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Nearly flat Chern band in periodically strained monolayer and bilayer graphene
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The flat band is a key ingredient for the realization of interesting quantum states for functionalities. In this
paper, we investigate the conditions for the flat band in both monolayer and bilayer graphene under periodic
strain. We find topological nearly flat bands with homogeneous distribution of Berry curvature in both systems.
The quantum metric of the nearly flat band closely resembles that for Landau levels. For monolayer graphene, the
strain field can be regarded as an effective gauge field, while for Bernal-stacked (AB-stacked) bilayer graphene,
its role is beyond the description of a gauge field. We also provide an understanding of the origin of the nearly flat
band in monolayer graphene in terms of the Jackiw-Rebbi model for Dirac fermions with sign-changing mass.
In this paper, we suggest strained graphene as a promising platform for strongly correlated quantum states.
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I. INTRODUCTION

Electron correlation is at the center of condensed matter
physics research and is the driving mechanism for a variety
of quantum states of matter. There are several known routes
to tune the system into a strongly correlated region. In a Lan-
dau Fermi liquid, the Coulomb interaction can dominate the
electron kinetic energy by tuning the density of the electron to
the dilute region. The strongly correlated region can also be
achieved using localized electron orbitals, such as electrons
in the d or f shell. This is illustrated in two paradigmatic
models in condensed matter physics: the Hubbard model and
the Anderson lattice model for f electrons. In these correlated
systems, the physics connects to the atomic limit adiabati-
cally. For instance, by using more and more localized electron
orbitals, the overlap of the orbital wave function between
neighboring sites can be progressively reduced to approach
the atomic limit. Therefore, the narrow electron band in these
systems generally has a trivial band topology. Another route
is to take advantage of the interference effect of the electron
wave function when electrons hop in the lattice. For certain
lattices, such as Lieb and Kagome lattices, there exists an
exactly flat band. The condition for the existence of exactly
flat band was derived by Lieb [1]. Nearly flat bands have been
achieved in carefully designed Hamiltonians [2–4]. Recently,
moiré superlattices have emerged as an exciting platform for
attaining a nearly flat band through the interference effect of
the electron wave function [5]. A moiré superlattice appears
when two incommensurate periodic structures are superposed
together. This can be achieved by twisting a two-monolayer
material or by placing a layer of two-dimensional material on
top of another material with a different lattice parameter. As a
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result of incommensuration, a superlattice with much longer
lattice periodicity arises. (Rigorously speaking, the superlat-
tice is generally not periodic, but at the low-energy scale, the
incommensuration effect is not important, and the system can
be treated as a periodic lattice.) Here, we emphasize that the
narrow band in the moiré superlattice is not merely due to
the reduced energy scale for a small Brillouin zone in the
superlattice with a long period. This can be seen by checking
the ratio between the band gap and the bandwidth, which can
be large under certain conditions. The single particle band is
generally not exactly flat in a moiré superlattice [5], except
for certain special parameters [6]. Nevertheless, these nearly
flat bands are sufficient to stabilize a plethora of correlated
states, such as superconductivity, correlated insulating states,
and Wigner crystals [7–32].

The third route is to apply a magnetic field which quenches
the kinetic energy of electrons in the plane perpendicular to
the magnetic field. Electrons occupy the Landau levels, which
are exactly flat in the clean bulk. Moreover, the system is
topological, as evidenced by an integer quantized Hall con-
ductance. The Landau levels have other unique properties,
such as saturation of the trace condition. These properties
make Landau-level systems important for stabilizing exotic
quantum states, such as the fractional quantum Hall state and
many other states with nontrivial topological order.

It is natural to seek similar Landau-level physics in ma-
terials but without an external magnetic field. This is indeed
possible in systems where strain can be regarded as a pseu-
domagnetic field. This idea has been explored extensively in
the context of graphene [33], and the formation of Landau
levels has also been observed in experiments [34]. Unlike
the physical magnetic field, the strain does not break the
time-reversal symmetry. This means that the pseudomagnetic
field must be opposite for Dirac fermions in two different val-
leys in graphene. The pseudomagnetic field can also stabilize
a nontrivial topological phase in graphene, as was recently
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demonstrated in Ref. [35]. Experimentally, the narrow band
in graphene under periodic strain was reported [36] and was
investigated theoretically in Refs. [37–39]. Therefore, strain
engineering represents an important direction to achieve flat
bands, parallel to the efforts to identify materials with intrinsic
flat bands [40].

