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First-order phase transition between superconducting and charge/spin density
wave states causes their coexistence in organic metals
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The interplay between superconductivity (SC) and spin/charge density wave (DW) in organic metals shows
many similarities to high-Tc superconductors. It also contains many puzzles, for example, the anisotropic SC
onset observed and the severalfold increase of the upper critical field Hc2 in the coexistence region, as well as
the microscopic origin of SC/DW phase separation there. In this paper, by the direct calculation of the Landau
expansion for DW free energy, we argue that the phase transition between DW and metallic/SC phase in organic
superconductors goes by first order at low-enough temperature, which explains the spatial segregation of DW
and SC at large length scale, consistent with experimental observations. This first-order phase transition is not
directly related to SC and happens even above the SC transition temperature.
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I. INTRODUCTION

The properties of metals with a charge-density-wave
(CDW) or spin-density-wave (SDW) ground state attract great
attention since the 1950s (see, e.g., Refs. [1,2]). It often com-
petes with superconductivity (SC) [2–4], e.g., in most high-Tc

superconductors, both cuprate [5–10] and iron based [11,12],
and remains a subject of active investigation in many other
materials, including transition metal dichalcogenides [13,14],
organic superconductors (OS) [15–27], and even materials
with nontrivial topology of band structures [28].

The OS are interesting for studying the interplay be-
tween CDW/SDW and SC because their phase diagram,
layered crystal structure, and many other features resemble
those in cuprate and iron-based high-Tc superconductors, but
they are simpler and more convenient for investigation. By
changing the chemical composition one can control the elec-
tronic dispersion in OS in a wide interval. One can grow
rather large and pure monocrystals of organic metals, so
that their electronic structure can be experimentally stud-
ied by high-magnetic-field tools [29]. Finally, the OS are
simpler for theoretical study because of weaker electronic
correlations [15,16]. Therefore, the OS are very helpful for
disentangling various factors affecting the electronic and su-
perconducting properties, which is hard to do in cuprates
and other strongly correlated materials. SC and density wave
(DW) coexist even in relatively weakly correlated OS, such
as (TMTSF)2PF6 [18–21], (TMTSF)2ClO4 [25,26], or α-
(BEDT-TTF)2KHg(SCN)4 [27]. In these materials the DW
is suppressed by some external parameter, such as pressure
or cooling rate. Similarly to cuprates, the SC transition tem-
perature TcSC is the highest in the coexistence region near the
quantum critical point where DW disappears. The upper crit-
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ical field Hc2 is often several times higher in the coexistence
region than in a pure SC phase [17,27], the effect potentially
useful for applications.

The microscopic structure of SC and DW coexistence is
important for understanding the DW influence on SC proper-
ties and TcSC. The DW and SC phase separation may happen in
the momentum or coordinate space. The first scenario assumes
a spatially uniform structure, when the Fermi surface (FS)
is partially gapped by DW and the ungapped parts give SC
[2,30]. It is similar to most other CDW materials [2–4]. The
second scenario assumes that SC and DW phases are spatially
separated on a microscopic or macroscopic scale, depending
on the ratio of SC domain size d and the SC coherence
length ξSC. The temperature resistivity hysteresis observed in
(TMTSF)2PF6 [18] supports the spatial SC/DW separation.
The width of SC transition increases with the increase of dis-
order, controlled by the cooling rate in (TMTSF)2ClO4, which
also indicates a spatial SDW/SC segregation [26] similar to
granular superconductors. The microscopic SC domains of
width d comparable to or even less than the SC coherence
length ξSC may appear in the soliton DW structure, where SC
emerges inside the soliton walls [31–35]. However, the angu-
lar magnetoresistance oscillations inside the parametric region
of SC/DW coexistence observed in (TMTSF)2PF6 [20] and
in (TMTSF)2ClO4 [24] seem to be consistent with only a
macroscopic spatial phase separation with SC domain width
d > 1 µm. The SC upper critical field Hc2 may theoretically
exceed several times the Hc2 without DW coexistence in all
the above scenarios [30,33], provided the SC domain width is
smaller or comparable to the penetration depth λ of magnetic
field to the superconductor.

The puzzling feature of SDW/SC coexistence in
(TMTSF)2PF6, long unexplained in any scenario, is the
anisotropic SC onset [19,20]: With the increase in pressure
at P = Pc2 ≈ 6.7 kbar the SC transition and the zero
resistance is first observed only along the least-conducting
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interlayer z direction, then at P = Pc1 ≈ 7.8 kbar along
z and y directions, and only at P = Pc0 ≈ 8.6 kbar in all
directions, including the most conducting x direction. This is
opposite to a weak intrinsic interlayer Josephson coupling,
typical in high-Tc superconductors [36]. Other organic
metals manifest similar anisotropic SC onset in the region
of coexistence with DW [25]. The observed [19,20,25]
anisotropic zero-resistance transition temperature TcSC seems
to contradicts the general rule that the percolation threshold
in macroscopic heterogeneous media must be isotropic
[37], provided the SC inclusions are not thin filaments [19]
connecting opposite edges of a sample. However, such a
filament scenario cannot be substantiated microscopically,
neither in (TMTSF)2PF6 nor in (TMTSF)2ClO4. This paradox
was resolved recently [38,39] by assuming a spatial SC/DW
separation and studying the percolation in finite-size samples
of the thin elongated shape, relevant to the experiments in
(TMTSF)2PF6 [19,20] and (TMTSF)2ClO4 [25,26]. Similar
effect was observed and used to study the SC domain shape
and size in other superconductors, for example, in FeSe
[40–42] or other organic metals [43]. This supports the
scenario of spatial SC/DW segregation in a form of rather
large domains of width d > 1 µm in organic superconductors.
However, the microscopic reason for such phase segregation
remains unknown and is the main goal of our study.

In this paper we argue that the phase transition between
DW and metallic/SC phase in OS goes by first order at low-
enough temperature, which explains the spatial segregation of
DW and SC at large length scale, consistent with experimental
observations. This first-order phase transition is not directly
related to SC and happens even at T > TcSC because of the
suppression of DW by the deterioration of FS nesting, which
is controlled by pressure in (TMTSF)2PF6 and in α-(BEDT-
TTF)2KHg(SCN)4, or by cooling rate affecting the anion
ordering in (TMTSF)2ClO4. In Sec. II we describe the driving
parameter of DW-metal phase transition in various quasi-one-
dimensional (1D) organic metals. In Sec. III formulate the
mean-field approach for the free energy in the DW state and
write down its Landau expansion. In Sec. IV we perform
the explicit calculation of the DW free-energy expansion for
the model described in Sec. II and analyze the DW phase
diagram of organic superconductors. In particular, we study
the range of temperature and electron-spectrum parameters
where the phase transition from DW to metallic state is of first
order. In Sec. V we discuss our results in connection with the
experimental observations in OS.

