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Observation of hybrid-order topological pump in a Kekulé-textured graphene lattice
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The Thouless charge pumping protocol provides an effective route for realizing topological particle trans-
port. To date, the first-order and higher-order topological pumps, exhibiting transitions of edge-bulk-edge and
corner-bulk-corner states, respectively, are observed in a variety of experimental platforms. Here, we propose the
concept of a hybrid-order topological pump that involves a transition of bulk, edge, and corner states simultane-
ously. More specifically, we consider a Kekulé-textured graphene lattice that features a tunable phase parameter.
The finite sample of zigzag boundaries, where the corner configuration is abnormal and inaccessible by repeating
unit cells, hosts topological responses at both the edges and corners. The former is protected by a nonzero
winding number, while the latter can be explained by a nontrivial vector Chern number. Using our skillful
acoustic experiments, we verify these nontrivial boundary landmarks and visualize the consequent hybrid-order
topological pump process directly. This work deepens our understanding of higher-order topological phases and
broadens the scope of topological pumps.
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I. INTRODUCTION

Topology, originally a branch of mathematics, has become
an important concept in different fields of physics [1–6].
The Thouless pump provides one of the simplest manifes-
tations to understand band topology in quantum systems.
It was first proposed by Thouless when he studied particle
transport in one-dimensional (1D) periodic structures with
adiabatic time evolution. He found that dynamic edge-bulk-
edge pumping shares the same topological origin as the static
two-dimensional (2D) Chern insulator [7,8], where one of
the momentum coordinates is replaced by an adiabatically
varied cyclic parameter [Fig. 1(a)]. As such, this dynamic
pumping process can be dictated by a nontrivial integer topo-
logical invariant (i.e., the first Chern number). A similar
theory has also been extended to explore the four-dimensional
(4D) quantum Hall effect characterized by a 4D topologi-
cal invariant (known as the second Chern number) [9,10].
In this case, a 2D Thouless pump is implemented in a 2D
spatial system, resorting to two additional external parameters
[10]. With the discovery of higher-order topological insulators
[11–15], referring to d-dimensional topological systems host-
ing nontrivial (d–N)-dimensional boundary states (N > 1),
higher-order topological pumps have been proposed to con-
nect the quantized corner-to-corner charge flow with the
unconventional bulk-boundary correspondence [16–21], as
illustrated in Fig. 1(b). To date, both the conventional (first-
order) and higher-order Thouless pumps have been realized
in diverse experimental platforms, from cold atom systems to
various artificial crystals of classical waves [22–32].

Note that both the first-order and higher-order pumping
procedures involve only a simple transition between the bulk
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and edge (or corner) states. To the best of our knowledge,
thus far there is no realization of a topological pump in-
volving the states of more spatial dimensions simultaneously,
e.g., the bulk, edge, and corner states in a 2D system. To
achieve these new types of topological pump, later dubbed
hybrid order pumps, a suitable bandgap formed between the
2D bulk and the 1D edge bands should be designed in order
to tolerate continuous pumping of the zero-dimensional (0D)
corner states [Fig. 1(c)]. This is much more difficult than that
demanded for a higher-order pump. The validity of the higher-
order topological invariant relies on a concrete selection of the
periodic unit cell [11–15], which makes the boundary mor-
phology and thus the edge modes predetermined by the corner
configuration in the finite system formed by repeating unit
cells.

In this work, we report an experimental observation of
a hybrid-order topological pump in an acoustic system.
As shown in Fig. 2(a), we consider a 2D Kekulé-textured
graphene (KTG) lattice featuring three inequivalent hoppings,
where the variable phase (φ) acts as the cyclic pumping
parameter. In particular, we focus on the obtuse angle cor-
ners intersected by two zigzag boundaries. In this unusual
boundary configuration, which is inaccessible by repeating
any minimal unit cells, the system exhibits corner states
that traverse the edge and bulk states continuously with the
phase parameter. Using acoustic cavity tube structures, we
experimentally observe the highly appealing hybrid-order
topological pumping process accompanying convincing ex-
perimental evidence for the topological responses at the 1D
edges and 0D corners.