In this paper, we study the occurrence and condition of a
nearly flat band in both monolayer and bilayer graphene under
periodic strain. We identify nearly flat bands with a nonzero
valley-resolved Chern number in monolayer graphene. This
flat band can be understood based on the Jackiw-Rebbi (JR)
zero mode in a (1 + 1)-dimensional [(1 + 1)D] Dirac fermion
with spatially varying mass. We then go beyond the simple
Dirac fermion with winding number 1 to a Dirac fermion
with winding number 2 stabilized in bilayer graphene. For
Dirac fermions in graphene, the strain field can only shift the
position of the Dirac cone before the Dirac cone annihilates
with the other Dirac fermion in the opposite valley. In this
case, the strain can be regarded as a pseudomagnetic field. In
bilayer graphene, in addition to the shift of the position of
the Dirac cone, the Dirac fermion with winding number 2 can
split into two Dirac fermions with winding number 1 or other
combinations such as 3 Dirac cones with winding 1 and one
cone with winding −1. In this case, the strain field decom-
poses into two separate sectors: symmetric and antisymmetric
(under inversion). In analogy to strain in single-layer sys-
tems, the symmetric sector results in an effective gauge field.
In contrast, the antisymmetric sector provides a distinctive
coupling between strain and electronic degrees of freedom,
which can no longer be treated as an effective gauge field,
and results in an alternative family of moiré systems. We will
show the appearance of nearly flat bands with almost ideal
quantum geometry as Landau levels in monolayer and bilayer
graphene.

The remainder of the paper is organized as follows. In
Sec. II, we review the treatment of strain as a pseudogauge
field in monolayer graphene. In Sec. III, we present results
of a nearly flat band in monolayer graphene. In Sec. IV, we
turn to the flat band in periodic strained bilayer graphene. In
Sec. V, we provide an understanding of the occurrence of flat
bands in strained monolayer graphene from the perspective of
the JR model. We end the paper with a brief discussion and
conclusions in Sec. VI.

II. STRAIN

Here, we briefly review how the strain field can be modeled
as a pseudomagnetic field in graphene. The valley-projected
Hamiltonian of monolayer graphene around K+ is

HK+ = 3

2
at

(
0 qx + iqy

qx − iqy 0

)
= 3

2
at

(
0 −2i∂z̄

−2i∂z 0

)
,

(1)

where ∂z = 1
2 (∂x − i∂y), ∂z̄ = 1

2 (∂x + i∂y), a is the bond length
of graphene, and t is the nearest-neighbor hopping strength.
After we apply a deformation field �u to monolayer graphene,
the hopping strengths along �δ1, �δ2, and �δ3 (as shown in
Fig. 1) are modulated by the strain field. Denote the hopping

FIG. 1. Schematic view of periodically strained graphene. am
1 =√

3Nna(1, 0) and am
2 = √

3Nna(− 1
2 ,

√
3

2 ) are the superlattice lattice
vectors. The color map is of the pseudomagnetic field defined in
Eq. (10).

strengths along �δ1, �δ2, and �δ3 as t1, t2, and t3, respectively. Then
the Hamiltonian is modified as (we use h̄ = e = c = 1)

HK+ = 3

2
at

[
0 −2i∂z̄ + e(Ax + iAy)

−2i∂z + e(Ax − iAy) 0

]
,

(2)

where evF Ax = 1
2 (δt2 + δt3 − 2δt1), evF Ay =

√
3

2 (δt3 − δt2),
and vF = 3

2 at . The relationship between δti and the strain
tensor ui j is

ti = t + ∂t

∂a
δa

= t + ∂ ln t

∂ ln a

t

a
δ̂i · [ �uB( �RA + �δi ) − �uA( �RA)], (3)

In the long-wavelength limit,

�uB( �RA + �δi ) − �uA( �RA) = κ (�δi · ∇)�u, (4)

where κ is the reduction factor [41]. Then

ti = t + κ
∂ ln t

∂ ln a

t

a2
�δi · (�δi · ∇)�u. (5)