II. THE MODEL: DRIVING PARAMETERS OF PHASE
TRANSITION TO DENSITY WAVE

A. Quasi-one-dimensional electron dispersion and pressure as a
driving parameter of DW-metal/SC phase transition in organic

superconductors

In quasi-1D organic metals [15,16], at which our present
study is mainly aimed, the free electron dispersion near
the Fermi level without magnetic field is approximately
given by

ε(k) = h̄vF (|kx| − kF ) + t⊥(k⊥), (1)

where vF and kF are the Fermi velocity and Fermi momentum
in the chain x direction. We consider a quasi-1D metal with
dispersion (1) where the function t⊥(k⊥) is given by the tight-
binding model:

t⊥(k⊥) = 2tb cos(kyb) + 2t ′
b cos(2kyb) + 2tc cos(kzcz ), (2)

where b and cz are the lattice constants in y and z direc-
tions, respectively. The corresponding FS of quasi-1D metals
consists of two slightly warped sheets separated by 2kF and
roughly possesses the nesting property. It leads to the Peierls
instability and favors the formation of CDW or SDW at low
temperature, which competes with superconductivity. In the
metallic phase the corresponding density of electron states at
the Fermi level per two spin components per unit length Lx of
one chain is νF = 2/π h̄vF .

The dispersion along the z axis is assumed to be much
weaker than the dispersion in the y direction. Therefore we
omit the second harmonic ∝ cos(2kzcz ) in the dispersion rela-
tion (2). Since the terms 2tc cos(kzcz ) and 2tb cos(kyb) do not
violate the perfect nesting condition,

ε(k + Q) = −ε(k), (3)

they do not influence the physics discussed below unless the
nesting vector become shifted in the y-z plane. We do not
consider such a shift in the present study. Hence, only the
“antinesting” parameter t ′

b ∼ t2
b /vF kF is important for the DW

phase diagram. The electron dispersion along the z axis is
ignored below.

With the increase of applied pressure P the lattice constants
decrease. This enhances the interchain electron tunneling and
the transfer integrals. The increase of t ′

b(P) with pressure
deteriorates the FS nesting and decreases the DW transition
temperature TcDW(P) [15,16]. There is a critical pressure Pc

and the corresponding critical value t ′∗
b = t ′

b(Pc) at which
TcDW(Pc) = 0 and one has a quantum critical point (QCP). The
electronic properties at this DW QCP are additionally compli-
cated by superconductivity emerging at T < TcSC at P > Pc.
In organic metals SC appears even earlier at pressure P > Pc1,
where Pc1 < Pc, and there is a finite region Pc1 < P < Pc of
SC-DW coexistence [19,20,27]. This simple model qualita-
tively describes the phase diagram observed in (TMTSF)2PF6

and α-(BEDT-TTF)2KHg(SCN)4. In (TMTSF)2PF6 the re-
sistivity measurements in a magnetic field give [44] t ′∗

b ≈
11.3 ± 0.2 K, while at ambient pressure t ′

b ≈ 4.5 ± 0.3 K and
TcDW = 12 K.

B. Other driving parameters of DW-metal phase transition

In (TMTSF)2ClO4 there is an additional degree of freedom
and driving parameter. The ClO4 anions, which lack the inver-
sion symmetry and possess an electric dipole moment, order
below the transition temperature TAO = 24 K > TcDW with
wave vector QAO = (0, 1/2, 0) [15,16]. This anion ordering
(AO) doubles the lattice along the y axis and splits the FS in
four open sheets (see, e.g., Fig. 1(b) of Ref. [24] or Fig. 3(b)
and 5(b) of Ref. [45]). The latter deteriorates FS nesting and
suppresses DW [16,45–48], giving rise to superconductivity
[16,24–26,49].
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FIG. 1. Phase diagram of SDW in (TMTSF)2ClO4 recreated
from resistivity data in Ref. [25]

The electron dispersion in (TMTSF)2ClO4 in the anion-
ordered phase in the new folded Brilluin zone can also be
approximately described by Eq. (1) with two branches, split-
ted by 2�AO (see Appendix A):

t⊥(k⊥) � ±[�AO + 2t ′
b cos(2kyb)]. (4)

This dispersion results to the antinesting term given by
Eq. (30), which controls the SDW phase diagram in
(TMTSF)2ClO4.

The anion ordering can be controlled by the cooling rate
near TAO = 24 K. In rapidly cooled (quenched) samples the
anions remain disordered, and the DW is not suppressed,
while SC does not appear. The slowly cooled (relaxed) sam-
ples have �AO ≈ 14 meV [45,49], which destroys the SDW
and leads to a homogeneous superconductivity. Hence, the
cooling rate in (TMTSF)2ClO4 enables to reveal a rich phase
diagram even at ambient pressure, where DW phase is fa-
vored for strong disorders (rapid cooling), SC and DW coexist
at intermediate, and a uniform SC sets in for weak disor-
ders (slow cooling). The phase diagram in (TMTSF)2ClO4

is qualitatively similar to that in (TMTSF)2PF6 with the re-
placement of pressure by anion ordering, as illustrated in
Fig. 1.

An external magnetic field B via the Zeeman splitting
energy �Z = μBgB shifts in opposite directions the FS for dif-
ferent spin projections, which damps CDW but not SDW. The
magnetic field also affects the orbital electron motion, which
leads to the beautiful effect of field-induced spin-density wave
[15,16], to the quantized nesting and the complicated phase
diagram. However, if the magnetic field is directed along the
conducting layers, then its orbital effect is weak, and the new
dispersion is given by

t⊥(k⊥) � 2tb cos(kyb)2t ′
b cos(2kyb) ± �Z . (5)

This results in the same antinesting term (30) as for AO, with
the replacement �AO → �Z . The CDW phase diagram in a
magnetic field acting only by the Zeeman splitting is already
quite interesting and complicated [50].

III. MEAN-FIELD APPROACH AND LANDAU EXPANSION
FOR THE DENSITY WAVE

A. Bogoliubov transformation

The electron Hamiltonian consists of the free electron part
H0 and the interaction part Hint:

H = H0 + Hint,

H0 =
∑
k,σ

ε(k)a†
k,σ

ak,σ ,

Hint = 1

2

∑
kk′Qσσ ′

VQσσ ′a†
k+Qσ

akσ a†
k′−Qσ ′ak′σ ′ . (6)

We consider the interactions at the wave vector Q close to the
nesting vector Q = (±2kF , π/b, π/c). The coupling function
Vσσ ′ (Q) contains all types of electron-electron (e-e) inter-
action: Coulomb repulsion, phonon-mediated attraction, etc.
For the usual Coulomb or phonon-mediated e-e interaction
Vσσ ′ (Q) is independent on the indices σ, σ ′. In the Hubbard
model the dependence of e-e interaction on spin indices ap-
pears because two electrons with the same spin orientation
cannot occupy the same quantum state on the same site due to
the Pauli principle and therefore do no have the strong on-site
e-e interaction. The strong Coulomb repulsion is weakened by
the metallic screening, therefore the DW order parameter is
much smaller than the bandwidth or the Fermi energy in most
metals, including organic superconductors. If the deviations
from Q0 are small, then we can approximate the interaction
function as Vσσ ′ (Q) ≈ Vσσ ′ (Q0) = Uσσ ′ . Next, in the mean-
field approximation we introduce the order parameter

�Q =
∑
kσ

Uσσ ′ 〈a†
k−Qσ

akσ ′ 〉
T

=
∑
kσ

Uσσ ′
Tr(a†

k−Qσ
akσ ′e−βH )

Z
. (7)

