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The Berry curvature (BC), manifesting the band structure geometry, is extensively employed to describe the
intrinsic transport properties, such as the intrinsic anomalous Hall effect and the spin Hall effect. The BC also
can cause the intrinsic antidamping spin-orbit torque (SOT), but is regardless of the fieldlike SOT which is
usually of extrinsic origins. Here, we study the current-induced SOT and reveal a new intrinsic fieldlike SOT in
addition to the intrinsic antidamping SOT. The topological origin of the intrinsic SOTs can be understood with
the BC defined in the mixed momentum-magnetization parameter space (k, M), rather than the conventional
BC, which is especially important for systems with complicated spin-orbit interaction. We apply our theory to
a magnetic semi-Dirac semimetal and find that the interplay between the peculiar spin textures and anisotropic
band structure generates the intrinsic fieldlike SOT, which emerges even in the absence of band gap and for the
Fermi energy far away from the Dirac points, quite different from the intrinsic antidamping SOT or anomalous
Hall effect. Our findings provide another perspective to understand the physics of the current-induced SOTs.
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I. INTRODUCTION

Spin-orbit torque (SOT), arising from the interaction
between the nonequilibrium spin density of carriers and
local magnetization, provides a promising mechanism of
magnetization control for ferromagnetic or even antiferro-
magnetic layer proximity to spin-orbit-coupling systems with
broken spatial inversion symmetry [1–10]. Due to the spin-
momentum locking, when charge current passes through a
system with spin-orbit interaction, the orbital angular momen-
tum of the carriers can be transferred to their spin, leading to
the nonequilibrium spin density, which in turn exerts a torque
on the local magnetization via carrier-magnetic moment ex-
change coupling. These current-induced torques have been
attracting great attention because they are believed to play a
key role in the practical implementation of various spintronics
concepts [11–21].

The SOT was observed experimentally early in epilay-
ers of (Ga, Mn)As dilute magnetic semiconductors [3–5],
later in several different metallic bilayers with structural in-
version symmetry breaking [9–11,22–25], and recently in
varied topological materials [26–31]. In analogy to the field
and damping terms in the Landau-Lifshitz-Gilbert equation,
the SOTs can be decomposed into fieldlike and damping-
like SOTs [2,31–33]. The current-induced SOTs can be
examined by using the spin-torque ferromagnetic resonance
(STFMR) [26,29,31] and the second-harmonic Hall measure-
ment techniques [27,29,34]. In the STFMR measurement, the
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dampinglike and fieldlike components of the SOT can be
extracted respectively from the symmetric and antisymmet-
ric parts of the measured STFMR signal. Experimentally, a
current-induced intrinsic antidamping SOT stemming from
the Berry curvature (BC) was demonstrated [31] and has
led to an explosion of activities in topological spintronics
[12,13,15–21,31–33]. It is commonly believed that the BC,
manifesting the band structure geometry, contributes to the
intrinsic antidamping SOT with the same mechanism as in
the intrinsic anomalous Hall effect (AHE) [35,36] and the
spin Hall effect [37–39], but it is regardless of the field-
like SOT which usually stems from extrinsic mechanisms.
Interestingly, a recent study showed that in a single-domain
ferromagnetic layer with Rashba spin-orbit coupling, the
intrinsic SOT can be dominated by the fieldlike torque
symmetry [40].

While the intrinsic antidamping SOT has been widely
investigated in varied systems, a systematic theory for current-
induced intrinsic fieldlike SOT with topological origin has not
been established so far. In this work, we study the current-
induced SOT based on the Green’s function approach, and
intriguingly find an extra intrinsic fieldlike SOT in addition to
the usual intrinsic antidamping SOT. Both the intrinsic SOTs
can be understood with a mixed Berry curvature, defined in
the momentum-magnetization parameter space (k, M). We
evaluate the intrinsic fieldlike SOT in a magnetic semi-Dirac
semimetal (SDSM). Recently, the nonmagnetic [41–44] and
magnetic [45,46] SDSMs have drawn a great deal of atten-
tion due to their unique band structure [47–52]: linear in
one direction and quadratic in the orthogonal direction with
different spin texture. We find that the intrinsic fieldlike SOT
can survive for higher Fermi levels and even in the absence

2469-9950/2023/108(12)/125140(8) 125140-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4707-1925
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.125140&domain=pdf&date_stamp=2023-09-25
https://doi.org/10.1103/PhysRevB.108.125140


CHEN, WANG, LIN, DUAN, DENG, AND WANG PHYSICAL REVIEW B 108, 125140 (2023)

of band gap, in sharp contrast to the intrinsic dampinglike
SOT [31].

