
PHYSICAL REVIEW B 108, 125144 (2023)

Improved scaling of the entanglement entropy of quantum antiferromagnetic Heisenberg systems
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In this paper, we derive corrections to the subleading logarithmic term of the entanglement entropy in
systems with spontaneous broken continuous symmetry. Using quantum Monte Carlo simulations, we show
that the improved scaling formula leads to much better estimations of the number of Goldstone modes in the
two-dimensional square lattice spin-1/2 Heisenberg model and bilayer spin-1/2 Heisenberg model in systems of
rather small sizes, compared with previous results. In addition, the universal geometry-dependent finite constant
in the entanglement entropy scaling is also obtained in good agreement with the theoretical value.
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I. INTRODUCTION

Entanglement entropy is a valuable probe of nonlocal cor-
relations for quantum systems. Thanks to conformal field
theories, the scaling of the entanglement entropy of one-
dimensional critical systems is known [1]. Our knowledge
of entanglement entropy in two and higher dimensions is
far less complete. However, one expects that the leading
contribution to the entanglement entropy scales as the area
of the subsystem boundary for both critical and noncriti-
cal systems. For critical systems, a subleading universal but
geometry-dependent constant contributes. In addition, there
are extra subleading universal logarithmic contributions in
two dimensions if the boundary has sharp corners and in three
dimensions if the boundary is curved.

Inspired by the quantum Monte Carlo (QMC) simulations
of Kallin et al. [2] and spin-wave calculations of Song et al.
[3], Metlitski and Grover proposed the following scaling
behavior of entanglement entropy S of systems with sponta-
neously broken continuous symmetry from O(N) to O(N − 1)
[4]:

S = aLd−1 + b ln

(
ρs

c
Ld−1

)
+ γord, (1)

where, in addition to the leading area-law contribution,
which scales as the area of the subsystem boundary with
a nonuniversal proportional constant a and a universal
geometry-dependent finite constant γord, a subleading loga-
rithmic correction is present with b = NG/2, even when the
subsystem boundary contains no corners or is not curved.
Here, NG is the number of Goldstone modes, d is the spatial
dimension, c is the spin-wave velocity, and ρs is the spin
stiffness. This formula also applies to the Rényi entanglement
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entropy Sn with a and γord depending on the replica index n,
but b remaining unchanged.

For the two-dimensional (2D) model with U(1) continuous
symmetry, Kulchytskyy et al. [5] confirmed the presence
of the logarithmic term and verified the prefactor NG = 1
as expected through QMC calculations of the second Rényi
entropy on the 2D spin-1/2 XY model. By including a 1/L
correction to the scaling of S2(L) and assuming the theoretical
value NG = 1, they also extracted γord, which is found in
good agreement with the analytical prediction of Metlitski
and Grover [4] as well as the large-S prediction given by
Laflorencie et al. [6]. However, for 2D antiferromagnetic
(AFM) Heisenberg models with SU(2) continuous symmetry,
although the logarithmic term is found by using QMC
simulations, the estimated prefactor NG/2 is in the range
0.5 to 0.8, which is much smaller than the predicted value
NG/2 = 1, with the difference much larger than the statistical
errors [2,7–9].

The deviation of the prefactor from the expected NG/2 = 1
was explained by the assumption that asymptotic behavior
will be accessible only for subsystems that extend well beyond
the correlation length scale [7]. However, with the help of the
recently developed algorithm based on nonequilibrium work
[10,11], D’Emidio [11] was able to calculate the second Rényi
entanglement entropy for unprecedented system sizes up to
192 × 96 for the square lattice spin-1/2 Heisenberg model.
When fitting to the scaling form Eq. (1), the deviation to the
expected value is still much larger than the error bars. Discard-
ing small system sizes up to 40, the deviation becomes smaller
than two error bars, with the error bar of NG/2 in the order of
0.1. He then concluded that the convergence to the expected
NG = 2 is very slow. Only when magnetic order is enhanced
by a ferromagnetic next-nearest-neighbor interaction, can the
number of Goldstone modes be accurately extracted by fitting
the scaling form Eq. (1) to entanglement entropy data with
the accuracy 1% [11]. Indeed, using a similar nonequilibrium
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work based algorithm, Zhao et al. [12] reached sizes up to
160 × 80 and obtained NG/2 = 1.00(9).

