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Impact of competing energy scales on the shell-filling sequence
in elliptic bilayer graphene quantum dots
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We report on a detailed investigation of the shell-filling sequence in electrostatically defined elliptic bilayer
graphene quantum dots (QDs) in the regime of low charge carrier occupation, N � 12, by means of mag-
netotransport spectroscopy and numerical calculations. We show the necessity of including both short-range
electron-electron interaction and wave-function-dependent valley g-factors for understanding the overall fourfold
shell-filling sequence. These factors lead to an additional energy splitting at half filling of each orbital state
and different energy shifts in out-of-plane magnetic fields. Analysis of 31 different bilayer graphene (BLG)
QDs reveals that both valley g-factor and electron-electron interaction-induced energy splitting increase with
decreasing QD size, validating theory. However, we find that the electrostatic charging energy of such gate-
defined QDs does not correlate consistently with their size, indicating complex electrostatics. These findings
offer significant insights for future BLG QD devices and circuit designs.
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I. INTRODUCTION

Bilayer graphene (BLG) is a fascinating material as it ex-
hibits a gate-tunable band gap [1–4], low spin-orbit interaction
[5–8], strong correlation effects [9–11], and the possibility
to tailor its band structure by proximitizing it with other
two-dimensional (2D) materials [12–20]. This makes BLG a
promising material for future quantum technologies based on
2D materials [21–25]. One way of exploiting the potential of
BLG is to confine its charges into quantum dots (QDs), which
can serve as building blocks for quantum sensing devices,
quantum metrology, spintronics, and quantum information
units [21,26–28]. This is especially true since recent advances
in fabrication techniques allow to reliably create ultraclean
and highly tunable QDs in BLG by electrostatic soft con-
finement, even allowing the creation of QDs with opposite
polarity in close proximity [29–36]. Confining charges in
BLG QDs gives rise to fourfold-degenerate orbital states, in
agreement with the spin and valley degrees of freedom present
in BLG. In contrast to QDs in conventional semiconduc-
tors, QD states in BLG carry a tunable topological magnetic
moment oriented out-of-plane, which is caused by the finite
Berry curvature close to the K and K ′ points in gapped BLG
[22,37–42]. The orbital magnetic moment, which leads to the
valley g-factor, gv , has opposite sign for the two valleys. It is
usually one order of magnitude larger than the spin magnetic
moment, thus offering remarkable magnetic field tunability
[6,29]. For fully utilizing BLG’s high magnetic and electrical
tunability, it is therefore of great interest to understand the
quantum states and the shell-filling sequence in few-electron

FIG. 1. (a) False-color atomic force micrograph of the sample
showing split gates, source (S) and drain (D), and six 100-nm-wide
finger gates (FGs). (b) Schematic of the band edge profile along the
channel. (c) Conductance through the QD as a function of VFG at a
bias voltage of VSD = 0.3 mV. White numbers indicate the electron
occupation of the QD while in Coulomb blockade. The addition
energy shows fourfold periodicity, highlighted by the blue arrows.
Inset: Differential conductance through the QD as a function of VFG

and VSD.
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QDs. Recent works investigate the behavior of orbital states
and confirm that Hund’s rule is applicable in the framework of
noninteracting states for circular BLG QDs [35,43]. However,
the question of how short-range electron-electron interactions
and different geometries of the confinement potential affect
the quantum states remains largely unexplored.

Here we show that for a detailed understanding of
the shell-filling sequence of—at least—the first three or-
bital states in elliptic BLG QDs, it is crucial to include
(i) short-range electron-electron interactions and (ii) wave-
function-dependent valley g-factors. The latter leads to a
variety of different energy shifts as a function of out-of-plane
magnetic fields, while the electron-electron interactions lead
to an additional energy splitting at half filling of each orbital
state. We also present finite-bias spectroscopy data and inves-
tigate the valley g-factor and the short-range electron-electron
interaction-induced energy splitting as a function of QD size,
expressed in terms of orbital energy splitting. By analyzing
data from 31 different BLG QD configurations, we find that
both gv and short-range splitting δ2 increase with decreasing
QD size. Finally, we observe that charging energy EC and
orbital splitting �orb show no monotonic dependency. This
highlights that the electrostatics of gate-defined BLG QDs,
which have low charge carrier density lead regions, are non-
trivial, making charging energy not well suited to estimate size
differences between different QDs.

