C: FOUR-POLE FITTING FORMULA

The full four-pole fitting formula that can fit the four poles
nearest to the origin in the complex frequency plane is given
by the following nine-parameter formula

Q—iw

(Q —iw)T — iw) + v}
n ( Zs1 + iZXjZ

o — (w1 + iws2)

ocw)=o090+7Z

+ time-reversed) . (C1)

The weights and positions of the sound poles is constrained
by time reversal symmetry, which dictates that

o*(—w*) = o(w). (C2)

APPENDIX D: MEMORY MATRIX FORMALISM

The correlation functions of the homogeneous GR and RN
fluids are well described by the standard hydrodynamics of
relativistic conformal fluids with U(1) charge (see [71]). To
compute Eq. (29), we simply need the correlator G,;;; which

is given by
O’Qk2 k2w12,

Gy(w, k) = - .
7@, k) D,k —iw  @? 4+ iD k*w — cZk?

(D1)

This form quite readily shows how this dynamical response
has both a convective part (sound) and a dissipative part. At
low frequencies, this correlator can be expanded as

Cz)z (of9) .
Gjrjr((l), k) = —4+ —+4iw
DP

P 990 2D 2

D, k2
(D2)

The leading term is entirely real and will not contribute to the
imaginary part. Therefore, we can eventually obtain (29) as

2 + p)Dpay, 2 (E + p)?

G*=T,+T,,

Cinom.rel. =

(D3)
where we recognize the quantities I'y, I';) introduced in (16).
APPENDIX E: SCALING OF HYDRODYNAMICAL
RELAXATION RATES

Consider an equation of state P(T, )/’ =ag+
a(T/w)"™!' where fj = (d —6)/z is the generic effective

125145-27



F. BALM et al.

PHYSICAL REVIEW B 108, 125145 (2023)

dimension in the presence of a dynamical critical exponent
z and hyperscaling violation exponent 6. This equation of
state will be a valid approximation for the low-temperature
regime of the holographic Einstein-Maxwell-dilaton systems,
such as RN and GR. Then, the entropy and charge density
one obtains from this pressure are s/u> = (i) + 1)a; (T /)"
and n/u’? =3ap — () + 2)a (T /p)"™'. We will now look
at the momentum relaxation rate (29) for a relativistic
charged fluid such that the viscosity saturates the minimal
viscosity bound n = s/(4mr) and we will take the EMD
T-scaling og = 6o(T /)™ [141]. From the integrated
first law € + P = sT + un, we find € = 2P for this choice
such that we still have a conformal system and therefore
¢ =0.

The relaxation rate has two contributions, one G dependent
and one G independent, reminiscent of our result (16), which
we will by analogy name I, and I'y. In the general noncon-
formal case we have now introduced, these therefore take the
form

I/ =A2<G/u>2%:”(£>n
(1 — 927/ pyit)
(1+ 2@/’
L@+ 1)? <z>" (0 + G2 /™)
6ao69 iz (1+ Z_:)(T/M)ﬁ+l)3

La/n=

(ED)
The leading order of I';, can therefore be obtained as
ra(h+ 1D (T’ 7 s
L/~ AG/ P ————( =) ~A%G/n)?= =
6ay uw 2n
(E2)

This shear drag contribution is therefore entirely determined
by the entropy at low temperature. The other contribution,
Iy, is slightly less straightforward. When # > 0, a similar

J

behavior arises

O DR TV R (a7
6ap6¢ " 2n/pu2\ oT) ¢ \u)

(E3)

Therefore in this general case, which encompasses the GR
case f) = 1, I'y and I';) have the same temperature dependence
although T’y is more sensible to the susceptibilities like the
specific heat T + and the hydrodynamic transport coefficient
op. A counterexample of this general rule, however, arises
when 7) = 0, as it is for the RN black hole for instance, where
the leading order of I'; vanishes and instead one must expand

to second order to have
at T\
iR (-) . (E4)
3agdp \

Finally, we can explain how this (7'/u)? factor in (E3)
arises naturally from the «, factor introduced in (9). To do
so, consider the quantity D,y = A? W
here our assumptions about the equation of state and only
assume some Sommerfeld entropy s = y()T and n = ny(jt)
at low temperature. The scaling of D,T'; is therefore entirely
determined by that of o', which can be determined using