The logarithmic term in the scaling behavior Eq. (1) orig-
inates from the interplay of Goldstone modes and restoration
of symmetry in a finite volume [4]. The simple model repro-
ducing the logarithmic term contains two coupled quantum
rotors, where the excited energies of the rotors are assumed to
be determined by the transverse susceptibility in the thermo-
dynamic limit, and the coupling is taken as the spin stiffness in
the thermodynamic limit multiplied by Ld−2 with d the dimen-
sionality. In this paper, we will show that, to better describe
the scaling behavior of the entanglement entropy, it is crucial
to use the finite-size spin stiffness instead of the spin stiffness
in the thermodynamic limit to describe the coupling of the
two rotors and go beyond the leading order excitation energies
of the rotors, which is used by Metlitski and Grover [4]. By
adopting the chiral perturbation theory [13] of SU(2) anti-
ferromagnets, we include a correction term to the excitation
energies of the models. This way, we will derive a modified
scaling formula of the entanglement entropy compared to the
scaling form Eq. (1). We then revisit the square lattice AFM
Heisenberg model and the bilayer AFM Heisenberg model at
several ratios of the exchange couplings. With the help of our
improved finite-size scaling formula of Sn, we show that the
coefficient of the subleading logarithmic term converges to the
expected NG/2 within the accuracy 1% for the square lattice
Heisenberg model using modest system sizes up to 40 × 40,
and within the accuracy of 5% for several values of coupling
ratios of the bilayer Heisenberg model using system sizes up
to 24 × 24. Our modified scaling formula also explains why
the quantum XY model follows the original formula Eq. (1)
confirmed by Kulchytskyy et al. [5].

The paper is organized as follows: In Sec. II, we derive the
modified scaling formula of the entanglement entropy with
corrections due to finite-size effects of spin stiffness and exci-
tation energies beyond leading order. Section III A describes
the numerical method and physical quantities used in this pa-
per. In Secs. III B and III C, we present numerical results of the
2D AFM Heisenberg model and the bilayer AFM Heisenberg
model. We analyze the finite-size results with our improved
scaling formula and extract NG with unprecedented accuracy
using only modest system sizes. We conclude in Sec. IV.

II. MODIFICATION OF THE LOGARITHMIC TERM

The 2D Heisenberg antiferromagnet is described by
the nonlinear sigma model, with its low-energy properties in
the thermodynamic limit determined by the spin stiffness ρs,
the spin-wave velocity c, and the staggered magnetization ms.
This description also applies to the spin-1/2 AFM Heisenberg
model on the square-lattice bilayer in its Néel phase. The
nonlinear sigma model can be generalized to N-component
vectors with O(N) symmetry and the quantum AFM Heisen-
berg model corresponds to the N = 3 case.

The ground state of the quantum O(N) model on d �
2 dimensions is known to spontaneously break the O(N)
symmetry to an O(N − 1) symmetry, which is infinitely
degenerate, labeled by the Néel order parameter, in the ther-
modynamic limit. However, for a system with a finite size, the
system has a unique ground state and a tower of excited states

described by quantum rotors, with excitation energies

ES (L) − E0(L) = S(S + N − 2)

2χ⊥Ld
, (2)

where S is the angular momentum number of the total spin
S of the system, χ⊥ = ρs/c2 is the transverse susceptibility
in the thermodynamic limit, which is related to the uniform
susceptibility χu in the thermodynamic limit at zero temper-
ature through χ⊥ = 3

2χu for the N = 3 case. Here, χ⊥Ld can
be considered as the effective moment of inertia of a rotor. We
can define I = χ⊥ as the effective inertia moment density.

