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Umklapp scattering in the one-dimensional Hubbard model

Tong Liu,1,2 Kang Wang,1,2 Runze Chi,1,2 Yang Liu,1,2 Haijun Liao,1,3,* and T. Xiang 1,4,2,†

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
4Beijing Academy of Quantum Information Sciences, Beijing 100190, China

(Received 17 February 2023; revised 1 September 2023; accepted 5 September 2023; published 21 September 2023)

The one-dimensional Mott metal-insulator transition is a typical strong correlation effect triggered by the
Umklapp scattering. However, in a physical system, the Umklapp scattering coexists with the normal scattering,
including both forward and backward scattering, which conserves the total momentum of scattered electrons.
Therefore, it is not easy to quantify the contribution of the Umklapp scattering in a Mott metal-insulator
transition. To resolve this difficulty, we propose to explore these scattering processes separately. We study
the contribution of each scattering process in the one-dimensional Hubbard model using the momentum-space
density-matrix renormalization group (kDMRG) and bosonization methods. Our kDMRG calculation confirms
that the Mott charge gap results from the Umklapp scattering, but the normal scattering processes strongly
renormalize its value. Furthermore, we present a scaling analysis of the Mott charge gap in the bosonization
theory and show that the interplay between the Umklapp and forward scattering dictates the charge dynamics in
the half-filled Hubbard model.

DOI: 10.1103/PhysRevB.108.125134

I. INTRODUCTION

The Mott insulator has gained intensive attention from
condensed matter physicists [1–8], not only because the Mott
insulator serves as a platform for studying strong correla-
tion effects, but also by doping Mott insulator, we can get
many novel phases, such as high-Tc superconductor, pseu-
dogap, non-Fermi liquid, charge density wave, etc. [9–14].
This interaction-driven effect could be understood qualita-
tively using the Hubbard model at half-filling [15,16]. The
Hubbard system is metallic in the weak-coupling limit, where
the on-site Coulomb interaction is small compared to the
kinetic energy. However, in the strong-coupling limit, the on-
site Hubbard interaction dictates the conducting behaviors. It
tends to localize electrons by raising the energy of double
occupation on a single lattice site, which opens a charge ex-
citation gap at half-filling. Therefore, the half-filled Hubbard
system undergoes a Mott metal-insulator transition from the
weak to strong coupling limit.

The Hubbard interaction can be decomposed into three
terms according to their scattering processes: forward, back-
ward, and Umklapp scattering. Both the forward and back-
ward scattering processes conserve the total momentum of
electrons. They correlate electrons in the ferromagnetic and
antiferromagnetic channels, respectively. However, the Umk-
lapp process conserves the total momentum of scattered
electrons up to a reciprocal-lattice vector. This process is
greatly enhanced around the half-filling and is the driving
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force that is responsible for the formation of the Mott insulat-
ing gap. In the band theory, a half-filled band is a metal rather
than an insulator. However, the Umklapp scattering bounces
two electrons in the vicinity of one side of the Fermi surface
to the opposite side in one dimension, leading to a charge
excitation gap with divergent charge compressibility at half-
filling [17–20]. The Umklapp process might be responsible
for the pseudogap phenomenon observed in high-Tc copper
oxides [21,22]. It can also induce a topologically nontrivial
edge state [23].

A thorough investigation of the Umklapp scattering is
essential to a qualitative understanding of the Mott physics
[24–29]. However, it is difficult to investigate the Umklapp
process because it coexists with the forward and backward
processes in real materials. Their interplay makes it hard to
unveil the secret of the Umklapp scattering. Nevertheless, in
theoretical studies, we can separate these scattering processes
and consider the contribution of each process independently,
allowing us to quantitatively investigate the effect of the Umk-
lapp scattering on the Mott insulating transition and how it
interferes with other processes.