Defining β = − ∂ ln t
∂ ln a , which measures how the bonds respond

to being deformed, we have

ti = t − κβt

a2
�δi · (�δi · ∇)�u. (6)

Plugging �δ1 = (0, a), �δ2 = (−
√

3a
2 ,− a

2 ), and �δ3 = (
√

3a
2 ,− a

2 )
into the above equation, we obtain

δt1 = −βtκuyy, (7)

δt2 = −βtκ

(
3

4
uxx + 1

4
uyy +

√
3

2
uxy

)
, (8)

δt3 = −βtκ

(
3

4
uxx + 1

4
uyy −

√
3

2
uxy

)
. (9)

Then we have Ax = − βκ

2ea (uxx − uyy) and Ay = 2 βκ

2ea uxy.
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FIG. 2. Topological flat band in buckled monolayer graphene.
(a) Band structure at α = −2.22817. Blue line corresponds to band
1, and red line corresponds to band −1. Together, they have valley
Chern number 1. (b) Bandwidth (blue line), band gap (red line in the
top panel), ratio between band gap and bandwidth (red line in the
bottom panel) as a function of |α|, respectively. Band gap is the gap
between the middle two bands and the band 2, bandwidth is of band
−1 or 1. Here, band index i means the ith band counting from the
charge neutrality point, as shown in (a).

III. NEARLY FLAT BAND IN MONOLAYER GRAPHENE

We set δti/t = δt sin( �Gi · �r), where �G1 = 4π
3Nna (0, 1),

�G2,3 = 4π
3Nna (∓

√
3

2 ,− 1
2 ) are reciprocal lattice vectors. The

pseudomagnetic field is

�B(�r) = B0

3∑
i=1

cos( �Gi · �r)ẑ, (10)

where B0= 4πtδt
3evF Nna . We define the normalized δt as α= δt

(3/2)aG ,

where G = 4π
3Nna is the magnitude of the reciprocal lattice vec-

tor. We obtain two nearly flat bands near the charge neutrality
point when δt = −0.2 and Nn = 70, which corresponds to
α = −2.22817, as shown in Fig. 2(a). Adding a m0σz term
and setting m0 = 0.001, we get two separated flat bands. The
valley Chern number is 1 for the bottom flat band and 0
for the top flat band. Before adding the m0σz term, the ratio
between the band gap and the bandwidth of band 1/(−1) is
∼3, as shown in Fig. 2(b). Here, band index i means the ith
band counting from the charge neutrality point. After adding
the m0σz term, the ratio between band gap [the band gap is

FIG. 3. (a) Berry curvature distribution of the topological band
in monolayer strained graphene, where F̃xy(k) = Fxy(k)/F̄xy. (b) Vi-
olation of the trace condition of the topological flat band. Here, we
choose α = −2.22817 and m0 = 0.001.

between the band 1(−1) and 2(−2) for the top(bottom) band]
and bandwidth of the top(bottom) are the same and ∼18.3.

In addition to the band dispersion, we further characterize
the bands using the Fubini-Study metric gab(k) and the Berry
curvature Fxy(k), which are given by

gab(k) = �[ηab(k)], Fxy(k) = −2�[ηxy(k)], (11)

where

ηab(k) = 〈∂auk|∂buk〉
||uk||2 − 〈∂auk|uk〉〈uk|∂buk〉

||uk||4 ,

where uk(r) is the periodic part of the Bloch function, ∂a ≡
∂ka , and ||uk||2 = 〈uk|uk〉. In analogy to the Landau-level
physics, the ideal candidate for the realization of fractional
Chern insulators and other correlated topological states should
have an ideal quantum metric, i.e., satisfying the trace condi-
tion tr[g(k)] = |Fxy(k)|, and a very uniform Berry curvature.
To quantify the nonuniformity of the Berry curvature, we
plot the Berry curvature distribution of the bottom band in
Fig. 3(a). The ratio between the root-mean-square deviation
of the Berry curvature and its average value 
Fxy/F̄xy =
0.576 179. We also plot the violation of the trace condition
quantified by {tr[g(k)] − |Fxy(k)|}|Fxy(k)|−1 in Fig. 3(b). We
find that the deviation of tr[g(k)] from |Fxy(k)| is very small
(<0.18%) in the entire Brillouin zone for the chosen value of
α = −2.228 17.