In this expression and in Eq. (8) below σ ′ = σ for the CDW
(i.e., the operators correspond to electrons with the same spin
component) and σ ′ = −σ for the SDW (the spin components
are different). This corresponds to the choice of spin z axis
along the SDW polarization vector l . In our case this does not
reduce the generality of our model, because there are no any
other special spin directions, as in the presence of magnetic
field or spin-orbit interaction. For a general orientation of
the SDW polarization vector l one should use Eq. (10) of
Ref. [30]. Between the CDW and SDW, the system chooses
a state with the highest transition temperature, which in our
model corresponds to the largest coupling constants Uσσ ′ =
Vσσ ′ (Q0), giving the greatest order parameter � and energy
gain. Below the transition temperature the CDW and SDW are
coupled only in a magnetic field or another spin-dependent
external perturbation [50]. We now set �k = �δk,±Q, where
Q = (2kF , π/b, 0) + q with |q| � kF . Similarly to the choice
between CDW and SDW, after the system chooses the optimal
DW wave vector Q, the interaction V (Q) at other wave vec-
tors Q does not affect the electronic states in the mean-field
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approximation [50]. The resulting mean–field Hamiltonian

HMF =
∑
kσ

ε(k)a†
kσ

akσ +
∑
kσ

�a†
k+Qσ

akσ ′ − �2

2U
(8)

can be diagonalized via Bogoliubov transformation. In order
to do so we rewrite the Hamiltonian in a matrix form as

HMF =
′∑
k

ψ
†
k hkψk − �2

2U
,

h =
[
ε(k) �

� ε(k + Q)

]
,

ψ†(k) = (a†
k a†

k+Q),

(9)

where ′ indicates the summation over the reduced Bril-
louin zone and where we also considered the equal-
ity 〈a†

k+Qak〉 = 〈a†
k+Q↑ak↑〉 = 〈a†

k+Q↓ak↓〉 for CDW and

〈a†
k+Qak〉 = 〈a†

k+Q↑ak↓〉 = 〈a†
k+Q↓ak↑〉 for SDW, thereby leav-

ing out the spin indices. The spectrum of the Hamiltonian is
then given by the eigenvalues E±(k) of the matrix h which are

E±(k) = ε+(k) ±
√

ε2−(k) + �2, (10)

where

ε±(k) ≡ ε(k) ± ε(k + Q)

2
. (11)

The operators γk, μk in which the Hamiltonian is diagonal
are defined by the eigenvectors of h. They are obtained by a
unitary transformation(

γk

μk

)
=

(
u v

−v u

)(
ak

ak+Q

)
(12)

such that u2 + v2 = 1 and �(u2 − v2) + 2uvε−(k) = 0. Fi-
nally, the diagonalized Hamiltonian is

H =
∑

k

[E+(k)γ †
k γk + E−(k)μ†

kμk]

− 1

2

∑
k

[E+(k) − E−(k)] − �2

2U
. (13)

Now given that the Hamiltonian is diagonal in
fermionic operators γk, μk and there are only four states
|nγ nμ〉 = {|00〉, |01〉, |10〉, |11〉}, the partition function
Z = Tr exp{−HMF/T } can be easily calculated:

Z = e−�2/2U
∏

k

e(E++E− )/2T

× Tr

⎡
⎢⎢⎣

1 0 0 0
0 e−E+/T 0 0
0 0 e−E−/T 0
0 0 0 e−(E++E− )/T

⎤
⎥⎥⎦

= e−�2/2U
∏

k

4 cosh
E+(k)

2T
cosh

E−(k)

2T
. (14)

And the free energy F = −T ln Z is

F = −T
∑

k

ln

[
4 cosh

E+(k)

2T
cosh

E−(k)

2T

]
− �2

2U
. (15)

B. Free-energy expansion

We are interested in the Landau–Ginzburg expansion coef-
ficients of the free energy in powers of �:

F � A

2
�2 + B

4
�4 + . . . (16)

By differentiating this expression one obtains

∂F

∂�
� A� + B�3 + . . . (17)

This means that the free-energy expansion coefficients can be
calculated by expanding into the Taylor series not the free
energy itself, but the function

F ′ = ∂F

∂�
= −

∑
k

�

2
√

ε2−(k) + �2

×
[

tanh
E+(k)

2T
− tanh

E−(k)

2T

]
− �

U
. (18)

Next we use the following relation to represent the hyper-
bolic tangents as a sum over odd Matsubara frequencies ω =
πT (2n + 1):

1

4α

{
tanh

α − β

2T
+ tanh

α + β

2T

}
= T

∑
ω

1

(ω + iβ )2 + α2
.

(19)
Substituting α =

√
ε2
−(k) + �2 and β = ε+(k) we find

T
∑

ω

1

[ω + iε+(k)]2 + ε2−(k) + �2

= tanh E+(k)
2T − tanh E−(k)

2T

4
√

ε2−(k) + �2
. (20)

Finally, substituting this equality in (18) we end up with the
function which expansion coefficients we will study further:

F ′ = −2T
∑
kω

�

[ω + iε+(k)]2 + ε2−(k) + �2
− �

U

� A� + B�3 + . . . . (21)

As follows from Eqs. (16) and (17), the expansion coefficient
of the free energy F at �n is obtained by dividing by n the
coefficient of the expansion of F ′. For the first two coefficients
we obtain

A = −2T
∑
kω

1

[ω + iε+(k)]2 + ε2−(k)
− 1

U
(22)

and

B = 2T
∑
kω

1

{[ω + iε+(k)]2 + ε2−(k)}2
. (23)

If B > 0, then the DW-metal phase transition is of the second
order, and only the first two coefficients A and B are sufficient
for its description. If B < 0, then the phase transition may be
of the first order, and next coefficients C and even D if C � 0
are required for its description.
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The sum over k in Eq. (21) for macroscopic sample is
equivalent to the integral

∑
k

= 2
∫

dkx

2π

∫ π/b

−π/b

dky

2π
. (24)

The factor 2 appears because of two Fermi-surface sheets at
kx ≈ ±kF . Usually, for simplicity the integration limits over
kx in Eq. (24) are taken to be infinite: kx ∈ [−∞,∞], and
the resulting logarithmic divergence of the coefficient A is
regularized by the definition of the transition temperature Tc

(see Appendix B). However, in this case for the dispersion in
Eqs. (1) and (2) all the coefficients A, B, C, and D vanish at the
same point at T = 0 and t ′

b = t ′∗
b , which does not allow one to

determine the type of this phase transition. Hence, below we
consider both infinite and finite integration limits as well as
the case beyond the linear approximation when the spectrum
in kx direction is ∝ cos(kxa).

IV. CALCULATION OF THE LANDAU EXPANSION
COEFFICIENTS FOR THE DENSITY WAVE AND ITS

PHASE DIAGRAM IN QUASI-1D METALS

In this section we take the quasi-1D electron (1) linearized
in the kx direction and explicitly calculate the first coefficients
of the Landau expansion for the DW free energy given by
Eqs. (21)–(23). This helps us to analyze the type of DW-metal
phase transition in organic metals.

A. Infinite limits of integration over kx

The integration of Eq. (21) over kx in infinite limits for the
linearized electron dispersion (1) gives the well-known result
for the DW free energy:

F ′ = −4πT

h̄vF

∑
ω

〈
�√

[ω + iε+(ky)]2 + |�|2

〉
ky

− �

U
. (25)

The free-energy expansion coefficients are obtained by ex-
panding the right-hand side of this equation over |�|2:

F ′ � −4πT

h̄vF

∑
ω

〈
� sgn ω

ω + iε+(k)
− �3 sgn ω

2[ω + iε+(k)]3

〉
ky

− �

U
.