The chiral perturbation theory [13] predicts scaling forms
of size dependence of various quantities beyond leading order.
According to the chiral perturbation theory, the excitation
energies Eq. (2) has a finite-size correction in d = 2,

ES (L) − E0(L) = S(S + N − 2)

2χ⊥L2

×
[

1 − (N − 2)

cχ⊥L

3.900265

4π
+ O

(
1

L2

)]
,

(3)

with N = 3 for Heisenberg antiferromagnets. Essentially, this
is to replace the inertial moment density I = χ⊥ to a finite-size
dependent inertia moment density

I (L) = χ⊥

[
1 + (N − 2)

cχ⊥L

3.900265

4π
+ O

(
1

L2

)]
. (4)

Equation (4) is the special case for Lx = Ly = L, with Lx

and Ly the linear size in the x and y directions, respectively.
For more general cases, the inertial moment density is written
as

I (Lx, Ly) = χ⊥

[
1 + (N − 2)

cχ⊥
√

V

3.900265

4π
+ O

(
1

L2

)]
, (5)

with the volume of the system V = LxLy.
To capture the subleading logarithmic term in the scaling

form Eq. (1), following Metlitski and Grover [4], we con-
sider the simple quantum mechanical model of two coupled
quantum O(N) rotors nA and nB, representing the average
order parameter in subsystem A and its complement B. The
Hamiltonian of the model reads

H = S2
A

2I (L)VA
+ S2

B

2I (L)VB
− J (L)nA · nB, (6)

with SA,B the angular momentum of each rotor. VA and VB

denote the volumes of each subsystem. The total volume of
the system is V = Ld = VA + VB, with d the dimensionality
of the system. We set J (L) = ρs(L)Ld−2 to reflect the order-
parameter stiffness of the system with ρs(L) the spin stiffness
in a finite system. Comparing with the model of Metlitski
and Grover [4], we have used finite-size dependent inertia
moment density I (L) replacing χ⊥ and finite-size dependent
J (L) replacing J = ρsLd−2. Note ρs is the spin stiffness in the
thermodynamic limit, but ρs(L) is the finite-size value of the
spin stiffness.

The model can be solved in the same way presented in
Ref. [4]: By introducing the average and relative coordinates
n and δn, the system is decoupled into a quantum rotor with
total angular momentum S = SA + SB and total moment of
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inertial I (L)V and an N − 1 dimensional harmonic oscillator
with the frequency

ω =
√

ρs(L)Ld−2

I (L)Vr
∼

√
ρs(L)

I (L)

1

L
, (7)

where Vr = VAVB/(VA + VB) is the reduced volume. Then, the
logarithmic diverging Rényi entanglement entropy is obtained
straightforwardly. As a result of including finite-size depen-
dent parameters I (L) and ρs(L), Eq. (1) becomes

Sn(L) = aLd−1 + NG

2
ln

(
I (L)1/2ρs(L)1/2Ld−1

) + γord, (8)

with a modified subleading logarithmic term, which reduces
to the logarithmic term in Eq. (1) when replacing ρs(L) to ρs

and I (L) to ρs/c2.
For the 2D quantum XY model, since N = 2, I (L) = χ⊥

up to the leading order 1/L according to Eq. (4). Expanding
ρs(L) to ρs + b/L, we can write Eq. (8) as

Sn(L) = aLd−1 + NG

2
ln

(
ρs

c
Ld−1

)
+ NG

4

b

ρsL
+ γord. (9)

This explains why Kulchytskyy et al. confirmed the presence
of the logarithmic term with the prefactor NG = 1 and ex-
tracted γord in good agreement with analytical prediction [4]
by including a 1/L correction to the scaling of S2(L) Eq. (1).

The bilayer AFM Heisenberg model can also be described
by the nonlinear sigma model if the spin stiffness and trans-
verse susceptibility are defined in a unit of the unit cell of
the model. Then, the finite-size dependent effective inertia
moment density Eq. (4) also applies to the bilayer Heisen-
berg model. Therefore, the modified scaling formula of S2(L),
Eq. (8), should hold.

III. NUMERICAL RESULTS

A. Qunantum Monte Carlo methods

The Rényi entanglement entropy is defined as

Sn(A) = 1

1 − n
ln Tr

[
ρn

A

]
, (10)

where n is the Rényi index ( n = 2 in our work) and ρA =
TrĀρ is the reduced density matrix of a subsystem A with
Ā its complement. ρ = e−βH/Z is the density operator with
Z = Tre−βH the partition function. β → ∞ is the inverse
temperature to probe only the properties of the ground states.

With the help of the replica trick [1], the Rényi entan-
glement entropy Sn(A) can be expressed as the ratio of free
energies, which can be calculated much more efficiently by
using the algorithm developed recently [10,11] with the help
of the nonequilibrium work relations [14–16]. In this paper,
we make use of the version for the projector quantum Monte
Carlo method (PQMC) [17,18] to extract the Rényi entangle-
ment entropy S2 [11].

