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In this study, we conducted a numerical investigation on the Hall conductance (oy,y) of graphene based on the
magnetic energy band structure calculated using a nonperturbative magnetic-field-containing relativistic tight-
binding approximation (MFRTB) method. The nonperturbative MFRTB can revisit two types of plateaus for
the dependence of oy, on Fermi energy. One set is characterized as wide plateaus (WPs). These WPs have
filling factors (FFs) of 2, 6, 10, 14, etc., and are known as the half-integer quantum Hall effect. The width of
the WPs decreases with increasing FF, which exceeds the decrease expected from the linear dispersion relation
of graphene. The other set is characterized by narrow plateaus (NPs), which have FFs of 0, 4, 8, 12, etc. The
NPs correspond to the energy gaps caused by the spin-Zeeman effect and spin-orbit interaction. Furthermore, it
was discovered that the degeneracy of the magnetic energy bands calculated using the nonperturbative MFRTB

method leads to a quantized oyy.
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I. INTRODUCTION

Graphene is a monolayer of carbon atoms and demon-
strates certain peculiar properties for its energy band diagram,
that is, a linear energy dispersion relationship near the Dirac
point. Graphene, with its distinctive properties, has garnered
considerable attention as a promising material in the elec-
tronics and spintronics fields [1-8]. Graphene immersed in
a uniform magnetic field also exhibits distinctive properties
such as strong orbital diamagnetism [9-22], reduced effective
g factor [23-25], unconventional oscillation of magnetization
[26-28], and half-integer quantum Hall effect (QHE) [29-42].
Graphene is becoming a more practical material for QHE-
based applications at room temperature because of the large
energy gap generated by the magnetic field compared to a
standard two-dimensional electron gas (2DEG) system [41].

Half-integer QHE in graphene has attracted scientific atten-
tion since its theoretical predictions [29,30] and experimental
discoveries [2,31,39-42]. Quantized Hall conductance (oyaj)
with filling factors (FFs) of 2, 6, 10, 14, etc., was experimen-
tally observed in a low magnetic field of approximately 14
T [2] or below 10 T [31], which is known as the half-integer
QHE. The half-integer QHE was theoretically described based
on the tight-binding (TB) approximation method and/or the
effective mass Hamiltonian method [30,32-38]. In addition to
the half-integer QHE, quantized oy, with FFs of 0 and 4 was
also observed experimentally in the high magnetic field region
of approximately 45 T [39]. The quantized oy, with FFs of
0, 4, 8, 12, etc., has also been described theoretically and
attributed to the energy splitting caused by the spin-Zeeman
effect [37].
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The theoretically obtained magnetic-field dependence of
the energy levels of electrons in a magnetic field is often
referred to as the Hofstadter butterfly diagram [43]. The
gap in the Hofstadter butterfly diagram provides informa-
tion on QHEs [44—47]. In conventional theoretical methods
[30,32-38], this diagram is calculated using hopping integrals
multiplied by the Peierls phase as magnetic hopping inte-
grals (hopping integrals in the presence of a magnetic field).
However, as the Peierls phase approximation corresponds to
a lowest-order perturbation theory [48], it becomes evident
that the diagram is incorrect in the high magnetic field region
and lacks accuracy even in the low magnetic field region
[48]. Furthermore, the Hofstadter butterfly diagram in the low
magnetic field region is likely to be affected by spin-orbit
interactions [48]. Therefore, it would be more appropriate
to consider both the nonperturbative effects of the mag-
netic field and the spin-orbit interaction in investigating the
QHE.

We recently developed the magnetic-field-containing rel-
ativistic tight-binding approximation (MFRTB) [49] and the
nonperturbative MFRTB methods [48] to describe the prop-
erties of materials immersed in a uniform magnetic field.
These methods enable the calculation of the realistic energy
band structure of materials immersed in a magnetic field
(magnetic energy band structure) by considering the effects
of the magnetic field, periodic potential, and relativity. Thus
far, the MFRTB method can revisit the de Haas—van Alphen
oscillations [50,51] and magnetic breakdown [51] and predict
the additional oscillation peaks of the magnetization [52-54].
The nonperturbative MFRTB method reveals that nonpertur-
bative effects appear in high and low magnetic field regions
[48] and successfully predicts the second-order phase tran-
sition of silicon from a band insulator to a metal [55]. All
these discussions are based on the magnetic energy band
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structure calculated using the MFRTB or nonperturbative
MFRTB method.

