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We discuss a nonequilibrium dynamical mean-field framework for simulating inhomogeneous Hubbard
models with local disorders. Our approach treats electron interactions and disorders on equal footing, by
considering only local dynamical fluctuations. The theory reduces to nonequilibrium dynamical mean-field
theory in the presence of only electron-electron interactions and to the coherent potential approximation in
noninteracting systems with disorders. Both time-dependent and steady-state problems are treated by imple-
menting the theory on the three-branch Kadanoff-Baym contour and two-branch Schwinger-Keldysh contour,
respectively. Benchmarks on a eight-site cube show that the method yields rather accurate spectral functions in
both the weakly and strongly interacting regimes. In a cubic lattice, we demonstrate energy conservation after an
interaction quench and thermalization after just a few hopping times in both clean and disordered systems. As
an application, we study transport through a serial double quantum-dot sandwiched between two leads, focusing

on the current and dot occupations after a voltage quench.
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I. INTRODUCTION

The interplay between electron-electron (el-el) interactions
and disorders plays an important role in many widely stud-
ied condensed matter phenomena, including metal-insulator
transitions [1-3], superconductivity [4], giant magnetoresis-
tance [5], and many-body localization [6]. In the context of
quantum transport, this physics also influences the behavior
of devices, which is exploited, e.g., through functionalized
chemical doping [7]. Consequently, there is a need to develop
computational methods that qualitatively or even quantita-
tively capture the combined effect of el-el interactions and
disorders, both in equilibrium and nonequilibrium setups.

The formulation of a microscopic theory that involves both
el-el interactions and disorder degrees of freedom is chal-
lenging. The challenges originate primarily from two factors:
(i) strong Coulomb interactions correlate the motion of the
electrons and prevent the use of effective single-particle de-
scriptions [8,9], and (ii) the presence of disorders breaks the
translational invariance of the system, so that Bloch theory
becomes invalid [10]. Both effects lead to an exponential
scaling of the complexity of the problem with system size,
so that exact results can be obtained only for very small sys-
tems. Moreover, when considering time dependent problems,
the proper nonequilibrium distribution of the occupied states
needs to be taken into account [11].

Over the past decades, various computational methods
have been developed to address the challenges posed by the
correlated electron [8,12—14] and disorder problem [15,16].
Among them, dynamical mean-field theory (DMFT) stands
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out due to its nonperturbative nature, its possible combina-
tion with density functional theory input for the simulation
of real materials, and its natural extension to nonequilibrium
conditions [17-20]. The fundamental idea of DMFT is to map
the original lattice onto an auxiliary impurity problem (small
correlated system coupled to a noninteracting bath). The bath
of this auxiliary problem is self-consistently determined and
mimics the effect of the lattice environment. DMFT is ex-
act in both the infinite dimensional and atomic limits, and
provides a reasonable interpolation between them [21]. In
studies of noninteracting systems with disorders, the method
is also known as coherent potential approximation (CPA).
The CPA was initially formulated by introducing a coherent
medium, which is self-consistently determined by the con-
dition that the averaged on-site scattering of any given site
vanishes when embedded in the effective medium [22-24].
A deeper understanding of CPA emerged with the develop-
ment of a functional integral formulation, which revealed that
CPA is a special case of DMFT for disordered systems [25].
This connection provides a solid basis for combining the two
methods to address systems that involve both el-el interactions
and disorders.

This idea was initially introduced in Ref. [26], where the
disorder averaged free energy functional of the Hubbard-
Anderson model was derived in the infinite-coordination limit.
Subsequently, magnetic phase diagrams and Mott-Anderson
transitions were investigated on this (dynamical) mean-field
level [27,28]. Combinations with first-principles methods,
which enable the simulation of equilibrium properties of real
materials, were also reported [29]. Further efforts have been
made to account for nonlocal spatial fluctuations by com-
bining the theory with the dual fermion approach [30] and
by incorporating off-diagonal disorder using the Blackman-
Esterling-Berk transformation [31].

©2023 American Physical Society
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Very recently, a nonequilibrium extension of the combined
CPA and DMFT approach was presented in Ref. [32] and
applied to an interaction quench problem on the Bethe lattice.
In this work, we use the same method to study disordered
interacting systems on an inhomogeneous Hubbard-Anderson
lattice. We formulate the theory both in terms of nonequilib-
rium Green’s functions defined on a three-branch Kadanoft-
Baym (KB) contour, appropriate for simulations starting from
an equilibrium state, and with real-frequency Green’s func-
tions for the simulation of nonequilibrium steady states. In
contrast to the previous study (Ref. [32]), which consid-
ered a Bethe lattice, we formulate the method for generic
finite-dimensional lattices. This enables us to benchmark
the method against exact diagonalization results on small
isolated systems. Additionally, in our implementation, Lan-
greth’s rules [33,34] are applied to ensure the causal structure
of the time propagation and the implementation of high-order
discretization schemes in the numerical implementation.

On the application side, we mainly focus on a quantum
transport setup consisting of a central scattering region with
both disorders and interactions which is coupled to two metal-
lic leads. We account for disorders in the local energy and in
the local el-el repulsion, and drive the system out of equilib-
rium by a voltage quench.

The article is structured as follows. In Sec. II, we present
the nonequilibrium DMFT based formalism. Specifically, we
discuss the self-consistency loop, the impurity solver used,
the calculation of configurationally averaged physical observ-
ables and the implementation for both time-dependent and
steady-state calculations. In Sec. III, we discuss the numeri-
cal results, including the equilibrium spectral function of an
eight-site cube, an interaction quench problem on a cubic
lattice, and a serial double quantum dot system coupled to
two external leads under a step-shaped voltage profile. We
conclude in Sec. IV, while detailed derivations of the theory
are provided in the appendices.

II. THEORY

We study a single-orbital Hubbard model, given by the
Hamiltonian

A(@t) =) (€iot) — pickcio

i,o

+ Z ‘/sza(t)cmcja + ZU(t)anntis (1)
i#j,0

where c; and c;, are the creation and annihilation operators

for an electron located at site i with spin o, #1;, = C,T{,Cia is

the electron number operator, €, () and W;; ,(¢) are the local

energies and hopping integrals, U;(t) is the on-site Coulomb

integral, and p is the chemical potential. Due to the her-

miticity of the Hamiltonian, the hoppings satisfy W;; ;(t) =
]l o (t )

We furthermore consider an ensemble of disorder config-
urations, where each lattice site can be in a configuration
0 € {A, B, ...}. The probability of site i to be in configuration
Q is denoted by p[.Q, and the configurations on different sites
are assumed to be uncorrelated. Only €;, () and U;(¢) depend

t=1to—if

FIG. 1. Schematic illustration of the Kadanoff-Baym contour C
in the complex time plane. Here, B is the inverse temperature of the
initial state.

on the disorder configuration, i.e., they take the values eg )
and UiQ(t), while W;; 5 (¢) is not affected by the disorder.