IV. NEARLY FLAT BANDS IN BILAYER GRAPHENE

Here, we consider Bernal-stacked (AB-stacked) bilayer
graphene, which hosts Dirac fermions with winding number
2. The generic valley projected Hamiltonian of the strained
bilayer graphene is

HK+ = 3

2
at

⎛
⎜⎜⎜⎜⎝

0 −2i∂z̄ + eÃ1 0 0

−2i∂z + eÃ∗
1 0 2γ

3at 0

0 2γ

3at 0 −2i∂z̄ + eÃ2

0 0 −2i∂z + eÃ∗
2 0

⎞
⎟⎟⎟⎟⎠, (12)

where Ã1 = A1x + iA1y, Ã2 = A2x + iA2y, and γ is the in-
terlayer hopping strength. In the following calculation, we
set γ = 0.1t . We define the symmetric and antisymmet-
ric fields Ã(+) = Ã1+Ã2

2 and Ã(−) = Ã1−Ã2
2 , respectively. In

Bernal-stacked bilayer graphene, the aligned top layer A sub-
lattice and the bottom layer B sublattice hybridize strongly
and are responsible for the formation of bands away from
zero energy. Therefore, we can project out these two interlayer
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FIG. 4. (a) 4×4 (blue line) and 2×2 (red line) band structure for
symmetric strained bilayer graphene with α = 0.159 155. (b) 4 × 4
(blue line) and 2 × 2 (red line) band structure for antisymmetric
strained bilayer graphene with α = −0.159 155.

aligned sublattices and derive a low-energy Hamiltonian for
the unaligned sublattice. Then the 2 × 2 effective Hamiltonian
of Eq. (12) is

Heff = 9a2t2

4γ

(
0 H12

H∗
12 0

)
, (13)

where

H12 = − [−2i∂z̄ + eÃ(+) + eÃ(−)] [−2i∂z̄ + eÃ(+) − eÃ(−)]

= 4∂2
z̄ − e2[Ã(+)]2 + e2[Ã(−)]2 + 4eiÃ(+)∂z̄

+ 2ei∂z̄Ã
(+) − 2ei∂z̄Ã

(−). (14)

It is evident from Eq. (13) that, when the strain field is
symmetric with Ã(−) = 0 (i.e., the same for both layers), it
acts as a gauge field [−2i∂z̄ → −2i∂z̄ + eÃ(+)]. However, the
antisymmetric part of the strain field Ã(−) cannot be treated
as an effective gauge field. Note that the symmetric and anti-
symmetric components of the strain field Ã do not mix. In the
following, we discuss these two cases separately.

A. Bilayer graphene with symmetric strain for two layers

When the two layers have the same strain, Ã(−) = 0. Set-
ting Ã(+) = Ax + iAy:

Ax = −1

evF
tδt

[
sin

( �G1 · �r
) − 1

2
sin

( �G2 · �r
) − 1

2
sin

( �G3 · �r
)]

,

(15)

Ay = −1

evF
tδt

[√
3

2
sin

( �G2 · �r
) −

√
3

2
sin

( �G3 · �r
)]

. (16)

We plot the band structure of the 4 × 4 Hamiltonian and the
2 × 2 effective Hamiltonian and find that they agree well near
the charge neutrality point when the strength of the strain field
is small, as shown for α = 0.159 155 in Fig. 4(a). Because
ρ(C2T )H∗

eff(r, δt )ρ(C2T )† = Heff(C2r,−δt ), the band struc-
ture for δt and −δt are the same. Both δt > 0 and δt < 0 lead
to a nonzero band gap between the middle two bands and the
other bands. Before adding any σz term, band 2 already has

FIG. 5. Band gap and bandwidth plot of antisymmetric strained
bilayer graphene. (a) Bandwidth (blue line) of band 1/(−1), band
gap (red line) between band 1(−1) and band 2(−2) and (b) the ratio
between band gap and bandwidth (red line) as a function of |α|. The
plot is from the 4 × 4 Hamiltonian. The normalized δt is defined as
α = δt

3
2 aG

. The energy is shown in units of h̄vF G.

a valley Chern number +2/−2, depending on the sign of δt .
When δt < 0, after adding the σz term, bands −1, 1, and 2
have valley Chern numbers −2, 0, and 2, respectively. When
δt > 0, after adding the σz term, the bands −1, 1, and 2 have
valley Chern numbers 0, 2, and −2, respectively.