In this study, we investigate the QHE in graphene based on
the magnetic energy band structure calculated using the non-
perturbative MFRTB method. In particular, we investigate the
Fermi energy dependence of oy, using the nonperturbative
MFRTB method. The nonperturbative MFRTB method can
revisit the quantized oy, wWith FFs of 2, 6, 10, etc., and with 0O,
4, 8, etc., where the former has wide plateaus (WPs) and the
latter has narrow plateaus (NPs). As shown later, the width
of the WPs decreases with an increase in the FF owing to
the negative curvature of the energy band for a zero magnetic
field. The width of the NPs is shown to be determined by the
spin-Zeeman effect and the spin-orbit interaction.

The remainder of this paper is organized as follows. In
Sec. II, we explain the calculation method for the magnetic
energy band structure and quantized op,y. In Sec. IIT A, we
present the magnetic energy band structure of graphene and
discuss the degeneracy. In Secs. III B and IIIC, the Hofs-
tadter butterfly diagram calculated using the nonperturbative
MFRTB method is presented. We also discuss the Fermi en-
ergy dependence of the width of WPs and NPs in Sec. III D. In
Sec. III E, we demonstrate that the degeneracy of the magnetic
energy band leads to a quantized o). Finally, the conclusions
are presented in Sec. IV.

II. CALCULATION METHOD

The nonperturbative MFRTB method [48] was applied to
graphene immersed in a magnetic field. The outline of the
nonperturbative MFRTB method is given in the Appendix.
Specific formulas for the Hamiltonian matrix elements used
in the application of the nonperturbative MFRTB method to
graphene, and other details, are found in Ref. [22]. The mag-
netic field was assumed to be perpendicular to the plane of
graphene, and its magnitude is given by

_ 8wh p )
- VBea® q

where a (24.6 nm) denotes the lattice constant of graphene
and p and ¢ are relatively prime integers [22]. Note that
the magnetic field, the magnitude of which is proportional
to the rational number p/q, is sometimes called the ratio-
nal magnetic field [43,56,57]. Following previous studies
[22,27,36,38,43,48,49,53—62], the calculations in this study
were performed under the assumption of a rational magnetic
field [63]. In the case of graphene, the rational magnetic field
is given by Eq. (1). In the present calculations, the magnetic
hopping integrals between the outer shells (2s and 2p or-
bitals) of the nearest-neighbor carbon atoms were considered.
Their values were calculated using a table of nonperturbative
magnetic hopping integrals (Table I of Ref. [48]) and the
relativistic version of the Slater-Koster table [49]. We adopted
a set of relativistic tight-binding parameters for graphene that
is given in the previous paper [48]. The magnetic energy band
structure of graphene was calculated for the wave vectors
lying in the magnetic first Brillouin zone (MBZ) [49]. The
MBZ of graphene immersed in the magnetic field of Eq. (1) is
illustrated in Fig. 1.

2

1
—(, ﬁ)

2 2 1 1
/ MG e

\ roo /I’(Z:"(g,o;
2

2n 1 1
<G
FIG. 1. Magnetic first Brillouin zone (MBZ) of graphene im-
mersed in a magnetic field. The magnitude of the magnetic field is
proportional to the rational number p/q [Eq. (1)].

Hall conductance was calculated based on the obtained
magnetic energy band structure. Specifically, the number of
states below the Fermi energy (er) was calculated from the
magnetic energy band structure, and oy, was calculated by
substituting it into the Streda formula [47]:

on(B)
oB

where n(B) denotes the number of states below ep.

; (@)
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III. RESULTS AND DISCUSSION

A. Magnetic energy band structure

To investigate the quantized oy, based on the magnetic
energy band structure, we first discuss the features of the
magnetic energy band of graphene that is calculated using
the nonperturbative MFRTB method [48]. Figures 2(a) and
2(b) show the magnetic Bloch bands of graphene in the pres-
ence of magnetic fields with B = 200.5 T and B’ = 200.9 T,
respectively, and the values of p/q are 1/787 and 2/1571,
respectively. The aim of considering two close magnetic-field
values is to investigate the degeneracy of the magnetic energy
band, which will be discussed in the next paragraph. First,
we mention the features of the magnetic energy band that
are common for these two cases. The horizontal axis denotes
the wave vector in the MBZ, and the vertical axis denotes
the energy in electron volts (eV). From Figs. 2(a) and 2(b),
we conclude that the magnetic energy bands of graphene are
nearly independent of the values of k, and k, in the MBZ. As
shown in Ref. [53], a cluster of nearly flat magnetic energy
bands in close energy proximity corresponds to the so-called
Landau level that is attributed to Onsager’s quantization of the
electron orbit. Because the nonperturbative MFRTB method
is based on the Dirac equation for an electron moving in
both a uniform magnetic field and the periodic potential of
the crystal, the spin-orbit interaction and Zeeman effect are
inherently considered. Thus, as shown in Figs. 2(a) and 2(b),
each flat band splits into two energy bands owing to the spin-
orbit interaction and the Zeeman effect.