We set the projection power m = 20Ns, which is large
enough to probe for the ground-state properties as shown in
the Supplemental Material of Ref. [11] for the Heisenberg
model and Appendix A of the current paper for the bilayer
Heisenberg model at various g. Here, Ns denotes the total
number of spins of the quantum systems. In particular, for
the square lattice Heisenberg model, Ns = Lx × Ly, while in

the case of the bilayer Heisenberg model, Ns = 2Lx × Ly,
with Lx = Ly = L. In our simulations, we consider bipartite
the toroidal lattice into two equally sized cylindrical strips of
size NA = L/2 × L and study the Rényi entanglement entropy
of one subregion. In the simulations of the square lattice
Heisenberg model, we compute 1000 nonequilibrium work
realizations for system sizes ranging from L = 8 to 36 and
2000 nonequilibrium work realizations for L = 40. Each work
realization consists of NA × 10 000 nonequilibrium time steps.
For the bilayer Heisenberg model, since NA includes twice as
spins as that of in the single layer model, we choose each
nonequilibrium work realization consisting of NA × 20 000
nonequilibrium time steps.

To calculate the spin stiffness and the susceptibilities, we
apply the stochastic series expansion (SSE) QMC method
with the loop update algorithm [19,20].

The spin stiffness is defined as the free energy increasing
per unit cell due to the presence of a twist field,

ρs = 3

2N

∂2F (φ)

∂φ2
, (11)

where F (φ) is the free energy in the presence of a twist
field �. Here N = Lx × Ly is the number of unit cells. In
Monte Carlo simulations, the spin stiffness ρs(L) is calcu-
lated through the fluctuations of the winding number of spin
transporting

ρs = 3

4βN

〈
L2

xW 2
x + L2

yW 2
y

〉
, (12)

where the winding numbers are defined as

Wα = (N+
α − N−

α )/Lα. (13)

Here, N+
α (N−

α ) is the total number of operators transporting
spin in the positive (negative) α = x, y direction. Note that
N = Ns/2 for the bilayer Heisenberg model.

To calculate the uniform susceptibility χu, we consider the
wave-vector q-dependent susceptibility χ (q) [21], which is
the Fourier transform of the static spin-spin susceptibility in
real space χ (kσ , lσ ′ ),

χ (q) = 1

N

∑
k,l

∑
σ,σ ′

eiq·(rk−rl )χ (kσ , lσ ′ ), (14)

with

χ (kσ , lσ ′ ) =
∫ β

0
dτ

〈
Sz

kσ
(τ )Sz

lσ ′ (0)
〉
, (15)

which is obtained using standard SSE simulations [19]. Here,
kσ (lσ ′ ) denotes the spin in σ (σ ′)th layer in the unit cell k
(l). For the single-layer Heisenberg model, σ, σ ′ = 1, while
for the bilayer Heisenberg model, σ, σ ′ = 1, 2. N is the total
number of unit cells in the system.

The value of χ (q) at the longest wavelength, q =
(2π/L, 0), is taken as the definition of the finite-size uni-
form susceptibility χu(L) = χ (2π/L, 0), which converges to
χu when L → ∞ [21]. Therefore, to obtain the transverse
susceptibility χ⊥ of a system with broken symmetry in the
thermodynamic limit, we define the finite-size transverse sus-
ceptibility as

χ⊥(L) = 3
2χ (2π/L, 0), (16)

which converges to χ⊥ at the limit L → ∞.
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FIG. 1. χ⊥(L) and ρs(L) of the AFM Heisenberg model on
square lattice. (a) χ⊥(L) versus 1/L. The solid line is the fit according
to Eq. (18) up to the second order of 1/L. (b) ρs(L) versus 1/L. The
solid line is the fit according to Eq. (19) up to the second order of
1/L. Error bars are much smaller than the symbols. The estimated
χ⊥ and ρs are also shown.

Simulations of L × L systems for the Heisenberg model
and 2 × L × L systems for the bilayer Heisenberg model
were carried out at inverse temperature β = 4L and β = 6L,
respectively. The βs we have chosen here ensure the conver-
gence of the spin stiffness and uniform susceptibility to their
ground state values within statistical errors; see Appendix B
for details.