(26)
The coefficient at the linear term

A∞ = −4πT

h̄vF

∑
ω

〈
sgn ω

ω + iε+(k)

〉
ky

− 1

U
(27)

is divergent when sum over ω is taken. The divergence is reg-
ularized by introducing the critical temperature Tc0 at which
the DW phase transition occurs when t ′

b = 0, see Appendix B.
As a results we obtain

A∞ = − 4

h̄vF

{
ln

Tc0

T
+ ψ

(
1

2

)
−

〈
Re ψ

[
1

2
+ iε+(k)

2πT

]〉
ky

}
,

(28)

where ψ (x) = d/ dx ln �(x) is the digamma function.

The type of the phase transition is defined by the coefficient
in front of the ∼�3 term in the expansion. This coefficient is

B∞ = 2πT

h̄vF

∑
ω

〈
sgn ω

[ω + iε+(k)]3

〉
ky

= − 1

4π2T 2h̄vF

〈
Re ψ ′′

[
1

2
+ iε+(k)

2πT

]〉
ky

. (29)

The self-consistency equation (SCE) for the order parame-
ter � is obtained from the condition F ′ = 0 for the minimum
of free energy. This SCE for the DW state, even in the pres-
ence of both spin and charge coupling constants and in a
magnetic field, was derived previously [50] using the equa-
tions for the Green’s function. The analytical expression for
free energy F up to a constant factor can be obtained from the
integration of these SCE over �, and the missing coefficient
can be obtained from the comparison of Eq. (25) above with
the Eq. (22) of Ref. [50]. The comparison of Eqs. (28) and
(29) above with Eqs. (24), (31), and (32) of Ref. [50] gives
the relations A∞ = [K (1)

σ − 1](4π/U ) and B∞ = K (3)
σ 4π/U

between the functions K (1)
σ and K (3)

σ derived in Ref. [50].
The phase transition changes its order from second to first

when the coefficient B becomes negative. The function (29)
generally decreases as the parameter |ε+| grows, but this
decrease depends on the details of |ε+|, in particular, on the
ratio �AO/t ′

b. Below we analyze the dependence B(ε+) on the
DW-metal transition line and the type of this phase transition
in quasi-1D organic superconductors.

B. Application to organic metals

From Eqs. (4) and (11) we obtain the antinesting term in
(TMTSF)2ClO4:

ε+(k) = 2t ′
b cos(2kyb) + �AO. (30)

This antinesting term also describes (TMTSF)2PF6 as a limit-
ing case �AO = 0.

In the case of band-splitted electron dispersion, as in
Eqs. (4) for AO or (5) for Zeeman splitting, for each band η′ =
±1 the sum over k in Eqs. (6)–(24) also contains the sum over
two bands η = ±1:

∑
k → ∑

k,η. In this sum only one of two
terms, corresponding to η′ �= η, contains the antinesting term
(30). The other perfect-nesting term, corresponding to η′ = η,
adds a constant term (B1) to the coefficient A. It renormalizes
the transition temperature Tc0 but does not change Eq. (28)
and the transition lines normalized to Tc0 and shown in Fig. 2.
For different bands η′ = ±1 the antinesting term has opposite
sign, and therefore the DW wave vector does not shift along
kx for not very large band splitting (see Ref. [50] for the phase
diagram at t ′

b = 0). Since the digamma function ψ (1/2 + i x)
is symmetric to x → −x, both bands η′ = ±1 are described
by the same formulas.

The DW-metal transition line Tc(�AO, t ′
b), given by equa-

tion A∞ = 0 and shown in Fig. 2, suggests several interesting
observations. Both t ′

b and �AO suppress Tc, as expected.
However, the increase of t ′

b increases the critical value of
�∗

AO of the DW-metal phase transition. This counterintuitive
observation can be shown analytically. In the limit of zero
temperature, one can obtain an exact expression for �∗

AO(t ′
b).

Using the asymptotic approximation for digamma function
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FIG. 2. Calculated transition lines as a function of (a) anion ordering gap �AO for specific t ′
b: t ′

b = 0 (solid blue line), 2t ′
b = �0/2 (dashed

red line), 2t ′
b = 0.75 �0 (dotted green line), 2t ′

b = 0.9 �0 (magenta dash-dotted line), and 2t ′
b = 0.99 �0 (long-dashed orange line); (b) t ′

b for
specific anion ordering gap �AO: �AO = 0 (solid blue line), �AO = Tc0/2 (dashed red line), �AO = 0.8 Tc0 (dotted green line), �AO = 0.98 Tc0

(dash-dotted magenta line), �AO = 1.09 Tc0 (long-dashed brown line), �AO = 1.15 Tc0 (thin dashed orange line), and �AO = 1.3 Tc0 (solid thin
black line). Tc(�AO) isdetermined from the condition A∞ = 0 and Eqs. (28)and (30). The crosses on each line approximately indicate the points
where the DW-metal phase transition changes its type from second to first. This phase diagram is qualitatively applicable to (TMTSF)2ClO4

and also to (TMTSF)2PF6 at �AO = 0.

Re ψ (1/2 + ix) � ln x − 1/(24x2) at x � 1 and substituting
Eq. (28) to A∞ = 0, we get the equation for transition point

〈ln (ε+)〉ky
= ln(2πTc0) + ψ (1/2). (31)

Substituting Eq. (30) and performing the integration over ky

we obtain the solution to this equation, valid at �AO � 2t ′
b:

�∗
AO

Tc0
= 2πeψ (1/2) + t ′2

b /T 2
c0

2πeψ (1/2)
. (32)

In the limit t ′
b = 0 we obtain �AO/Tc0 = 2πeψ (1/2) ≈ 0.88

[the intersection of the blue line with the t ′
b axis in Fig. 2(a)].

The maximal value of �∗
AO(t ′

b) is at 2t ′
b = �∗

AO = 2t ′∗
b :

max{�∗
AO} = 2t ′∗

b = 4πeψ (1/2)Tc0 ≈ 1.764 Tc0. (33)

In contrast to �∗
AO(t ′

b), within our model t ′∗
b is independent of

�AO as long as �AO < �∗
AO(t ′

b). This is illustrated in Fig. 2(b),
where all transition lines cross at t ′

b = t ′∗
b at T = 0.

The second our result obtained for the antinesting term in
Eq. (30) is the dependence of B∞, given by Eq. (29), on the
parameters �AO and t ′

b. The point B∞ = 0 on the Tc(�AO, t ′
b)

transition line, where this phase transition changes from the
second to first order, is indicated by crosses in Fig. 2. From
Fig. 2(a) we see that at any t ′

b < t ′∗
b there is a critical value �o

AO
of �∗

AO(t ′
b) such that at �AO > �o

AO there is a finite tempera-
ture interval 0 < Tc < T o

c , where B∞ < 0 and the DW-metal
phase transition is of the first order.

In contrast to this, the increase of t ′
b on the interval 0 < t ′

b <

t ′∗
b at fixed �AO < �o

AO does not leads to the sign change of
B∞, given by Eqs. (29) and (30). This is illustrated in Fig. 2(b)
by the absence of crosses on the transition lines at �AO <

Tc0. The dependence B∞(t ′
b) at �AO = 0 and T ≈ 0.6Tc0 is

shown by the dashed green line in Fig. 3. This line crosses the
abscissa axis at t ′

b > t ′∗
b , and B∞(t ′

b) > 0 on the entire interval
0 < t ′

b < t ′∗
b , which means the second-order DW-metal phase

transition at any t ′
b.