Next, we discuss the degeneracy of the magnetic energy
band. In this study, we introduce the approximation that a
nearly flat band is completely flat. In other words, each eigen-
value at the I' point is Ng-fold degenerate, where Ny is the
number of k points in the MBZ. If the area of the unit cell
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FIG. 2. Magnetic energy bands for (a) B = 200.5T and (b) B’ =
200.9 T. The horizonal axis denotes the wave vector lying in the
MBZ shown in Fig. 1. The arrow indicates the position of & for
intrinsic graphene.

for the zero magnetic field case is denoted by Ay and if the
total number of unit cells contained in the system is denoted
by N, then the total area of the system is given by A = Ay N.
Because the area of the magnetic unit cell is g times larger
than Ay [22,48,49], the total number of magnetic unit cells
in the system is given by N/q. The total number of magnetic
unit cells contained in the system is found to be equal to that
of the k points in the MBZ, Nj [49]. Consequently, under
this approximation, each eigenvalue at the I point is N/g-fold
degenerate.

Subsequently, we introduce another approximation. For
this purpose, we considered the magnetic energy band struc-
tures for two close magnetic fields, B and B’, as shown in
Figs. 2(a) and 2(b), respectively. Suppose B and B’ are pro-
portional to p/q and 1/4’, respectively, where ¢’ is a prime
integer. The relationship B~ B’ implies that g ~ pq’. For
this relationship ¢ &~ pq’, the period in the real space for the
case of B is p times larger than that for the case of B'. If the
difference of the Hamiltonian for these two cases is treated
as the perturbation potential, and if the Hamiltonian for the
case of B’ corresponds to the nonperturbative Hamiltonian,
then the perturbation potential would be small owing to the
relationship B ~ B’. This small perturbation potential makes
the periodicity p times longer than that for the nonperturbative
system because of ¢ & pq’. If we consider the change of the

periodicity without considering the small shift in energy due
to the small perturbation potential, the magnetic energy bands
for the case of B can be obtained by p-times folding of the
magnetic energy bands for the case of B’ within the MBZ
of the nonperturbative system. Therefore, we introduce an
approximation in which only the change in periodicity is con-
sidered without considering the small shift in energy caused
by the small perturbation potential. Because of the flatness
of the magnetic energy bands, p-times folding results in an
energy band with p-fold degeneracy. This p-fold degeneracy
was confirmed by actual calculations using the nonpertur-
bative MFRTB method. Figures 2(a) and 2(b) illustrate the
case of B ~ B'. From these figures, we can confirm that the
degeneracy of the magnetic energy band for p/q (= 2/1571)
is twice that of the magnetic energy band for 1/4’ (= 1/787).
For instance, while the eigenvalue around 0 eV at the I" point
is fourfold degeneracy for 1/¢’ = 1/787 [Fig. 2(a)], there is
eightfold degeneracy for p/q = 2/1571 [Fig. 2(b)]. Based on
the above discussion, we can conclude that the degeneracy of
the magnetic energy band is given by Np/q.

In addition to the aforementioned degeneracy, it was found
from the magnetic energy band calculated using the nonper-
turbative MFRTB method that the degeneracy of the magnetic
energy band is a multiple of 4. This degeneracy is due to
two reasons. First, each unit cell of graphene in a honeycomb
structure consists of two carbon atoms. Therefore, we utilized
twice the number of bases to expand the magnetic Bloch func-
tion [22,48,49]. This leads to twofold degeneracy. Second,
Dirac points exist at two inequivalent points, namely, the K
and K’ points, in the BZ. Consequently, the degeneracy of the
magnetic energy band of graphene becomes a multiple of 4.

