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Critical spin liquid phase in the presence of Kondo frustration
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The heavy fermion phase is expected to be robust in the periodic Anderson lattice systems when the density
of states of conduction electrons at the Fermi energy is finite. In such systems the spin liquid phase driven by
geometrical frustration usually coexist with Kondo screening. Here we study a periodic Anderson-Heisenberg
triangular lattice model with both geometric and Kondo frustrations, the latter being caused by the on-site and
the nearest neighbor site c- f hybridizations. We show the existence of the Kondo breakdown quantum phase
transition at a critical hybridization strength Vc below which the dynamically-decoupled local moment spin liquid
phase emerges. Such phase is closely linked to the nodal points of the hybridization function in the presence of
Kondo frustration.
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I. INTRODUCTION

Heavy fermion behaviors and the associated quantum mag-
netism in correlated electron materials have attracted intensive
research interests in the society of condensed matter physics
[1,2]. The heavy fermion state in these materials develops at
low temperatures due to the quantum coherence of Kondo
effect, the latter being driven by the Kondo coupling or the
orbital hybridization between itinerant and local or f elec-
trons [3–5]. The strong correlation effect comes from the
Coulomb repulsion between f electrons, which is expected
to be strong enough leading to the localization of f electrons
in the absence of hybridization. With the finite hybridiza-
tion, Kondo effect takes place and is influenced by various
spin-spin exchange interactions between local electrons [6,7],
which could be mediated either by the Kondo coupling, the
so-called Ruderman-Kittel-Kasuya-Yosida interaction [8], or
by adjacent ions in realistic materials environments [9–11].
Usually, the interplay of Kondo effect and RKKY interaction
is expected to result in the paramagnetic heavy fermion state
and the magnetically ordered state, and the competition be-
tween them can be captured by the Doniach phase diagram
[12].

Interestingly, there is growing evidence of rich quantum
phases that are beyond the description of the Doniach sce-
nario [13,14]. For instance, the measurements of Yb-based
heavy fermion materials have revealed the existence of the
non-Fermi liquid (NFL) state in a finite region of their quan-
tum phase diagrams [2,15–17]. Furthermore, the transport and
susceptibility measurements of Ge-substituted YbRh2Si2 in-
dicate the existence of the quantum spin liquid state exhibiting
the NFL features and separating the antiferromagnetic ordered
and the paramagnetic Landau fermion liquid states [18]. An-
other class of material’s candidate hosting both Kondo heavy
fermion metal and quantum spin liquid state is the transition-
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metal dichalcogenide bilayers [19–21]. All these point to the
important role played by the local spin quantum fluctuations
or the quantum zero-point motions enhanced by the geometric
frustration in given lattice configurations [14,18,22–25].

The existence of the geometrically frustrated spin liquid
state in heavy fermion systems has been theoretically pro-
posed for years [23,26–30]. The stability of the spin liquid
state owing to the Kondo screening which reduces the size of
local moments was first proposed in Ref. [26]. Recently, the Z2

metallic spin liquid state is proposed in the Sp(N ) extension
of the Kondo-Heisenberg model on frustrated lattice with a
large N , while the decrease of N will lead to the antiferro-
magnetically ordered phase [30]. Despite these advances, the
existence of the spin liquid phase closed to the boundary of
the local moment regime in the heavy fermion systems (with
N = 2) still needs to be explored.

As a platform of rich spin liquid states, the spin 1/2
antiferromagnet consisting of purely localized electrons on
triangular lattices is known as a prototype frustrated spin
system [31]. Although its ground state owns the 120o Néel
order with reduced magnetic moments [32,33], the fragile
magnetic order is expected to break down when compassed by
competing quantum effects, leading to the quantum spin liquid
phase [34–37]. In realistic f electron compounds, however, it
is also possible that the local spin moments are completely
screened by conduction electrons leading to the destruction of
the spin liquid state. Specifically, as in the canonical periodic
Anderson model on the triangular lattice, the density of the
state of conduction electrons at the Fermi energy is always
finite, a nonzero hybridization strength V will lead to the
heavy fermion phase accompanied with a large Fermi surface
contributed by both conduction and f electrons. To seek a
possible finite hybridization strength Vc below which there is
a dynamically decoupled local spin liquid phase accompanied
with a small Fermi surface contributed sorely by the conduc-
tion electrons, the authors of Ref. [29] proposed a mechanism
driven by the kinetic energy of the correlated electrons in a
more general Anderson-Hubbard model with a tunable on-site
Coulomb repulsion U .
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FIG. 1. (a) The triangular lattice. a1 and a2 are the lattice basis
vectors and b1 and b2 are the reciprocal lattice vectors. (b) The
diagrammatic sketch for the interactions. The conduction and the
correlated (or local) electrons are drawn in the upper and bottom
layers, respectively.