In this work, we present a comparative study of the
Hubbard model and a modified Hubbard model, which con-
tains only the Umklapp scattering term, namely ignoring
the forward and backward scattering terms, in the on-site
Coulomb interactions. We call this modified Hubbard model
the Umklapp model. The one-dimensional Hubbard model
is soluble by the Bethe ansatz [30,31]. It can also be
accurately probed by the real-space density-matrix renormal-
ization group (DMRG) [32,33] and quantum Monte Carlo
[34]. However, it is much more challenging to solve the Umk-
lapp model. First, the Bethe ansatz does not work for this
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model. Furthermore, there are technical barriers in carrying
out real-space DMRG and quantum Monte Carlo simulations
for this model because the Umklapp scattering potential is
long-ranged and suffers from the minus-sign problem even at
half-filling.

We propose to use the momentum-space DMRG
(kDMRG) [35], combined with a scaling analysis of the
coupling constants in the framework of bosonization [36],
to resolve the above difficulties. kDMRG is an effective
method for exploring this problem because the Umklapp
scattering potential takes a relatively simple representation
in momentum space. The scaling analysis, on the other
hand, allows us to gain a clearer picture of how the interplay
between different scattering processes affects the Mott
insulating behavior [17,37].

II. MODEL

The one-dimensional Hubbard model is described by the
Hamiltonian:

H = −t
∑

jσ

(c†
jσ c j+1,σ + H.c.) + U

∑
j

n j↑n j↓, (1)

where c jσ is the annihilation operator of an electron at site
j with spin σ , and n jσ = c†

jσ c jσ . In momentum space, it
becomes

H = −2t
∑
kσ

cos kc†
kσ

ckσ + Hn + Hu (2)

Hn = U1

L

∑
k1k2k3k4

c†
k1↑ck2↑c†

k3↓ck4↓δk1+k3,k2+k4 , (3)

Hu = U2

L

∑
k1k2k3k4

c†
k1↑ck2↑c†

k3↓ck4↓δk1+k3,k2+k4±2π , (4)

where L is the system size. Here we separate the Coulomb
interaction terms into two parts according to the scattering
processes. Hn is the Hamiltonian of normal scattering, includ-
ing both forward and backward scattering, which preserves
the total momentum. Hu, on the other hand, is the Hamiltonian
of the Umklapp scattering, which preserves the total momen-
tum up to a reciprocal lattice vector. To distinguish these terms
explicitly, we assume Hn and Hu to have different coupling
constants, U1 and U2.

The Hubbard model (1) corresponds to the case U1 = U2 =
U . We can screen the normal scattering process by setting
U1 = 0. In that case, H is just the Hamiltonian of the Umklapp
model. Similarly, we can switch off the Umklapp scattering by
setting U2 = 0 and refer to the resulting Hamiltonian as the
non-Umklapp model. The Hubbard interaction is local in real
space. However, for the above generalized Hubbard model,
the interaction becomes highly nonlocal when transformed
back from the momentum-space representation to real space
in the case U1 �= U2.

III. RESULTS OF kDMRG

The traditional implementation of kDMRG involves la-
beling each local site by momentum, resulting in a four-
dimensional Hilbert space at each lattice site. To enhance
computational efficiency and obtain spin-resolved mutual

FIG. 1. Comparison of the size dependence of the maximal en-
tanglement entropy S calculated by kDMRG for the ground states
of the generalized Hubbard models with U1/U2 = 1 (Hubbard),
U1/U2 = 0.5, and U1/U2 = 0.0 (Umklapp).

information, we modify this approach by dividing a single
momentum point into two momentum-spin points with the
same momentum but opposite spin. A crucial step in the
kDMRG calculation is determining an optimized path to or-
der these momentum-spin points in a one-dimensional chain.
As detailed in the Appendix, we achieve this optimization
by minimizing the mutual-information distance of all such
points. To ensure numerical stability and avoid issues arising
from kinetic energy degeneracy, we limit our calculations to
systems with a size of L = 4n + 2 (where n is an integer)
and adopt periodic boundary conditions. The kDMRG results
presented in the subsequent discussion are obtained by retain-
ing up to 8000 states, and the tolerance for convergence is
set such that the error of the ground-state energy is less than
10−6. A kDMRG calculation for the ground state of a L = 30
system by keeping 8000 can be finished in one day using a
medium-size workstation.