Thus, the degeneracy of the magnetic energy band, g(B),
for graphene is given by g(B) = 4Np/q. If the area of the
system is denoted by A, then N = A /Auni.. Therefore, we have

p

gB)=4 -. (3
Aunil q
Using Eq. (1), Eq. (3) can be rewritten as follows:
2¢A B
g(B) = T 4

Equation (4) corresponds to the conventional degeneracy of
the Landau level given in the literature [51,64]. The important
point is that g(B) is proportional to the magnetic field. Equa-
tion (4) is used later to discuss Hall conductance.

B. Magnetic-field dependence of energy levels

Figure 3 shows the magnetic-field dependence of energy
levels of electrons in graphene (Hofstadter butterfly dia-
gram) at the I" point that is calculated by the nonperturbative
MFRTB method. Figure 4 shows a magnified view of Fig. 3.
In Figs. 3 and 4, the horizontal axis denotes the magnetic field
in tesla (T) and the vertical axis denotes the energy in eV. It
is well known that the energy spectrum of graphene is propor-
tional to the square root of the magnetic field at low magnetic
fields [9,10]. This square root behavior was first predicted by
McClure [9,10] based on Onsager’s area quantization rule.
As shown in Fig. 3, the nonperturbative MFRTB method can
revisit the square-root behavior [22]. In addition, owing to the
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FIG. 3. Magnetic-field dependence of energy levels (Hofs-
tadter butterfly diagram) calculated by the nonperturbative MFRTB
method.

relativistic effects, including the spin-Zeeman effect and spin-
orbit interaction, each quantized energy level is split into two
energy levels, as shown in Fig. 4. Thus, we observe two types
of energy splitting in the magnetic field dependent energy
spectrum of graphene. The first type is related to Onsager’s
area quantization rule and is indicated by (i—iii) in Fig. 4. The
other is due to relativistic effects and is indicated by (iv—vi) in
Fig. 4. By comparing energy splitting in (i—iii), it is found that
the former decreases with the energy for a constant magnetic
field (i,ii) and increases with the magnetic field (i,iii). With
respect to the latter energy splitting, it is small compared to
the former and increases with an increase in the magnetic field
(iv,v). As confirmed later, these two types of energy splitting
are the origins of the wide and narrow plateaus in the Fermi
energy dependence of the quantized oyy.

C. Quantized Hall conductance by nonperturbative
MFRTB method

The quantized oy in graphene is calculated using the
Streda formula [Eq. (2)] [47] based on the magnetic energy
band structure. Figures 5(a)-5(f) show the dependence of
ouan on the position of the Fermi energy for (a) B = 10.00 T,
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FIG. 4. Magnified view of Fig. 3.

(b) B=20.02T,(c)B=4850T, (d)B=101.50T, (e) B=
239.50 T, and (f) B = 600.50 T, respectively. Two types of
plateaus are observed in these figures. One set of plateaus
has a comparatively wide width, with FFs of 2, 6, 10, etc.
Another set of plateaus has a comparatively narrow width,
with FFs of 0, 4, 8, etc. For all magnetic fields, we con-
firmed that the starting and ending energies of each plateau in
Figs. 5(a)-5(f) correspond exactly to the energy levels shown
in Fig. 4. The widths of the plateaus shown in Figs. 5(a)-5(f)
are consistent with the energy splitting shown in Fig. 4. The
WPs in Figs. 5(a)-5(f) correspond to the energy splitting re-
lated to Onsager’s area quantization rule (Fig. 4). In addition,
we can confirm that the NPs in Figs. 5(a)-5(f) correspond to
energy splitting caused by relativistic effects (Fig. 4). Thus,
the quantized oy, in graphene can be effectively described
based on the magnetic energy band structure.

D. Fermi energy dependence of widths of plateaus

As discussed in Sec. IIIC, the WP corresponds to the
energy splitting related to Onsager’s area quantization rule.
Figure 6 shows the dependence of the width of WPs on the
FF. As shown in Fig. 6, the width of the WPs decreases
with increasing FF. This is expected to be due to the fact
that the energy separation of two successive quantized energy
levels caused by Onsager’s area quantization rule is not the
same for all energy levels (for the whole energy region) in
graphene, unlike in a conventional 2DEG system. To analyze
the dependence of the width of WPs on the FF, we calculated
the energy separation of two successive quantized energy
levels using Onsager’s area quantization rule. Based on the
area quantization rule, the quantized energy level is given by

E, =+ 26v§h|n|B, where n denotes the Landau level index,
and vp = 1.0x10° m/s is the Fermi velocity of graphene
[9,10]. The gap energy between two successive energy levels
is given by

AE, = \/2ev2iB(/|n| + 1 — /|n]). 5)