A. Dynamical mean-field theory formulation

Our theory is formulated on the three-branch Kadanoff-
Baym contour C, which is used to describe systems that are
initially (at time #y) prepared in equilibrium at inverse temper-
ature 8 and subsequently driven out of equilibrium by external
fields [33]. The contour starts at 7y, extends up to a maximum
time of interest ¢, along the real-time axis, then returns to 7o,
and finally extends along the imaginary-time axis to —if, see
illustration in Fig. 1. The single-particle Green’s function for
a specified disorder configuration is given by [33,35,36]

Gijo(z,7) = —i{Cio (2)CT, (2)) g 2
where z denotes a time argument on the contour and ¢ (c*)
denote Grassmann variables for the ¢ electrons. (We use the
same notation as for the creation and annihilation operator,
since they can be distinguished from the context.) (---)g =
7 f ¢ Dlc* , c]e®® is the expectation value for a given action
S, with Z = [, D[c*, c]e®® the partition function of the initial
state. S' in Eq. (2) is the lattice action for a specific disorder
configuration,

Slal:/dZ ZC“’(Z)|: 1/( 'i‘/'L_Ew(Z))

ijo

vvi,-,(,(w}cj(, @) — Y Ui@mir ()i (2)

/ dzdz' Yl @5 (2, 7)o (2), 3)

ijo

Here, the time arguments of the model parameters €, W and
U are extended to the complex plane [33]. We also introduced
a generic non-Hermitian bilinear source Ef’jxﬁ, (z,7')in Eq. (3).
In a quantum transport setup, this source term can be used to
represent the effect of external leads that drive the system out
of equilibrium. The calculation of the lead self-energy X' is
discussed in Appendix A.

Since we are considering an ensemble of disorder config-
urations, the free energy (generating functional) reads 2 =
—% (In Z)4is, where (- --)gs refers to the ensemble average

over the disorder configurations. The disorder averaged lattice

125143-2



DYNAMICAL MEAN-FIELD APPROACH TO DISORDERED ...

PHYSICAL REVIEW B 108, 125143 (2023)

Green’s function can formally be expressed as
(SQ[EeXt]
Eext (Z Z)

Jji,o

(Gijo(z,2))ais = B (€]
In the infinite-dimensional limit d — oo, with the hopping
parameters rescaled as W;; (1) — W;;(¢)/d"~/1/? [21], the so-
lution of the lattice problem (3) reduces to the solution of
impurity problems for the different Q, with action

—
im * / d
s =/cdz{ ch”(z)<ld_z +un— Ean(Z)>Cf”(Z)

[

— UPR)c, (2)cjr R)ch, (z)c,»i(w}

/dzdz Zcﬂ,(z)A‘mp(z,z )Cjo (2), &)

and the disorder average reduces to an average over a single
site [26]. In Eq. (5), A7P(z,2) is the impurity hybridization
function of site j, describing the amplitude for hopping from
site j into the rest of the lattice at time 7z’ and returning back
to site j at time z. Note that A’mp (z,7) is independent of
the species Q on site j.! From the impurity actions (5), the
impurity Green’s functions can be calculated as

G, (2.2) = ~iejs ()¢5, (&) goim. (©)

and the disorder average of these impurity Green’s functions
yields the averaged local lattice Green’s function.

The same procedure can be applied to a finite-dimensional
system, which corresponds to the dynamical mean field theory
(DMFT) approximation [17]. To derive the formalism, we first
introduce a (exact) noninteracting effective medium, whose
properties are governed by the action

—
geffor — /dzdz { Zcm(z)[S(z -z )8,,( j + M)

ijo
Wijo (2. 2) — Sl (e, z/)]c,»g (z/)}, ™

where W;; 5 (z,7') = Wij(2)8(z — 2) + 5% (z,7). In Eq. (7),
et is the exact self-energy of the effective medium, which
in general is nonlocal in both space and time. Note that in
contrast to S™ in Eq. (3), which depends on the disorder
configuration, Seffx s without randomness since the effects
of the local Coulomb interaction and onsite energy have been
absorbed into X°™* The Green’s function of the effective
medium, T}, (z, 7)) = —i{ciy (2)cy (Z))getrv, is supposed to
reproduce the disorder averaged Green’s function of the inter-
action lattice, (Gyj + (2, z'))ais. This identity provides a formal
definition of the exact effective self-energy X+,

Evaluating X°* is very costly because of the exponential
scaling of the many-body Hilbert space and the disorder con-
figurational space with increasing number of lattice sites. To
make such calculations feasible, one can employ the DMFT

'Tt can be seen from the cavity method that A"np depends on the
hopping parameter W and the cavity Green’s functlon

approximation. The idea is to retain in Eq. (7) only the local
time-dependent fluctuations from the interactions and disor-
ders, and neglect all the s Hpatlal fluctuations. This corresponds
to the approximation Efl p *(z,Z)~ 6 jEjﬁfa (z,7'), which be-
comes exact in the infinite-dimensional limit. The action for

the approximated effective medium reads

—
Seffzfdzdz Zcm(z){ ,j|:5(z—z)(zi+u)
c

ijo
- Ziﬁfa (z,z ):| ij,a(Z, z/)}cj(,(z’), )

In the above equation, Eeff (z,Z/) can be viewed as the non-
Hermitian atomic level of the effective lattice, also known as
the coherent potential in the CPA community [37,38]. This
coherent potential should be calculated self-consistently. The
Green’s function corresponding to ST will be denoted by
Iij.0(z, Z') in the following:

—i{Cio (Z)Cja (Z/))Seff . )

To formulate the self-consistency loop which determines
the effective medium, it is useful to introduce the locator y;
as the Green’s function of the effective medium in the atomic
limit

Fijo(z,2)=

%
. d / e /
<+zd—Z + “) Yie(2.2) =8(z=2)+ [E,ﬁfa *Vjo (2. 2),

(10a)

e
/ d !
V,-o(z,z)<—l; +u> =8z —2)+ [vjo * E,,o](z,z ),

(10b)

where [A % B](z,2') = [, dZA(z,2)B(Z, z') denotes the convo-
lution on the C-contour. From Eq. (10), it follows that X" and
y are in one-to-one correspondence, and thus either of the two
functions can be used to characterize the effective medium. In
the following, we proceed with y. From Egs. (8)-(10), one
obtains the lattice Dyson equation

Tiio(z,7) = Vie (2, 2)8ij + Vo * Wo % T51i5(z, 7). (11)

By iterating Eq. (11), the local components of I" can be ex-
pressed as

Tjio(2.2) = vjo(2.2) + [Vjo x A % T4z, 2). (12)

where
Alat(z Z)— jjo'(Z Z)+Z ]la*ylo*vvl]a](z Z)
I#j
+ Z [le,a * YVie * Vvlm,a * Vo
l,m#j
* W/mj,a](Za Z/) + Z [Wﬂv" *Vio * mm,a

l,m,n#j
* Vo * Wmn,a * Vno * an,o’](zs Z/) + - (13)

is the lattice hybridization function, which accounts for all the
scattering events in the effective medium that start and end
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on site j but exclude any intermediate scattering processes
involving site j [15]. For this reason, Alj"}ﬁ (z, 7') is independent
of the local occupation on site j. The derivation of Eq. (13) is
given in Appendix B. In practice, Eq. (13) can be recast into

the form [20]
Alj‘;(z,z’)Jr / dz[W, = T 1;;(z, Z)A‘Jf‘;(z, Z)
C
=W;jo(z,2) + Wy * Ty % Wy 1;i(z, 2), (14)

which is a Volterra integro-differential equation of the second
kind that we use in the numerical implementation [34].