In momentum space, it is known that the entanglement
entropy S of the ground state scales linearly with the system
size L for the Hubbard model [38]. Hence the ground state
of the Hubbard model satisfies an entanglement volume law
in momentum space. Our kDMRG calculation confirms this
volume-law behavior of the entanglement entropy for the
Hubbard model.

Figure 1 shows the entanglement entropy S of the ground
state obtained from the kDMRG calculations for the Umklapp
and Hubbard models. For the Umklapp model, the entan-
glement entropy S also scales linearly with the system size.
However, the entanglement entropy of the Umklapp model is
much lower than that of the Hubbard model. For the two cases
shown in Fig. 1, the entanglement entropy of the Umklapp
model is about half of the Hubbard model. It implies that one
can reliably study much larger lattice systems for the Umklapp
model than for the Hubbard model using kDMRG by keeping
the same number of basis states.

The key parameter characterizing a Mott insulating phase
is the charge excitation gap, �c, defined by the energy in-
crease in adding and removing a pair of spin-singlet electrons
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FIG. 2. Charge excitation gap �c as a function of 1/L for (a) the
non-Umklapp model (U2 = 0) and (b) the Hubbard (U1 = U2) and
Umklapp (U1 = 0) models obtained with kDMRG. The lines are
linear fits to the kDMRG data. The extrapolated charge gap of the
Hubbard model is 0.135 ± 0.002. The corresponding charge gap of
the Umklapp model is 0.021 ± 0.001.

from the half-filled system:

�c(L) = 1
4 [Eg(L + 2) + Eg(L − 2) − 2Eg(L)], (5)

where L is the lattice size and Eg(Ne) is the ground state
energy of the system with the electron number Ne. Ne equals
L at half-filling.

Figure 2(a) shows the kDMRG result of �c as a function of
the inverse lattice length 1/L in the absence of the Umklapp
scattering (U2 = 0). In this case, �c scales linearly with 1/L
within numerical errors. By linear extrapolation, we find that
the excitation gap vanishes in the thermodynamic limit. Thus
the system remains gapless no matter how strong the normal
scattering interaction U1 is.

However, in the presence of the Umklapp scattering, the
charge excitation spectrum is gapped. Figure 2(b) compared
the size dependence of the charge gap �c for the Hubbard and
Umklapp models at half-filling. Again, �c scales linearly with
1/L within numerical errors, but the extrapolated gap value
in the thermodynamic limit L → ∞ is finite. Moreover, the
Umklapp scattering also changes the momentum distribution
of electrons when two more electrons are added to the half-
filled system. As shown in Fig. 6 in Appendix, the momentum
distribution function is mirror symmetric about the k = 0

point in the Hubbard model, and the total momentum of the
ground state is zero. For the Umklapp model, however, the
two added electrons tend to have the same momentum, which
breaks the mirror symmetry in the momentum distribution
function

The above discussion confirms that the Mott insulating gap
arises from the Umklapp scattering rather than the normal
scattering processes. However, by comparing the gap value
of the Umklapp model with those of the Hubbard model
(U1/U2 = 1) and the model with U1/U2 = 0.5, we find that
the normal scattering processes can significantly enhance the
value of the Mott gap once it is open.

IV. SCALING ANALYSIS

To understand the physics underlying the enhancement of
the Mott charge gap by the normal scattering, we perform
a scaling analysis for the generalized Hubbard model in the
bosonization theory. In the long-wavelength limit, the charge
and spin excitation spectra in the Hubbard model are separated
and effectively described by two boson fields. Following the
standard bosonization scheme, it is straightforward to show
that the following two Hamiltonians govern the charge and
spin dynamical properties of the Hubbard model:

Hc = vF a

2

∫
dx

[
�2

c +
(

1 + U1

πvF

)
(∂xφc)2

+ U2 cos
√

8πφc

vF π2α2

]
, (6)

Hs = vF a

2

∫
dx

[
�2

s +
(

1 − U1

πvF

)
(∂xφs)2

+ U2 cos
√

8πφs

vF π2α2

]
, (7)

where φc and φs are the boson fields in the charge and spin
channels, respectively. �σ (σ = c, s) is the conjugate field
of φσ . α is the inverse of the momentum cutoff. a is lattice
constant. To compare with numerical results, a should be set
as 1.