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and theory. In Sec. III, we apply
our theory to magnetic SDSMs, by which we reveal a new
intrinsic fieldlike SOT in addition to the intrinsic antidamping
SOT. The last section contains a short summary.

II. MODEL AND THEORY

We start from a system with general spin-orbit coupling,
which is depicted by the Hamiltonian

H(k) = gk · σ̂ + JM · ŝ. (1)

Here, ŝ = h̄σ̂/2 is the electron spin operator, σ̂ = (σ̂x, σ̂y, σ̂z )
represents the vector of spin Pauli matrices and M denotes the
magnetization of the adjacent ferromagnetic insulator (FMI).
The spin-orbit interaction is dependent on the concrete form
of gk. Upon application of an external electric field, the linear-
response function of the charge current and spin density can
be combined into a unified formula (see Appendix A)

χ j,ab = − h̄

2πV

∫ ∞

−∞
dε

∑
kμν

ξ
μa
k, jξ

νb
k,1

× Tr
[
σ̂μG<

k σ̂ν∂εGA
k − σ̂μ∂εGR

k σ̂νG<
k

]
, (2)

where V is the volume of the sample and ξ
μa
k, j = − e

h̄
∂gk,μ

∂ka
δ j,1 +

h̄
2 δμ,aδ j,2, with (a, b) denoting the current direction and (μ, ν)
denoting the spin direction, and j = 1 and 2 correspond re-
spectively to the conductivity and torkance tensors, i.e., σab =
χ1,ab and τab = χ2,ab. The relevant retarded/advanced Green’s
function is determined by

GR/A
k =

∑
η=±

|ψk,η〉〈ψk,η|
ε − εk,η ± i�

= 1

2

∑
η=±

1

ε − εk,η ± i�

(
1 + η

dk

|dk| · σ̂

)
, (3)

with dk = gk + Jh̄M/2, and G<
k = (GA

k − GR
k ) f (ε) defines

the less Green’s function, in which εk,η denotes the eigenen-
ergy of H(k) corresponding to the wavefunction |ψk,η〉,
h̄/� represents the electron lifetime, and f (ε) = [1 +
exp( ε−EF

kBT )]−1 accounts for the Fermi-Dirac distribution func-
tion with chemical potential EF and temperature T . The
resulting nonequilibrium spin density �s = (τxb, τyb, τzb)Eb

will exert a torque T = M × �s on the adjacent FMI, with
Eb being the magnitude of the electric field. According to the
parity of �s with respect to M, the SOT can be separated into
the fieldlike (even) and dampinglike (odd) components.

By substituting Eq. (3) into Eq. (2), we can divide
the response function into the intraband contribution (see
Appendix B)

χ intra
j,ab = e

V

∑
kη,μν

1

�

∂ f (εk,η )

∂εk,η

dk,μdk,ν

|dk|2
∂dk,ν

∂kb
ξ

μa
k, j (4)

and interband contributions

χ inter,+
j,ab = − h̄

V

∑
kη,μν

fk,ηT η,+
k,μν

ξ
μa
k, jξ

νb
k,1 sin 2ϑk, (5)

χ inter,−
j,ab = − h̄

V

∑
kη,μν

fk,ηT η,−
k,μν

ξ
μa
k, jξ

νb
k,1 cos 2ϑk, (6)

with fk,η = f (εk,η ) cos2 ϑk and ϑk = cot−1(2|εk,η|/�). Here,
T η,+

k,μν
= −ηdk,μdk,ν/(2|dk|4) originates from the Riemannian

metric tensor [53], namely, the real part of the geometric
tensor 〈 ∂ψk,η

∂dk,μ
| ∂ψk,η

∂dk,ν
〉. T η,−

k,μν
is relevant to the curvature tensor

defined in the composite parameter space R = (k, M), i.e.,

�
η

R,μν = −η
dk

2|dk|3
·
(

∂dk

∂Rμ

× ∂dk

∂Rν

)
, (7)

the integral of which gives the generalized Chern number
Cη

μν = (1/2π )
∫

�
η

R,μνdRμdRν . By replacing Rμ,ν → kμ,ν ,
Eq. (7) recovers the momentum-space BC �

η

kk,μν
. If replacing

Rμ → Mμ and Rν → kν in Eq. (7), one can obtain the mixed
BC �

η

Mk,μν
, as defined in Refs. [32,33]. It can be verified that

∑
μν

T η,−
k,μν

ξ
μa
k, jξ

νb
k,1 = e2

h̄2 �
η

kk,abδ j,1 − e

2
�

η

Mk,abδ j,2. (8)