As mentioned in Sec. IIIC, the energy separation given by
Eq. (5) corresponds to the width of the WPs. The width of the
WPs calculated using Eq. (5) is shown in Fig. 6 concurrently
with those of the nonperturbed MFRTB method. The width of
the WPs, calculated using Eq. (5), agrees with those obtained
using the nonperturbative MFRTB method in the lower FF re-
gion, that is, in the low-energy region. This means that Eq. (5)
is a good approximation in the low-energy region. Recalling
that Eq. (5) is obtained using Onsager’s area quantization
rule when assuming a linear energy dispersion relationship
at zero magnetic fields, the good agreement suggests that
these treatments are valid in the low-energy region, that is,
in the lower-FF region. However, a discrepancy appears in the
higher-FF region, that is, in the higher-energy region. This is
because the assumption of a linear energy dispersion relation-
ship becomes less appropriate as the energy level moves away
from the Dirac point. Based on the energy band structure in
the absence of a magnetic field, the curvature of the energy
dispersion becomes negative as the energy level moves away
from the Dirac point. Therefore, the density of the quantized
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FIG. 5. Fermi energy dependence of the normalized Hall conductance [oy.y (e?/h)] for (a) 10.00, (b) 20.02, (c) 48.50 (d) 101.50, (e) 239.50,

and (f) 600.50 T.

energy levels that satisfy Onsager’s area quantization rule
increases with the energy range. Therefore, the width of the
WPs decreases with increasing FF or energy range, which ex-
ceeds the decrease expected from the linear energy dispersion
relationship.

Subsequently, we discuss the origin of the NPs in detail.
Figure 7 shows the magnetic-field dependence of the width
of the NPs for FF = 4. For reference, the width of the NP
expected from the spin-Zeeman effect alone is also indicated
in this figure. If the spin-orbit interaction is neglected, the
width of the NPs coincides with the width expected from
the spin-Zeeman effect. Therefore, the difference between
the results by the nonperturbative MFRTB method and those
by the spin-Zeeman effect, which is denoted as A, may be
regarded as the effect of the spin-orbit interaction. Figure 8

shows the magnetic-field dependence of the difference A. As
shown in Figs. 7 and 8, the width of the NP agrees with the
width expected from the spin-Zeeman effect in both the low
and high magnetic field regions. In the high magnetic field
region, the effects of the spin-orbit interaction become negli-
gible compared to the spin-Zeeman effect, which is regarded
as the Paschen-Back effect. Owing to the Paschen-Back effect,
the width of NPs calculated by the nonperturbative MFRTB
method approaches those calculated by the spin-Zeeman ef-
fect. The agreement in the low magnetic field region indicates
that the energy splitting caused by the anomalous Zeeman
effect is consistent with that of the spin-Zeeman effect for
magnetic Bloch states related to an FF of 4. This is possible,
for example, when the magnetic quantum number of the total
angular momentum is given by +1/2; the energy splitting
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FIG. 6. Energy dependence of the width of WPs for 48.50 T,
where solid circles (blue) represent the calculation from Eq. (5)
and triangles (red) represent the calculation from the nonperturbative
MFRTB.

caused by the anomalous Zeeman effect is consistent with that
caused by the spin-Zeeman effect in a low magnetic field [48].
Therefore, the agreement in the low magnetic field region
implies that the magnetic Bloch states related to a FF of 4
mainly comprise atomic orbitals with the magnetic quantum
number of £1/2.

On the other hand, the discrepancy is relatively large in the
middle magnetic field region (approximately 200 T) in Figs. 7
and 8. This implies that the effect of the spin-orbit interac-
tion can be observed in the width of the NPs in a magnetic
field of approximately 200 T. Although the width of the NPs
has not necessarily been estimated accurately in experiments
[39], it is expected that the effect of the spin-orbit interaction
and Paschen-Back effect will be observed in NPs by further
experiments, especially in high magnetic fields greater than
100 T [65]. It should be noted that the description of A can
be realized owing to the nonperturbative treatments of effects
of the magnetic field and spin-orbit interaction through the
nonperturbative MFRTB method.
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FIG. 7. Magnetic-field dependence of the width of the NP of
FF = 4. The width of the NP that is expected from the spin-Zeeman
effect is also indicated by a solid line. The expected value is given by
2upB, where up denotes the Bohr magneton.
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FIG. 8. Magnetic-field dependence of the difference (A) be-
tween the width of the NP of FF = 4 and the width expected from
the spin-Zeeman effect.