II. GATE-DEFINED BILAYER GRAPHENE
QUANTUM DOTS

To create electrostatically confined QDs, we fabricate het-
erostructures consisting of a BLG sheet encapsulated within
two layers of hexagonal boron nitride [44,45]. The het-
erostructure is placed on a graphite flake which acts as a back
gate (BG) [33]. Two layers of Cr/Au gates are fabricated on
top of the stack: split gates (SGs) with a separation of ∼50 nm,
and 100-nm-wide finger gates (FGs) oriented perpendicular
to the channel. The two gate layers are separated by a 30-nm-
thick layer of atomic layer deposited Al2O3. Figure 1(a) shows
an atomic force micrograph of the resulting gate structure. By
applying voltages of opposite sign to the SGs and the BG,
we create a perpendicular electric displacement field, which
opens up a band gap in BLG and allows to tune the Fermi
energy into the band gap [2]. This leaves a narrow conducting
channel connecting source and drain, which is defined by the
SGs. Then, a FG is used to locally invert the polarity of the
channel, creating a QD and giving rise to tunnel barriers where
the Fermi energy lies within the band gap, as illustrated in
Fig. 1(b) [33,34]. From the dimensions of SGs and the FG,
we expect an elliptical QD with an aspect ratio of ≈2.

The filling sequence of the QD can be studied by trans-
port spectroscopy in a 3He/4He dilution refrigerator at a
base temperature of around 10 mK using a combination of
constant voltage measurements and standard low-frequency
lock-in techniques. We measure conductance through the
channel at low source-drain voltage (VSD) as a function of
applied FG voltage VFG, which is shown in Fig. 1(c). For
increasing VFG, the channel first pinches off (VFG ≈ 8.5 V)
before Coulomb resonances appear, indicating the sequential
filling of the QD with more than 12 electrons. The addition

Charge transition

FIG. 2. (a) Conductance through the QD at low bias (VSD =
0.2 mV) as a function of VFG and perpendicular magnetic field B⊥.
Arrows highlight kinks in the slopes of the peaks, indicating changes
of multiparticle ground states. (b) Change in chemical potential, �μ,
required to add the next electron to the QD as a function of B⊥,
extracted from (a) by subtracting the charging energy EC. We chose
�μ = 0 for the position of the first Coulomb peak at zero magnetic
field. White numbers show the electron occupation of the QD in
between the Coulomb peaks. The dashed gray lines indicate where
linear fits were performed to determine the valley g-factors. The
orbital splitting can be read off from the separations at B⊥ = 0, as in-
dicated by the blue arrows, yielding �orb := �

(1)
orb = 1.6 ± 0.1 meV

for the differences between orbital 1-2 and, similarly, �
(2)
orb = 1.7 ±

0.1 meV for the differences between orbital 2-3. (c) Valley g-factors,
gν , evaluated from the slopes of each charge transition (for more
details, see the Appendix, part A 3). The gray dashed lines are a guide
to the eye, highlighting the slight modulation of the g-factor which
repeats within each shell.

energy of every fourth electron is increased due to the spin
and valley degeneracy in BLG, which is highlighted by the
blue arrows in Fig. 1(c). The inset shows the differential
conductance dG/dVSD as a function of applied bias voltage,
where Coulomb diamonds are visible. We can extract the gate
lever arm, α ≈ 0.04, from the size of the diamonds (see the
Appendix, part A 1), allowing to convert VFG to chemical po-
tential μ, according to �μ = |e| α �VFG, with the elementary
charge e.

III. MAGNETOTRANSPORT SPECTROSCOPY

To investigate the nature of the multiparticle states at each
filling, N , we perform magnetotransport spectroscopy mea-
surements to probe the spin and valley magnetic moment of
each QD state. Figure 2(a) depicts conductance through the
QD with respect to an out-of-plane magnetic field B⊥ and
the FG voltage VFG. Each Coulomb peak shifts its position on
the gate axis as a function of B⊥, featuring kinks that appear
simultaneously in adjacent Coulomb peaks, as highlighted by
the white arrows. Assuming the confinement to be indepen-
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FIG. 3. Differential transconductance dI/dVFG measured across the first eight Coulomb peaks [see white numbers and dashed white arrow
in Fig. 1(c)] as a function of VFG and B⊥ at VSD = 1.8 mV. The extent of the conductive region is limited by the bias voltage, as exemplarily
shown in the first panel. The colored lines highlight how the ground-state (GS) to ground-state transition between the N and N + 1 particle
state shifts with the magnetic field, with the colors corresponding to those in Fig. 4(a). Dashed lines indicate charge transitions involving
excited states of the QD, which also show a fourfold pattern, supporting the assumption of sequential filling of orbital states. The features can
be explained in terms of transitions between the N and N + 1 particle states of the QD [46,47]. For example, feature b is a transition from the
single-particle GS to the valley-singlet two-particle state, |K−↑↓〉 → |T s

0,± Sv〉. It shifts in B⊥ mainly due to the valley Zeeman effect lowering
the energy of the single-particle GS, while the energy of the valley-singlet two-particle state is only slightly altered by the spin Zeeman effect,
resulting in a positive slope of the transition. The same is true for the five- to six-particle state transition b′, which shows the same behavior,
as they have the same amount of electrons in the highest unpaired shell. A comprehensive discussion of all features is given in the Appendix,
part A 5.