B. Bilayer graphene with opposite strain for two layers

When the two layers have the opposite strain, we have
Ã(+) = 0. We set Ã(−) = Ax + iAy, where Ax and Ay are the
same as in Eqs. (15) and (16). Unlike the case of symmetric
strain, for antisymmetric strain, positive and negative δt lead
to different behavior. When δt > 0, the middle two bands are
gapless. When δt < 0, the two middle bands are separated
from others, and the flatness of the two middle bands increases
monotonically as we increase |α|, as shown in Fig. 5.

We calculate the valley Chern number of the middle
two bands after adding the σz term; the top flat band has
valley Chern number −1 and the lower one +1. We plot the
Berry curvature distribution and the violation of the trace
condition {tr[g(k)] − |Fxy(k)|}|Fxy(k)|−1 of the bottom band
at α = −1.59155. The ratio between band gap and bandwidth
is >1000 after adding σz, and we have an ideal quantum
geometry, as shown in Fig. 6(b). Here, |ψK̄+ (r0 = 0)|
decreases exponentially as a function of |α|, as shown in
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FIG. 6. (a) Distribution of the Berry curvature. (b) Violation of
the trace condition of the lower topological flat band for antisymmet-
ric strained bilayer graphene at α = −1.59 155 and m0 = 0.000 1.
The plots are from the 4 × 4 Hamiltonian. m0 is amplitude of 1 ⊗ σz

term.

Fig. 7. When |α| is large, |ψK̄+ (r0 = 0)| is very close to 0,
suggesting that the wave function of the topological flat band
is close to a trial wave function ψk(r) = fk(z)ψK̄+ (r), where
ψK̄+ (r) has a zero at r = 0. The periodic part of this trial wave
function is holomophic in k, which gives rise to the perfect
quantum geometry of the band. As shown in Fig. 8, the decay
rate of {tr[g(k)] − |Fxy(k)|}|Fxy(k)|−1 as a function of |α|
for the bilayer is much faster than that of the monolayer,
suggesting that the quantum geometry of the bilayer
topological flat band is closer to the ideal quantum geometry
than the monolayer topological flat band with the same α.

V. CONNECTION TO THE JR ZERO MODE

For Dirac fermions coupled to a gauge field, it was proved
that there exist zero modes whose number is the same as the
number of total flux minus one in the system [42]. Whereas
this applies even to the situation where the magnetic field is
not uniform in space, it does not apply to the case where the
net magnetic flux is zero. In strained graphene systems, the
net magnetic flux is zero, so the calculations of Ref. [42] are

FIG. 7. Plot of ln |ψK̄+ (r0 = 0)| as a function of |α| for mono-
layer, bilayer 4 × 4 Hamiltonian, and bilayer 2 × 2 effective
Hamiltonian. Red triangle is for monolayer, Black star is for bilayer
2 × 2, Green square is for bilayer 4 × 4.

no longer applicable. Instead, the nearly flat band in the mono-
layer graphene system can be understood from the perspective
of the zero mode of the Dirac fermion in (1 + 1)D with a
sign-changing mass term, the JR zero mode [43]. To build
intuition, we first show that zero modes in graphene under a
uniform magnetic field (zeroth Landau level) can be captured
with the JR method and how it can be extended to capture
partially flat bands in graphene under a (pseudo)magnetic field
that varies only in one spatial direction. Then we show details
of the JR model in strained monolayer graphene.