To self-consistently determine the effective medium, i.e.
Vjo(z,Z'), one defines an impurity model (5) with hybridiza-
tion function given by A%

APz, 7)) = A (2, 7). (15)

In the following, we will use A to refer both to A™ and
A" without causing any ambiguities. The self-consistency
condition demands that the local lattice Green’s function is
equal to the disorder averaged impurity Green’s function,

(G5 D)y = Tijor @ 2. (16)

This identity allows to close the self-consistency loop.

The outlined formalism reduces to the conventional DMFT
in the absence of disorder, while it reduces to CPA in the case
of noninteracting systems. On an infinitely connected Bethe
lattice, the formalism becomes equivalent to the one presented
in Ref. [32].

In practice, the self-consistent calculation is performed by
implementing the following steps: (i) One starts with an initial
guess for the hybridization function Aj;(z, z’), for example
Ajs(z,7") = 0. (ii) For given Aj;(z,Z') and configuration Q,
one solves the impurity problem to obtain GJQ{;lmp (z, 7’) defined
in Eq. (6), and then determines I';;(z, z') using Eq. (16). The
choice of the impurity solver is in principle arbitrary. The
solver used in this work is described in the following subsec-
tion. (iii) With A(z, z') and ' (z, 2') fixed, Eq. (12) is solved
to obtain the locator y;(z,z'). (iv) The lattice Dyson equa-
tion (11) is solved with the given y;(z, z') to obtain the lattice
Green’s function I';; 5 (z, Z'). (v) The hybridization function is
updated via Eq. (14). Then steps (ii) to (v) are repeated until
the hybridization function converges.

B. Impurity solver: Iterative perturbation theory
A nontrivial problem in the self-consistency loop is the
calculation of the impurity Green’s function (6) for the action
(5). Calculating GJQ(;imp(Z, 7') is equivalent to evaluating the
impurity self-energy E%imp(z, 7'), since these two functions

are connected via the impurity Dyson equation (the conjugate
equation is omitted)

%
d .
<+ id_z +p— Eﬁ;hf(z) — Elg;lmp(z, 7)

—Ajo(z, Z)) G,Q;imp(z, ) =38(z—2). A7)

where €2"(2) = €2 (2) + U2 (2)n%_, (2) and £&™(z, 2') is
the dynamical self-energy that excludes the Hartree-Fock con-
trié)ution. Whethe{2 or not it is more convenient to calculate

,1m ,1m] . .
Gja P(z,7) or Zja FT(Z, 7') depends on the impurity solver.
Here, we employ the iterated perturbation theory (IPT) [39],
which is computationally light, easy to extend to nonequi-
librium situations, and qualitatively correct in the half-filled
paramagnetic regime [40].

The impurity self-energy in IPT is given by

Q.imp N 770 Q.imp /N ., Q,imp ’ Qr

Y (@) =079, (@, 20X (2, 2)U(), (18)

where QJ.QU’imP
satisfying

(z,7') is the (impurity) Weiss Green’s function,

—
. d f ’ im ’
<+zd—Z +u—e2M@) — Aj(zz ))Q,Q(; *(z.7)

=8(z—12), 19)

and XiQ_’inp(z, 7) = —ig]Q;’(Tp(z, z/)g,.Q_":‘P (7, z) is the electron-
hole bubble. Note that we build the IPT self-energy
Eng’lmp (z, 7') from the Weiss Green’s function, instead of the
interacting impurity Green’s function. This implies that the
IPT solution is not conserving in the Baym-Kadanoff sense
[41]. However, previous studies showed that this variant gives
quantitatively better results, compared to the self-consistent
(boldified) IPT solution in short-time simulations [42].

C. Physical observables

Configurationally averaged physical observables can be
obtained after the self-consistency loop has converged. By
construction [see Eq. (16)], it does not matter if local one-
particle quantities are calculated using the averaged impurity
Green’s function G%‘mp or the local lattice Green’s function
F]].

The electron density at site j with spin o can be obtained
from the lesser Green’s function as
Njs t)= —il's

Jio

(t,1). (20)

The (particle) current flowing through the «-lead is defined
by J2(t) = j—t Zm Rgmeo (1), Where ngne (¢) is the spin-resolved
density for the «-lead attached to site m. From the Heisenberg
equation of motion, one obtains [33,43]

Jo 1) = 29t2[zg * ra];(z,z), 21

J

where X¢ is the lead self-energy, see Appendix A. The aver-
age double occupancy on site j is given by

Dty =) piD7 ™). (22)
Qo

where the double occupancy DJQ’imp(t) = (fiy ()R} (1)) goim foOr
a given local configuration Q can be evaluated from the equa-
tion of motion [33] as

iUL(ODY™ (1) = [ 24« GL™] (1, 1)

+iULOnI I O™ (). (23)

125143-4



DYNAMICAL MEAN-FIELD APPROACH TO DISORDERED ...

PHYSICAL REVIEW B 108, 125143 (2023)

The total energy of the system is the sum of the kinetic and
potential energy contributions,

E9() = — l—Zvvl.j_U(t)F;ﬁ(t, 1)

ijo
_ lZ ZPJQ([GJQ(Z‘) — M]Gj%impq<(t’ [)
jo  Q

+iUODY ™). (24)

Here, the first term represents the kinetic energy, while the
second term corresponds to the local potential energy, which
comprises the energies of both singly and doubly occupied
states. We furthermore assume in this formula that leads, if
present, are represented as additional baths.

D. Numerical implementation

The previous formalism is based on the three-branch
Kadanoff-Baym contour, which allows to describe general
nonequilibrium time evolutions starting from an initial equi-
librium state. With some adaptations, the formalism can also
be applied to steady-state situations. This subsection details
how time-dependent and steady-state simulations are imple-
mented.

1. Generic time-dependent problems

To solve the equations formulated on the Kadanoff-Baym
contour, one could discretize the contour time variables and
transform the equations into matrix equations [19,32]. An al-
ternative is to apply Langreth’s rules to transform the contour
equations into equations depending on real and imaginary
time, and then discretize these variables [20,33]. The latter
approach has several advantages. (i) It preserves the causality
of the solution, which ensures that physical quantities at time
t are independent of the future evolution of the system. (ii)
It reduces the computational complexity by allowing one to
calculate the Green’s function from ¢ = £, step by step, using
a small number of iterations at a given time step, rather than
trying to converge the solution on the whole contour simul-
taneously. (iii) The time-stepping approach makes it easier to
implement higher order integration schemes.

Because of causality, the equations on the Matsubara axis
form a closed self-consistency loop that can be solved prior
to the real-time propagation. Physically, this corresponds to
preparing the initial equilibrium state. Once this initial state
has been obtained, one can calculate the real-time (mixed,
retarded, and lesser) components of the Green’s functions and
hybridization functions starting from #y by incrementing the
maximum simulation time step by step. Numerical routines
for solving the time propagation of the Green’s functions with
high-order accuracy are implemented in the NESSi library.
Interested readers are referred to Ref. [34] for more details.