dent of the magnetic field, the charging energy corresponds to
the minimal distance between two Coulomb peaks [29,34,43].
More details about the charging energy and the addition en-
ergy are shown in the Appendix, part A 2, Fig. 7. We subtract
the charging energy between neighboring Coulomb peaks and
show the result in Fig. 2(b), where we also transformed VFG

to chemical potential using the lever arm. The y axis is la-
beled �μ to indicate that we subtracted the charging energy
and focus only on the change in chemical potential of each
Coulomb peak due to the spin and valley Zeeman effect. For
magnetic fields larger than |B⊥| � 0.3 T := BTS [see black
dashed line and BTS label in Fig. 2(b)], which we define for
later discussions, our observations are consistent with previ-
ous works [29,34,43] and can be explained by successively
filling noninteracting single-particle states into the energeti-
cally lowest orbital state. As the valley g-factor is about one
order of magnitude larger than the spin g-factor, this gives
rise to two positive (adding |K↑〉 or |K↓〉) and two negative
(adding |K ′↑〉 or |K ′↓〉) slopes per orbital state, according to
the magnetic moment of the single-particle states added to
the QD [48]. For large magnetic fields |B⊥| � 0.85 T [see
vertical dashed black line in Fig. 2(b)], the valley Zeeman
splitting becomes larger than the orbital splitting, changing the
order in which the shells are filled. Thus, the orbital splitting
�orb can be directly read off at B⊥ = 0, indicated by the blue
arrows. The observed sequential filling of N = 4 − 8 − 12
(see white numbers) is consistent with numerical calculations
of orbital states in BLG QDs (see the Appendix, part A 3) pre-
dicting nondegenerate orbital states for elliptical QDs, which
we expect to have due to our gate structure [see Fig. 1(a)].

In contrast, perfectly circular QDs show a N = 4 − 12 filling
sequence as they have a degenerate second and third orbital
state due to rotational symmetry [43]. We evaluate the strength
of the valley magnetic moment for each occupation number of
the QD by fitting the slopes as indicated by the gray dashed
lines in Fig. 2(b) (see the Appendix, part A 3). The result is
shown in Fig. 2(c), where we plot the valley g-factor, gv , as a
function of the charge transition, from which it was evaluated.
The g-factors within each shell are nearly constant, but exhibit
a modulation that repeats after four electrons; see gray dashed
lines in Fig. 2(c). As the valley magnetic moment is deter-
mined by the distribution of the electron wave function in k
space (see examples in Fig. 8), we expect nearly constant val-
ley g-factors within the same orbital state. We speculate that
the modulation within each shell arises from slight changes
in the electrostatics of the QD due to the higher FG voltage
and the additional electron occupying the same shell (see the
Appendix, part A 3). This modulation is pronounced strongest
between the first and second electron entering the QD, which
is expected, as there the QD is just formed after pinching off
the channel and the confinement potential initially changes
significantly with increasing VFG [49]. Nevertheless, as the
modulation of g-factors also shows a fourfold pattern, the
observation is consistent with the assumption that only one
orbital state is filled at a time.

This assumption is further supported by finite bias spec-
troscopy, which allows to probe both the ground and excited
states of each charge transition. We measure across the first
eight Coulomb peaks at VSD = 1.8 mV, as exemplarily illus-
trated by the white dotted arrow in the inset in Fig. 1(c).
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The results are displayed in Fig. 3, where we plot differential
transconductance dI/dVFG as a function of B⊥ and �μ, where
the latter was obtained from VFG using the lever arm. White
numbers indicate the charge occupation of the QD in the
Coulomb blockaded region. The outline of the conducting
region (see black dashed arrows in the uppermost left panel
in Fig. 3) is determined by the size of the bias window,
VSD, and shifts with B⊥ exactly as the charge resonances in
Figs. 2(a) and 2(b) [46]. Within the conducting region, we can
observe additional features which originate from excited state
transitions of each charge transition, increasing or decreasing
the tunnel current as they enter or leave the bias window. A
detailed state assignment and more information on how to
interpret the finite bias data are found in the Appendix, part
A 5 and Refs. [46,47]. Here, it is important to note that similar
features of excited state transitions are visible at correspond-
ing charge transitions, i.e., 1-5, 2-6, 3-7, 4-8, as can be seen by
comparing the upper and lower panels, as highlighted by the
labeled dashed lines. Thus, the fourfold pattern is also present
here, further supporting the assumption that only one orbital
state is filled at a time for B⊥ < 0.85 T.

For magnetic fields |B⊥| < BTS ≈ 0.3 T, we observe an
additional energy scale, which causes a twofold bunching of
Coulomb resonances within each orbital [see BTS in Fig. 2(b)
and Fig. 3]. This is a robust feature present in all works
where few charge carrier gate-defined QD states in BLG are
investigated [5,29,30,35,36,43,46], strongly indicating that
electron-electron interaction needs to be taken into account
for understanding the filling of individual shells.