For a Dirac Hamiltonian in (1 + 1)D, H (x) = −i∂xσx +
m(x)σy, with a sign-changing mass term, i.e., m(x � 0) � 0
and m(x < 0) < 0, it supports a massless fermionic mode
localized at the domain wall x = 0. For zeroth Landau level
in graphene, we take the gauge Ay = Bzx and Ax = 0, such
that the momentum ky in the y direction is a good quantum
number. For each ky, the Dirac Hamiltonian in one valley
K becomesH (x)K = −i∂xσx + (ky − Bzx)σy which is exactly
the (1 + 1)D Dirac Hamiltonian with a spatially dependent
mass term m(x) = ky − Bzx. For each ky, there exists a JR zero

FIG. 8. Trace condition violation for monolayer and bilayer 4×4
and 2 × 2 effective Hamiltonian as a function of |α| at a fixed k point.
We choose the middle point between �̄ and K̄− for the monolayer
case. We choose �̄ for the bilayer case. Red triangle is for monolayer.
Black star is for bilayer 2 × 2. Green square is for bilayer 4 × 4.
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mode at xJR = ky/Bz. The degeneracy of the zeroth Landau
level is equal to the number of allowed ky, which equals
Ny = Lx/xJR = LxLyBz/(2π ) = �/�0, where Lx and Ly are
the linear system sizes, and we take ky to be discretized in a
step of 2π/Ly. This reproduces the well-known results that
the degeneracy of the zeroth Laudau level is the same as
the number of flux in units of flux quantum. In the presence
of an electric field Ey along the y direction, ky = Eyt from
the semiclassical equation of motion for electrons. After one
period, the position of the zero mode in the x direction is
exactly shifted by one period, which corresponds to quan-
tized electrical Hall conductance σxy = 1/2π . Therefore, the
zeroth Landau level is topological. The JR model reproduces
the well-known facts about the zeroth Landau level of Dirac
fermions in (2 + 1)D.

However, for a gauge field which corresponds to a uni-
form magnetic field, the associated strain field diverges at
large distances and thus cannot be realized physically. To
avoid divergence in the strain field, we choose a sinusoidal
vector potential varying only in the x direction, which can
be realized using the deformation field uy ∝ sin( 2π

Nn

x√
3a

) and
ux = 0. Note that there are infinitely many possible strain field
configurations that give the same pseudomagnetic field. The
Hamiltonian is

H (x, ky) = vF {−i∂xσx + [ky + eAy(x)]σy}, (17)

where we take Ay(x) = t
evF

δt cos( 2π
Nn

x√
3a

). In the region where

ky < | tδt
vF

|, there exists a quasizero mode localized in the re-
gion when ky + eAy(x) changes sign. Here, quasizero means
that these localized modes generally hybridize, which lifts
these modes away from zero energy. The degree of hybridiza-
tion depends on the ratio between the spread of the wave
function and the separation of the zeros of ky + eAy(x). As
ky approaches | tδt

vF
|, the hybridization of the localized mode

becomes stronger, and the energy of the modes starts to
deviate from zero energy. As a consequence, the band is
nearly flat only in a certain range of ky, as illustrated in
Fig. 9. The partially flat band result is consistent with the
tight-binding model result in fig. 3(b) of [44]. We remark
that the partially flat band can also host correlated quantum
states, when the Fermi energy is parked in the flat band
region.

Now we are in a position to discuss the periodic strain con-
sidered in Sec. III. We take advantage of the gauge redundancy
by choosing Ay = 0 and Ax = −1

evF
tδt[sin( �G1 · �r) − 2 sin( �G2 ·

�r) − 2 sin( �G3 · �r)]. A strain tensor needs to satisfy a compati-
bility equation for it to correspond to a single valued displace-
ment field [45]. Using the compatibility equation (∂2

x uyy +
∂2

y uxx − 2∂2
xyuxy = 0), we find that the strain field cor-

responds to displacement field ux= − √
3u0[cos( �G2 · �r)

− cos( �G3 · �r)] and uy = u0
∑3

i=1 cos( �Gi · �r), where u0 =
9eB0N2a3

8π2 h̄β
. Then −∂yAx(x, y) = Bz is the same pseudomagnetic

field as in Eq. (10). The Hamiltonian becomes

H = vF (−i∂xσx − i∂yσy − eAxσx ). (18)

FIG. 9. Band structure of the band −1 of the Hamiltonian of
Eq. (17) as a function of kx and ky. Here, we set t = 1,

√
3a = 1,

and δt = 1.