2. Steady-state problems

If the system is coupled to external baths, the initial corre-
lations are expected to be wiped out in the long-time limit
[20]. This means that the Matsubara (vertical) branch can
be neglected in Fig. 1, and the three-branch Kadanoff-Baym
contour reduces to a two-branch Keldysh contour [35]. Only

(a) isolated lattice (b) periodic lattice

left lead

device right lead

FIG. 2. Schematic illustration of (a) an isolated cube, (b) a cubic
lattice and (c) a two-terminal open structure.

the retarded and lesser real-time components remain in this
case. Furthermore, the restoration of time-translation in-
variance in steady-state situations implies that the Green’s
functions only depend on the time difference, which enables
the use of Fourier transforms and frequency-domain repre-
sentations. For a general function f, we define the Fourier
transforms as

o0

o0 . 1 .
flw)= f dif e, f(1)= 5 f dof(w)e™.
—o0 T J-oo
In frequency space, the integro-differential Dyson equa-
tions as well as the Volterra equations reduce to simple alge-
braic equations. For example, the lattice Dyson equation (11)
becomes [35]

[0 (@) = Vi (@)1 + [y (@)W, (@) (@)] ., (252)

[fo(w) = [T ()W, (@) ()]

ij

+ 30 (14 TL@W, (@), Ve (@)

x (I + W @) (w)) (25b)

mj’
where [ is the identity matrix. The equilibrium formalism can
be recovered by imposing the fluctuation-dissipation theorem
[35]. In the DMFT context, steady-state formalisms have been
previously presented in Refs. [44,45]. Here, we use the steady-
state framework of Ref. [46] and refer the reader to this paper
for implementation details.

III. NUMERICAL RESULTS AND DISCUSSIONS
A. General remarks

In this section, we present the numerical results obtained
with our method, focusing on paramagnetic states. We will
therefore suppress the spin index o in the following. However,
it is worth noting that the method can be easily extended
to symmetry-broken phases. We discuss three models: (i)
a 2x2x2 cube, (ii) a cubic lattice with periodic boundary
conditions, and (iii) a small one-dimensional atomic chain, as
depicted in Fig. 2. For simplicity, we consider a binary alloy
in our calculations, but the formalism is also applicable to
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’816‘ (a) x =041 — exact 61 (b) x =0, — exact 61 (c)x=0p5 — exact
£ -—- dmft -—-- dmft -—-- dmft
o
o 41 4 4
(9]
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o
21 l
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=N L
-4 -2 0 2 4
§6~ (d)x =0.1 — exact
= -=- dmft
o
-}
3 41
()]
C
o
524
2
3
< 01 : : ,
-1.0 -0.5 0.0 0.5 1.0

FIG. 3. Local spectral function of an eight-site cube for different impurity concentrations x and coupling strengths (the first and second
row is for the weakly and strongly interacting system, respectively). Black solid (red dashed) lines show the exact (DMFT) results, while blue
and orange thin dashed lines represent a clean system with only host and impurity atoms, respectively.

multicomponent alloys.> We refer to the two species of the
binary alloy as the host atom and the impurity atom.

B. 2x2x2 cubic molecule

To demonstrate the effectiveness of the method, we bench-
mark it in equilibrium on an isolated 2x2x2 cube, as shown
in Fig. 2(a). Each site corresponds to a host atom with prob-
ability p2="" = 1 — x, or an impurity atom with probability
p?="™ = x. The Coulomb and on-site energies of the host and
impurity atoms are set to UihOSt = 6?0“ = 0 (noninteracting)
and U;™" = —2¢," = 1, respectively.’ Only nearest-neighbor
hopping is considered, with a value of W;;y = 1 in the weak
coupling case and W;;;, = 0.1 in the strong coupling case.
The exact solution can be calculated by diagonalizing the
many-body Hamiltonian in the Hilbert space with dimension
4% = 65536 and averaging over the configurational space with
dimension 2% = 256. We employ an inverse temperature of
B =20 and a broadening parameter n = 0.01 when plotting
the spectral functions A(w) = —%SGr (w), which are obtained
from the retarded component of the Green’s functions. The re-
tarded Green’s function can be calculated using the Lehmann
representation, once we know the many-body states |n) and

2For continuously distributed disorders, one can simulate this by
sampling over the distribution function and transforming to the multi-
component alloy problem.

3The parameters are chosen to be appropriate for half-filling, since
the IPT solver gives reasonable results in this regime.

the corresponding eigenvalues w, for a given configuration,

<n|c,~a|m><m|c}(,|n>’ 6)

r _1 N
Gij’”(w)_zg(e e )w+wn—wm+in
where Z = )", e7#“n is the partition function.

Figure 3 shows the disorder averaged local spectral func-
tions in the weakly (first row) and strongly (second row)
interacting systems, for the indicated impurity concentrations
x. The black and red lines refer to the exact and DMFT
results, respectively. In addition, the spectrum of the clean
system with only host (impurity) atoms is displayed using
blue (orange) thin dashed lines.

In the weak coupling case with W;;;y = 1, the noninter-
acting spectral function, represented by the blue dashed line
in Figs. 3(a)-3(c), shows four peaks at w = 3, + 1 due to
the bonding and antibonding states produced by the hopping
between the sites. As we increase U from O to 1 in the ho-
mogeneous system, the noninteracting peaks at w = %3 split
into two peaks, as shown by the orange dashed lines. The
exact spectral functions of the disordered systems, shown by
the black solid lines, are in between these two spectra. With
increasing x, the peaks at w = =£3 split, but the separation
between the subpeaks is smaller than in the uniform inter-
acting system. The red dashed line plots the DMFT results,
which agree very nicely with the exact results for all impurity
concentrations.

In the case of strong coupling, i.e., for W;; = 0.1, the
bonding and antibonding states of the noninteracting system
(represented by blue dashed lines) are located at w = +£0.1
and w = £0.3, respectively [see Figs. 3(d)-3(f)]. When U =
1, two Hubbard bands appear at approximately w = £0.5, as
depicted by the orange dashed lines. With increasing impurity
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FIG. 4. Double occupancy as a function of impurity concen-
tration x for the eight-site cube in the case of (a) weak coupling
(W;jy = 1) and (b) strong coupling (W,;;, = 0.1). Black lines show
the exact results and red lines the approximate DMFT results.

concentration, spectral weight from the bonding and antibond-
ing peaks is transferred to the Hubbard bands, resulting in a
complicated spectral structure for large x. Nevertheless, the
DMEFT results still agree nicely with the exact results, demon-
strating the effectiveness of the method for the description of
this small-size system with coordination number equals three.

Figure 4 shows the double occupancy as a function of x for
(a) weak coupling and (b) strong coupling, with the exact and
DMEFT results represented by black and red lines, respectively.
As expected, the double occupancy decreases with increasing
x due to the Coulomb interaction on the impurity atoms. It is
worth noting that the DMFT results slightly overestimate the
double occupancy in both cases. There are two main factors
responsible for the discrepancy between the exact and DMFT
results. (i) In DMFT, the self-energy of the lattice system is
approximated to be site-diagonal. This assumption neglects
nonlocal correlations, which are relevant in finite-connectivity
systems. (ii) Additionally, the IPT impurity solver considers
only a finite set of selected diagrams for the self-energy of the
single impurity Anderson model, which can introduce a bias
and result in an inaccurate description of local time-dependent
fluctuations.