IV. SHELL-FILLING SEQUENCE

To understand the energy scales involved when filling one
orbital state, we go beyond the single-particle model and take
a closer look at the involved multiparticle states. Figure 4(a)
shows the energy of the first four multiparticle states, EN with
N = 1, . . . , 4, as a function of B⊥. Note that constant energy
differences between states with different occupation number
N are not displayed. For one electron in the QD, there are four
single-particle states available, which shift due to the spin and
valley Zeeman effect and which are experiencing a small spin-
orbit splitting, �SO ≈ 60–80 μeV [5,6,8]. The single-particle
ground state (GS) shifts, therefore, according to

EGS
1 = − 1

2

(
gs + g(1)

v

)
μBB⊥, (1)

with the Bohr magneton μB, the spin g-factor gs, and the valley
g-factor g(1)

v , where the upper index (N) refers to the occupa-
tion number N of the QD, allowing to account for the slight
occupation number dependency of the valley g-factor [46]. As
we assume only one orbital state to be filled at a time, the
orbital part of the multiparticle wave function is symmetric.
The Pauli principle then requires the spin and valley part of
the multiparticle wave function to be antisymmetric, strongly
reducing the available QD states at each filling. For the case
of N = 2, there are thus only six two-particle states available
[46]. These are grouped into three valley-triplet–spin-singlet
states, |Ss T v

0,±〉, and three spin-triplet–valley-singlet states,
|T s

0,± Sv〉, which are separated by δ1 and δ2 due to short-range
electron-electron interaction [40,46,47,50,51]. This leads to
the interesting situation where the two-particle GS is a spin-
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FIG. 4. (a) Energy dispersion of the first four multiparticle states
in a perpendicular magnetic field. The ground state is highlighted
in red, while colored arrows correspond to the chemical potential
required to add the next electron onto the QD. At BTS, the GS of
the two-particle states changes from a spin-triplet–valley-singlet to
a spin-singlet–valley-triplet. (b) Change in chemical potential, �μ,
required to add the next electron to the QD as a function of B⊥, as
in Fig. 2(b) but extracted from Fig. 3. White numbers indicate the
occupation of the QD when in Coulomb blockade. The colored lines
correspond to the length of the arrows in (a). Orbital splitting �orb

and electron-electron interaction strength δ2 can directly be read off.

triplet at low magnetic fields, but becomes a spin-singlet at
B⊥ := BTS, indicated by the index “TS.” The change in GS
occurs as soon as the valley Zeeman effect of |Ss T v

−〉 compen-
sates the short-range splitting δ2. Consequently, the magnetic
field dependency of the two-particle ground state has two
different slopes,

EGS
2 =

{−gsμBB⊥ for B < BTS,

−g(2)
v μBB⊥ for B > BTS.

(2)

Still assuming sequential filling of orbitals, for N = 3, there
are only four available states. This is due to the fact that all
three electrons are occupying the same orbital state and thus
the Pauli principle requires them to have different spin and
valley quantum numbers, prohibiting fully valley- or spin-
polarized three-particle states. Therefore, the three-particle
GS, |K−↑ K+↓ K−↓〉a, with the a indicating this state to be
an antisymmetric superposition of |K−↑〉, |K+↓〉, |K−↓〉, has
a similar magnetic field dispersion as the single-particle GS,
resulting in

EGS
3 = − 1

2

(
g(3)

v − gs
)
μBB⊥. (3)
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For a full shell, N = 4, there is only one state available, which
does not shift in B⊥, as that state contains electrons with all
four possible spin and valley combinations, leading to zero
total magnetic moment and

EGS
4 = const. (4)

The chemical potential of each charge transition is given by
μN = EN − EN−1, and their magnetic field dispersion conse-
quently depends on both involved multiparticle states. This is
illustrated by the colored arrows in Fig. 4(a), whose lengths
correspond to the position of each Coulomb peak on the
VFG axis, i.e., chemical potential axis. Figure 4(b) shows the
change of chemical potential of the first eight Coulomb peaks
as a function of B⊥, similar to Fig. 2(b) but evaluated from the
data of Fig. 3 (see colored lines) for a better signal-to-noise
ratio. Comparing the color code in Figs. 4(a) and 4(b), we can
understand where the twofold bunching of Coulomb peaks
within one shell comes from. For low magnetic fields, the
two-particle GS is a valley-singlet, shifting only due to the
spin Zeeman effect, while the single-particle GS shifts due to
the valley and spin Zeeman effect, resulting in a positive slope
for the second Coulomb peak, μ2(B⊥ < BTS) = E2 − E1 =
1
2 (g(1)

v − gs)μBB⊥ > 0. Only for large magnetic field, B⊥ >

BTS, where the two-particle GS becomes a valley-triplet,
does the slope become negative. In this regime, the sec-
ond Coulomb peak shifts with μ2(B⊥ > BTS) = − 1