B. The square lattice spin-1/2 AFM Heisenberg model

In this section, we consider the spin-1/2 AFM Heisenberg
model on the square lattice with Hamiltonian

H = J
∑
〈i, j〉

Si · S j, (17)

where 〈i, j〉 are nearest neighbors on a periodic square lattice
with L2 sites and J > 0 is the exchange interaction.

Figure 1 shows QMC results of the transverse susceptibil-
ity χ⊥(L) and spin stiffness ρs(L) versus system size L.

FIG. 2. The second Rényi entropy S2(L) versus L for the square
lattice Heisenberg model with error bars much smaller than the size
of the symbol. The solid line is a fit according to Eq. (20).

We analyze χ⊥(L) to obtain the thermodynamic limit value
χ⊥, using the following expansion [19]:

χ⊥(L) = χ⊥

(
1 + b1

L
+ b2

L2
+ · · ·

)
, (18)

where bi are constants, and χ⊥ is the susceptibility at the
thermodynamic limit L → ∞.

In this paper, data analysis is based on the nonlinear least-
squares fitting with the Levenberg-Marquardt method [22].
The error bars on the fit parameters are obtained, as well as
the value of the fit parameters. χ2

r ≡ χ2/NDOF with NDOF the
number of degrees of freedom shows the goodness of the fit.
For NDOF � 1, χ2

r ≈ 1 is expected for a statistically sound fit.
The P-value of the fit, which describes the distribution of χ2,
is useful when NDOF is not large: it should take a value in the
range of 0.05 to 0.95 for a statistically sound fit.

Fitting our QMC data χ⊥(L) according to Eq. (18) up to the
second order of 1/L, we obtain χ⊥ = 0.06545(3) with b1 =
1.74(2), b2 = 6.1(1) in a statistically sound fit with χ2

r = 1.38
and P-value 0.18.

Now we try to find the finite-size behavior of ρs(L), which
can be written as follows [19,20]:

ρs(L) = ρs

(
1 + a1

L
+ a2

L2
+ · · ·

)
, (19)

where ρs is the spin stiffness at the thermodynamic limit L →
∞. Fitting Eq. (19) up to the second order of 1/L to our QMC
data ρs(L), we find ρs = 0.18092(3) in good agreement with
or close to results in the literature [19,23,24] and the values of
a1 = 1.375(7) and a2 = 3.01(4) with χ2

r = 0.90 and P-value
0.54.

With estimated χ⊥ and ρs, we obtain c = √
ρs/χ⊥ =

1.66260(7), which is in good agreement with results in the
literature [19,23,24]. The finite-size dependent effective iner-
tia moment density I (L) is then obtained to the order O(1/L)
using Eq. (4).

Now, we are in the position to test the modified scaling
Eq. (8).
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TABLE I. Coefficients of the area law, the logarithmic term, and
the constant.

Lmin a NG/2 γord χ 2
r /P-value

8 0.1860(2) 0.991(6) 0.78(3) 1.17/0.30
12 0.1861(3) 0.99(1) 0.78(3) 1.13/0.33
16 0.1864(6) 0.98(2) 0.79(5) 1.07/0.38
20 0.1855(9) 1.01(3) 0.77(8) 1.10/0.36

Figure 2 shows S2(L) versus L, obtained using the PQMC
version of the nonequilibrium work algorithm [11]. Substitut-
ing the fitted function Eq. (19) and I (L) with fitted χ⊥ and c
into Eq. (8), we obtain the finite-size behavior of S2(L) for the
2D AFM Heisenberg model:

Sn(L) = aLd−1 + NG

2
ln

((
χ⊥

[
1 + 3.900265

4πcχ⊥L

])1/2

×
(

ρs

(
1 + a1

L
+ a2

L2

))1/2

Ld−1

)
+ γord, (20)

with χ⊥, c, ρs, a1, a2 found from simulation results of χ⊥(L)
and ρs(L).