E. Description of the quantized Hall conductance based
on the magnetic energy band structure

In this section, we explain the reason why oy, in graphene
can be described based on the magnetic energy band struc-
ture calculated by the nonperturbative MFRTB method. From
Sec. IIT A, we confirmed that all the magnetic energy bands
approximately have a degeneracy of g(B), that is proportional
to the magnetic field [Eq. (4)]. If N(er) is the number of flat
magnetic energy bands below the Fermi energy, then the total
number of states per unit area below the Fermi energy is given
as follows:

N(er) g(B)
A

= TN(EF)- (6)

n(B) =

According to the Streda formula [47], oy, can be obtained
as follows:

d
Otall = € n(B)

_ 2€2N 7
=0 (er). @)

The Hall conductance is proportional to the number of flat
magnetic energy bands below the Fermi energy. As N(gfp) is
an integer, Eq. (7) indicates that oy, is quantized.

Subsequently, we discuss the relationship between the
magnetic energy band structure and oy, in more detail. The
nonperturbative MFRTB provides 16¢g eigenvalues for each
k point in the MBZ. Because the total number of magnetic
unit cells is given by N/q, we obtain 16N states using the
nonperturbative MFRTB method. In the honeycomb lattice
structure of graphene, each magnetic unit cell consists of
2g carbon atoms. Therefore, the magnetic unit cell consists
of 8¢q valence electrons. Therefore, the total number of va-
lence electrons in the system is equal to 8N (=8gxN/q). For
intrinsic graphene, half of the 16N states, that is, the 8N
states, are occupied. The flat band approximation described
in Sec. IIT A, 8¢ of 16¢g magnetic energy bands are fully
occupied. As mentioned in Sec. Il A, each cluster of mag-
netic energy bands consists of 4p magnetic energy bands,
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which leads to an approximate p-fold degeneracy. Consid-
ering that the cluster corresponds to the so-called Landau
level, we shall assign the following numbering to the clus-
ters: That is, we shall refer to the Oth cluster that contains
(8g—4p), 8g—4p+1),...,(8g—1), 8g-th magnetic energy
bands from the bottom. Similarly, the first cluster contains the
8g+1),(8g+2),...,(8q+ 4p)-th magnetic energy bands
from the bottom. Herein, the energy level of the nth cluster is
denoted by E,.

For the intrinsic graphene, the Fermi energy level lies be-
tween the Oth and first cluster, that is, Ey < er < E|. Here,
the total number of states below the Fermi energy is 8N.
Therefore, the total number of states per unit area is

n(B) = STN

16
= W (for Ey < ep < E1), (3)
a

where we used the relation A/N = Ayie = «/§a2/2. There-
fore, n(B) is independent of B when Ey < ¢r < E|. This leads
to

ogan =0 (for Ey < ep < Ey). )

Subsequently, we consider the case in which the Fermi
energy is located between E; and E,, that is, E; < ¢p < E;.
Here, the total number of states below the Fermi energy is
given as (8 + 4p/q)N [= (8q + 4p)xN/q]. Therefore, the to-
tal number of states per unit area is

8+ )N
n(B):%
A

16 2e
= W + IB (for E; < e < E»), (10)
a

where we used Eq. (1). Therefore, we have

2
Ol = % (for Ey < er < E»). (11)
Similarly, we can consider the case in which the Fermi en-
ergy lies between the (n — 1)—th and nth clusters. That is,
E,_| < er < E,. Here, the total number of states below the
Fermi energy level is (8 + 4np/q)N [= (8¢q + 4np)x (N/p)].
Therefore, the total number of states per unit area is

(8 + 2)N
B)=-—%7
n(B) 2

_ 16 2eB
~Bae  n"

Therefore, we have

(forE,_| <ep < E,). (12)

2
O = %2;1 (for E, | < &5 < Ey). (13)
Thus, oy, in graphene can be described based on the
magnetic energy band structure calculated using the nonper-
turbative MFRTB method.

IV. CONCLUSION

Using the nonperturbative MFRTB method, we investi-
gated the quantized oy, in graphene. It was confirmed that
WPs with FFs of 2, 6, 10, 14, etc., and NPs with FFs of 0,
4, 8, 12, etc., were revisited in the Fermi energy dependence
of oy,y. The former is attributed to energy splitting, which
corresponds to Onsager’s area quantization rule. The latter
arises because of the energy splitting caused not only by the
spin-Zeeman effect but also by the spin-orbit interaction in a
magnetic field.