In the present work, we propose an alternative route to
the existence of the critical hybridization for such spin liq-
uid phase in the local moment regime of correlated electron
systems. For this purpose we study a variant of the periodic
Anderson triangle lattice model with the antiferromagnetic
RKKY interaction as well as with the Kondo screening effect,
the latter is driven by both the on-site and the nearest neighbor
site Kondo hybridizations. In general, such local and nonlocal
hybridizations coexist in realistic correlated electron materi-
als. While they can lead to the usual Kondo screening effect
cooperatively in the large U regime, their coexistence may
give rise to an intrinsic Kondo frustration, destabilizing the
antiferromagnetic ordering of the local moments. In particu-
lar, the Kondo frustration leads to the destructive interference
characterized by the nodal points of the hybridization function
in the momentum space. By tuning the electron filling, the sys-
tem’s band structure is reconstructed at a critical hybridization
below which the spin liquid state with a spinon Fermi surface
decouples from the conduction electrons due to a delicate
destruction of the Kondo screening. In the following, we shall
illustrate how this scenario takes place in the corresponding
Anderson triangular lattice model by using the slave rotor
technique and perturbation theory.

II. MODEL HAMILTONIAN

The configuration of the triangular lattice is illustrated in
Fig. 1. The lattice constant is set to unit. The basis vectors are
a1 = ( 1

2 ,
√

3
2 ) and a2 = (− 1

2 ,
√

3
2 ). The reciprocal lattice vec-

tor �k = k1b1 + k2b2 with b1 = (1,
√

3
3 ) and b2 = (−1,

√
3

3 ).
The model Hamiltonian of the Anderson lattice system we
discussed here is defined on this triangular lattice, taking the
following form:

Ĥ = −t
∑
〈i j〉α

(ĉ†
iα ĉ jα + h.c.) + Ed

∑
iα

n̂d,iα

+U
∑

i

n̂d,i↑n̂d,i↓ +
∑
i jα

(Vi j ĉ
†
iα d̂ jα + H.c.)

+ J
∑
〈i j〉

Ŝd,i · Ŝd, j − μN̂ , (1)

where ĉ jα and d̂ jα are the annihilation operators of the con-
duction and correlated (or local) electrons [38], respectively,

with the subscripts j and α (=↑,↓) being the lattice coordi-
nate and the spin index. n̂c,iα and n̂d,iα are the corresponding
electron number operators, and N̂ = ∑

iα (n̂c,iα + n̂d,iα ) is the
total electron number operator; Ŝd,i = 1

2

∑
αα′ d̂†

iα �σαα′ d̂iα′ is
the spin operator of the local electrons with �σ = (σx, σy, σz )
being the Pauli matrices. The parameter t is the hopping
energy of conduction electrons. The parameters Ed , U , and J
are for the occupation energy, the Coulomb repulsion, and the
spin-spin exchange interaction of local electrons, respectively.
In the present study, we assume t > 0, Ed < 0, U > 0, and
J > 0. Inclusion of finite J in the Hubbard-like model was dis-
cussed in the connection with superconductivity [39] and here
it ensures the existence of the finite spinon Fermi surface in
the absence of Kondo coupling or orbital hybridization as will
be illustrated later. Finally, the general orbital hybridization
between conduction and local electrons is described by the
matrix {Vi j}. It contains both the local (or short-ranged) and
nonlocal (or long-ranged) hybridizations. The short-ranged
one is denoted by the conventional on-site hybridization pa-
rameter Vi j = V (when i = j), while the long-ranged one is
denoted by Vi j = xV , accounting for the orbital hybridization
between the nearest neighboring sites 〈i j〉. Here, the real
parameter x is called the Kondo frustration ratio, measuring
the relative strength of the local (short-ranged) and nonlocal
(long-ranged) Kondo couplings. The limit of x → 0 recov-
ers the on-site Kondo coupling, and the canonical Anderson
lattice model corresponds to the case with x = 0 and J = 0.
We also assume Vi j = 0 if (i, j) are the further long-ranged
conduction-local electron hybridization pairs. As long as V 
=
0, the respective numbers of the conduction and local elec-
trons are not individually conserved while their sum remains
conserved, so the chemical potential μ is introduced to tune
the total electron number.