Fitting our QMC results of S2(L) according to this formula
with a, NG, γord unknown, we find a statistically sound fit
for all S2(L). However, as listed in Table I, the difference
between the obtained NG/2 and the theoretical value is about
two statistical errors, even though the fit is statistically sound
with χ2

r = 1.17 and P-value 0.30. We can then conclude that
the fit has systematical errors due to ignoring higher-order
corrections in Eq. (8). We then increase the smallest size Lmin

to 12 in the analysis and again obtain a statistically sound
fit, with NG/2 differing from 1 within one statistical error,
as listed in Table I. Apparently, the systematical error has
been removed by excluding data of the smallest size L = 8.
Upon excluding even more points, the error bars on the fit
parameters increase rapidly; still, the fit remains statistically
sound and the extracted NG is in good agreement with the
expected values statistically. We take NG/2 = 0.99(1) and
γord = 0.78(3) as our final estimates. The estimated γord is in
good agreement with the theoretical value [4].

Alternatively, we can fit S2(L) according to the following
equation:

Sn(L) = aLd−1 + NG

2
ln

((
χ⊥

[
1 + 3.900265

4πcχ⊥L

])1/2

× (ρs(L))1/2Ld−1

)
+ γord, (21)

with χ⊥, c known and ρs(L) reading from numerical data. The
parameters to be fitted are a, NG, and γord. This leads to the
same result (within one error bar) obtained above.

Conversely, if we use the scaling form Eq. (1), in which the
finite-size effect of spin stiffness and inertia moment density
are ignored, to fit the data, we would obtain NG/2 = 0.69(2),
which is a coincidence with the value obtained in literature
[7–9,11].

FIG. 3. The second Rényi entropy S2(L) of the bilayer Heisen-
berg model versus L at g = 0, 0.25, 1, 2. Error bars are much smaller
than the sizes of symbols. The solid lines are fitting curves discussed
in the text.

C. Bilayer Heisenberg model

In this section, we consider the spin-1/2 AFM Heisen-
berg model on the bilayer square-lattice with Hamiltonian
described by the following equation:

H = J
∑

〈i, j〉,σ
Siσ · S jσ + J⊥

∑
i

Si1 · Si2 , (22)

where i denotes the ith unit cell containing two spin-1/2
degrees of freedom and σ = 1, 2 represents layers. 〈i, j〉 are
nearest-neighboring unit cells. J and J⊥ represent the in-
tralayer and the interlayer exchange interactions, respectively.
We denote the ratio of the exchange interactions as g = J⊥/J .

This is a basic quantum spin model that exhibits a well-
characterized quantum phase transition in the (2 + 1)-D O(3)
universality class at the critical value gc = 2.5220(1), which
separates the antiferromagnetic ordered phase from the mag-
netically disordered dimer spin singlet phase [21,25].

Helmes and Wessel [7] studied the scaling of the Rényi
entanglement entropy S2(L) of this model. They analyzed
the subleading logarithmic contribution to the Rényi entan-
glement entropy scaling upon varying the interaction ratio g
and obtained values of NG/2 between 0.7 and 0.8 for 0 <

g < gc, while for g = 0, they obtained NG/2 = 1.35(2). They
attributed the deviation to the expected behavior Eq. (1) to the
size of the subsystems: the asymptotic behavior is accessible
only for subsystems that extend well beyond the correlation
length scale. They also tried including further subleading
finite-size correction, which scales with 1/L, but found that
such fitting ansatz results in significant uncertainties on the fit
parameters.

In this section, we will present our results of S2(L) and
analyze the scaling behaviors of S2(L) using our improved
finite-size scaling formula Eq. (8) in the antiferromagnetic
ordered phase.

We perform QMC simulations at several values of g and
calculate S2(L) up to L = 24 using the PQMC version of the
nonequilibrium work algorithm [11]. Figure 3 shows S2(L)
versus L at g = 0, 0.25, 1, and 2.
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TABLE II. Coefficients of the area law, the logarithmic term, and
the constant at several g of the bilayer Heisenberg model.

g a NG/2 γord χ 2
r /P-value

0 0.3700(9) 2.02(2) 1.58(5) 0.89/0.50
0.25 0.273(1) 1.00(3) 0.74(5) 1.60/0.16
1 0.210(1) 1.05(3) 0.71(5) 0.69/0.63
2 0.184(1) 1.02(3) 0.76(5) 0.45/0.81

At g = 0, where the symmetry is trivially enhanced to a
SU(2) × SU(2) due to the decoupling of the layers, there are
four Goldstone modes existing in the system, i.e., NG = 4.