In Hc, the U1 term results from the forward scattering terms
in Hn. However, the U1 term in Hs is the contribution of the
backward scattering. Thus the backward scattering affects the
spin dynamics but not the charge dynamics. These U1 terms
renormalize the charge and spin velocities to

vc = vF

(
1 + U1a

2πvF

)
, vs = vF

(
1 − U1a

2πvF

)
. (8)

The scaling dimensions of the cosine terms in charge and
spin channel are now given by

dc = 2√
1 + U1

πvF

, ds = 2√
1 − U1

πvF

. (9)

For a positive U1, the scaling dimension dc < 2. In this case,
the Umklapp term is relevant. It opens a gap in the charge
excitation spectrum. Qualitatively speaking, the smaller dc (or
larger U1), the larger the charge gap �c. Thus the forward
scattering can enhance the charge gap. On the contrary, the
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FIG. 3. RG flow of the coupling constants Ũ1 and Ũ2.

scaling dimension of the spin field ds > 2 and the correspond-
ing Umklapp scattering term is irrelevant. Consequently, the
spin excitation remains gapless.

To quantitatively understand how the charge gap varies
with the coupling constants, let us consider the scaling behav-
ior of these parameters under the renormalization-group (RG)
transformation. Larkin and Sak derived the RG equations of
U1 and U2 to the third order of perturbation in the charge
channel [39–42]. They obtained the following equations that
govern the RG flow of U1 and U2 under the change of the scal-
ing parameter l in the momentum cutoff α → α′ = α exp(dl ):

dŨ1(l )

dl
= 2Ũ 2

2 (l )[1 − Ũ1(l )], (10)

dŨ2(l )

dl
= 2Ũ1(l )Ũ2(l ) − Ũ 2

1 (l )Ũ2(l ) − Ũ 3
2 (l ), (11)

where Ũi = Ui/(2πvc) (i = 1, 2).
From the above equations, it is straightforward to show that

the variable

C = Ũ 2
1 (l ) − Ũ 2

2 (l )

1 − Ũ1(l )
(12)

is scaling invariant and the RG equation governing Ũ1 is

dŨ1(l )

dl
= 2

[
Ũ 2

1 (l ) + CŨ1(l ) − C
]
[1 − Ũ1(l )]. (13)

By solving this equation, we can find how the coupling con-
stants Ũ1 and Ũ2 flow with l . The result, depicted in Fig. 3,
shows that a strong-coupling fixing point exists at Ũ1 = Ũ2 =
1 in the large l limit: U1 and U2 always flow to this fixing point
independent of their initial values.

In a gapped system, the correlation length is inversely
proportional to the charge gap and upper bound by the charge
gap. Consequently, l is also constrained by the charge gap
l < ls = ln[βvckF /�c(U1,U2)], where ls is the increment of
the coupling constants along the trajectory from (U1,U2) to

FIG. 4. Charge gap �c as a function of U2 for the general-
ized Hubbard model with three different values of U1/U2. The
depicted curves represent results obtained from both bosonization
(solid curves) and DMRG calculations (open circles). The DMRG
results are obtained by extrapolating the calculations at finite L to
the thermodynamic limit L → ∞. The kDMRG calculations are
performed for the generalized Hubbard models with U1/U2 = 0 and
U1/U2 = 0.5 while retaining 8000 states. For the Hubbard model,
real-space DMRG is employed, keeping 1000 states.