C. Cubic lattice

We next study an interaction quench problem for a
three-dimensional cubic lattice, as shown in Fig. 2(b). The
nearest-neighbor hopping W;;, = 1 serves as the energy unit
and /i/W;;, as the unit of time. The noninteracting system is
initially prepared in an equilibrium state with inverse temper-
ature 8 = 10. At r = 0, we apply a quench, which suddenly
changes U; = —2¢; = 0to U; = —2¢; = 5 on all sites (a disor-
dered system with 50% sites undergoing a quench is discussed
later). The time step in our calculation is set to 0.01, and
we sample 16x16x16 k points in the Brillouin zone.* For
this choice of parameters the system exhibits particle-hole
symmetry, which ensures that the electron density per spin
equals 0.5 during the whole time evolution. The red, orange
and blue solid lines in Fig. 5 show the time evolution of the
corresponding kinetic energy Eji,, the singly-occupied contri-
bution to the potential energy Eg,q, and the doubly-occupied

4On 128 cores, we can complete a 5000-time-step calculation in
two hours with the IPT impurity solver.
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FIG. 5. Energies as a function of time for a quench from U; =
—2¢; =0 to U; = —2¢; =5 at t =0 in a half-filled system. Red,
orange, blue and black lines represent the kinetic energy, singly
occupied potential and doubly occupied potential energies, and total
energy, respectively. The solid (dashed) lines correspond to the case
where all (half) of the sites undergo the quench. The arrows indicate
the values of the thermalized system.

contribution to the potential energy Eqp, respectively. The to-
tal energy Eyy, which is the sum over these three contributions,
is represented by black solid lines. The right arrows in Fig. 5
indicate the energy values of an equilibrium system with an
effective temperature, as discussed below.

In the initial noninteracting state, both the singly occupied
(Esng) and doubly occupied (Egy) potential energies are zero,
while the kinetic energy (Ekin) is —2, resulting in a total energy
Ei« = —2, as shown in Fig. 5. During the quench at t = 0,
Es. and Eg, abruptly change from O to 2¢;n; = —2.5 and
Un; = 1.25, respectively, because of the sudden modification
of €; and U;. In contrast, the evolution of the kinetic energy
Eyy is continuous, since the hopping integral W; ;, does not ex-
perience a quench. Within approximately one inverse hopping
time after the quench, the system appears to be thermalized.
Eg remains constant during this process due to the constant
electron density (n;(¢) = 0.5 for each spin channel), which is
protected by the particular form of the quench. However, the
kinetic energy of the electrons increases while the potential
energy contribution associated with the double occupancy
decreases during this period. The loss of potential energy
compensates the gain in kinetic energy, resulting in a constant
total energy (black line). This is an expected consequence
of energy conservation, since the system is isolated during
the time evolution and there is no energy exchange with an
environment. It is worth noting that although the bare IPT
impurity solver used in these calculations is not conserving
in the Baym-Kadanoff sense [41], and energy is hence not
exactly conserved, it produces an almost constant total energy
if the interaction after the quench is not too strong [40].

We next study a disordered situation, where only half the
sites undergo the quench, using the same parameters as in
the previous calculation. (The other sites remain noninter-
acting.) The evolution of the various energy contributions
in this system is represented by the dashed lines in Fig. 5,
with the same color scheme as before. Although the quench
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FIG. 6. Onsite nonequilibrium distribution function f (w, tyy =
5) for clean (blue) and disordered (green) systems. Red and orange
dashed lines are fitted Fermi-Dirac functions with temperature Ty, =
0.752 (clean system) and 0.515 (disordered system), respectively.
The grey dashed line shows the Fermi-Dirac function for the initial
temperature 7 = 0.1. (Insets) The red line shows E, as a function of
inverse temperature for equilibrium interacting systems. The dashed
horizontal line plots E,, after the quench. The dashed vertical line
gives the temperature from Fermi-Dirac fits.

induced changes are qualitatively similar to those observed
in the clean system, the amplitude of the change becomes
weaker due to the interpolation between the noninteracting
and uniformly quenched solutions. This is to be expected in
a disordered system, and the results support the validity of
the DMFT approach. In particular, we note again that the
total energy remains essentially constant, which indicates that
for the present parameters, DMFT treats the different energy
contributions in a thermodynamically consistent way even in
the presence of disorder.

We finally investigate the thermalization process following
the quench. To analyze this, we introduce an onsite nonequi-
librium distribution function,

1 SGf(w’ tay)
2 3G (@ )

Here, G(w, tay) = [ dtiie™™G(t, 1) with toy = (t +1')/2
and t,) =t — t’ is the Wigner representation of the two-time
Green’s function [20]. f reduces to the Fermi-Dirac distribu-
tion function in equilibrium, where the fluctuation-dissipation
theorem holds [35]. In Fig. 6, the blue and green solid lines
correspond to fi(w, f,, = 5) for the quench of the clean and
disordered systems, respectively. Recall that, for the disor-
dered case, half of the sites undergo the quench, so that the
amount of injected energy is lower than in the clean case.
We fit the curves with Fermi-Dirac functions, as shown by the
red and orange dashed lines. As a reference, we also plot the
distribution function before the quench (T = 0.1) as the grey
line. It can be observed that the Fermi-Dirac function fits well
in both cases, indicating complete thermalization after the
quench due to electron-electron scattering. The fits yield the
temperatures Ty, = 0.752 (clean) and 0.515 (with disorders)
of the thermalized systems. We can now calculate the kinetic

filo, ) = — (27)

and potential energies of the equilibrium systems with Ty,
which nicely match with the values of the quenched systems
at times ¢ > 1, as illustrated by the arrows in Fig. 5.

To check if the system is really thermalized, we determine
the fully thermalized temperature from the total energy. For
this we determine the temperature of equilibrium systems
with the post-quench parameters, such that the total energy
matches the total energy after the quench. Specifically, for
the clean system, we measure (at t = 1.5) a total energy of
E« = —3.266, and for the disordered system E, = —2.618,
which are plotted as dashed horizontal lines in the insets of
Fig. 6. The red lines in the same insets show the temperature
dependence of the total energy in equilibrium. The intersects
of the red solid and dashed horizontal lines determine the
(inverse) temperatures of the fully thermalized systems. In
particular, T, = 0.748 for the clean system and 7;; | = 0.510
for the disordered system. The blue dashed vertical lines
indicate the effective (inverse) temperatures from the Fermi
function fits, and one can see that these temperatures are
close to the fully thermalized values, both in the clean and
disordered systems. The small discrepancies may be due to the
fact that the systems at # = 5 are not yet completely thermal,
or they could be a consequence of the fact that the bare IPT
solver does not fully conserve the total energy.

D. Atomic chain

In the third example, we study a short atomic chain consist-
ing of two central scattering sites (generically with disorder
and Coulomb interactions) sandwiched between two leads, as
depicted in Fig. 2(c). The leads are assumed to be noninteract-
ing and without disorders. The two central scattering sites of
our system will be referred to as the left and right (scattering)
sites in the following.

1. Noninteracting chain: CPA treatment

In the first investigation, we use the same parameters as
in Fig. 5(a) of Ref. [47]. Specifically, we choose the hopping
amplitude between the left and right sites, W, as the energy
unit (W = 1). The system is noninteracting (U = 0), the on-
site energies for the host and impurity atoms in the central
device region are 0 and 0.5, respectively, and the impurity con-
centration is x = 0.3. Consistent with Ref. [47], we employ
the wide-band limit (WBL) for the leads, a coupling strength
of 0.5 for both the left and right leads, and inverse lead tem-
perature 8 = 10. After + = 0, constant voltages of V;, = 1.5
and Vg = —1.5 are applied to the left and right electrodes,
respectively, by uniformly shifting the on-site energies of the
leads. This results in an electron flow from the left lead to the
right lead. If the central lattice sites are noninteracting, our
formalism reduces to the time-dependent CPA.