Obviously, χ intra
j,ab and χ inter,+

j,ab all contribute to the extrinsic

SOT, while χ inter,−
j,ab includes an intrinsic component indepen-

dent of impurity scattering. To see more clearly the relation
between the intrinsic SOTs and the curvature tensors, we can
reduce Eq. (6) in the limit of � → 0 or ϑk → 0 as

χ inter,−
j,ab = − e

V

∑
kη

(
e

h̄
�

η

kk,abδ j,1 − h̄

2
�

η

Mk,abδ j,2

)
f (εk,η ).

(9)

For systems with simple spin-orbit coupling, e.g., gk is linear
in k, �

η

kk,ab differs from �
η

Mk,ab only by a constant fac-
tor. This may lead one to an incorrect conclusion that the
momentum-space BC is responsible for the intrinsic SOTs.
In fact, according to Eq. (9), the intrinsic SOTs, encoded in
the torkance tensor χ inter,−

2,ab , should be characterized by the
mixed BC. Indeed, the momentum-space BC fails to capture
the intrinsic SOTs in systems with complicated spin-orbit
interaction, such as the magnetic SDSM studied below.

III. INTRINSIC FIELDLIKE SOT IN MAGNETIC SDSMs.

Specifically, we consider a minimal model for the mag-
netic SDSMs [45,46], where the spin-orbit coupling takes the
form gk = (αk2

x − δ0, υky, 0). For convenience of discussion,
we use the dimensionless parameters and assume α and υ

to be positive. Specifically, for a typical SDSMs, the sys-
tem parameters can be α = 7.5 meV nm2, υ = 65 meV nm
and the gap parameter varied from δ0 = 1 meV to 10 meV,
as taken in Refs. [54,55]. Similar magnetic SDSM model
has been employed as the ferromagnetic layers of the
ferromagnetic/normal metal/ferromagnetic sandwich struc-
ture, where the spin current density and spin-transfer torques
were studied [45]. As the sample is attached to a FMI, dk =
(αk2

x − δ′
0, υk′

y, Mz ) and we can obtain the dispersion

εk,η = η

√(
αk2

x − δ′
0

)2 + υ2k′2
y + M2

z (10)
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FIG. 1. (a) The dispersion of the ferromagnetic SDSM without
FMI for δ0 > 0 in the left panel and δ0 < 0 in the right panel, whose
conduction band’s spin textures are displayed in (b) and (c), respec-
tively, where the red curves represent the energy contour. (d) The
averaged spin polarization (left axis) and DOSs (right axis) vs EF ,
where the vanishing seff,y and seff,z components are not shown.

and the corresponding wavefunction

|ψk,η〉 = 1√
2εk,η(εk,η − dk,z )

(
dk,x − idk,y

εk,η − dk,z

)
, (11)

where δ′
0 = δ0 − Mx, k′

y = ky + My/υ, and η = ± indexes the
conduction/valence band. In Fig. 1(a), we plot the disper-
sion for the SDSM, from which we see that the spectrum
is parabolic/linear in the x/y direction. In equilibrium, the
nontrivial spin texture sη(k) ≡ 〈ψk,η|ŝ|ψk,η〉 = ηh̄dk/(2|dk|),
as displayed in Figs. 1(b) and 1(c), can result in net magneti-
zation for the magnetic SDSM, which can be captured by the
averaged spin density over the Fermi surface

seff = 1

N (EF )

∑
kη

sη(k)δ(εk,η − EF ). (12)

Here, N (EF ) = ∑
kη δ(εk,η − EF ) is the density of states

(DOSs) at the Fermi level. The averaged spin density and
DOSs vs EF are shown in Fig. 1(d).