Since the coupling between two layers is absent, χ⊥, ρs,
and c are the same as those of the Heisenberg model on the
square lattice. The functions I (L) and ρs(L) are also the same
as those of the Heisenberg model on the square lattice. Sub-
stituting these functions into Eq. (8), we fit S2(L) according to
Eq. (20). Using L � 12 points, we obtain a statistically sound
fit for all S2(L) data with NG/2 = 2.02(2), γord = 1.58(4),
and a = 0.3700(9). Further excluding small-L points does not
dramatically change the fit parameters, though of course the
error bar grows. These results are listed in Table II. The esti-
mated NG agrees with the expected value within the statistical
error. The value of γord also coincides with the expected value
2 × 0.77 [4]. Compared with the results obtained in Ref. [7],
where NG/2 was found to be 1.35(4), our result of NG/2 is
much better.

There are couplings between two layers for g = 0.25, 1,

and 2. To describe the bilayer AFM Heisenberg model with
the nonlinear sigma model, it is necessary to define the spin
stiffness and susceptibility in a unit of the unit cell consisting
of two spins in different layers, as we do in Eqs. (12) and (14).
χ⊥(L) and ρs(L) at g = 0.25, 1, 2 are calculated up to L =
40 using the standard SSE method. The results as functions
of L are illustrated in Figs. 4(a) and 4(b), respectively. We
then find χ⊥ and ρs by fitting finite-size data of χ⊥(L) and
ρs(L) according to Eqs. (18) and (19), respectively, and then
calculate c. The results are obtained and listed in Table III. The
fitted parameters b1, b2, a1, a2 at various g are also provided
in Table IV in Appendix C.

As a result of defining the spin stiffness and susceptibility
in a unit of the unit cell, the finite-size dependent effective
inertia moment density Eq. (4) of the nonlinear sigma model
also applies to the bilayer AFM Heisenberg model. Therefore,
the modified scaling formula of S2(L), Eq. (20), making use of
the function I (L), calculated using fitted χ⊥ and c, and fitted
function ρs(L) for the bilayer model in Eq. (8), is expected to
hold here.

TABLE III. χ⊥, ρs, and c at several g of the bilayer Heisenberg
model.

g χ⊥ ρs c

0.25 0.14664(6) 0.4223(3) 1.69706(7)
1 0.12978(6) 0.4116(1) 1.78088(2)
2 0.07144(4) 0.2490(2) 1.86693(3)

FIG. 4. (a) χ⊥(L) and (b) ρs(L) versus 1/L for the bilayer
Heisenberg model at g = 0.25, 1, 2. Error bars are much smaller than
symbol sizes. The solid lines are fitting curves. χ⊥ and ρs for each g
are also shown.

Fitting Eq. (20) to S2(L), we obtain statistically sound fits
of a, NG/2, and γord with all system sizes included for each
g, as illustrated in Tables V–VII in Appendix D. Systematical
errors are present for the case g = 0.25 according to the fit
result of NG. For g = 2, the difference between fitted NG/2 and
the theoretical value is two error bars. These results are due to
ignoring higher-order corrections in Eq. (8) for small system
sizes. By excluding the L = 8 point, these systematical errors
are removed. Further excluding small-L points in the fits for
different g does not dramatically change the fit parameters,
though the error bar grows. The best estimates are obtained
with Lmin = 10 at each g. Our final estimates for a, NG/2, and
γord are listed in Table II.

IV. CONCLUSION AND DISCUSSION

In this paper, we have derived an improved scaling of en-
tanglement entropy in systems with the spontaneous broken of
the continuous O(N) symmetry using finite-size spin stiffness
and going beyond the leading order excitation energies of
the rotors in the model introduced by Metlitski and Grover.
Using QMC simulations, we have shown that our scaling

125144-6



IMPROVED SCALING OF THE ENTANGLEMENT ENTROPY … PHYSICAL REVIEW B 108, 125144 (2023)

FIG. 5. The half-system second Rényi entanglement entropy
S2(L) for the bilayer Heisenberg model at g = 0.25, 1.0, 2.0 as a
function of projection power m with system sizes L = 8, 16, 24, re-
spectively. m = 20Ns is big enough for convergence to ground-state
value.

formula is correct and valuable by extracting NG and γord with
unprecedented accuracy in systems of rather small sizes for
the 2D square lattice Heisenberg model and the double layer
Heisenberg model at various g.