The width of WPs decreases with increasing Fermi en-
ergy for a constant magnetic field, which agrees with the
experimental results. The dependence of the width of WPs in
the lower-energy region is consistent with the conventional
theoretical model [6-9], in which the linear energy dispersion
relationship is employed as an approximation for the energy
band structure in the absence of a magnetic field. On the other
hand, a discrepancy between the conventional theoretical
model and the nonperturbative MFRTB method appears in the
higher-energy region. Although the conventional theoretical
model is valid only close to the Dirac point, the nonpertur-
bative MFRTB method provides a practical magnetic energy
band structure that is valid even in the high-energy region.
That is, the discrepancy appears owing to the lack of validity
in using the linear energy dispersion relationship in the higher-
energy region. Thus, the present description of the Fermi
energy dependence of the width of WPs is reliable in both
the lower- and higher-energy regions.

It is possible to observe the effect of the spin-orbit inter-
action and Paschen-Back effect in graphene by investigating
the Fermi energy dependence of the width of NPs at magnetic
fields greater than 100 T. In general, the Paschen-Back effect
appears if the ratio of the Zeeman splitting to the spin-orbit
splitting exceeds 1 [48]. For graphene, the magnetic field that
makes the ratio 1 is approximately 144 T [48]. This magnetic
field appears to be consistent with the results shown in Figs. 7
and 8. Thus, the detection of the Paschen-Back effect in NPs is
expected to be realized using the recent progress [66] in gen-
erating an extremely high magnetic field greater than 1000 T
and in measuring physical quantities in the extremely high
magnetic field [67—69].

Furthermore, the relationship between the magnetic energy
band structure and quantized oy, was determined. Each time
the Fermi energy crosses a cluster of magnetic energy bands,
onan changes by 2¢?/h. This statement is similar to the de-
scription of dHVA oscillations based on the magnetic energy
band structure [52-54].

It would be interesting to consider the effect of the fine
energy band structure of a cluster on oy, . This is because the
fine energy band structure in a cluster generates additional os-
cillation peaks in the magnetic oscillation of the dHvA effect
[53] under a high magnetic field. The conventional MFRTB
and Hofstadter methods are based on perturbation theory [48];
thus, they are inadequate for describing such phenomena.
Only the nonperturbative MFRTB method may be applied as
a first-principles calculation method for a high magnetic field
region. The effect of the fine energy band structure will be
investigated in future studies.
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In the nonperturbative MFRTB method, the electron-
electron interactions are not incorporated. The effects of the
electron-electron interaction can be incorporated into effec-
tive potentials using the density functional theory [70,71]
and its extended theories [72-82]. For example, we can use
current density functional theory (CDFT) [77-82]. The non-
perturbative MFRTB method can be employed to solve the
Kohn-Sham (KS) equation of CDFT. It proves intriguing to
delve into the effects of electron-electron interaction on the
magnetic energy band structure of graphene as well as its
implications on the alterations observed in the quantized Hall
conductance. This is one of the future issues to be addressed.
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APPENDIX: OUTLINE OF NONPERTURBATIVE
MFRTB METHOD

In this Appendix, we mention the outline of the nonper-
turbative MFRTB method [48]. Let us consider an electron
moving in both a uniform magnetic field and periodic poten-
tial of the crystal. The Dirac equation for the electron is given
by

[ca Ap+ A+ pmc® + )Y Vo r—R, — d»} Do (r)

R, i

= Eq(k) Do (1), (A1)
where A(r) and V,,(r — R,, — d;) are the vector potential for an
applied uniform magnetic field B = (0, 0, B) and scalar po-
tential caused by the nucleus of an atom a; located at R,, + d,
respectively. The vectors R, and d; denote the translational
vector of the lattice and vector specifying the position of atom
a;, respectively. The letters ¢, e, and m represent the velocity
of light, elementary charge, and rest mass of an electron,
respectively. The quantities o [= (o, oy, o;)] and B stand for
the usual 4 x4 matrices. The eigenfunction @, (r) represents
the four-component wave function, the subscripts of which
denote the band index « and the wave vector k belonging to
the magnetic first Brillouin zone (MBZ).