In the following, we shall solve the Hamiltonian by using
the slave rotor technique [40–42]. The slave rotor repre-
sentation is applied to the local electrons by separating the
corresponding charge and spin degrees of freedom such
that d̂iα = f̂iαeiθ̂i , where θ̂i (= θ̂

†
i ) and f̂iα are bosonic and

fermionic operators acting on the charge and spin subspaces,
respectively. The constraint n̂θ,i + n̂ f ,i = 1 is enforced to
guarantee the equivalence between the local Hilbert spaces
spanned by the slave representation and the original one.
Here, n̂ f ,i = ∑

α f̂ †
iα f̂iα is the number operator of the slave

fermions (describing the spinons), while n̂θ,i is the hermitian
operator canonically conjugate to the bosonic charge operator
θ̂i, satisfying the relationship [θ̂i, n̂θ, j] = iδi j .

It is convenient to introduce the Lagrange multiplier λ

to implement the constraint by adding the term λ(n̂θ,i +
n̂ f ,i − 1) to the Hamiltonian. Then the model Hamiltonian is
rewritten as

Ĥ =
∑
�kα

εc,�k ĉ†
�kα

ĉ�kα
+

∑
i jα

[Vi j ĉ
†
jα f̂iαeiθ̂i + H.c.]

+
(

Ed + U

2
− μ + λ

)∑
i

n̂ f ,i + J
∑
〈i j〉

Ŝ f ,i · Ŝ f , j

+ U

2

∑
i

n̂2
θ,i + λ

∑
i

n̂θ,i, (2)
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where the conduction electron energy is expressed in the
momentum space with εc,�k = −2tX�k − μ and X�k = cos k1 +
cos k2 + cos(k1 − k2), keeping track of the symmetry of the
triangular lattice. The local electron part is kept in the lattice
space and will be treated by the mean field approximation as
follows.

III. MEAN-FIELD APPROXIMATION

We expect that Kondo screening develops in the ground
state of the Hamiltonian, as in the canonical Anderson lattice
system. This is described by the condensation of the hy-
bridization operator ĉ†

jα f̂iα , represented by the uniform mean

field χc f = V −1 ∑
jα Vi j〈ĉ†

jα f̂iα〉 in accordance with the hy-
bridization term in the mode Hamiltonian. Both the local
(the on-site j = i) and long-ranged (the nearest neighbor sites
〈i j〉) Kondo hybridizations contribute to the Kondo screening.
Notice that χc f can be chosen as a real order parameter since
the phase factor of χc f can be gauged away by the U (1) trans-
formation. Meanwhile, the charged rotor degrees of freedom
participate in the Kondo screening via the operator eiθ̂i which
appeared in Eq. (2). Such contribution can be described by
its condensation on the ground state 	 = 〈eiθ̂i〉. We treat this
parameter as a new mean field which is uniformly valued on
the lattice. Then, the hybridization term in Eq. (2) depends
on both the mean fields. Assuming that the quantum fluctua-
tions above the mean fields are small, the hybridization term
can be decoupled further by using the approximation ÂB̂ ≈
〈Â〉B̂ + Â〈B̂〉 − 〈Â〉〈B̂〉 for Â = ∑

jα Vi j ĉ
†
jα f̂iα and B̂ = eiθ̂i .

As proposed in theory [29,43,44] and indicated in ex-
periments [45–47], the spin liquid phase driven by the spin
exchange interaction is responsible to the spinon Fermi sur-
face state. Such a phase is characterized by the condensation
of the spinon bond operator [29], i.e., χ f = ∑

α〈 f̂ †
iα f̂ jα〉. With

this understanding, the spin exchange interaction term can be
reexpressed as follows:

∑
〈i j〉

Ŝ f ,i · Ŝ f , j = −1

2

∑
〈i j〉

∑
α

f̂ †
iα f̂ jα

∑
α′

f̂ †
jα′ f̂iα′

− 1

4

∑
〈i j〉

n̂ f ,in̂ f , j + Z

4

∑
i

n̂ f ,i, (3)

where Z = 6 is the coordination number of the triangular
lattice. After decoupling the rotor and spinon sectors by using
the similar approximation, we obtain the following mean-field
Hamiltonian:

ĤMF = Ĥf + Ĥθ ,

Ĥf =
∑
�kα

(
ĉ†

�kα
f̂ †
�kα

)( εc,�k 	V�k
	∗V�k ε f ,�k

)(
ĉ�kα

f̂�kα

)
,

Ĥθ =
∑

i

(
U

2
n̂2

θ,i + λn̂θ,i + 2V χc f cos θ̂i

)
. (4)

In the above, ε f ,�k = −Jχ f X�k + Ed + 1
2U + 1

4 JZ (1 − n f ) −
μ + λ is the dressed spinon energy, V�k = V (1 + 2xX�k ) is the
hybridization function in the momentum space, and n f =
〈n̂ f ,i〉 is the average spinon occupation number. Here the

�k dependence of V�k comes from the coexisting on-site and
nearest-neighbor-site hybridizations with x measuring their
relative ratio introduced previously. We also assume no spon-
taneous orbital currents and that the order parameter χ f is real.

Now, we deal with Ĥθ using the perturbation theory. Since
the rotor sector Hamiltonian is independent of lattice sites,
we consider the ith site where the local Hilbert subspace of
the rotor sector is spanned by |mi〉, the eigenstates of n̂θ,i

with eigenvalues mi = 0,±1, satisfying e±iθ̂i |mi〉 = |mi ± 1〉.
In the present study, we focus on the boundary of the Kondo
phase so that the effective Kondo hybridization V χc f is small;
the term 2V χc f cos θ̂i in Ĥθ is then treated as perturbation. At
the zero order, the eigenvalue of the unperturbed part is given
by E (mi ) = (U

2 m2
i + λmi ). We also assume that the Coulomb

repulsion is relatively strong so that U > 2|λ| is achieved.
Hence, the configuration |mi = 0〉 is the ground state.

To the first order of V χc f , the ground state becomes

∣∣
 (1)
0

〉 = |0〉 +
∑

mi

〈mi|2V χc f cos θ̂i|0〉
E (0) − E (mi )

|mi〉. (5)

Moreover, the expectation values of eiθ̂i and n̂θ,i in this state
are respectively given by

	 = 〈eiθ̂i〉 = −2V χc f

(
1

U + 2λ
+ 1

U − 2λ

)
, (6)

nθ = 〈n̂θ,i〉 = (2V χc f )2

[
1

(U + 2λ)2
− 1

(U − 2λ)2

]
. (7)

As expected, 	 is real and n f = 1 − nθ 
= 1 if both χc f and λ

are nonvanishing.
Next, we turn to the Hamiltonian Ĥf , combining the con-

duction electrons and the fermionic spinons. This part can
be directly solved, resulting in the fermionic quasiparticle
dispersions:

E (±)
�k =

εc,�k + ε f ,�k
2

±
√(

εc,�k − ε f ,�k
2

)2

+ (	V�k )2. (8)

The self-consistent equations for the mean field parameters at
zero temperature are given by

χc f = 1

2V N

∑
�kαν

ν�
(−E (ν)

�k
) 	V 2

�k√
F (�k)

, (9)

χ f = 1

ZN

∑
�kαν

�
(−E (ν)

�k
)
X�k

⎛
⎜⎝1 − ν

εc,�k − ε f ,�k

2
√

F (�k)

⎞
⎟⎠, (10)

where N is the total number of lattice sites, E (ν)
�k = E (±)

�k for

ν = ±1, respectively, and F (�k) = (
εc,�k−ε f ,�k

2 )2 + (	V�k )2, �(x)
is the step function. The occupation constraint is replaced by

nθ + 1

2N

∑
�kαν

�
(−E (ν)

�k
)⎛⎜⎝1 − ν

εc,�k − ε f ,�k

2
√

F (�k)

⎞
⎟⎠ = 1. (11)
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FIG. 2. V dependence of the mean field order parameters with
t = 1, Ed = −5, and x = 0 at half filling. (a) for U = 15; (b) for
J = 0.3.