2 (2g(2)
v −

g(1)
v − gs)μBB⊥ < 0. Neglecting the slight modulation of val-

ley g-factors and assuming g(2)
v ≈ g(1)

v , we recover the result
one would expect when assuming noninteracting single-
particle states. As the three-particle states behave like single-
particle states in B⊥, the third Coulomb peak mirrors the
behavior of the second one, and, similarly, the fourth Coulomb
peak mirrors the first one. This behavior is illustrated by the
blue and yellow arrows in Fig. 4(a). Note that the data are not
perfectly symmetric within each shell as the valley g-factor
sensibly depends on the shape of the confinement potential,
which changes slightly for increasing charge carrier occupa-
tion [43], as also shown in Fig. 2(c). Summing up, it is solely
the change of the two-particle GS at BTS due to the short-
range electron-electron interaction which causes the twofold
bunching of Coulomb peaks, and one can directly read off its
strength δ2 from the data in Fig. 4(b) [and Fig. 2(b)].

V. ENERGY SCALES AS FUNCTION
OF QUANTUM DOT DIMENSIONS

Utilizing this understanding, we investigate how different
spatial dimensions influence the energy scales determining
the shell filling in BLG QDs. In total, we gathered 31 data
points from QDs in different electrostatic environments, both
from our samples and from the work of the Ensslin group
[29,35,36,43,46,52]. Together, the strength of the valley g-
factor and electron-electron interaction govern the shell filling
at low magnetic field because they determine the magnetic
field BTS, at which the valley Zeeman splitting compensates
the short-range interaction and the two-particle GS changes
from |T s

− Sv〉 to |Ss T v
−〉,

BTS = δ2(
g(2)

v − gs
)
μB

. (5)
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FIG. 5. (a) Valley g-factor of the first shell in single QDs in
literature [29,35,36,43] and in our work as a function of orbital
splitting. The colorscale of the markers indicates the size of the band
gap used to confine each QD. (b) The same data as in (a), but as a
function of 1/�orb, which is proportional to the length parameter of
the QD, Lα , with α ≈ 2. The colored lines indicate the strength of the
valley g-factor obtained by numerical calculations of elliptical QDs,
oriented along the x (pink) and y axis (blue) of the BLG lattice. The
dashed line is a guide to the eye, illustrating how the experimental
data is a factor of ≈3 larger compared to the theoretic expectation.
(c) Strength of the electron-electron interaction, δ2, as a function of
orbital splitting. Again, the colored lines are obtained by numerical
calculations of elliptical QDs. (d) Charging energy EC as a function
of orbital splitting �orb. Inset: The calculated �orb between the first
and second single-particle orbital for different length parameters, L,
of the different BLG QDs (see the Appendix, part A 3).

Meanwhile, for high out-of-plane magnetic fields, it is the
orbital splitting and the valley Zeeman effect dominating the
shell filling. In Figs. 5(a) and 5(b), we show the strength of
the valley g-factor of the first orbital as a function of �orb
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and 1/�orb, with the latter being proportional to Lα , with the
length (size) parameter of the QD, L, and α ≈ 2, depending
on the shape of the confining potential (see the Appendix,
part A 3). The colorscale of the markers corresponds to the
magnitude of the band gap, �gap, opened in BLG to confine
each respective QD, which was estimated from the applied
electric displacement field following Ref. [2]. While the exact
value of the valley magnetic moment sensibly depends on the
shape of the confinement potential of the QD, its orientation
with respect to the BLG lattice, the strain in the system,
and the magnitude of the band gap [29,38–40], we still ob-
serve a clear trend towards larger valley g-factors for larger
orbital splittings, i.e., for smaller QDs. This trend is consistent
with the numerical calculations of elliptical QDs, which are
included in Fig. 5(b), with the (blue) pink line corresponding
to the QD being oriented along the (y) x axis of the BLG
lattice. The model adds two spatially varying functions, de-
scribing the band gap opening and the confinement, to the
four-band Hamiltonian of BLG [22] and diagonalizes it in
order to obtain the orbital wave functions of the QD states.
We integrate the Berry-curvature-induced orbital magnetic
moment over the distribution of the first orbital wave function
in k space in order to obtain the valley g-factor [40]. However,
the magnitude of the calculated valley g-factors is too small by
a factor of ∼3 compared to the experimental data in Fig. 5(b).
It is likely that the van-der-Waals stacking technique used to
fabricate the samples introduces strain to the BLG, which is
not included in our calculation. However, it has been shown
that already little strain can cause significant enhancement of
the valley magnetic moment [39,53]. As one would expect,
the strength of the short-range electron-electron interaction
increases for larger orbital splittings [40], i.e., smaller QDs,
which can be seen in Fig. 5(c), where we plot δ2 as a function
of �orb. This behavior is reproduced by numerical calculations
using the same model and parameters as in Figs. 5(a) and 5(b).
More details about the model can be found in the Appendix,
part A 3.