Assuming that the variation in the y direction is slow and its
amplitude is weak, we use the mode expansion:

Ax,m(y) ≡ 1

Lx

∫ Lx

0
Ax(x, y) exp(−imGxx)dx, (19)

where Gx = 2π√
3Nna

. Plugging Eq. (19) and ψ (x, y) =∑
m exp[i(kx + mGx )x]ψm(y) into the eigenvalue Eq. (18), we

get

[−i∂yσy + (kx + mGx )σx]ψm −
∑

m′
Ax,m−m′σxψm′ = Eψm.

(20)

For the Ax(x, y) we use, only Ax,0 = −3B0Nna
4π

sin(G1yy),
Ax,−1 = 3B0Nna

2π
sin(G2yy) and Ax,1 = 3B0Nna

2π
sin(G3yy) are

nonzero. We consider the zero mode and set m = 0, then we
rewrite the Hamiltonian near E = 0 as

H = −i∂yσy − M(y)σx, (21)

where

M(y) = kx − Ax,0 − Ax,−1Ax,1

×
(

1

kx + Gx − Ax,0
+ 1

kx − Gx − Ax,0

)
. (22)

Pluggin in the values of Ax,0, Ax,−1, and Ax,1, we obtain

M(y, kx, δt ) = 3

2
atkx + tδt sin(G1yy)

− 4t2δt2 sin(G2yy) sin(G3yy)

×
[

1

(3/2)at (kx + Gx ) + tδt sin(G1yy)

+ 1

(3/2)at (kx − Gx ) + tδt sin(G1yy)

]
. (23)

If we set t = 1, we can plot M(y) as a function of y for certain
kx and δt . There are two zeros within one period (see Fig. 10),
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FIG. 10. Zeros of M(y) of the Hamiltonian of Eq. (18) for differ-
ent kx and δt . (a)–(c) kx = 0; (d)–(f) kx = 0.05. (a) and (d) δt = 0.05;
(b) and (e) δt = 0.2; and (c) and (f) δt = 0.4.

so there should be two flat bands, which is consistent with
Fig. 2. Generally, these localized modes hybridize, and there-
fore, the band cannot be exactly flat. As shown in Fig. 10, for
a specific kx, the slope of M(y) near each zero mode becomes
larger as we increase δt , which means the hybridization of
the localized mode becomes weaker as we increase δt (recall
that the larger the slope at the zeros of M(y), the smaller
the spread of the wave function of the localized mode.). As
a consequence, the middle two bands become flatter as we
increase δt , which qualitatively agree with the bandwidth plot
in Fig. 2(b).

VI. DISCUSSION AND CONCLUSIONS

First, we discuss the existing results of the nearly flat band
in graphene and bilayer graphene under a periodic potential.
Milovanović et al. [37] studied band flattening in buckled
monolayer graphene numerically by modeling the buckling
effect as a pseudomagnetic field. Narrow bands with delocal-
ized electronic dynamics are found. Skurativska et al. [46]
calculated the electronic structure of single-layer graphene
in the presence of periodic adatoms within the framework
of density functional theory, where relatively flat bands with
fragile topology are reported. The mechanism for the ap-
pearance of a nearly flat band in these two works is not
clear. In this paper, we unravel the underlying mechanism
for the flat band through the JR zero mode. In addition, we
provide further characterization of the bands using quantum
metric. In Ref. [47], both topological and nontopological
flat bands in bilayer graphene under a superlattice potential
are demonstrated. The superlattice potential is introduced
through spatially modulated electric field, whereas in this
paper, the strain modulates the velocity of the Dirac fermion.
We would also like to mention closely related systems to a
single Dirac fermion on the surface of a topological insu-

lator in the presence of periodic potential, where flat bands
and possible correlated states are studied [48,49]. The flat
band for Dirac fermions in the presence of a modulated
physical magnetic field with a nonzero net magnetic flux is
studied in Ref. [50]. The appearance of a flat band due to
the relative biasing of one sublattice against other sublattices
in bilayer graphene is proposed and verified experimentally
in Ref. [51].