II. TIGHT-BINDING MODEL

As shown in Fig. 2(a), we start with a 2D KTG model
that is distorted from the graphene lattice of uniform

2469-9950/2023/108(12)/125125(6) 125125-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2087-3007
https://orcid.org/0000-0002-4318-3420
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.125125&domain=pdf&date_stamp=2023-09-18
https://doi.org/10.1103/PhysRevB.108.125125


XIA, LI, ZHANG, FAN, XIAO, AND QIU PHYSICAL REVIEW B 108, 125125 (2023)

FIG. 1. Schematic illustrations for three distinct topological
pumps. (a) Conventional (first-order) pump in 1D systems. (b)
Higher-order topological pump in 2D systems. (c) Hybrid-order
topological pump in 2D systems. The red and blue lines sketch 0D
states confined to different edges (or corners). In contrast to con-
ventional and higher-order pumps that exhibit edge-bulk-edge and
corner-bulk-corner transports within a parameter cycle, the hybrid-
order pump exhibits a transition among the bulk, edge, and corner
states.

hopping to [33,34]. The KTG lattice features three inequiv-
alent nearest-neighboring hoppings tn = to + δt cos(χn + φ),
where δt characterizes the modulation strength of the hop-
pings, and φ ∈ [−π, π ] is a tunable phase parameter under
the specific bias χn = 2(n−1)π/3 (n = 1 ∼ 3). Note that the
lattice constant a of the honeycomb lattice becomes

√
3a for

the KTG lattice. In addition to time-reversal symmetry, the
system with a general φ has sublattice symmetry (or chiral
symmetry). It is of particular interest that, as exhibited in
Fig. 2(b), the band structure of the KTG lattice always hosts
a wide spectral gap centered at zero energy, in addition to the
minigaps appearing repeatedly between the highest (lowest)
two bands.

Now we consider the topological boundary manifesta-
tions in finite-sized samples. Armchair and zigzag boundaries
are two typical boundary truncations for general honeycomb
lattices. In our KTG lattice, however, unlike the armchair
boundary accessible by simply duplicating unit cells, the
zigzag boundary cannot be achieved without destroying the
integrity of the six-orbital KTG unit cell. Instead, it can be
realized by repeating rhombus supercells of 18 orbitals. Fig-
ure 2(c) presents the spectral flow against the phase parameter
φ for the case of the natural armchair boundary. It shows that
near φ = 0, two degenerate zero-energy states emerge at the
corners of the obtuse angle, either symmetric or antisymmetric
about the center of the finite diamond-shaped structure. The
corner states can be explained by a Z2 topological invariant
or a topological index defined at the high symmetry points in
momentum space [34–37]. For the system with the unusual
zigzag boundary, however, novel phenomena emerge in the
primary bulk gap. As shown in Fig. 2(d), highly degenerate
flat bands (cyan curves) appear at zero energy and divide the
primary gap into two pieces. These are edge states inherited
from the original graphene lattice of the zigzag boundary,
which can be characterized by a nontrivial winding number
[38,39] (see Fig. S1 in Supplemental Material [40]). More in-
triguingly, there are two sets of corner states spanning the two

FIG. 2. Tight-binding model. (a) Unit cell of the KTG lattice,
which features textured hoppings t1, t2, and t3. (b) Evolution of
the band structure as the phase parameter φ, evaluated with fixed
to = −1 and δt = −0.7. (c) Left: φ-Dependent energy spectrum for
a finite system with an armchair boundary. Right: Eigenfields for the
degenerate zero-energy corner states highlighted in the spectrum. (d)
Similar to (c), but for the system with a zigzag boundary. Note that
the corner configuration cannot be formed by simply repeating KTG
unit cells or any other minimal unit cells of six orbitals, but it can
be achieved by duplicating the rhombus supercell of 18 orbitals. The
coexistence of the nontrivial edge (cyan) and corner (red and blue)
modes offers an opportunity to realize a hybrid-order topological
pumping in the zigzag-boundary KTG lattice.

separate primary gaps with the continuum evolution of φ, each
of which emerges pairwise in energy at the same corner due to
the chiral symmetry. In addition, the corner states associated
with the samples of ±φ are localized in opposite obtuse-
angle corners, as exemplified by the field distributions for φ =
±5π/8. Therefore, for any of the two divided primary gaps,
one can imagine a hybrid-order topological pumping process
that involves the bulk, edge, and corner states simultaneously.

III. TOPOLOGICAL NATURE OF THE GAPLESS
CORNER STATES

Knowing that the edge states are protected by a nontrivial
winding number, we next explain the physical origin for the
gapless corner states in the zigzag-boundary systems, inspired
by the top-to-bottom scheme introduced in Ref. [41], from
which one constructs 2D corner states from two independent
1D systems with 0D edge states. To do this, we consider a
finite system of N × N rhombus supercells and decompose it
into N 1D supercell chains in the a and b directions [Fig. 3(a)].
Each supercell chain constitutes a 2D Chern insulator when
introducing the phase parameter φ as an effective momen-
tum for the second, synthetic dimension. Figure 3(b) shows
the bulk band structure for the synthetic 2D Chern insulator,
where the chiral symmetry-related bands are plotted with the
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FIG. 3. Physical origin of the gapless corner states. (a) A zigzag-boundary KTG lattice formed by duplicating rhombus supercells
(shadowed). It can be decoupled into supercell chains along the a and b directions by removing the inter-supercell hoppings in the b and
a directions, respectively. (b) Global evolution of the band structure for the 1D periodic chain in the a(b) direction, which emulates the bulk
dispersion of a 2D Chern insulator under the assistance of the effective momentum φ. Here, Cs

g highlights the Chern number for the two primary
gaps near the zero-energy flat bands. (c) φ-Dependent energy spectrum for the a(b)-directed chain of finite length, which exhibits in-gap edge
modes (blue and red lines) protected by the gap Chern numbers. (d) Field distributions of the edge modes labeled in (c), which together form
the top (A) and bottom (B) corner modes in Fig. 2(d).