Figure 7(a) plots the electron densities on the left (circle
marker) and right (cross marker) sites as a function of time,
obtained from both exact (black solid line) and CPA (red
dashed line) calculations. The horizontal dashed-dotted lines
show the steady-state CPA values of the left and right den-
sities, respectively. For the exact reference, we average the
results obtained with NESSi for the four possible impurity
configurations. After the voltage quench, the electron density
on the left site starts to increase, while that on the right site
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FIG. 7. Evolution of (a) the electron density and (b) the current
for a noninteracting disordered two-site chain after a step-shaped
voltage pulse applied to the leads. Black solid and red dashed lines
show the exact and the CPA results, respectively. Lines with circles
are for the left site and lines with crosses for the right site. Horizontal
dash-dotted lines indicate the steady-state CPA values and the grey
dashed line in panel (b) corresponds to the case without disorders.

decreases due to the flow of electrons from the left lead
into the structure, and from the structure to the right lead.
The electron densities exhibit damped oscillations, and are
expected to reach some steady-state values at longer times.
The asymmetry in the densities on the left (circle marker) and
right (cross marker) sites arises from the impurity sites, which
drive the system away from half-filling (the impurity onsite
energy is 0.5).

Figure 7(b) shows the absolute value of the time-dependent
current flowing out of (into) the left (right) lead. The grey
dashed line corresponds to the case without disorders. The
inset provides a zoomed-in view of the latest times. The
current approaches a nonzero steady-state value after several
oscillations (horizontal dotted line). The period of the cur-
rent oscillations is controlled by the strength of the applied
bias, see Eq. (A10). Note that in the transient regime, the
currents running through the left and right leads are, in gen-
eral, not equal, since there can be charge accumulation in the
central sites. However, they approach the same steady-state
values once the occupations of the sites have settled to their
steady-state values. One can see that the CPA results agree
remarkably well with the exact data for both the electron
densities and the currents in the parameter regime considered
in these calculations. Additionally, Fig. 7(b) agrees well with
Fig. 5(a) in Ref. [47], where the authors developed a time-
dependent CPA with nonequilibrium vertex corrections on a
two-branch Schwinger-Keldysh contour.’ It is worth mention-
ing that the agreement observed between our partition-free
approach and the partitioned scheme developed in Ref. [47]
numerically confirms the equivalence between them in the
WBL, consistent with the statements in Ref. [48]. In addition,
we would like to point out, however, that while the WBL is
required in the formalism of Ref. [47], this is not necessary
here, since any leads (possibly with real dispersion relations)
can be implemented in principle.

Our calculation uses an inverse temperature of 8 = 0.05 instead
of zero temperature as in Ref. [47], but this does not significantly
affect the results.
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FIG. 8. Time dependent electron density (a) and current (b) for
an interacting two-site model coupled to two leads subject to a
step-shaped voltage pulse. Dashed lines are for the noninteracting
case and solid lines for U = 4. The lower panels show the steady-
state electron density n(t = oo) vs U with fixed V = 1.5 (c¢), and
n(t = o0o0) vs V with fixed U = 2 (d). Thin dashed lines and bold
solid lines show the Hartree-Fock and DMFT solutions, respectively.

2. Generic interacting disordered chain

We now turn our attention to a case with interacting elec-
trons in the central scattering region. To maintain the system
close to half-filling, we keep the parameters for the leads
unchanged and set €; = —U;/2. With this, the IPT impurity
solver provides reasonable results [40].

Our initial focus is on the clean system, with identical
interactions on both sites. Figure 8(a) plots the charge density
as a function of time for both the left site (red line) and right
site (blue line). The dashed and solid lines in Fig. 8(a) corre-
spond to the noninteracting (U = 0) and interacting (U = 4)
systems, respectively. Because of the symmetric setup, the
deviations of the charge densities on the left and right sites
from their half-filled values 0.5 are symmetric, i.e., ny(t) +
ng(t) = 1. Figure 8(b) plots the current, with the red dashed
line and black solid line corresponding to the systems with
U = 0 and 4, respectively. It should be noted that the absolute
value of the current out of the left and into the right leads is
the same because of the particle-hole symmetric parameters
used in the calculation. Compared to the U = O result, the
current is suppressed when U = 4, since the onsite repulsion
creates a large splitting between the local many-body states
(Coulomb blockade effect). In both the noninteracting and
U =4 cases, the system exhibits a transient regime before
reaching some steady-state value for the current. Coulomb
interactions dampen the oscillations, so that the interacting
system approaches the steady-state faster than the noninter-
acting one. Furthermore, we observe that the steady-state
distribution of the electrons in the central region can be
reversed with increasing U, as illustrated in Fig. 8(c). Specifi-
cally, for U = 0, we have n;(00) < ng(c0), while for U = 4,
we obtain ny (00) > ng(co). This is because in the noninter-
acting case, the rate of electrons transferred from the left site
to the right site (proportional to the hopping integral) is higher
than the rate at which electrons are transferred from the right
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FIG. 9. (a) Double occupancy and (b) kinetic and potential en-
ergies versus time. Dashed lines are for U = 0 and solid lines for
U =4.

site to the right lead, which leads to charge accumulation on
the right site [11]. (If the hopping between the central sites
were smaller than between the leads and the central region,
the result would be opposite.) In the system with U = 4,
the Coulomb interaction suppresses the hopping between the
central sites, which leads to charge accumulation on the left
site.

We further investigate this effect by plotting n; /z(c0), i.e.,
the steady state occupation, as a function of U for fixed
V = 1.5 in Fig. 8(c), and as a function of V for fixed U = 2
in Fig. 8(d). The solid lines and dashed lines correspond to
the DMFT and Hartree results, respectively. As shown in
panel (c), with fixed bias V = 1.5 and for small U, we find
np(o00) < ng(oc0). However, as U is increased, the curves in-
tersect at some point, and beyond this point, n; (00) > ng(co).
The comparison with the Hartree solution, which does not
exhibit this crossing, suggests that this reversal originates
from higher-order interaction effects. In Fig. 8(d), where the
interaction is fixed to U =2 and the voltage V is varied
from O to 1.5, we observe that for low bias n; (00) < ng(c0)
and the occupation of the left (right) site initially decreases
(increases), reaches a minimum (maximum) value, and then
starts to increase (decrease). The Hartree solution shows the
qualitatively same behavior as DMFT; however, DMFT shift
the crossing point to much lower voltages, compared to the
Hartree-Fock result. In both situations, the occupations ny (00)
and ng(o0) reflect the trade-off between the electrons’ ease of
hopping to the lead or to another site. For the same reason,
ng(0o0) and ng(co) also show a crossing in the noninteracting
case when decreasing W from 1 to a small value (not shown).