Experimentally, periodic strain can be introduced by plac-
ing graphene on top of an array of dielectric nanodots. The
antisymmetric strain for bilayer graphene may be tricky to
implement. Generally, one expects that the strain for different
layers can be different when bilayer graphene is placed on
a periodic structure. This heterostrain, albeit weak, has been
measured experimentally in twisted bilayer graphene devices
[13]. Therefore, there exists a strain component that is anti-
symmetric with respect to the layer degree of freedom. To
maximize the antisymmetric component, one can sandwich
bilayer graphene with a periodic structure in both the bottom
and top. Although we restrict ourselves to periodic strain with
C3v symmetry and strain modulated in one direction, the flat
bands can also appear for other periodic strain profiles, as
can be inferred from the consideration of the JR zero modes.
When the strain can be regarded as a gauge field, because
of the gauge redundancy, there exist infinitely many strain
profiles that produce the same energy spectrum. Therefore,
one may take advantage of this gauge redundancy to find
a convenient strain profile for experimental realization. As
shown in Fig. 5, the band flattens as a function of the strain
strength. Compared with twisted bilayer graphene, which re-
quires finetuning of the twist angle to achieve a flat band,
strained graphene can achieve a nearly flat band, and the
flatness of the band can be improved by continuously tuning
the parameters.

As demonstrated in Sec. IV, the response of the system to
a strain field can be very different depending on the winding
number of the Dirac fermion. For monolayer graphene with
Dirac fermion of winding number 1, strain can be modeled
as an effective pseudogauge field. For high winding numbers,
the Dirac fermion can split in the presence of strain, and the
pattern of splitting can be controlled by the symmetry of the
strain. In this case, strain generally cannot be modeled as a
pseudogauge field. For a higher winding number, which can
be realized in multilayer graphene, even richer physics can be
expected. Similarly, the many-body instability when electron
interactions are included is likely distinct for a Dirac fermion
with different winding numbers. The response to strain also
depends on the position of the Dirac dispersion in the Bril-
louin zone [52].

To summarize, we find topological nearly flat bands with a
homogeneous distribution of Berry curvature in both mono-
layer and Bernal-stacked bilayer graphene under periodic
strain. Depending on the winding number of the Dirac
fermion, the role of strain can either be treated as a pseu-
dogauge field as in monolayer graphene or can be beyond
the simple gauge field description as in the case of bilayer
graphene. The mechanism of these nearly flat bands can
be understood in terms of the Dirac fermion with spatially
varying mass terms as in the standard JR model. We further
show that the quantum metric of the nearly flat band closely
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resembles that for Landau levels. These topological flat bands
are a fertile playground for stabilization of interesting many
body quantum states. Like other flat band systems [53–57],
it is easy to expect a valley polarized state and a fractional
Chern insulator at fractional filling of the valley polarized
bands. It is also possible to host other non-Abelian topo-
logical states due to the nearly ideal quantum metric like
Landau levels. We leave the interaction effects for future
study.

Note added. During the preparation of this paper, we are
aware of work [38] that overlaps in part with the band struc-
ture of monolayer graphene under strain in Fig. 2.
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APPENDIX: EXPERIMENTAL FEASIBILITY OF NEARLY
FLAT BANDS IN MONOLAYER GRAPHENE

To obtain the pseudomagnetic field in Eq. (10), we can
put graphene on a substrate which has height profile h(r) =
h0

∑3
i=1 cos( �Gi · r + π

4 ) [35]. We know

tδt = 3evF B0Nna

4π
, |B0| ∼ (6 × 105 T/Å2) × h0

2

N3
n

,

α = δt

(3/2)aG
. (A1)

Pluging in the values of e, vF = 3
2 at , and a = 1.42 Å (a is the

bond length of graphene), we obtain

|α| ∼ 10

3πNn
(h0/Å)2. (A2)

To realize the nearly flat bands at 2.22817 � |α| � 2.5 in ex-
periment, we can either utilize nanosphere [58] or nanopillars
[59] to achieve the height profile. For nanospheres, we can use
20-nm-diameter nanospheres to achieve a 20 nm superlattice
with a period of Nn = 80. From fig. 4(e) in Ref. [58], we get an
estimate of h0 ∼ 17.5 Å for the 20-nm-diameter nanoparticle
case, which corresponds to |α| = 4.06177. To exactly access
|α| ∼ 2.5, we just need to use nanospheres with a diameter
∼15 nm. For nanopillars, we can arrange triangular nanopil-
lars with period 100 nm and height 2.9 nm on a triangular
lattice [35].
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