the final point (U1s,U2s), which are close to the point (1,1).
βvckF is the characteristic energy scale that measures the
effective charge gap at (U1s,U2s) and β is a coefficient that
depends on (U1s,U2s). kF = π/(2a) is the Fermi vector. From
Eq. (13), we have∫ ls

0
dl =

∫ Ũ1s

Ũ1

du

2(u2 + Cu − C)(1 − u)
. (14)

Both integrals in the above equation are constrained along the
trajectory with C = C(Ũ1s, Ũ2s). Solving Eq. (14), we obtain
the expression of the charge gap

�c(U1,U2) = βvckF eF (Ũ1 )−F (Ũ1s ), (15)

where

F (x) = − 1

2
ln |1 − x| + 1

4
ln(x2 + Cx − C)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C+2
2C1

tanh−1 C+2x
C1

, |C + 2| > 2

C+2
2C1

tan−1 C+2x
C1

, |C + 2| < 2

− 1
2x , |C + 2| = 2

(16)

and C1 =
√

|C2 + 4C|.
The Umklapp model with different U2 has different scaling

invariant parameters C. We need to determine the value of β

at a given U1s for each RG trajectory. However, the difference
in the value of β between different trajectories at a given Ũ1s

is small in the limit Ũ1s → 1 if |C| 	 1. Hence we can use
the value of β obtained by fitting the expression (15) on the
trajectory Ũ1 = Ũ2 (C = 0) with the DMRG results shown in
Fig. 4 to determine the gap values of the Umklapp model.
By taking Ũ1s = 0.99, we find that β = 10.88 ± 0.13 (When
fitting β, we only use data points with U2/t � 4.0). Using this
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parameter, we can estimate the gap values for the model with
Ũ1 �= Ũ2 and |C| 	 1.

Figure 4 compares the results of �c obtained by DMRG
with those predicted by RG equations. For all the points
shown in this figure, the corresponding values of |C| are
found to be less than 0.05, indicating that the condition
|C| 	 1 is satisfied. The agreement between the results ob-
tained with these two approaches is excellent, except in the
strong-coupling regime where the higher-order correction of
perturbations to the RG equations should be considered. It
confirms that the bosonization theory correctly catches up
with the low-energy physics of the generalized Hubbard
model, and the Mott insulating gap results from the Umklapp
scattering of electrons around the Fermi level.

V. SUMMARY

In summary, we have analyzed the role of different scat-
tering processes on the Mott insulating transition by invoking
both kDMRG and bosonization methods. From the kDMRG
calculation, we obtain for the first time the charge exci-
tation gap as a function of the coupling constant for the
one-dimensional Umklapp model. By comparing the results
of the Umklapp model with that of the Hubbard model, we
show that the Mott insulating gap is triggered by the Umk-
lapp scattering, as expected, and that the forward scattering
can strongly renormalize the gap value. In one dimension,
the backward scattering weakly affects the Mott insulating
gap. However, in two dimensions, the backward scattering
may induce a long-range antiferromagnetic order and strongly
interfere with the Umklapp scattering.

The interplay between different scattering processes en-
riches the physics of the Hubbard model. However, it also
blurs the picture of the Mott metal-insulator transition, es-
pecially in two or higher dimensions, making it difficult to
establish a quantum field theory description of the Mott insu-
lator. In this work, we independently study the effect of each
scattering process by screening some scattering processes in
the one-dimensional Hubbard model. This strategy can be
extended to two or higher dimensions. A project along this
line is in progress. We hope it will allow us to capture the

main physics governing the Mott metal-insulator transition
and to find a general scheme for creating a quantum spin liquid
by suppressing the antiferromagnetic order while keeping the
Mott insulating gap open.
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APPENDIX

1. Optimization of sites order

The interacting potential of the Umklapp model becomes
highly nonlocal in real space, and it is hard to investi-
gate this model using the real-space DMRG. In momentum
space, on the other hand, this complexity can be signifi-
cantly reduced. More specifically, one can dramatically lower
the computational cost by minimizing the number of opera-
tors whose matrix elements need to be evaluated and stored
in kDMRG from L3 to 6L using the regrouping technique
first introduced in Ref. [35] combined with the momentum
conservation.