In the absence of the FMI, the conduction and valence
bands touch at K± = (±√

δ0/α, 0) for δ0 > 0, forming a
pair of 2D Dirac points. From Eq. (10), we see that the y-
component magnetization My of the FMI will shift the Dirac
points in the y direction and the other two components Mx,z

can open gap for the spectrum. The ways of the gap-opening
effect of Mx and Mz are quite different. By tuning Mx, the
Dirac points with decreasing δ′

0 will come closer and merge
at δ0 = Mx and further be gapped out for δ0 < Mx, while a
finite Mz gaps the spectrum without moving the Dirac points.
The gap closing and reopening imply a topological phase tran-
sition process. Unfortunately, the varied topological phases
here cannot be distinguished well by the Chern number of
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FIG. 2. The torkance tensor elements τzy (the first row) and τxy

(the second row) in units of eh̄/2 vs EF for different δ0 (�) in the
first (second) column. Here, we set [(a)–(b)] Mz = 0 and [(c)–(d)]
Mz = 0.05. Other parameters are set as υ = 1, α = 2, kBT = 0.001,
and Mx,y = 0.

the momentum-space BC. The momentum-space BC is given
by �

η

kk,ab = −εabzMzυαkx/ε
3
k,η, which is odd in kx, with εabc

being the 3D antisymmetric tensor. As a result, the Chern
number Cη = (1/2π )

∫
�

η

kk,xydkxdky = 0.
Instead, the topology of the SDSMs can be captured

by the mixed BC defined in Eq. (7), which is specifically
given by �

η

Mk,zy = ηh̄υ(αk2
x − δ′

0)/(4|dk|3) and �
η

Mk,xy =
−ηh̄υMz/(4|dk|3). As a result, the mixed Chern numbers,
which describes the flux of the mixed BC through the Ma-kb

plane for constant kc, read as Cη
zy(kx ) = η

2 sgn(αk2
x − δ′

0)
and Cη

xy(kx ) = − η

2 sgn(Mz ), similar to the scenario in Weyl
semimetals [56–58] . Thus, finite torkance τzy and τxy can be
obtained from the second term in Eq. (9). This implies that
in study of the current-induced spin polarization or intrinsic
SOT in the SDSMs, one must use the mixed BC rather than
the conventional BC.

Notice that the leading term of �
η

Mk,xy is proportional to
M while the leading term of �

η

Mk,zy is independent of M.
According to the definition T = M × �s, the torkance τxy

contributes to the intrinsic antidamping SOT and τzy to the
intrinsic fieldlike SOT. Next, we compare other differences
between the torkance τxy and τzy. First, τxy ∝ Mz only survives
for finite band gap with Mz 
= 0, which recalls the scenario
for the momentum-space BC induced intrinsic antidamping
SOT as in literature [31,59] or intrinsic AHE [35,36]. Differ-
ently, τzy can emerge even in the absence of band gap with
Mz = 0. The numerical results of the torkance τzy are plotted
in Figs. 2(a) and 2(b). As expected, the mixed BC can induce
intrinsic nonequilibrium spin density even for Mz = 0. As
shown by Fig. 2(a), if δ0 < 0, τzy exhibits a plateau when
|EF | < |δ0|, whose height is ∼1/

√
α|δ0| and width ∼2|δ0|,

while if δ0 > 0, the plateau turns to a valley with τzy = 0 at the
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FIG. 3. Evolution of the torkance tensor elements τzy and τxy with
temperature, in which � = 0 and other parameters are the same as
Fig. 2.

Dirac points EF = 0. Only for Mz 
= 0, nonzero τxy emerges as
shown in Fig. 2(c), in which the curves are also sensitive to the
SDSM parameter δ0 within the band gap. With EF away from
the Dirac points, τxy tends to vanish but τzy remains finite.

Physically, the current-induced intrinsic nonequilibrium
spin density and the related intrinsic fieldlike SOT can be
understood from Figs. 4(a) and 4(b). In equilibrium, the mag-
netic SDSM possesses finite magnetization in direction x,
see Fig. 1(d), such that the electrons experience an effective
magnetic field Beff = (Beff,x, 0, 0) and are magnetized effec-
tively along the x direction with seff = (seff,x, 0, 0). During
acceleration in the electric field E, the effective magnetic
field the electrons feel, because of the spin-momentum lock-
ing in gk · σ̂, will acquire a time-dependent component, with
∂t Beff,x = −2eExαkx/(gμBh̄) and ∂t Beff,y = −eEyυ/(gμBh̄),
where g and μB denote the g factor and Bohr magneton,
respectively. Then, by solving the Bloch equations for seff , i.e.,

dseff

dt
= 1

h̄
seff × Beff , (13)

we obtain

�seff,a � h̄εabc

|Beff |2
(

seff,b
dBeff,c

dt
− seff,c

dBeff,b

dt

)
. (14)

In fact, the mixed BC in Eq. (7) is closely related to the spin
texture, which can be written as

�
η

Mk,ab = − εabc

2|dk|2
∂dk,b

∂kb
sη

c (k). (15)

This implies that the spin polarization seff is crucial for the
current-induced intrinsic fieldlike SOT. For Mz = 0, we find
τzy ∼ �seff,z/Ey = − eυ

gμB

seff,x

|Beff |2 is finite for E = Eyêy, while

τzx ∼ �seff,z/Ex = 0 for E = Exêx.