Furthermore, we investigate the dependency between
charging energy EC and orbital splitting �orb, which is shown
in Fig. 5(d). Interestingly, these two quantities have no sim-
ple functional relation. For the same �orb, EC may vary by
more than a factor of 3 and, similarly, for the same EC, �orb

may vary by more than a factor of 5. As EC depends on the
capacitive coupling of the QD to its surrounding, according
to EC = e2/C� , with the total capacitance of the QD, C�

[48], it becomes clear that the investigated QDs were confined
in distinctly different electrostatic environments. This is not
surprising as they were confined in samples with different
thicknesses of the hBN and Al2O3 dielectrica, different gate
geometries, and different gate voltages. Together with the fact
that the QD leads are usually in a regime of low charge carrier
density, where quantum capacitance effects are relevant, it
becomes clear that the electrostatics of gate-defined BLG QDs
are far from trivial. The inset of Fig. 5(d) shows �orb calcu-
lated for different sizes of the QD, quantified by the length
parameter L. As expected, there is a monotonic decrease of
�orb for larger QDs. Together with the nontrivial dependency
between EC and �orb, it is apparent that charging energy is,
in general, not well suited to estimate the QD size across
different QDs.

VI. CONCLUSION

In summary, we provide a full understanding of the mul-
tiparticle spectrum and the fourfold shell-filling sequence of
BLG QDs. In particular, we have shown that the short-range
electron-electron interaction, the orbital energy, and the (state-
dependent) valley g-factor are of particular relevance and are
critically influenced by the size of the QD. For low magnetic
fields, the valley magnetic moment and the electron-electron
interaction strength determine the shell filling, leading to a
spin-triplet two-particle ground state and filling according to
Hund’s rule. For high magnetic fields, shell filling is dom-
inated by the strong valley magnetic moment, which will
eventually even change the order in which orbital states are
filled. Understanding the shell-filling sequence enables future
works on few-charge carrier multi-QDs in BLG. Foremost,
this is important for evaluating the possibility of spin, valley,
and Kramer’s qubits in BLG and in which regime of single
or multi-QDs they can be operated. They can also be used to
probe the spin and valley configuration of correlated phases
in BLG. In addition, creating QDs in proximitized BLG can
allow one to sensibly quantify the influence of the functional
layer on the band structure of BLG. Additionally, our detailed
quantitative analysis of the involved energy scales provides
valuable insights for designing future BLG QD devices and
circuits.

The data and evaluation scripts supporting the findings of
this work are available in a Zenodo repository [54].
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APPENDIX

1. Occupation dependency of the lever arm

We have extracted the lever arms from the outline of the
conducting region of the finite bias spectroscopy data pre-
sented in the inset of Fig. 1(c) as well as from the data in
Fig. 3. The lever arm varies between 36 and 43 meV/V for
different charge transitions, with an estimated uncertainty of
≈ ±2 meV/V, as displayed in Fig. 6.

2. Comparison between Eadd, EC, �orb, and δ2

From the magnetotransport data presented in Fig. 2(a), we
extract the addition energy Eadd at zero magnetic field, and
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FIG. 6. Variation of the FG lever arm α with respect to charge
transition.

the charging energy EC, which approximately corresponds to
the minimal distance between neighboring Coulomb peaks
[34,48]. We observe a monotonic decrease of EC for higher oc-
cupation numbers and see the influence of the orbital splitting
�orb and the short-range splitting δ2 on the addition energy, as
depicted in Fig. 7.

3. Numerical calculations of elliptical QDs

For calculating the blue and pink curve in Figs. 5(b) and
5(c), we follow the approach of Refs. [29,40,46,47]. We
describe single electrons in BLG QDs using the four-band
Hamiltonian [22], including a spatially varying confinement

E 
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Charge transition
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FIG. 7. Plot of charging energy EC, addition energy Eadd, and
their difference at zero magnetic field as a function of QD occupa-
tion, N . In the latter, the influence of the short-range electron-electron
interaction δ2 and of the orbital splitting �orb is visible.
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FIG. 8. Single-particle orbital states n extracted from diagonaliz-
ing Eq. (A1): We exemplify �orb and the ground-state wave function
in momentum space for the QD widths L = 40 nm (oriented along
the x direction, left) and L = 15 nm (oriented along the y direction,
right), which lead to comparable orbital splittings, �orb ≈ 2 meV.
The second and third orbital states are not fully degenerate due to
ellipticity.

potential U (r) and band gap profile �(r),

Hξ =

⎛
⎜⎜⎜⎜⎜⎝

U − ξ 1
2� ξv3π 0 ξvπ†

ξv3π
† U + ξ 1

2� ξvπ 0

0 ξvπ† U + ξ 1
2� γ1

ξvπ 0 γ1 U − ξ 1
2�

⎞
⎟⎟⎟⎟⎟⎠,

(A1)

in the two valleys Kξ labeled by the valley index ξ =
±1. The Hamiltonian in Eq. (A1) is written in the Bloch
basis ψK+ = (ψA, ψB′ , ψA′ , ψB) in valley K+, and ψK− =
(ψB′ , ψA, ψB, ψA′ ) in valley K− (with the electron’s ampli-
tudes on the BLG sublattices A and B in the top, and A′
and B′ in the bottom layer) and in terms of the momenta
π = px + ipy, π† = px − ipy, and parameters v = 1.02 ×
106 m/s, v3 ≈ 0.12v, and γ1 ≈ 0.38 eV.