The averaged occupation number of quasiparticles per site,
defined by n = 1

N 〈N̂ 〉, is given by

n = 1

N

∑
�kαν

�
(−E (ν)

�k
)
. (12)

In the following, we shall mainly focus on the case of half-
filling, corresponding to n = 2. In this case, there is an energy
gap, i.e., the Kondo gap, in between E (+)

�k and E (−)
�k when V χc f

is nonvanishing. We can tune the chemical potential μ such
that the Fermi energy is located at the middle of the gap

min E (+)
�k + max E (−)

�k = 0. (13)

With this setting, the mean-field equations, which determine
χ f , χc f , and λ at zero temperature, become

1

N

∑
�k

4
(

1
U+2λ

+ 1
U−2λ

)
V 2

�k√
(εc,�k − ε f ,�k )2 + 4(	V�k )2

= 1, (14)

2

ZN

∑
�k

(εc,�k − ε f ,�k )X�k√
(εc,�k − ε f ,�k )2 + 4(	V�k )2

= χ f , (15)

− 1

N

∑
�k

εc,�k − ε f ,�k√
(εc,�k − ε f ,�k )2 + 4(	V�k )2

= nθ . (16)

IV. SOLUTION OF THE SELF-CONSISTENT EQUATIONS

The above set of equations are solved numerically by var-
ious choices of the Kondo frustration ratio x while the model
parameters t = 1 and Ed = −5 are fixed. When x = 0, the V
dependence of the mean field order parameters χc f and χ f are
shown in Fig. 2. The observations are as follows. First, the
spinon hopping order parameter χ f is negative. Noting that
the sign of χ f cannot be gauged away in the triangular lattice,
so in the momentum space the top of the spinon band locates
at the bottom of the conduction electron band. Second, χ f is
finite and weakly dependent on V . Third, χc f as the order
parameter for the heavy fermion or Kondo phase is sizably
suppressed by U and J . In particular, the competition between

the Coulomb interaction and the antiferromagnetic exchange
in the formation of the Kondo phase is displayed clearly in
the large V regime. Finally, χc f decreases smoothly to zero
with the decrease of V . But the precise location of the critical
hybridization Vc where χc f reaches zero is not sufficiently
clear in Fig. 2.

To determine the location of Vc analytically, we let χc f →
0 in the mean-field equations. Then Eq. (16) becomes

1

N

∑
�k

εc,�k − ε f ,�k
|εc,�k − ε f ,�k|

= 0. (17)

This equation leads to the following condition for the La-
grangian parameter λ:

t − 1

2
Jχ f = 1.2

(
Ed + U

2
+ λ

)
. (18)

Meanwhile, χ f can be solved by Eq. (15) as

χ f = 2

NZ

∑
�k

εc,�k − ε f ,�k
|εc,�k − ε f ,�k|

X�k = −0.3294. (19)

It is remarkable that this value is independent of any model in-
teraction parameters, reflecting the intrinsic fermionic spinon
dispersion on the boundary of the Kondo phase (i.e., V = Vc).
Meanwhile, according to Eq. (14) we have

1

N

∑
�k

4V 2
�k
(

1
U+2λ

+ 1
U−2λ

)
|εc,�k − ε f ,�k|

= 1. (20)

Since the Kondo gap closes on the boundary of the Kondo
phase, εc,�k and ε f ,�k must be degenerate at the Fermi surface
when V tends to Vc from the right hand side, i.e., V → V +

c ,
the denominator |εc,�k − ε f ,�k| in the integrand of Eq. (20) has

zero points in the �k space at the continuity limit (N → ∞).
In the case of x = 0, V�k is a constant, i.e., V�k = V , the sum-
mation over �k in Eq. (20) diverges unless Vc = 0. This result
is consistent with the numerical behavior of χc f plotted in
Fig. 2, displaying the exponential suppression behavior of the
Kondo effect in the vanishing V limit. So in this case there is
no Kondo breakdown transition at finite V .

Now we consider the general situation when the Kondo
frustration ratio is finite (nonzero). The hybridization function
is then x dependent, V�k = V (1 + 2xX�k ). While the same be-
haviors of the χ f and χc f with increasing U and J are expected
for finite x, it is interestingly found that the Kondo phase
could break down (i.e., χc f = 0) at a finite Vc if the Kondo
frustration ratio values at a special point, denoted by xs. Here
our observation is that when x = xs, the functions |εc,�k − ε f ,�k|
and V�k have the same zero points in the �k space, leading to
finite result for the summation in Eq. (20). Specifically, when
χc f → 0 at the half-filling, n f = 1, we have |εc,�k − ε f ,�k| =
|(2t − Jχ f )(1 + 2.4X�k )| by using Eq. (18). Hence, a finite Vc

exists at xs = 1.2, satisfying

4.8V 2
c

(
1

U+2λ
+ 1

U−2λ

)
t − 1

2 Jχ f

1

N

∑
�k

|2.4X�k + 1| = 1. (21)
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FIG. 3. V dependence of the mean field order parameters with
t = 1, Ed = −5, and x = 1.2 at half filling. (a) for U = 15; (b) for
J = 0.3.