At �AO = 0B∞ = 0 only at t ′
b = t ′∗

b and T = 0, i.e., the
interval 0 < Tc < T o

c of the first-order phase transition is
formally zero. The point t ′

b = t ′∗
b and T = 0 is very spe-

cial: At this point not only A∞ = 0 and B∞ = 0, but also
next coefficients of the Landau expansion vanish: C∞ = 0
and D∞ = 0. This degeneracy is a consequence of our over-
simplified model, where we took the dispersion given by
Eqs. (1), (2), and (30) and the Fermi energy EF and the band
width infinitely large, � t ′

b,�AO. This degeneracy is lifted,
for example, if one takes finite limits of integration over kx,
corresponding to a finite band width and Fermi energy, as
described in Sec. IV C. A more realistic electron dispersion
also gives a finite interval of the first-order DW-metal phase
transition, as shown in Secs. IV D and IV E.

0.0

0.1

0.2

0.3

0.4

FIG. 3. Plots of expansion coefficients BK (solid blue line) and
B∞ (dashed green line) as functions of t ′

b at T = 0.6 Tc0. The vertical
axis scale is in units 4πTc0/h̄vF , where Tc0 is the critical temperature
at t ′

b = 0, see Appendix B. The horizontal scale is in units t ′∗
b —the

value of t ′
b at which the DW phase is destroyed, i.e., AK = 0. The

inset shows similar plot for the next expansion coefficient C at �6.
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C. Finite limits of integration over kx

Let us now take �AO = 0 and consider finite limits of
integration kx ∈ [−K, K]. Then equation (25) becomes

F ′ = −4πT

h̄vF

∑
ω

〈
� f (�)√

[ω + iε+(k)]2 + |�|2

〉
ky

. (34)

The additional factor f (�) is

f (�) = 1

π

{
arctan

vF (K + kF ) − 2tb cos(2ky)√
[ω + iε+(k)]2 + �2

+ arctan
vF (K − kF ) − 2tb cos(2ky)√

[ω + iε+(k)]2 + �2

}
. (35)

We expand the right-hand side of (34) up to third order in �:

� � −4πT

h̄vF

∑
ω

〈
f (0) sgn ω

ω + iε+(k)
�

+ 1

2

[
f ′′(0) sgn ω

ω + iε+(k)
− f (0) sgn ω

[ω + iε+(k)]3

]
�3

〉
ky

. (36)

The coefficient at the linear term is

AK = −4πT

h̄vF

∑
ω

〈
f (0) sgn ω

ω + iε+(k)

〉
ky

− 1

U
. (37)

Due to finiteness of the limits of integration it is not divergent
any more.

The coefficient at the qubic term is

BK = 2πT

h̄vF

∑
ω

〈
f (0) sgn ω

[ω + iε+(k)]3
− f ′′(0) sgn ω

ω + iε+(k)

〉
ky

. (38)

Numerically calculating the sum and the integral in Eq. (38)
we confirm that BK at finite K and low-enough T changes its
sign at t ′

b < t ′∗
b . Hence, the finite limits of integration change

the order of DW-metal phase transition from second to first
one. The corresponding plot is presented in Fig. 3, the limits
of integration are chosen as K = π/b. The solid blue line
BK (t ′

b) even at rather large temperature T = 0.6Tc0 crosses the
abscissa axis at t ′o

b < t ′∗
b , which indicates a large temperature

interval of the first-order DW-metal phase transition. This
results predicts a finite temperature 0 < Tc < T o

c and pres-
sure interval of the first-order SDW-metal phase transition in
(TMTSF)2PF6.

D. Influence of fourth harmonic in quasi-1D electron dispersion
on the DW phase diagram

The electron spectrum given by Eq. (2) is oversimplified.
Since all odd harmonics of the ky electron dispersion do not
violate the FS nesting in our model, the simplest modification
of electron dispersion in Eq. (2) affecting the phase diagram
is adding the fourth harmonics. When the limits of integration
over kx are kept infinite but the fourth harmonic 4t ′′

b cos(4kyb)
is introduced to the spectrum the formal expression (29) for
the coefficient B holds, but the energy ε+(k) becomes

ε+(k) = 2t ′
b cos(2kyb) + 2t ′′

b cos(4kyb). (39)

This additional term reduces the coefficient B and leads to
dependence B(t ′

b) similarly to BK (t ′
b) (presented by solid line

in Fig. 3), i.e., when the limits of integration are finite. Hence,
taking a more realistic electron spectrum by adding higher
harmonics to Eq. (2) lifts the above-mentioned degeneracy
A = B = 0 at t ′

b = t ′∗
b and T = 0 even for infinite integration

limits K = ∞. The fourth harmonic in quasi-1D electron dis-
persion decreases the coefficient B of the Landau expansion
for free energy and favors the first order of DW-metal phase
transition.

E. Nonlinearized spectrum

We now discard the linear approximation of the spectrum
in the kx direction, i.e., replace the spectrum (1) with

ε(k) = 2ta cos(kxa) + t⊥(k⊥). (40)

In this case the analytical integration with respect to kx of (21)
is not possible. Also the integration limits are required to be
finite: kx ∈ [−π/a, π/a].

Accordingly we expand the right-hand side of equa-
tion (21) in powers of �:

F ′ � −2T
∑
kω

(
�

[ω + iε+(k)]2 + ε−(k)

− �3

{[ω + iε+(k)]2 + ε−(k)}2

)
− �

U
. (41)

Once again performing numerical integration over kx, ky and
summation over ω we confirm that the coefficient B at �3

changes sign as function of t ′
b at t ′

b < t ′∗
b . Thus we conclude

that the first-order phase transition emerges also when the
linear approximation of electron spectrum along kx is not
made.

V. DISCUSSION AND CONCLUSION

Our calculations show that a DW-metal transition, driven
by an external parameter which deteriorates the FS nest-
ing, typically goes by first order at low-enough temperature.
When such a driving parameter splits the energy spectrum
and the Fermi surfaces, as in the case of anion ordering
in (TMTSF)2ClO4 or of magnetic field acting via Zeeman
splitting on a CDW, as described in Sec. II B, the tempera-
ture interval of the first-order phase transition is rather wide,
∼Tc0/2 [see Fig. 2(a)]. This explains the spatial phase seg-
regation and coexistence of SDW-metal or SDW-SC phases
observed in (TMTSF)2ClO4. When such a driving parameter
is pressure and the antinesting term in electron dispersion,
as described by the amplitude t ′

b of the second harmonic in
Eq. (2), this interval is smaller and appears only when one
goes beyond the simplest model by taking into account the
finite bandwidth and Fermi energy (see Sec. IV C and Fig. 3)
or/and more realistic electron dispersion (see Secs. IV D and
IV E).

The model electron dispersions used in our calcula-
tions and given by Eqs. (1), (2), (4), (30), (39), and (40)
still differ from actual electron spectrum in organic met-
als (TMTSF)2PF6 and (TMTSF)2ClO4, e.g., calculated using
DFT in Refs. [45,48,51]. The main difference comes from
low triclinic crystal symmetry and higher harmonics of elec-
tron dispersion. Nevertheless, the result obtained about the
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negative coefficient B of the Landau expansion for DW free
energy and of the first-order phase transition between DW and
metallic state at low T are rather robust to small variations of
electron dispersion and should survive also for more realistic
electron spectrum.