We include the influence of the electrostatic gates by
choosing the confinement potential and gap profile to model
the experiment,

U (r) = U0/cosh

(√(
x
a

)2 + ( y
b

)2

L

)
, (A2)

�(r) = �0 − �mod/cosh

(√(
x
a

)2 + ( y
b

)2

L

)
, (A3)

with the band gap opened by SG and BG of �0 = 35 meV,
the maximal FG-induced gap modulation �mod = 0.15�0, the
maximal potential depth U0 = 15 meV, an ellipticity of a

b =
2 ( 1

2 ) for the two perpendicular orientations of the elliptical
QD along the BLG lattice, and the width parameter L.

We numerically diagonalize the four-band Hamiltonian in
Eq. (A1) [38,40] to obtain the single-particle orbital states
for the confining QD potential widths, L = 10–150 nm; see
Fig. 8. For each value of L, we extract the energy difference
between the ground and the first excited orbital state, �orb, and
estimate the topological valley g-factor, g(1)

v , of the lowest or-
bital state by calculating how much orbital magnetic moment
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a function of 1/�orb, which is proportional to the length param-
eter of the QD, Lα , with α ≈ 2. The black lines correspond to
the calculated values for �0 = 35 meV, as is shown in the main
manuscript in Fig. 5(b). The cross (round) data points correspond
to �0 = 45 (55) meV, while the pink (blue) markers refer to the QD
being oriented along the x (y) axis of the BLG lattice.

Mz is picked up by the orbital ground-state wave function �

in momentum space, valley g-factor [29,40,53],

μBgv =
∫

dkMz(k)|�(k)|2. (A4)

Here, the orbital magnetic moment, induced by the nontrivial
Berry curvature, of BLG’s Bloch bands, is defined as M(k) =
Mz(k)ez [41,42,56,57], with

Mz = −i
e

2h̄
〈∇k�(k)| × [ε(k) − H (k)]|∇k�(k)〉 · ez,

(A5)

where ∇k = (∂kx , ∂ky ), “×” is the cross product, ε(k) is the
band energy, and � is the corresponding Bloch state.

Also, we have performed the calculations for higher band
gaps, �0 = 45 (55) meV, as defined in Eq. (8). The results are
shown in Fig. 9, where we plot gv of the first single-particle
orbital state a function of 1/�orb. The black lines correspond
to the calculated values for �0 = 35 meV, as is shown in the
main manuscript in Fig. 5(d). The cross (round) data points
correspond to �0 = 45 (55) meV, while the pink (blue) mark-
ers refer to the QD being oriented along the x (y) axis of the
BLG lattice. For very small QDs, it shows that the magnitude
of the valley g-factor is reduced for larger band gaps compared
to smaller ones, which can be observed for the data point at
�orb = 6 meV in Fig. 5(b). Contrarily, for large QDs, smaller
band gaps actually lead to slightly smaller valley g-factors,
which can be observed for the data point with gv = 18 in
Fig. 5(b). However, the trend of smaller valley g-factors for
larger QDs remains the same, independent of the chosen band
gap. The same is true for the discrepancy between simulation
and experiment, which stays at a factor of ≈3.

Furthermore, the strength of the short-range electron-
electron interaction depends on the QD’s ground-state orbital
wave function in real space, and the corresponding prefactor

can be approximated as [40,46,47]

J ≈
∫

dr |�(r)|2|�(r)|2. (A6)

Assuming a coupling constant |g⊥| = 0.16 eV nm2 [58],
which is of the same order of magnitude as in [46], we achieve
a good agreement with the experimental data.