Obviously, the summation over �k is convergent and we can
solve the Vc as

Vc = 0.35

[
t ′

U
(t ′ − 1.2Ed )(1.2U + 1.2Ed − t ′)

] 1
2

(22)

with t ′ = t + 0.165J . Using Eq. (18) and the condition U >

2|λ|, we require t ′ < 1.2(U + Ed ) in order to guarantee a real
solution of Vc.

The numerical results for the mean-field order parameters
in the case of x = xs(= 1.2) at half filling are shown in Fig. 3.
With the decrease of V , we find that χc f falls quickly to zero
at Vc. For U = 15 and J = 0.5, Vc ≈ 0.78, in agreement with
the previous analytical estimation. Meanwhile, the magnitude
of χc f becomes larger compared with the case of x = 0. This
is due to the contribution from the nonlocal Kondo coupling
involving six nearest-neighbor hybridizations when x 
= 0 (the
coordination number Z = 6).

Therefore, as long as the Coulomb repulsion (U ) of the
local electrons is relatively strong, the above analysis indicates
the existence of finite χc f in solving Eq. (14) when V > Vc.
Otherwise, no real solution for finite χc f could be found.
Hence, Vc is the critical point of the Kondo breakdown quan-
tum phase transition, separating the Kondo insulator phase
and the local moment spin liquid phase, the latter being
dynamically (or effectively) decoupled from the conduction
electrons. On the other hand, when U is relatively small, such
that U < U0 with U0 ≡ 2λ(= 0.835t ′ − Ed ), the ground state
configuration of the rotor sector is |mi = −1〉. In this case,
the occupation number per site of the correlated electrons
approaches two, the Kondo screening does not take place, and
the system is in the conventional Fermi liquid phase.

The quantum phase diagram at half filling with x = xs(=
1.2) is illustrated in Fig. 4. There are three regions: (i) when
U < U0(≡ 0.835t ′ − Ed ), the system is in the conventional
Fermi liquid phase (FL); (ii) when U > U0 and V < Vc (Vc is
denoted by the curve in Fig. 4), χc f = 0 and χ f 
= 0, the sys-
tem is in the decoupled local moment spin liquid phase (SL);
(iii) in the remaining region of the phase diagram, χc f 
= 0,
the system is in the Kondo insulator phase (KI).

FIG. 4. The quantum phase diagram at half filling. The model
parameters are chosen as t = 1, Ed = −5, J = 0.3, and x = 1.2.

Finally, it is interesting to notice, as we have already ob-
served above, that the existence of a finite Vc depends not
only on the Kondo frustration ratio x, but also on the filling
factor of conduction electrons, i.e., nc = 〈∑α n̂c,iα〉, which is
tunable by the chemical potential μ. Previous analysis shows
that at nc = 1 the corresponding xs is 1.2, meaning that as long
as x is away from xs, there is no nonzero Vc and the Kondo
screening effect is robust. It is in this sense that the spin liquid
phase is also critical in the parameter space of x. To seek
for the explicit dependence of xs on the electron filling, we
set χc f = 0 and solve the equations (9)–(11) again, obtaining
the filling dependence of the xs as shown in Fig. 5 where
the horizontal axis represents nc. We find that xs is always
nonzero for any 0 < nc < 2 as previously expected. More-
over, xs is negative or positive when nc < 0.81 or nc > 0.81,
respectively, while it is divergent at nc = 0.81. The divergent
xs corresponds to the limit of the strong frustration where
the on-site hybridization strength is vanishingly small. In the
relevant bulk or layered materials it is reasonable to expect
|x| < 1, so the corresponding xs may be realized at the low or
high electron filling regimes.