same color for clarity. In particular, the two nearly degenerate
flat bands (black) share a similar physical origin to those
edge modes exhibited in Fig. 2(d), while the states are now
localized at the supercell’s zigzag boundaries. According to
the bulk-boundary correspondence, the topological edge states
of the synthetic Chern insulator are related to its gap Chern
number, which can be defined as

Cs
g = 1

2π i

∫
BZ

Tr[F (ks, φ)]dksdφ. (1)

Here, s = a, b and F (ks, φ) represents the non-Abelian
Berry curvature calculated for all bands below the target gap
[41,42]. Specifically, the gap Chern number Cs

g = 1 (–1) for
the primary gap above (below) the flat bands. This suggests
that each gap hosts one gapless edge band when the synthetic
Chern insulator is truncated in the a(b) direction. This can be
seen in Fig. 3(c), which shows the projected energy spectrum
along the synthetic momentum φ. Figure 3(d) exemplifies the
edge-state distributions for φ = ±5π/8 in the lower primary
gap. When both the a- and b-directed supercell chains host
nontrivial edge states decaying exponentially away from the
ends, corner states are concluded in the 2D zigzag-boundary
sample whose couplings can be decomposed into two in-
dependent components in these directions [41,42]. (More
specifically, the top edge localizations in φ = 5π/8 contribute
the top corner states, while the bottom edge localizations for
φ = −5π/8 contribute the bottom corner states [Fig. 2(d)].)
Therefore, the corner states of the original zigzag-boundary
KTG lattice can be characterized by the two nonzero-gap
Chern numbers Ca

g and Cb
g , or written together as a vector,

C = (Ca
g , Cb

g ). More specifically, the vector Chern numbers
C1 = (−1, −1) and C2 = (1, 1) explain the corner states of
the primary gaps below and above the zero energy, respec-
tively. Ultimately, the coexistence of the topological corner
and edge states in the diamond-shaped sample, protected re-
spectively by the nontrivial vector Chern numbers and the
winding numbers, enables a unique hybrid-order pumping
process when considering a continuous evolution of the phase
parameter φ.

IV. ACOUSTIC REALIZATION OF THE
TIGHT-BINDING MODEL

The previous tight-binding model can be emulated pre-
cisely by our acoustic system, where the orbitals and hoppings
are mimicked by air-filled cavity resonators and narrow tubes
[43–46], respectively. As shown in Fig. 4(a), each unit cell
of our acoustic KTG lattice includes six identical hexagonal
prism cavities of side length l = 5.0 mm and height H =
32.8 mm. The latter results in a dipole resonant mode of
5.27 kHz, which is far from the other resonant modes. (In our
simulations, the sound speed is set as 346 m/s.) Every two
nearest acoustic resonators are connected by two rectangular
tubes with a constant aspect ratio 1 : 3. Provided that the cou-
plings are approximately proportional to the cross-sectional
areas of the narrow tubes, as shown in Fig. 4(b), we realize
the desired couplings by modulating the cross-sectional ar-
eas Sn = So + δS cos(χn + φ), with So = 20.3 mm2 and δS =
12.0 mm2. The resultant effective hoppings (colored dots)
capture well the cosine line shape tn = to + δt cos(χn + φ),
associated with t = −424.5 Hz and δt = −216.7 Hz. To
demonstrate the topological response of the system, Fig. 4(c)
exemplifies the eigenvalue spectrum with φ = 5π/8, simu-
lated for a sample of 3 × 3 supercells. In addition to the
midgap edge modes, the energy spectrum features two chiral
symmetry-related 0D modes at the top corner of the sample,
as visualized further by their acoustic field distributions (see
insets).