4. Valley g-factor depends on QD occupation

To determine the valley g-factor as a function of N, we first
extract �μN (B⊥) from the outline of the conducting region
of the finite bias data presented in Fig. 3, as highlighted by the
colored lines. The result (for B⊥ > 0) can be seen in Fig. 4(b).
In principle, we could also utilize �μN (B⊥) from the data pre-
sented in Figs. 2(a) and 2(b), but due to a better signal-to-noise
ratio, we take the data from Fig. 3 for N � 8 and only use the
data from Fig. 2(b) for 8 < N � 12. Next, we perform linear
fits on �μN (B⊥) to extract the g-factor. For the first and fourth
transitions, we fit in the range of |B⊥| � 0.85 T , depending on
where the crossing with the transition from the next orbitals
happens. For the second and third transitions, we fit in the
range of BTS � |B⊥| � 0.85 T . Utilizing Eqs. (1)–(5), we can
extract the g-factors from the obtained slopes according to

g(1)
v = 2

α1

μB
− gs, (A7)

g(2)
v = 2

α2

μB
+ 1

2

(
gs + g(1)

v

)
, (A8)

g(3)
v = 2

α3

μB
− gs − 2g(2)

v , (A9)

g̃(3)
v = 2

α4

μB
+ gs, (A10)

with the fitted slope of each charge transition αN [see gray
dashed lines in Fig. 2(b)]. As already apparent from Eqs. (1)–
(5), the valley g-factor g(4)

v does not contribute to the slopes
as the shell is completely full. Therefore, the fourth charge
transition also yields the g-factor for N = 3, which we label
g̃(3)

v . The difference to g(3)
v is due to the increased FG voltage

at the fourth charge transition.
With this, we take a closer look at the modulation of the

valley g-factor within one shell, as visible in Fig. 2(c), which
we attribute to mainly two effects. First, the g-factor decreases
as soon as more than one electron occupies the same shell. In a
simple picture, we assume this is due to the electrons repelling
each other, widening the wave function of the QD compared to
the wave function of only one electron in a shell. In agreement
with the trend observed in Fig. 5, a larger wave function in real
space leads to smaller g-factors. On the other hand, for each
additional electron within a shell, the FG voltage needs to be
increased by �VFG ≈ 0.1 V, which slightly changes the con-
finement potential and therefore the g-factor. The magnitude
of the latter effect can be estimated from the third and fourth
data point in each shell in Fig. 2(c), as they both correspond to
the valley g-factor of the shell having three electrons, but are
evaluated at different FG voltages (g(3)

v and g̃(3)
v ). One finds an

increase of the g-factor by �gv/�VFG ≈ 1/(100 mV) within
a single shell due to the change in FG voltage.
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5. Multiparticle excited state transitions

The finite bias spectroscopy data presented in Fig. 3 shows
features in the differential transconductance, dI/dVFG, which
shift in an out-of-plane magnetic field. They can be explained
in terms of transitions between the N and N + 1 particle
states, which enter or leave the bias window depending on
the magnetic-field-dependent energy difference between the
involved states [46,47]. In the following, we will discuss
which transitions give rise to the labeled features and explain
their magnetic field dependency. To understand the slopes of
each transition, we only focus on the valley Zeeman effect,
as it is much larger than the spin Zeeman effect, which is too
small to be resolved in the data presented in Fig. 3. The slope
is thus only given by the difference of the effective valley
g-factors of the two states involved in one transition. For
example, feature a is due to a transition from an excited single-
particle state to the two-particle GS, |K+↑↓〉 → |T s

0,± Sv〉.
The two-particle state is a valley singlet, thus having an
effective valley g-factor of zero, while the effective valley
g-factor of the single-particle state |K+↑↓〉 is given by +g(1)

v ,
increasing the energy of the state with B⊥. Thus, the chemical
potential necessary to allow this transition reduces, leading to
a negative slope of a. The slopes of the following transitions
can be understood similarly, comparing the effective valley
g-factors of the initial and final states. For better readability,

we will omit the spin quantum number from now on. As
already discussed in the caption of Fig. 3, b is a transition from
the single-particle GS to the valley-singlet two-particle state
|K−〉 → |Sv〉, which has a positive slope due to the single-
particle state losing energy with B⊥. Transition c involves the
states |T v

−〉 → |K− K+ K−〉a, which becomes the ground-state
to ground-state (GS to GS) transition for B > BTS. For lower
magnetic fields, it requires less chemical potential than the
GS to GS transition. Thus, it leads to a decrease of the
conductance when it leaves the bias window, which shows
as negative transconductance at c. Transition d involves the
states |Sv〉 → |K− K+ K+〉a, with the latter being an excited
state of the (asymmetric) three-particle states. Transition e
involves the states |K− K− (K−)2〉a → |K− K− (K−)2 K+〉a,
where the subscript 2 refers to the fact that the electron
is in the next higher orbital. It thus involves an excited
state of both the three- and four-particle states. Transition
f involves |K− K+ K− (K−)2〉a → |full shell (K−)2〉a, i.e.,
a transition from an excited four-particle state, where one
of the four electrons already occupies the next higher
orbital, to the five-particle GS. Transition g involves
|K− K− K+, (K−)2 (K−)2〉 → |full shell (K−)2 (K−)2〉. All
primed and unprimed transitions, i.e., a ↔ a′, b ↔ b′, etc.,
can be explained in the same way, as they have the same
amount of electrons in the highest unpaired shell.
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