For instance, when nc = 0.5 (or nc = 1.3), the correspond-
ing special point is given by xs = −0.64 (or xs = 0.57), the
absolute magnitude |xs| is significantly smaller than one.
This Kondo frustration ratio seems accessible in the relevant
materials. By extending the previous calculations as plotted
in Fig. 4, we can obtain the corresponding results for the
U -dependent critical hybridization, Vc(U ), for other band fill-
ings. In Fig. 6, the curves Vc(U ) for several typical values of
electron filling (nc = 0.5 and nc = 1.3 with the corresponding

FIG. 5. The conduction electron filling dependence of the Kondo
frustration ratio xs for the existence of finite Vc.
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FIG. 6. The critical lines for the three representative band fillings
with the corresponding xs.

xs mentioned above) are plotted together with the previous
result of nc = 1. It is found that the threshold value U0 where
Vc(U0) = 0 increases with the band filling. It should be also
noticed that for the band filling nc 
= 1, while the Fermi liquid
(U < U0, Vc = 0) and the local moment spin liquid (U > U0

and V < Vc) phases persist, the region enclosed by U > U0

and V > Vc is the heavy fermion phase with a large Fermi
surface.

V. CONCLUSION AND DISCUSSION

Summarizing, we have investigated a periodic Anderson-
Heisenberg triangular lattice model system with both geomet-
ric and Kondo frustrations. In addition to the conventional
Fermi liquid phase and the Kondo (or heavy fermion) phase,
a dynamically decoupled local moment spin liquid phase is
found in the quantum phase diagram in terms of the Coulomb
repulsion U and the Kondo hybridization V . Such a phase de-
pends critically on the Kondo frustration ratio x, thus termed
as the critical spin liquid phase which is absent in the canon-
ical Anderson triangular lattice without the Kondo frustration
(x = 0). For a given system with the fixed Kondo frustration,
tuning the electron filling can shift the nodal points of the
hybridization function V�k to the Fermi level, leading to the
transformation of Fermi surfaces in the spin liquid phase at a
finite Vc below which the Kondo screening effect breaks down.

The physical implication of the �k-dependent hybridiza-
tion function was previously discussed in connection with
the momentum-dependent Fermi surface reconstruction and
anisotropic Kondo gap observed in some relevant heavy
fermion compounds [48–51], while the appearance of nodes
in V�k has not been adequately explored except for a few
cases in connection with the unconventional Fermi liquid
[52] and topological Kondo insulator [53]. The present study

reveals a new physical consequence of the hybridization
nodes, namely the possible critical spin liquid phase in the
layered Kondo triangular lattice systems. Here the spin liq-
uid feature is characterized by the nonvanishing condensation
parameter χ f based on the slave-rotor decoupling approach.
We notice that the mean-field method may overestimate the
condensation tendency, the influence of quantum fluctuations
above the mean-field level on this phase remains open and
deserves further investigations. Nevertheless, the geometric
frustration due to the triangular lattice symmetry and the
Kondo frustration in the discussed model system could further
enhance the stability of the spin liquid phase.

Associated with this phase is the formation of the spinon
Fermi sea formed by the fermionic quasiparticles [35–37]
with the hopping amplitude 1

2 Jχ f . While in the heavy fermion
phase, the corresponding Fermi surface should be larger
due to the contributions from both conduction electrons and
fermionic spinons. This allows us to predict the transition
from the critical spin liquid phase to the heavy fermion phase
in experiments by tuning some physical parameters, includ-
ing the electron filling factor (or carrier density) as well as
the Kondo coupling (or hybridization strength). Of course,
the tunability of the electron density and Kondo coupling
in the bulk f electron materials, which is usually realized
by physical pressure and chemical substitution, remains an
experimental challenge.

Remarkably, such tunability can be realized by tun-
ing the electric field and gate voltages in the synthetic
Anderson (or Kondo) lattices such as the transition metal-
dichalcogenide bilayer heterostructures 1T-TaSe2/1H-TaSe2

[21] and MoTe2/WSe2 [54]. In particular, the Kondo frustra-
tion ratio at which the finite Vc exists can be reached in a wide
region of the electron doping nc as shown in Fig. 5. Therefore,
we expect that tuning the electric field and gate voltages in the
bilayer heterostructures could tune the hybridization magni-
tude across the critical point, resulting in the changes in Fermi
surfaces and heavy fermion behavior. These features can be
probed in various transports, quantum oscillations, as well as
specific heat measurements. Another class of the material’s
candidate to observe the variable hybridization and spin liquid
feature is the rare earth intercalated bilayer graphene where
the density of f electrons can be tuned by the rare earth doping
[55,56].
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