In addition, we also investigate the time-dependent dou-
ble occupancy D(t) and the evolution of various energy
components, as shown in Figs. 9(a) and 9(b). If U =0,
Dy r(t) is equal to ni IR (t) since electrons do not interact with
each other. For U = 4, the double occupation is suppressed
due to the Coulomb energy. It is worth noting that Dy /z(t)
does not exhibit a mirror symmetry around the initial value,
even in the noninteracting case. Figure 9(b) shows the ki-
netic energy Ey;, (red), singly occupied potential energy Egne
(blue), and doubly occupied potential energy Eg, (black),
respectively. Eyin, Which accounts only for the intersite hop-
ping between the two central scattering sites, increases after
switching on the voltage, since the electron distribution be-
comes nonthermal. In lattice systems, the kinetic energy can
be expressed as Eiin = ), €, = fda),o(a))wn(w), with p
the density of states. Hence, if the occupation of the electrons
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FIG. 10. Nonequilibrium steady-state distribution function
filw) = —0.53G5 (0)/3Gi(w) with V=15 for (a) the
noninteracting and (b) the interacting (U =4) systems. Black
(grey) lines show the distributions for the left (right) dots. Blue
vertical lines indicate the local chemical potential of the leads. Red
dashed lines show the Fermi-Dirac distribution at equilibrium.

becomes flatter (“heating”) or high energy states get populated
(“inversion”), the kinetic energy increases. Eg,, remains con-
stant since the total electron number n(t) = ny(t) + ng(t) is
constant in our symmetric setup, as discussed previously. Eqp,
exhibits small variations for U = 4 since the contributions
from one site are largely compensated by the other site, as can
be seen from panel (a). (Eqp is proportional to D(¢).) Note that
the total energy in this open setup is not conserved.

To analyze the nonthermal electron distribution, we plot
the steady-state nonequilibrium distribution function f(w) =

1260 (@) i the presence of a voltage biasV = 1.5forU =0

2 3G/ (@)

and U = 4 in Figs. 10(a) and 10(b), respectively. The black
and grey lines show the results for the left and right sites.
Blue vertical lines indicate the local chemical potentials of
the leads, while the red dashed line corresponds to the Fermi-
Dirac distribution with inverse temperature 8 = 10. One can
see that for U = 0, fi(w) exhibits a partial population inver-
sion, which is quite different from the superposition of two
Fermi-Dirac distributions. Specifically, in panel (a), fi(a)) on
the left site exhibits a hump below @ = 2 due to the injection
of electrons from the left lead. However, this hump is smeared
out in the presence of el-el interactions [panel (b)], which help
to redistribute the electron population and bring the system
into a state with an approximately defined high electronic
temperature.

Finally, we investigate the effect of disorder on the current-
voltage (IV) characteristics. The host and impurity parameters
are chosen as Upost = —2€post = 0 and Ujyp = —2€imp = 4,
while the lead parameters are kept the same. Figure 11 shows
the IV characteristics in the steady-state for various impurity
concentrations x. In the noninteracting system (black dashed
line), with increasing voltage bias V, the current initially
increases with a slope corresponding to the zero-bias conduc-
tance oy (09 = 0.64/m for U = 0 in our case), as shown by the
grey dotted line. At some larger V, determined by the finite
width of the DOS of the central sites (see below), the cur-
rent saturates. In the interacting case, the steady-state current
is suppressed (red dashed curve) and a plateaulike structure
forms at intermediate V, in qualitative agreement with pre-
vious quantum dot calculations, see for example Fig. 10 in
Ref. [49] or Fig. 2 in Ref. [50]. The disordered cases yield
a reasonable interpolation between these two limits. Remark-
ably, even though the DOS peak in the double quantum dot
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FIG. 11. Current-voltage characteristics with different impurity
concentrations of the 2-site atomic chain depicted in Fig. 2(c). The
black and red dashed lines are for the host (U = 0) and impurity
(U = 4) atoms without disorders.

system is not situated at @ = 0 and there is no pinning of a
Kondo resonance, we observe that the effect of the Coulomb
interaction on the current is very small for small V, while it
becomes pronounced for large voltage bias.

To gain more insights into the IV characteristics, we plot in
Fig. 12 the spectral functions for (a) V =0 and (b) V = 1.5.
The dashed and solid lines correspond to U = 0 and 4, re-
spectively. Note that the central scattering region contains two
sites, and the local spectral function of the left and right site
are symmetric with respect to w — —w due to electron-hole
symmetry (black solid line for the left site, light grey for the
right site). In the equilibrium case with U = 0, displayed in
Fig. 12(a), the DOS shows two peaks (dashed line), represent-
ing the bonding and antibonding states formed by the hopping
between the two central sites. As the interaction strength
increases to U = 4, the peaks shift slightly towards each other,
and their intensity decreases as some weight is transferred to
shoulder structures located around w = =£3. These structures
are further analyzed in Appendix C, which presents exact
diagonalization results that qualitatively reproduce both spec-
tra. When a voltage bias of V = 1.5 is applied, as shown
in Fig. 12(b), the noninteracting spectral function (dashed
lines) remains largely unaffected by the bias. However, when
U = 4, the peaks associated with the bonding and antibonding
states are quickly suppressed and eventually merge with the
shoulder features in the presence of the bias. It is noteworthy

FIG. 12. Spectral function of the host atoms (U = 0, dashed line)
and impurity atoms (U = 4, solid line) at (a) equilibrium and (b) in
the presence of a bias voltage V = 1.5.

that the spectrum’s value at zero frequency remains largely
unaffected by the el-el interactions. Due to the Meir-Wingreen
formula [35,51], this characteristic renders the current insensi-
tive to el-el interactions at low bias values, as shown in Fig. 11.

The properties of the spectral functions explain further
aspects of the IV characteristics in Fig. 11. In particular, for
U = 0, the current grows faster than linear at small voltages
since more bonding and antibonding states become available
for transport as the bias increases up to approximately V =~ 1.
After that point, the noninteracting current begins to saturate
due to the finite width of the density of states. For U = 4, the
current is expected to saturate only at V & 5 due to the wider
density of states, as shown in Fig. 12(b). However, as the
bias is increased to V &~ 1.5, more electronic states become
involved in the transport mechanism [Fig. 12(b)], which also
leads to an upturn in the current-voltage characteristic of the
interacting system.

IV. CONCLUSIONS

We presented a nonequilibrium DMFT approach to in-
homogeneous Hubbard-Anderson lattice models that treats
disorders and electron-electron interactions on equal footing.
The theory reduces to the conventional DMFT for ordered
lattices and to the CPA for noninteracting electrons. Both
time-dependent and steady-state problems have been imple-
mented with advanced numerical methods.

To validate our approach, we performed benchmarks on
an isolated cube composed of eight sites. These test calcula-
tions demonstrated a good agreement of the spectral functions
with exact diagonalization results at both weak and strong
couplings, and for a wide range of disorder concentrations.
Furthermore, we investigated an interaction quench problem
and showed that our scheme almost perfectly conserves the
total energy during the time evolution, and that both the clean
and disordered systems thermalize within just a few hopping
times.

As an application, we studied a quantum transport model
featuring a serial double quantum dot between two leads. This
model includes both disorders and electron-electron interac-
tions within the device region. We found that the occupations
on the left and right dots can be reversed as a function of
external parameters, such as voltage or interaction strength.
Moreover, we showed that interactions suppress the current at
large bias values, while their effect on the current becomes
negligible at low bias. Additionally, we discussed how the
electron-electron interactions redistribute the electron popula-
tion, leading to an effectively hot nonequilibrium steady state.
Models with disorder yield a reasonable interpolation be-
tween the results for the clean host and impurity systems. Our
method offers a versatile framework for studying nonequi-
librium phenomena in which both interaction and disorder
effects play an important role.