Here we present our experimental evidence for the topo-
logical edge and corner states. We focus on the sample with
φ = 5π/8 first. As shown in Fig. 4(d), our sample fabricated
by three-dimensional printing consists of 3 × 3 supercells,
i.e., 162 acoustic cavity resonators in total. To implement
local measurements, two small holes are perforated in each
cavity for inserting the sound source and probe, which are
sealed when not in use. Both the input and output signals are
recorded and frequency-resolved with a multianalyzer system
(B&K Type 4182). The samples are divided into nonoverlap-
ping spatial domains to extract the information of the bulk,
edge, and corner states. The top panel of Fig. 4(e) presents
the site-averaged bulk, edge, and corner spectra. Clearly, the
bulk spectrum (gray curve) shows a wide bandgap centered at
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FIG. 4. Acoustic emulation of the tight-binding model and experimental evidence for the topological states. (a) Unit cell geometry of our
acoustic KTG lattice, which features three types of coupling tubes of different cross-sectional areas: S1, S2, and S3. (b) Top: �-Dependent
cross-sectional areas designed for the three coupling tubes. Bottom: Associated effective couplings (colored dots), which are fitted well by
cosine functions (colored lines). (c) Eigenfrequency spectra simulated for a finite sample with φ = 5π/8. Insets: Pressure field distributions
extracted for the two chiral symmetry-related corner states. (d) A photograph of the zigzag-boundary sample, where the corner and edge sites
are colored for clarity. The inset shows an enlarged view around corner 1. (e) Pressure intensity spectra averaged for the bulk (B), edge (E),
and corner (C) sites. The results are exemplified with the samples of φ = ±5π/8. (f) Intensity patterns extracted for the bulk, edge, and corner
states, which are averaged over the frequency windows shadowed in (e).

5.27 kHz (associated with the zero energy in the tight-binding
model), around which the edge spectrum (cyan curve) shows
a predominant peak. By contrast, a pair of chiral symmetry-
related peaks appear in the spectrum of corner 1 (red curve),
which are missed in the spectrum of corner 2 (blue curve),
as predicted in Fig. 2(d). Similar phenomena can be observed
in the case of φ = −5π/8 [Fig. 4(e), bottom panel], where
the corner states appear in corner 2 (blue curve). To identify
the bulk, edge, and corner states further, we have inte-
grated the pressure intensities over several typical frequency
ranges for each site individually. As shown in Fig. 4(f), the
site-resolved acoustic patterns exhibit clear spatial charac-
teristics of the bulk, edge, and corner states as expected. It
is worth pointing out that in graphene-like lattices, although
extensively unveiled in armchair-boundary configurations, the
higher-order corner states have not been observed so far in any
system with zigzag boundaries.

V. OBSERVATION OF THE HYBRID-ORDER
TOPOLOGICAL PUMP

To reflect the global evolution of the bulk, edge, and
corner states within one pumping cycle φ ∈ [−π, π ], we

fabricated 17 diamond-shaped samples at the φ-step of π/8
and measured their topological manifestations individually
as before. All experimental data match well with our full-
wave simulated bulk, edge, and corner spectra (see Fig. S2 in
Supplemental Material [40]). For conciseness, here we count
the bulk, edge, and corner spectra together and present the
superimposed data (color scale) in Fig. 5(a). It exhibits an
excellent agreement with our theoretical prediction (colored
lines), especially for the corner modes across the two primary
bandgaps around 5.3 kHz. The band broadening stems mostly
from the unavoidable viscous and thermal dissipations inside
the acoustic structure. More importantly, the spectral flow
unveils a hybrid-order topological pumping process where
the corner states traverse the bulk and edge states smoothly,
as guided by the white arrows in the lower primary gap. To
visualize the intricate hybrid-order topological pump directly,
we display the site-resolved intensity patterns measured for
a set of typical configurations [Fig. 5(b), left]. Clearly, the
acoustic state evolves from the top corner 1 to the bulk 2,
consequently to the bottom corner 3, and then it goes back
to the initial state 5 through the edge 4, during which the
bandgap is never closed. This reproduces the pumping process
predicted by the tight-binding model [Fig. 5(b), right].
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FIG. 5. Experimental observation of the hybrid-order topological
pump. (a) Global evolution of the bulk, edge, and corner spectra
(color scale), together with the tight-binding predictions (colored
lines) for comparison. The white arrows highlight an intact pumping
process. (b) Field distributions scanned for the states labeled from
1 to 5, compared with the tight-binding results. The data exhibit a
clear hybrid-order topological pump that involves the corner, bulk,
and edge states simultaneously.

VI. CONCLUSION

By fully exploiting the controllability of acoustic metama-
terials, we have designed and fabricated a series of acoustic
KTG lattices to realize a novel hybrid-order topological
pumping protocol. Tracking the global evolution of the acous-
tic states with the cyclic parameter, our experimental results
exhibit an intact corner-bulk-corner-edge-corner transition,
which involves the 0D corner, 1D edge, and 2D bulk states
simultaneously. All experimental data agree well with the
theoretical predictions. One may expect that both the corner
states and edge states involved here would be considerably
robust against disorders and defects, given the protection by
the gap Chern and winding numbers. Our findings open a
new path for unveiling more complex topological pumping
physics.
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