In addition, from Eq. (4), we know the correction to the
inertial moment density I (L) due to the finite-size effect can
not be ignored except for O(N = 2). Thus, for systems with
spontaneously broken O(N > 2) symmetry, our scaling for-
mula Eq. (8) should be used to extract the properties of the
entanglement entropy faithfully.
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APPENDIX A: CONVERGENCE S2 AS A FUNCTION
OF PROJECTION POWER m

In Fig. 5, we show the convergence of the second Rényi
entanglement entropy S2(L) for the bilayer Heisenberg model
at different g as functions of the projection power m/Ns for
several system sizes. It is evident that m/Ns = 20 is large
enough to probe for the ground state properties.

APPENDIX B: INVERSE TEMPERATURE SCALING

To find out the sufficient large inverse temperature β for
simulating the properties of the ground states, we plot χ⊥(L)
and ρs(L) versus β/L for the Heisenberg model and the
bilayer Heisenberg model at different g in Figs. 6 and 7,
respectively. It is evident that β = 4L is large enough to
converge χ⊥(L) and ρs(L) to their ground-state values for the
Heisenberg model, while β = 6L is large enough to converge
χ⊥(L) and ρs(L) to their ground-state values for the bilayer
Heisenberg model.

APPENDIX C: FIT PARAMETERS FOR χ⊥(L) AND ρs(L)
OF THE BILAYER HEISENBERG MODEL

Table IV lists the fit parameters a1, a2, b1, b2 from
Eqs. (18) and (19) for the bilayer AFM Heisenberg model at
g = 0.25, 1, and 2.

FIG. 6. (a) χ⊥(L) and (b)ρs(L) of the Heisenberg model versus
β/L with the system sizes L = 8, 24, 40. As shown, β = 4L is large
enough to converge the finite temperature values of χ⊥(L) and ρs(L)
to the ground-state values.
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FIG. 7. (a) χ⊥(L) and (b) ρs(L) of the bilayer Heisenberg model
versus β/L with the system sizes L = 8, 24, 40 at several g. As
shown, β = 6L is large enough to converge the finite temperature
values of χ⊥(L) and ρs(L) to the ground-state values.

TABLE IV. The fit parameters a1, a2 from Eq. (19) and b1, b2

from Eq. (18) for the bilayer Heisenberg model at various g.

g a1 a2 b1 b2

0.25 0.59(2) 1.1(2) 0.76(2) 6.7(2)
1 0.619(9) 1.26(6) 0.72(1) 4.54(9)
2 1.05(2) 3.5(2) 1.20(2) 4.1(2)

APPENDIX D: FIT PARAMETERS VARY AGAINST
MINIMUM SIZE Lmin USED IN THE FIT

Tables V–VII show fitted coefficients of the area law,
the logarithmic term, and the constant vary against min-
imum size Lmin for the bilayer Heisenberg model at
different g.

TABLE V. Coefficients of the area law, the logarithmic term, and
the constant with g = 0.25.

Lmin a NG/2 γord χ 2
r /P-value

8 0.275(1) 0.97(1) 0.75(3) 1.65/0.13
10 0.273(1) 1.00(3) 0.74(5) 1.60/0.16
12 0.271(2) 1.05(4) 0.72(8) 1.09/0.36

TABLE VI. Coefficients of the area law, the logarithmic term,
and the constant with g = 1.0.

Lmin a NG/2 γord χ 2
r /P-value

8 0.211(1) 1.03(2) 0.73(3) 0.84/0.54
10 0.210(1) 1.05(3) 0.71(5) 1.60/0.16
12 0.210(2) 1.06(4) 0.70(7) 0.81/0.52

TABLE VII. Coefficients of the area law, the logarithmic term,
and the constant with g = 2.0.

Lmin a NG/2 γord χ 2
r /P-value

8 0.183(1) 1.04(2) 0.72(4) 0.7/0.65
10 0.184(1) 1.02(3) 0.76(5) 0.45/0.81
12 0.185(2) 0.99(4) 0.74(9) 0.38/0.82
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