FIG. 4. Schematic of the current-induced nonequilibrium spin
density for the electric field (green arrows) applied in the (a) y
direction and (b) x direction. The semitransparent regions represent
the equilibrium configuration, where the dark solid curves denote
the energy contour and the red arrows thereon indicate the spin
direction. The interband contribution can be attributed to intrinsic
magnetization of the band, in which the carrier spins experience
an equilibrium effective magnetic field Beff = (Beff,x, 0, 0) and the
electrons possess an effective spin polarization seff = (seff,x, 0, 0),
denoted by the red dotted arrow. For (a) E = Eyêy, during electron
acceleration in the electric field, the effective magnetic field acquires
a time-dependent y component with dBeff,y/dt ∼ eEy, which rotates
the spin from seff to s′

eff , and (b) E = Exêx , dBeff,x/dt ∼ eExkx is
parallel to seff and thus can not rotate seff . (c)−(d) Dependence of
the intrinsic torkance τz‖ = �sz/E‖ on the angle of the in-plane
electric field E = E‖(cos θE êx + cos sin θE êy ) for varied EF , with (c)
δ0 = −0.1, (d) δ0 = 0.1, and the rest of the parameters are set the
same as Fig. 2(a).

If Mz 
= 0, the band electrons will be out-of-plane magne-
tized by the FMI, namely, seff,z is nonvanishing. In this case,
�seff,x = eυ

gμB

seff,z

|Beff |2 Ey and �seff,y = − 2eα
gμB

seff,z

|Beff |2 kxEx. There-
fore, a finite x component intrinsic nonequilibrium spin
density can be induced, while the net y-component nonequi-
librium spin density vanishes, because �seff,y is odd in kx.
Here, τxy ∝ Mz is of dampinglike property, while τzy can be
M independent, demonstrating its fieldlike nature.

From above discussions, one can notice that the mixed BC
induced SOTs only include the intrinsic antidamping SOT
∼τxy and intrinsic fieldlike SOT ∼τzy, and other transverse
and all longitudinal components are vanishing. Except for the
intrinsic components, there are some extrinsic components
χ intra

j,ab , χ inter,+
j,ab and partly in χ inter,−

j,ab , which depend heavily
on the impurity scattering characterized by a finite �, see
Figs. 2(b) and 2(d). From analysis of the parity (see Ap-
pendix C), we find that both χ intra

j,ab and χ inter,+
j,ab are zero for

a 
= b, namely, they possess only longitudinal components.
The evolution of the intrinsic torkance tensor elements τzy and
τxy with temperature is displayed in Fig. 3, which indicates
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that, due to the broadening effect of the Fermi surface by the
thermal fluctuation, the SOTs can be sensitive to temperature
when the Fermi level is near the Dirac point. As a result
of the anisotropic spin texture of the magnetic SDSMs, the
nonequilibrium spin density is maximum (vanishing) when
the current flows in the linear (parabolic) direction. This leads
to the sine dependence of the current-induced nonequilibrium
spin density on the direction of the electric field, as illustrated
by Figs. 4(c) and 4(d). Additionally, the spin texture of the
magnetic SDSMs not only relies strongly on the model param-
eter δ0 and the Fermi energy, but also can be modulated by the
FMI, and as a result, the intrinsic fieldlike SOT can be tunable
magnetically and electrically. In experiments, it is expected
that the intrinsic fieldlike SOT would be observable in mag-
netic topological materials by the STFMR technique, which
can be extracted from the antisymmetric part of the STFMR
signal [26,29,31]. The intrinsic and extrinsic contributions can
be distinguished by the doping or disordered effects.