In momentum space, the lattice is a collection of all
momentum-spin points (k, σ ). Hence, a momentum-spin point
now represents a lattice site. These momentum-spin points are
ordered to form a one-dimensional lattice used for kDMRG
calculations. In real space, the lattice sites have a natural
order as the interactions are local. However, many ways exist
to order the lattice sites in momentum space. Therefore, to
optimize the kDMRG results, one needs first to optimize the
order of these momentum-spin points. We do this in two steps:

First, starting from a trial order of the momentum-spin
points guessed based on physical intuition, we perform the

(a) (b) (c)

0.0 0.031 0.063 0.094 0.126

Mutual Information

0.157

FIG. 5. Mutual information between two spin-momentum points in the ground states of the Hubbard, Umklapp (U2 = U ), and non-
Umklapp (U1 = U ) models at half-filling. U = 2.5t and L = 22. εk = −2t cos k is the energy dispersion of electrons in the absence of
interactions. The plot looks symmetric because the vertical axis of the energy dispersion for the up-spin electrons is reversed. The dashed
lines represent the Fermi levels.
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standard kDMRG calculation to activate all the momentum-
spin points. Then we sweep the lattice a couple of times. At
each step, we swap two adjacent sites if the bipartite entangle-
ment entropy between the left and right blocks separated by
these two sites is lower than the case without swap.

Second, we calculate the mutual information between
any two momentum-spin points, Mkσ,k′σ ′ , when the kDMRG
sweep reaches the middle of the lattice. Then we rearrange
all the lattice sites by minimizing the distance of two sites
weighted by their mutual information:

Mdist =
∑

kσ,k′σ ′
|R(kσ, k′σ ′)|2Mkσ,k′σ ′ , (A1)

where R(kσ, k′σ ′) is the lattice distance between (kσ ) and
(k′σ ′). This minimization can further optimize the order of
the momentum-spin points, preventing the ground state from
being trapped in a local minimum.

2. Mutual information structure

Figure 5 shows the intensity plot of the mutual information
between two momentum-spin points in the optimized ground
state for the Hubbard, Umklapp, and non-Umklapp models
with U = 2.5 at half-filling. The color scale of a line connect-
ing two sites represents their mutual information. It is evident
that electrons near the Fermi surface are most correlated in
all three models, and the correlation between two electrons of
different spins is stronger than that of the same spin.

For the Hubbard model, the checkerboard grid structure
of the mutual information indicates that the two sites with
a momentum separation π have a more apparent correlation
than other sites. For the Umklapp model, the correlation struc-
ture is similar. However, looking at the mutual information
structure more carefully, we find that the correlation decreases
gradually when the two momentum-spin points move away
from the Fermi surface. Moreover, a stronger correlation is
observed between two electrons with the same momentum.

The subtle difference in the mutual information between
the Hubbard and Umklapp models also appears in the mo-

FIG. 6. Momentum distribution functions nk of electrons in the
ground state of the Hubbard and Umklapp (U2 = U ) models with
L + 2 electrons. D = 4000 basis states are retained in the kDMRG
calculation. U = 2.5t and L = 22.

mentum distribution function of electrons. Figure 6 shows
the momentum distribution function nk for the two models
with two more electrons added to the half-fill system. For the
Hubbard model, two added electrons tend to have opposite
momentum, and the momentum of the ground state is zero.
Therefore, nk is mirror symmetric about the k = 0 point.
However, for the Umklapp model, the two added electrons
tend to have the same momentum, and nk is nonsymmetric
with respect to the central reflection point k = 0.

The correlation structure of the non-Umklapp model is
distinctive from the former two models. In the non-Umklapp
model, the backward scattering dominates. As a result, two
electrons with opposite momentum show stronger correla-
tions. The overall correlation of the non-Umklapp model is
significantly weaker than the former two models. It suggests
that the Umklapp scattering dominates the low-energy corre-
lations of the Hubbard model.
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