The obtained first order of DW-metal phase transition
explains the spatial segregation of SDW and SC/metal
phases observed in (TMTSF)2PF6 and (TMTSF)2ClO4, or of
CDW and SC/metal phases in α-(BEDT-TTF)2KHg(SCN)4,
resulting to DW coexistence with superconductivity. The
parameters and properties of phase nucleation during the
first-order phase transition was extensively studied in various
systems [52,53]. Nevertheless, a quantitative application of
this theory to the particular DW–metal/SC phase transitions
is still missing.

The phase segregation during the first-order DW-metal
phase transition happens on a rather large length scale �1 µm,
which explains the observation of angular magnetoresis-
tance oscillations (AMRO) in (TMTSF)2PF6 [20] and in
(TMTSF)2ClO4 [24], i.e., the oscillating dependence of in-
terlayer magnetoresistance on the tilt angle of magnetic field
B [29]. The latter is possible only if the size of metallic
islands along x axis exceeds the so-called quasi-1D mag-
netic length lB = h̄/eBb ∼ 1 µm [20,29]. In addition, the
field-induced SDW (FISDW) [15,16], i.e., the oscillating de-
pendence of the SDW transition temperature on the strength
B of magnetic field, are also observed in (TMTSF)2PF6 [20]
and in (TMTSF)2ClO4 [24], which is also possible only if the
size of metal islands in SDW matrix exceeds lB = h̄/eBb ∼
1 µm. Most microscopic theories of SC-DW phase segre-
gation, including superconductivity inside soliton walls of
DW order parameter [19,33,35], cannot explain such a large
size of metal/SC domains, and, hence, contradict the AMRO
and FISDW experiments [20,24]. A large size d > 1 µm of
SC domains is also required [54] to explain the observed
[19,20,25] anisotropic SC transition by the current percolation
via SC domains in finite-size samples [38]. Our scenario of
DW-SC phase separation is also consistent with the sever-
alfold enhancement of the upper critical field Hc2 observed
in the coexistence phase of these organic superconductors
[17,27], because the SC domain size ∼1 µm is comparable to
the magnetic penetration depth λ, which enhances Hc2 [36].
In (TMTSF)2ClO4 the in-plane penetration depth is rather
large [55], λab(T = 0) ≈ 0.86 µm, and increases even more
at T → TcSC. Similarly large values of λ are expected in
(TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4.

Above we have substantiated the first-order DW-metal
phase transition by a direct calculation of the Landau expan-
sion of the DW free energy for a generic quasi-1D electron
dispersion, relevant to various organic superconductors. A
different model of a multiband quasi-2D metal with several FS
nested parts and also with additional reservoir states may also
give a first-order phase transition and, hence, a spatial phase
segregation [56]. The latter is based on the nonmonotonic
dependence of chemical potential on pressure, obtained from
the numerical solution of the system of nonlinear equations,
derived using the minimization of the grand thermodynamic
potential with respect to the DW order parameter � and the
constraint of fixed electron number [56]. This model is similar
to that in Refs. [57,58]. It is derived using several important

assumptions [56], which may be relevant to iron-based super-
conductors [57] or Cr [58] but are not directly applicable to
the studied organic superconductors. The first assumption is
an isotropic parabolic electron dispersion with equal masses
and Fermi velocities of the electron and hole bands. In our
case there is only one band, and the electron dispersion is
strongly anisotropic and nonparabolic. As we have shown
above, even much finer details of electron dispersion, such as
the fourth harmonics of small amplitude, change the type of
phase transition and, hence, strongly affect the phase segrega-
tion. Second, there is no intrinsic electron reservoir, which is
also necessary for the main result of Ref. [56]. The proposed
[56] appearance of small ungapped parts of the Fermi surface
leads to a uniform superconductivity [30,35] with isotropic
TcSC, which contradict the experiments [19,20,25,26] and may
not be energetically favorable in the nonuniform DW state.
Moreover, the size of such ungapped FS pockets and the corre-
sponding density of states would strongly depend on the DW
order parameter �, which should be accounted for during the
variation of thermodynamic potential in Ref. [56]. The third
important assumption in Refs. [56–58] is a commensurate
SDW, while in organic superconductors the DW is incommen-
surate with crystal lattice. Small deviations of the optimal DW
wave vector from a commensurate value often results to the
commensurate-incommensurate first-order phase transition,
e.g., as shown in Ref. [58]. Fourth, the constraint of a fixed
electron number, used in Refs. [56,57], assumes a constant
electron density, which implies a fixed sample volume instead
of a fixed pressure as in most experiments. Due to the different
compressibility of DW and metallic phases, such a constraint
may lead to a spatial segregation even in a simpler model
of Ref. [18]. Therefore, the model of Refs. [56–58] cannot
be directly applied to the studied quasi-1D organic supercon-
ductors, but its modification to such compounds would be
interesting for further studies.

In organic metals the DW phase transition temperature
TcDW is usually much higher than the SC transition tem-
perature TcSC. This is a general situation, which happens in
many other compounds where CDW or SDW coexists with
superconductivity [3,4]. This difference of TcDW and TcSC ap-
pears because for the formation of a DW the usually strong
repulsive Coulomb e-e interaction is suitable, while for the
Cooper pairing only the e-e attraction via phonons or via other
mediating quasiparticle is needed, which usually competes
with the strong Coulomb repulsion. The energy scale of SC
is, normally, also much smaller than that of DW. Then there
is no much difference between the DW-SC and DW-metal
phase transition. Therefore, in our analysis we disregarded
the influence of superconductivity on the DW phase diagram.
Similar approximation to study the spatial inhomogeneity of
SDW phase and the properties of superconductivity on a DW
background was used in Refs. [30,33–35]. However, when
the DW is almost destroyed by the antinesting parameter, so
that TcDW ∼ TcSC, the SC may affect the DW. This mutual
influence of SDW and SC can be analyzed by studying two
order parameters simultaneously [59–61], but its realization
for a more complicated DW phase diagram and with the
antinesting term in electron dispersion is still missing. DW
and SC compete, because both open a gap and require the
electronic states on the Fermi level. Hence, the coefficient
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before the biquadratic term in the Landau free-energy expan-
sion with two order parameters is positive. By analogy with
a simpler case [60], this interplay is expected to reduce the
DW region on the phase diagram and to favor the first-order
phase transition between DW and SC. Hence, the emergence
of superconductivity in the metallic domains below the SC
transition temperature TcSC retains our main results and even
expands the parametric region of the first-order phase transi-
tion and of spatial phase segregation.