Although our study primarily focused on systems close to
particle-hole symmetry, due to the limitations of the employed
IPT impurity solver, it is straightforward to incorporate more
advanced impurity solvers to explore a broader parameter
regime. In equilibrium, Monte Carlo solvers are a natural
choice [52,53], while nonequilibrium simulations of strongly
correlated systems could be implemented with perturbative
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strong-coupling solvers [54]. Furthermore, our theory can be
combined with a realistic orbital basis set to realize first-
principles simulations of transport or other nonequilibrium
properties.
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APPENDIX A: LEAD SELF-ENERGY
AND GAUGE TRANSFORMATION

In quantum transport problems, the system is coupled to
external fermionic baths, whose effects can be incorporated
into the lead self-energy, as was done in Eq. (3). We assume
that the leads are noninteracting and free of disorder. The
Hamiltonian of the total system takes the form

A@) = Y (A0 + A= @) + A @) (Ala)
where

HN@) =) L Hy G (00 an. (Alb)

R0 ) = 3 (Hy, (0 ang + He). (Ale)

Here, H*'(¢) and H*™"(¢) are the Hamiltonian for the
a-lead and its coupling to the central device region, respec-
tively. H9%Y (1) is the device Hamiltonian, whose explicit form
is not relevant for the lead self-energy calculation. We use
a (a’) to denote the annihilation (creation) operators of the
lead electrons. Due to the hermiticity of the Hamiltonian,
Hoz-ld (f) — [Hot-ld (t)]*

mn,o nm,o

1. Lead self-energy

The action associated with the Hamiltonian (A1) reads

%
S = /dZ{ Z azm”(Z)(idiZ _Hz;,{(:,(z)>aan(r(z)

o,mn,o

= 2 (@2 @aune ) + Hc)} + 5.

(A2)

Since the leads are noninteracting, one can integrate them out
using a Gaussian integral, which results in an effective action
St for the central device region. If an observable A[c*, c] is
defined on the device subspace, its expectation value reads

[ Dlas, aq; c*, clAlc*, cleSidadaic’c]

A= S r—
‘/'D[a;k(7 aa;c*, c]etS[aa,aa,c ,cl

[ Dlc*, clA[c*, cle’S™" "]
= f 'D[C*’ C]eiseff[c*’c]

; (A3)

where the second line defines S¢[¢*, c].

By inserting Eq. (A2) into Eq. (A3) and integrating over a,
and a, we arrive at

geft — gdev _ /dzdz/ Z ci(2) Z f‘j:lf(z, 7)o (2),

ij,o o

(A4)

where the (embedding) self-energy of the « lead reads

-1d a-hyb 0,a-1d o-hyb,*
Tie@ ) =) [H @GS @ HH ().
ki

(AS5)

G° in the above expression is the Green’s function of the
decoupled lead «:

—_
d
(id_z —H5 (z>) G2, ) =8z — . (A6)

Comparing Eq. (A4) with Eq. (3), we see that the external
self-energy from the leads is given by T = >~ %14,

2. Gauge transformation

A time-dependent external bias V*(¢) shifts the on-site
energy of the a-lead, i.e. the matrix elements in the occupa-
tion number basis are shifted as H2% (t) = H2\9 (o) + 6(t —
t0)V*(t)8mn. One can employ a gauge transformation to shift
the time-dependence from the onsite energy of the lead to the
hybridization term, which can simplify the calculation of the
lead self-energy since the Green’s function of the isolated lead
is in this case time-independent.

In practice, this is achieved by applying a time-dependent
transformation

H(@) = U(z)(ﬁ(r) _ i%)uf(r) (A7)

to the Hamiltonian (A1) [55], with the unitary operator U (¢)
given by

U(r) = exp (i / iy V"‘(t_)ﬁam,,). (A8)

fo amo

The transformed wave function becomes |¥ (7)) =
U(@)|¥(t)), and its time evolution is determined by the
Schrodinger equation

0 = I
i V(@) =HOY (). (A9)

One can prove that physical observables A(r) =
(W(OIA@)|V(2)) evaluated with the new wave function
|W(t)) are the same as in the original formulation.
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After the transformation, the Hamiltonian (A1) becomes

@)=Y (A9 + B*M°0) + A*@),  (Al0a)
where )
A = " HEI (10)d} 0 Gano (A10b)
A1) = 37 (HED 0o ™ Ot gy + Hee),
v (A10c)

and H% (1) = A%(t). Tn deriving Eq. (A10), one uses
U (1)tamo U (1) = tgmoe” 1o ™" and  0(0)at,,, U (1) =

oamo
almoeJrlf'; 4V'® " Wwhich can be obtained from the
Baker-Campbell-Hausdorff formula. Note that in the
transformed Hamiltonian, Eq. (A10), the lead Hamiltonian
is time-independent, which enables us to apply conventional
time-independent recursive methods to calculate the

decoupled lead Green’s function in Eq. (A6) [56].

APPENDIX B: LATTICE HYBRIDIZATION FUNCTION

In this Appendix, we provide a proof for Eq. (13) based
on the idea presented in Ref. [15]. To simplify our notation,
we exclude unnecessary indices, and keep only the site in-
dex denoted by i, /, ... in this section. Repeated indices are
summed over. From Eq. (11), the site diagonal part of I" reads
(W;; generically is nonzero due to the external self-energy)

Ti = v + viWali + yiWa Tiu(1 — 8y). BD
The off-diagonal part of " is (I # i)
1—‘li = Vlwllmrmi

=yiWiilii + VWi i (1 = 8im)
=yiWiilii + ViWim VWi i (1 = i)
+ VWi YW Dni(1 = 8in)(1 — 8ipn)
= yiWiilii + ViWim YW Dii(1 = i)
+ ViWin Vi Won YaWoi T (1 = 8i)(1 = 8in) + -+ (B2)

81 (a) 2 sites I em U=o0 (b) 2+25siteg § ___. y=o
6 | U=2 b U=2
I — u=4 i1 —u=4
— [ 4 0 ]
3¢ i -
] [} I
2 ! 2 i
! qih
0 | | 0 AlLE Ly
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w w

FIG. 13. Exact local spectral function of (a) a half-filled isolated
Hubbard dimer with hopping 1 and (b) the same Hubbard dimer
coupled to two noninteracting sites (one on each side, hopping 0.5).

By inserting Eq. (B2) into Eq. (B1) and comparing the result
with Eq. (12), one obtains Eq. (13).

APPENDIX C: EXACT SPECTRA OF A HUBBARD DIMER

In Figs. 13(a) and 13(b), we plot the local spectral functions
on either the left or right site (the results are identical) for an
isolated Hubbard dimer and a dimer coupled to noninteract-
ing sites (one on each side). Half-filling is assumed and the
intra-dimer hopping amplitude is set to unity. In panel (b), the
hopping to the noninteracting sites is 0.5. The black, orange,
and red lines correspond to U = 0, 2, and 4, respectively.

The noninteracting spectra shown in panel (a) display
two peaks corresponding to bonding and antibonding states.
Increasing U moves these peaks further apart, with two addi-
tional peaks appearing at higher frequencies. This behavior
is not consistent with the evolution of the spectra with in-
teraction strength shown in Fig. 12(a). To understand this
behavior, one needs to consider the effect of the coupling
to the leads. The spectra for the dimer coupled to two non-
interacting sites, shown in panel (b), exhibits four peaks at
U =0: two main peaks near the bonding and antibonding
states of panel (a), and two smaller peaks near the Fermi en-
ergy, which fill in the gap. Increasing U causes the main peaks
to approach each other, while spectral weight is transferred
more rapidly to higher energy states, compared to the isolated
case. This behavior qualitatively explains the evolution of the
DMFT equilibrium spectra with interaction strength, shown in
Fig. 12(a).
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