IV. SUMMARY

In conclusion, we have derived a formula for the current-
induced intrinsic SOTs and find that the topological origin
of the intrinsic SOTs can be captured with the mixed BC,
rather than the momentum-space BC responsible for the in-
trinsic AHE. In systems with simple spin-orbit coupling,
the results from the mixed BC can recover those from the
momentum-space BC. However, for systems with compli-
cated spin-orbit coupling, the mixed BC predicts the existence
of current-induced intrinsic fieldlike SOT, which is beyond
the description of the momentum-space BC. We apply our
theory to a magnetic SDSM model and find it displays both the
intrinsic dampinglike and intrinsic fieldlike SOTs owing to the
interplay between the peculiar spin textures and anisotropic
band structure. Furthermore, these two types of intrinsic SOTs
exhibit different dependence on the band gap and EF . We
expect the intrinsic fieldlike SOT to be observable in magnetic
topological materials.
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APPENDIX A: LINEAR-RESPONSE THEORY:
A GREEN’S FUNCTION APPROACH

Let us start from a general Hamiltonian H0, which is driven
by external perturbation H ′(t ). The expectation of a mechani-
cal quantity denoted by operator Q̂ can be expressed as

Q(t ) = Tr[U †(t,−∞)Q̂(t )U (t,−∞)ρ̂0], (A1)

where Q̂(t ) = e
i
h̄ H0t Q̂e− i

h̄ H0t , ρ̂0 denotes the unperturbed den-
sity matrix, and

U (t,−∞) = T̂ exp

(
1

ih̄

∫ t

−∞
dt ′Ĥ ′(t ′)

)
(A2)

represents the time-evolution operator in the interaction
picture. Here, Ĥ ′(t ) = e

i
h̄ H0t H ′(t )e− i

h̄ H0t and T̂ is the time-
ordering operator. In the spirit of the linear-response theory,
we can write Q(t ) = Q0 + �Q(t ), where Q0 = Tr(Q̂ρ̂0) and

�Q(t ) = − i

h̄

∫ t

−∞
dt ′�(t − t ′)Tr〈[Q̂(t ), Ĥ ′(t ′)]〉 (A3)

accounts for the linear response of Q̂ to perturbation H ′(t ), in
which �(x) is the Heaviside function.

Usually, the correlation function in Eq. (A3) can be eval-
uated by means of the Matsubara Green’s function, during
which time one will encounter complicated Matsubara fre-
quency summation. Below, we calculate Eq. (A3) directly by
the common retarded and advanced Green’s functions, which
does not involve complicated contour integral. The matrix el-
ements of the retarded/advanced Green’s function are defined
as

GR/A
μν (t, t ′) = ±�(±t ∓ t ′)[G>

μν (t, t ′) − G<
μν (t, t ′)], (A4)

where the less and greater Green’s functions are given by

G<
μν (t, t ′) = i〈c†

ν (t ′)cμ(t )〉/h̄, (A5)

G>
μν (t, t ′) = −i〈cμ(t )c†

ν (t ′)〉/h̄. (A6)

Here, c†
μ(t ) and cμ(t ) are the electron creation and annihilation

operators, acting on a set of complete basis vectors, saying
{|ψμ〉}. Then, in the Hilbert space {|ψμ〉}, we can express
Eq. (A3) as

�Q(t ) = −ih̄
∫ t

−∞
dt ′�(t − t ′)

∑
μνλγ

QμνH ′
λγ (t ′)

× [G>
νλ(t, t ′)G<

γμ(t ′, t ) − G<
νλ(t, t ′)G>

γμ(t ′, t )],

(A7)

where Qμν = 〈ψμ|Q̂|ψν〉 and H ′
λγ (t ′) = 〈ψλ|H ′(t ′)|ψγ 〉. For

convenience, one can choose the eigenstates of H0 as the
basis of the Hilbert space, such that the Green’s functions
contain only the diagonal elements. However, it should be
noted that this is not the only choice, because the basis will be
traced out and the final result is representation independent.
By substituting Eq. (A4) into Eq. (A7), we can derive for

�Q(t ) = −ih̄
∫ t

−∞
dt ′Tr[Q̂(t )G<

(
t, t ′)H ′(t ′)

× GA(t ′, t ) + Q̂(t )GR(t, t ′)H ′(t ′)G<(t ′, t )] (A8)

which can be re-expressed as

�Q(t ) = 1

2π

∫ ∞

−∞
dωe−iωt�Q(ω), (A9)
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where

�Q(ω) = −i

2π

∫ ∞

−∞
dεTr[Q̂G<(ε)H ′(ω)

× GA(ε − h̄ω) + Q̂GR(ε + h̄ω)H ′(ω)G<(ε)],

(A10)

with G<(ε) = [GA(ε) − GR(ε)] f (ε) defining the less Green’s
function. Here, H ′(ω) denotes the Fourier transform of H ′(t ′)
and f (ε) = [1 + exp( ε−EF

kBT )]−1 is the Fermi-Dirac distribution
function.