To summarize, we investigated the DW phase diagram
and the type of DW-metal phase transition in layered or-
ganic superconductors. Even at zero temperature the DW is
destroyed by an external parameter which violates the Fermi-
surface nesting and reduces the electronic susceptibility at
the DW wave vector. This parameter may be the antinest-
ing term in the electron dispersion, which can be controlled
by external pressure as in (TMTSF)2PF6 or in α-(BEDT-
TTF)2KHg(SCN)4. This antinesting parameter may also be
the band splitting, e.g., as in (TMTSF)2ClO4 due to the
anion ordering, controlled by the cooling rate. By the di-
rect calculation of the Landau expansion coefficients of the
density-wave free energy of quasi-1D metals with this an-
tinesting parameter we have shown that the DW-metal phase
transition at low temperature T � Tc0 is, usually, of the first
order. This gives a microscopic substantiation of the DW/SC
spatial phase segregation on a large length scale �1 µm,
indicated by the angular magnetoresistance oscillations or
by field-induced SDW, observed in (TMTSF)2PF6 [20] and
in (TMTSF)2ClO4 [24]. More importantly, it explains un-
usual superconducting properties of organic metals in the
coexistence phase. According to the model of conductivity
anisotropy in heterogeneous superconductors [38–43], this
phase segregation explains the anisotropic superconductivity
onset observed in various organic superconductors [20,25,27].
It is also consistent with a severalfold increase of the upper
critical magnetic field Hc2 observed in (TMTSF)2PF6 [17] or
α-(BEDT-TTF)2KHg(SCN)4 [27] in the coexistence phase.
The results obtained may also be relevant to many other super-
conductors, where superconductivity coexists with a charge-
or spin-density wave.
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APPENDIX A: ELECTRON DISPERSION WITH ANION
ORDERING IN (TMTSF)2ClO4

To substantiate Eq. (4), we note that the wave vector QAO
of AO potential VAO connects the electron momenta k and
k + QAO, similar to the CDW. The corresponding Hamilto-
nian and energy spectrum is given by Eqs. (9)–(11) with the
replacement � → VAO and Q → QAO. As a result, the new

dispersion is given by Eq. (1) with

t⊥(k⊥) = ±
√

V 2
AO + 4t2

b cos2(kyb), (A1)

in agreement with Eqs. (A4) and (A5) of Ref. [45]. At V 2
AO +

2t2
b � 2t2

b one can expand the square root in Eq. (A1), which
gives

t⊥(k⊥) = ±
√

V 2
AO + 2t2

b [1 + cos(2kyb)]

≈ ±

⎡
⎢⎣√

V 2
AO + 2t2

b + t2
b√

V 2
AO + 2t2

b

cos(2kyb)

⎤
⎥⎦.

(A2)

This coincides with Eq. (4), where 2t ′
b = t2

b /
√

V 2
AO + 2t2

b and

�AO =
√

V 2
AO + 2t2

b . In the opposite case t2
b � �2

AO Eq. (A2)
gives

t⊥(k⊥) ≈ ±{
√

2tb[1 + cos(2kyb)] + VAO(ky)}, (A3)

which again coincides with Eq. (4), where 2t ′
b = √

2tb and
�AO(ky) is a slow monotonic function of |ky| on the interval
(0, π/2b): �AO ≈ √

2tb + VAO at ky = ±π/2b, and �AO ≈√
2tb + V 2

AO /4tb at ky = 0. The strength of anion potential
VAO and of the corresponding band splitting energy �AO in
(TMTSF)2ClO4 is still debated. The early calculation in an
extended Hückel-band model give the site-energy difference
between two independent TMTSF molecules about VAO ≈
100 meV [62], but the more recent DFT calculations sug-
gest smaller value of the anion ordering half gap �AO ≈
14 meV [45]. For comparison, the estimated transfer integrals
in (TMTSF)2ClO4 are [45] ta = 263 meV and tb = 49 meV.

APPENDIX B: REGULARIZATION OF THE DIVERGENCE
IN COEFFICIENT A∞

The coefficient A∞, which is given by Eq. (27), is log-
arithmically divergent when the sum over ω is taken. This
divergence comes from the summation of sgn ω/ω term
caused by the unrestricted integration over kx. In real systems
they are limited by the first Brillouin zone and by finite band-
width and Fermi energy. This divergent contribution can be
regularized and expressed via the DW transition temperature
Tc0 by using the condition A∞ = 0 at T = Tc.

Suppose that for t ′
b = 0 the phase transition occurs at tem-

perature Tc0, where � = 0. Then from the condition A∞ = 0
it follows that

−4πTc0

h̄vF

∑
ω

〈
sgn ω

ω

〉
ky

= 1

U
. (B1)

The divergent sum can be regularized by imposing a cutoff at
ω ∼ EF which gives the equation for Tc0:

− 4

h̄vF
ln

2αEF

πTc0
= 1

U
. (B2)

Here α = eγ ≈ 1.78, where γ ≈ 0.577 is the Euler constant.
Also the temperature Tc0 is related to the value of the gap �0

at T = 0 by usual BCS expression �0 ≈ 1.76Tc0.
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Definition of Tc0 allows one to regularize the divergence.
We subtract and add the divergent term in the expression
for A∞:

A∞ = −4πT

h̄vF

∑
ω

〈
sgn ω

ω + iε+(k)
− sgn ω

ω

〉
ky

− 4πT

h̄vF

∑
ω

sgn ω

ω
− 1

U
. (B3)

The first term is not divergent and is expressed via digamma
function. For the second term we perform the same regular-

ization by introducing a cutoff and find:

−4πT

h̄vF

∑
ω

sgn ω

ω
= − 4

h̄vF
ln

2αEF

πT

= − 4

h̄vF

(
ln

2αEF

πTc0
+ ln

Tc0

T

)

= 1

U
− 4

h̄vF
ln

Tc0

T
. (B4)

Substituting this back we finally obtain Eq. (28), which is not
divergent any more.
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M. Héritier, and K. Bechgaard, Eur. Phys. J. B 25, 319 (2002).

[19] N. Kang, B. Salameh, P. Auban-Senzier, D. Jerome, C. R.
Pasquier, and S. Brazovskii, Phys. Rev. B 81, 100509(R)
(2010).

[20] A. Narayanan, A. Kiswandhi, D. Graf, J. Brooks, and P.
Chaikin, Phys. Rev. Lett. 112, 146402 (2014).

[21] I. J. Lee, S. E. Brown, W. Yu, M. J. Naughton, and P. M.
Chaikin, Phys. Rev. Lett. 94, 197001 (2005).

[22] I. J. Lee, M. J. Naughton, G. M. Danner, and P. M. Chaikin,
Phys. Rev. Lett. 78, 3555 (1997).

[23] I. J. Lee, S. E. Brown, W. G. Clark, M. J. Strouse, M. J.
Naughton, W. Kang, and P. M. Chaikin, Phys. Rev. Lett. 88,
017004 (2001).

[24] Y. A. Gerasimenko, V. A. Prudkoglyad, A. V. Kornilov, S. V.
Sanduleanu, J. S. Qualls, and V. M. Pudalov, JETP Lett. 97,
419 (2013).

[25] Y. A. Gerasimenko, S. V. Sanduleanu, V. A. Prudkoglyad, A. V.
Kornilov, J. Yamada, J. S. Qualls, and V. M. Pudalov, Phys. Rev.
B 89, 054518 (2014).

[26] S. Yonezawa, C. A. Marrache-Kikuchi, K. Bechgaard, and D.
Jerome, Phys. Rev. B 97, 014521 (2018).

[27] D. Andres, M. V. Kartsovnik, W. Biberacher, K. Neumaier, E.
Schuberth, and H. Muller, Phys. Rev. B 72, 174513 (2005).

[28] F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen, B. Lei,
J. J. Ying, and X. H. Chen, Nat. Commun. 12, 3645 (2021).

[29] M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).
[30] P. D. Grigoriev, Phys. Rev. B 77, 224508 (2008).
[31] S. Brazovskii and N. Kirova, Sov. Sci. Rev. A 5, 99 (1984).
[32] W. P. Su, S. Kivelson, and J. R. Schrieffer, in Physics in One

Dimension, Springer Series in Solid-State Sciences, edited by
J. Bernascony and T. Schneider (Springer, Berlin, 1981), pp.
201–211.