Ca/p St

We will relax

n’

R\ _ (5 _ or
(57),= (55), ~ror

(M) (i)

9z [ on L
(a_‘) = < ) +M<8T> ~ (v(0) + oy ()T,
9z (RN
(a_) < > +u<£>f ang(p) + y (@I,

(E5)

Then, we can plug these relations into Egs. (9) and obtain

Oy ™~

Therefore, given Sommerfeld entropy, we naturally get that
D,y ~ T?. Provided then that D, ~ T, which is the case for
the GR holographic metal, you recover the scaling I'y ~ T'.

T2(y () 4 2y’ () + ang(i) i (E6)
Tng()(y () + oy’ (RNT — y" ()T (g () + y' (@) T?)] 2Ty
[
following evolution matrix:
(1w
Mo = (_yz Fz)' (F2)

APPENDIX F: LORENTZ OSCILLATOR DECOUPLING

Consider a system of modes coupled to one another in the
following way:

oJ1 + ' Ji + o = Ey,

(F1)
0o + oy — yoJi = Ey,

where I'j , are relaxation rates for the currents J; », E| , are
explicit sourcing and y;, couple the two modes to one an-
other. In matrix notation 9,J, + M,J;, = E,, this leads to the

We can then solve this dynamic system and obtain, in fre-
quency space,

Ty — iw)E,
Ji(w) = - - ,
T —iw)T —iw) + Y12
k)
J = , F3
2A0) = o T — i) £ 717 )

where we have set E; = (0 as we are only interested in ex-
ternally sourcing one of the currents. Critically, we will be
interested in a total current J, which overlaps with both J; and
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J, through
J =ooE, + aJi + by, (F4)
where oy is some explicit contribution by the external sourc-

ing. Therefore, the conductivity associated to this current is

a(l'y — iw) + by,

o =J/E =0y + : . - (B

T o) (T — i) + iy

This form is very reminiscent of (18) with
b b
Zg=a, Q=Ir+ -y, TI'=T|—-p,
a a
) b b

W =Nr2= N r—rI,— et (F6)

Let us now compare to the matrix M (11) describing the
dynamical hydrodynamic system in the small lattice expan-
sion. From this system of four coupled fields, it is possible
to decouple two by taking the large speed of sound limit
¢y — 00 [142], which formally just encodes the assumption
that the sound poles live far from the two poles close to
origin. While this is a relatively simple limit to illustrate the
qualitative behavior of the isolated two pole sector, we must
emphasize that this limit will not reproduce quantitatively the
mapping (19) exactly, and that is because there are higher-
order effects of the coupling to the sound sector, which should

be more carefully disentangled. It will be, however, a helpful
illustration of the dynamics of the low-frequency sector. The
two currents remaining J; » are then the momentum current
density 87(?) and the parity-odd charge density n®.

The decoupled system then takes the form

Y ( 0 AGJu /2) 0
p— i1 p— 2 pG
AL D,G? — G

G Al

AGR/2
D,G* |’

(F7)

while the total current of interest is J = 0gE, + wdn(” —

%w%DpGSn(S). Thus, we deduce from this that Z.; = w]%

while the effective momentum relaxation rates and effective
couplings are

Q =D,G*[1 —D,Iy],

I'=(D,G)Ty,

wy = D,G’T4[1 = (D,G)* + D,G’T'4]. (F8)
As expected, there is a discrepancy between Eqgs. (19) and
Egs. (F8), which just highlights that the limit ¢, — oo should
be refined. However, this correctly predicts the leading order

in A of every coefficient and gives a very close, qualitative
estimate of the corrections at the next order.
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