When an ac electric field Eb(r, t ) = Ebe−i(q·r−ωt ) is applied
to the sample, the perturbation Hamiltonian takes the form

H ′(ω) = iω−1
∫

d3rĵb(r)Ebe−iq·r, (A11)

where ĵb denotes the current density operator. For ω →
0, we can approximate GA(ε − h̄ω) � GA(ε) − ∂εGA(ε)h̄ω

and GR(ε + h̄ω) � GR(ε) + ∂εGR(ε)h̄ω, such that Eq. (A10)
becomes

�Q(ω) = ih̄ω

2π

∫ ∞

−∞
dεTr[Q̂G<(ε)

× H ′(ω)∂εGA(ε) − Q̂∂εGR(ε)H ′(ω)G<(ε)],

(A12)

where an imaginary term ∼iTr[Q̂G<(ε)H ′(ω)GA(ε) +
Q̂GR(ε)H ′(ω)G<(ε)] was dropped. By replacing Q̂ → Q̂a

and H ′(ω) in Eq. (A12), we can arrive at

χab = − h̄

2πV

∫ ∞

−∞
dεTr[Q̂aG<(ε)ĵb

× ∂εGA(ε) − Q̂a∂εGR(ε)ĵbG<(ε)]. (A13)

For Q̂a = ĵa, the current-current correlation function gives the
well-known dc conductivity formula

σab = − h̄

2πV

∫ ∞

−∞
dεTr[ĵaG<ĵb∂εGA − ĵa∂εGRĵbG<],

(A14)

with V being volume of the sample. Similarly, for Q̂a → ŝa,
Eq. (A12) gives response of the spin density to dc electric
field, characterized by the torkance tensor

τab = − h̄

2πV

∫ ∞

−∞
dεTr

[
ŝaG<ĵb∂εGA − ŝa∂εGRĵbG<

]
.

(A15)

The charge current and current-induced spin polarization are
given by Ja = σabEb and �sa = τabEb, respectively.

APPENDIX B: DERIVATION
FOR THE RESPONSE FUNCTIONS

For a system described by the Hamiltonian

H(k) = dk · σ̂, (B1)

where σ̂ is the vector of spin Pauli matrix, we have

ŝa = h̄

2

∂H(k)

∂dk,a
= h̄

2

∑
μ

δμ,aσ̂μ, (B2)

ĵb = −e
∂H(k)

h̄∂kb
= − e

h̄

∑
μ

∂dk,μ

∂kb
σ̂μ. (B3)

Therefore, by noting

ξ
μa
k, j = −e∂dk,μ

h̄∂ka
δ j,1 + h̄

2
δμ,aδ j,2, (B4)

the conductivity and torkance tensors can be combined into a
unified formula as

χ j,ab = − h̄

2πV

∫ ∞

−∞
dε

∑
kμν

ξ
μa
k, jξ

νb
k,1Tr[σ̂μG<(ε)

× σ̂ν∂εGA(ε) − σ̂μ∂εGR(ε)σ̂νG<(ε)]. (B5)

The relevant retarded/advanced Green’s function is deter-
mined by

GR/A =
∑

η

|ψk,η〉〈ψk,η|
ε − εk,η ± i�

. (B6)

Substituting the retarded and advanced Green’s functions into
Eq. (B5) yields

χ j,ab = h̄

2πV

∑
kηη′,μν

ξ
μa
k, jξ

νb
k,1

∫ ∞

−∞
dε f (ε)

(
1

ε − εk,η − i�
− 1

ε − εk,η + i�

)

× ∂ε

( 〈ψk,η|σ̂μ|ψk,η′ 〉〈ψk,η′ |σ̂ν |ψk,η〉
ε − εk,η′ + i�

− 〈ψk,η|σ̂ν |ψk,η′ 〉〈ψk,η′ |σ̂μ|ψk,η〉
ε − εk,η′ − i�

)
. (B7)

According to η′ = η and η′ 
= η, we can divide the response functions into the intraband and interband contributions

χ intra
j,ab = − h̄

V

∑
kη,μν

∂ f (εk,η )

∂εk,η

ξ
μa
k, jξ

νb
k,1〈ψk,η|σ̂μ|ψk,η〉〈ψk,η|σ̂ν |ψk,η〉 1

�
, (B8)