[33] P. D. Grigoriev, Phys. B: Condens. Matter 404, 513 (2009).
[34] L. P. Gor’kov and P. D. Grigoriev, Europhys. Lett. 71, 425

(2005).
[35] L. P. Gor’kov and P. D. Grigoriev, Phys. Rev. B 75, 020507(R)

(2007).
[36] M. Tinkham, Introduction to Superconductivity, 2nd ed., Inter-

national series in pure and applied physics (McGraw–Hill, New
York, 1996).

[37] A. L. Efros, Physics and Geometry of Disorder: Percolation
Theory, Science for Everyone (Mir, Moscow, 1987).

125123-10

https://doi.org/10.1080/00018732.2012.719674
https://doi.org/10.1088/0953-2048/14/4/201
https://doi.org/10.1016/S0370-1573(02)00029-7
https://doi.org/10.1038/nphys2456
https://doi.org/10.1103/PhysRevLett.110.187001
https://doi.org/10.1103/PhysRevB.96.134510
https://doi.org/10.1038/ncomms6875
https://doi.org/10.1126/science.1256441
https://doi.org/10.1038/s41467-019-11167-z
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1088/0953-8984/27/18/183201
https://doi.org/10.1021/acs.nanolett.8b00237
https://doi.org/10.1038/s41467-018-05153-0
https://doi.org/10.1103/PhysRevLett.88.207002
https://doi.org/10.1140/epjb/e20020037
https://doi.org/10.1103/PhysRevB.81.100509
https://doi.org/10.1103/PhysRevLett.112.146402
https://doi.org/10.1103/PhysRevLett.94.197001
https://doi.org/10.1103/PhysRevLett.78.3555
https://doi.org/10.1103/PhysRevLett.88.017004
https://doi.org/10.1134/S0021364013070060
https://doi.org/10.1103/PhysRevB.89.054518
https://doi.org/10.1103/PhysRevB.97.014521
https://doi.org/10.1103/PhysRevB.72.174513
https://doi.org/10.1038/s41467-021-23928-w
https://doi.org/10.1021/cr0306891
https://doi.org/10.1103/PhysRevB.77.224508
https://doi.org/10.1016/j.physb.2008.11.056
https://doi.org/10.1209/epl/i2005-10089-y
https://doi.org/10.1103/PhysRevB.75.020507


FIRST-ORDER PHASE TRANSITION BETWEEN … PHYSICAL REVIEW B 108, 125123 (2023)

[38] V. D. Kochev, K. K. Kesharpu, and P. D. Grigoriev, Phys. Rev.
B 103, 014519 (2021).

[39] K. K. Kesharpu, V. D. Kochev, and P. D. Grigoriev, Crystals 11,
72 (2021).

[40] A. A. Sinchenko, P. D. Grigoriev, A. P. Orlov, A. V. Frolov, A.
Shakin, D. A. Chareev, O. S. Volkova, and A. N. Vasiliev, Phys.
Rev. B 95, 165120 (2017).

[41] P. D. Grigoriev, A. A. Sinchenko, K. K. Kesharpu, A. Shakin,
T. I. Mogilyuk, A. P. Orlov, A. V. Frolov, D. S. Lyubshin, D. A.
Chareev, O. S. Volkova, and A. N. Vasiliev, JETP Lett. 105, 786
(2017).

[42] P. D. Grigoriev, V. D. Kochev, A. P. Orlov, A. V. Frolov, and
A. A. Sinchenko, Materials 16, 1840 (2023).

[43] S. S. Seidov, K. K. Kesharpu, P. I. Karpov, and P. D. Grigoriev,
Phys. Rev. B 98, 014515 (2018).

[44] G. M. Danner, P. M. Chaikin, and S. T. Hannahs, Phys. Rev. B
53, 2727 (1996).

[45] P. Alemany, J.-P. Pouget, and E. Canadell, Phys. Rev. B 89,
155124 (2014).

[46] T. Takahashi, D. Jérome, and K. Bechgaard, J. Phyique Lett. 43,
565 (1982).

[47] K. Sengupta and N. Dupuis, Phys. Rev. B 65, 035108 (2001).
[48] B. Guster, M. Pruneda, P. Ordejón, E. Canadell, and J.-P.

Pouget, J. Phys.: Condens. Matter 33, 085705 (2020).

[49] H. Aizawa and K. Kuroki, Phys. Rev. B 97, 104507 (2018).
[50] P. D. Grigoriev and D. S. Lyubshin, Phys. Rev. B 72, 195106

(2005).
[51] B. Guster, M. Pruneda, P. Ordejón, E. Canadell, and J.-P.

Pouget, J. Phys.: Condens. Matter 32, 345701 (2020).
[52] A. Umantsev, Field Theoretic Method in Phase Transforma-

tions, Lecture Notes in Physics (Springer, New York, 2012).
[53] V. Kalikmanov, Nucleation Theory, Lecture Notes in Physics

(Springer, Amsterdam, 2012).
[54] V. D. Kochev, S. S. Seidov, and P. D. Grigoriev,

Magnetochemistry 9, 173 (2023).
[55] F. L. Pratt, T. Lancaster, S. J. Blundell, and C. Baines, Phys.

Rev. Lett. 110, 107005 (2013).
[56] A. L. Rakhmanov, K. I. Kugel, and A. O. Sboychakov, J.

Supercond. Novel Magn. 33, 2405 (2020).
[57] A. L. Rakhmanov, A. V. Rozhkov, A. O. Sboychakov, and F.

Nori, Phys. Rev. B 87, 075128 (2013).
[58] T. M. Rice, Phys. Rev. B 2, 3619 (1970).
[59] Y. Imry, J. Phys. C 8, 567 (1975).
[60] S. Watanabe and T. Usui, Prog. Theor. Phys. 73, 1305

(1985).
[61] I. P. Ivanov, Phys. Rev. E 79, 021116 (2009).
[62] D. Le Pévelen, J. Gaultier, Y. Barrans, D. Chasseau, F. Castet,

and L. Ducasse, Eur. Phys. J. B 19, 363 (2001).

125123-11

https://doi.org/10.1103/PhysRevB.103.014519
https://doi.org/10.3390/cryst11010072
https://doi.org/10.1103/PhysRevB.95.165120
https://doi.org/10.1134/S0021364017120074
https://doi.org/10.3390/ma16051840
https://doi.org/10.1103/PhysRevB.98.014515
https://doi.org/10.1103/PhysRevB.53.2727
https://doi.org/10.1103/PhysRevB.89.155124
https://doi.org/10.1051/jphyslet:019820043015056500
https://doi.org/10.1103/PhysRevB.65.035108
https://doi.org/10.1088/1361-648X/abc406
https://doi.org/10.1103/PhysRevB.97.104507
https://doi.org/10.1103/PhysRevB.72.195106
https://doi.org/10.1088/1361-648X/ab8522
https://doi.org/10.3390/magnetochemistry9070173
https://doi.org/10.1103/PhysRevLett.110.107005
https://doi.org/10.1007/s10948-019-05379-z
https://doi.org/10.1103/PhysRevB.87.075128
https://doi.org/10.1103/PhysRevB.2.3619
https://doi.org/10.1088/0022-3719/8/5/005
https://doi.org/10.1143/PTP.73.1305
https://doi.org/10.1103/PhysRevE.79.021116
https://doi.org/10.1007/s100510170312