In the nonperturbative MFRTB method [48], ®u(r) is
expanded by using the relativistic atomic orbitals immersed
in a magnetic field as basis functions,

Do (r) = DD Y " CERy +di) Y (1) Eo (h) Do (1),
R, i &

(A2)
where I/fgi’R"eri (r) denotes the relativistic atomic orbital for
atom «; located at R,, +d; that is immersed in a uniform
magnetic field B. Hereafter we refer to wg"’R"M" (r) as the
magnetic atomic orbital. The magnetic atomic orbital obeys

the following Dirac equation,

[ca - {p + eA(r)} + Bmc? + Vo, (r — R, — d)] y{ i (r)

i Ry+d; i Ry+d;
= g T T ), (A3)

where 8;" Ri+di and the subscript £ denote the atomic spec-
trum of an atom a; located at R, + d; that is immersed in
a uniform magnetic field and the quantum number, respec-
tively. The generalized eigenvalue problem for the expansion
coefficient Cjk (R, +d;) is obtained from Eq. (A1),

Z Z Z Hg,,jn, R,i ¢ Cik(Rn +d;)
R, i ¢

=Eo(k) > > > Skjn kit CoRu+di).  (Ad)
R, i &

where Hg,;, Rr,i¢ and Sg, ;. R, ¢ represent the matrix el-
ements of the Hamiltonian of Eq. (Al) and inner product

between r,’ Rtd; (r) and wg’”R"H’ (r), respectively. If we ne-

glect integrals involving three different centers, then we have
the following expressions for Hg, ; , gr,i ¢ and Sg,j . R,i &3

i 0 idi
Hg,jy Rt = (68" + Aef"")8;i8, £k, r,

(1 =88R, -, )T (Roxtdie—Rna=die) Ry )
X T,]aj;i(an +dz - d])

a;,0 a;,0
&y &

T

U Ry +d; —d)) | (AS)

and
SRoj . Ryi &
_ efl% (Rux+dix—Ryx—djx ) (Ruy+djy) SZJ? Royn +d; — dj),
(A6)
with
T Run +d; — d)

0o, V@) + Vot — Ry —d; +d;
= [ vt AR L

Ryn+di—d;

X g (r)d’r (A7)

and

a;a; aij, aj,Kpm di*dj 3
SV Ry +d; —d) = / vy ) g P,
(A8)

where R,, denotes R, —R,,. In Eq. (AS), Asg“d" is the
effect of the crystal field in the presence of the magnetic
field. Since Ae?"’d" is expected to be much smaller than the

atomic spectrum, we neglect Ae?” “4i in the actual calculations

[22,48]. In Egs. (A7) and (A8), T,"\" (Run +d; —d;) and

Sf]’g' (Rum +d; —d;) denote the magnetic hopping integral
and magnetic overlap integral, respectively [48].
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To calculate Hg,; ,, gr,i ¢ and Sg,; ;. R,i &, We need values
of T\ (Ryw + d; —d), Sy'¢ Ry +d; —d ), and & .
These can be obtained using the magnetic atomic orbital. In
the nonperturbative MFRTB method, the magnetic atomic
orbital is approximately estimated by means of the varia-
tional method [48]. Specifically, the magnetic atomic orbital
is expanded in terms of the relativistic atomic orbital in the
absence of a magnetic field [48]. By substituting the ex-
pansion into Eq. (A3), we obtain the approximate form of
the magnetic atomic orbital and the atomic spectrum. The
specific forms of the resultant magnetic atomic orbital and
atomic spectrum are given in Refs. [22,48]. Since the resultant
magnetic atomic orbital is expressed in the linear combination

of the relativistic atomic orbital, Tna’;" Ry +d; —d;) and

SZ’? (Ryn +d; —d;) can be expressed by the linear combi-
nation of relativistic hopping integrals and overlap integrals

in the absence of a magnetic field. The resultant approximate
forms for T:’;" Ry +d; —d;) and S?;‘ Ry +d; —d;) are
given in Table II of Ref. [48]. Note that relativistic hopping in-
tegrals and overlap integrals in the absence of a magnetic field
can be expressed in terms of several relativistic TB parameters
[49], which is summarized in the relativistic version of the
Slater-Koster table (Table I of Ref. [49]). Thus, we can calcu-
late the matrix elements of Hg,,j », r,i ¢ and Sg,; n, r,i ¢ from
several relativistic TB parameters. Relativistic TB parameters
are determined by requiring that energy-band structure for
the zero magnetic field case a calculated by the relativistic
TB approximation method [49] coincides with that of the
reference data as well as possible. As the reference data
for graphene, the energy-band structure is calculated by the
WIEN2K code [83] taking the spin-orbit interaction into ac-
count [22]. This is an outline of the nonperturbative MFRTB
method.
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