χ inter
j,ab = − ih̄

V

∑
kη,μν

ξ
μa
k, jξ

νb
k,1 f (εk,η )

[ 〈ψk,η|σ̂μ|ψk,η̄〉〈ψk,η̄|σ̂ν |ψk,η〉
(εk,η − εk,η̄ + i�)2

− 〈ψk,η|σ̂ν |ψk,η̄〉〈ψk,η̄|σ̂μ|ψk,η〉
(εk,η − εk,η̄ − i�)2

]
, (B9)
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where η̄ ≡ −η and we have used the identity

1

ε − εk,η − i�
= P

1

ε − εk,η

+ iπδ
(
ε − εk,η

)
. (B10)

By defining the angle

tan ϑk = �

|εk,η − εk,η̄| , (B11)

we can reexpress χ inter
j,ab = χ inter,+

j,ab + χ inter,−
j,ab , with

χ inter,+
j,ab = − h̄

V

∑
kη,μν

f (εk,η )ξμa
k, jξ

νb
k,1T η,+

k,μν
cos2 ϑk sin 2ϑk,

χ inter,−
j,ab = − h̄

V

∑
kη,μν

f (εk,η )ξμa
k, jξ

νb
k,1T η,−

k,μν
cos2 ϑk cos 2ϑk,

(B12)

where

T η,+
k,μν

= η

(〈
∂ψk,η

∂dk,μ

∣∣∣∣∂ψk,η

∂dk,v

〉
+

〈
∂ψk,η

∂dk,v

∣∣∣∣∂ψk,η

∂dk,μ

〉)
, (B13)

T η,−
k,μν

= i

(〈
∂ψk,η

∂dk,μ

∣∣∣∣∂ψk,η

∂dk,v

〉
−

〈
∂ψk,η

∂dk,v

∣∣∣∣∂ψk,η

∂dk,μ

〉)
. (B14)

By the wavefunction

|ψk,η〉 = 1√
2|dk|(|dk| − ηdk,z )

(
dk,x − idk,y

η|dk| − dk,z

)
, (B15)

we can obtain for

T η,−
k,μν

= −η
εμνγ dk,γ

2|dk|3 , (B16)

T η,+
k,μν

= −η
dk,μdk,ν

2|dk|4 . (B17)

APPENDIX C: ANALYSIS
FOR THE INTRABAND RESPONSE COEFFICIENTS

For the magnetic semi-Dirac semimetals, according to the
symmetry analysis, we find that the transverse torkance here
can only come from the mixed BC. As dk,x(y) is even (odd) in
kx (k′

y), the parity of a nonzero ∂dk,ν/∂kb about kb is opposite
to dk,ν , making dk,ν∂dk,ν/∂kb always odd with respect to kb.
Only when the parity of dk,μξ

μa
k, j is the same as dk,ν∂dk,ν/∂kb,

which requires a = b, can Eq. (4) of the main text survive the
integral over k. Consequently, χ intra

j,ab vanishes for a 
= b. As
compared to Eqs. (4) and (5) of the main text, the symmetry
of the integral kernel of χ inter,+

j,ab with respect to k is the same

as χ intra
j,ab , such that χ inter,+

j,ab = 0 if a 
= b.
The intraband response of the spin density to the charge

current, originating from the electron states on the Fermi
surface, is extrinsic and can be scaled by χ intra

2,ay /σyy =
−δa,yh̄2/(2υe) and χ intra

2,ax /σxx = 0, whose behavior can be un-
derstood intuitively by a picture resembling the charge current
in solids. As illustrated by Fig. 1 and Fig. 4 of the main text,
due to the special spin-momentum locking, the signs of the x
(y) component of the spin are identical (opposite) for carriers
with opposite momentum. As a result, the forward and back-
ward channel numbers are added (subtracted) to contribute to
the polarization in the x (y) direction. This also explains why
in the equilibrium there is finite (no) magnetization in the x (y)
direction. With the electric field turned on, the carrier number
will increase in one direction and decrease in the opposite,
leading to nonequilibrium distribution of the carriers along
the electric field. If the electric field is along direction y, the
number difference between the forward and backward moving
carriers will result in a net y spin density. However, for the x
direction, the decrease of the spin density on the backward
channels will be compensated by the increase on the forward,
making the total spin density unchanged. Consequently, χ intra

2,yy

can be finite but χ intra
2,xx is vanishing, which is consistent with

the scaled relation above.
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