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Fixed lines in a non-Hermitian Kitaev chain with spatially balanced pairing processes
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Exact solutions for non-Hermitian quantum many-body systems are rare but may provide valuable insights into
the interplay between Hermitian and non-Hermitian components. We report our investigation of a non-Hermitian
variant of a p-wave Kitaev chain by introducing staggered imbalanced pair creation and annihilation terms. We
find that there exist fixed lines in the phase diagram, at which the ground state remains unchanged in the presence
of a non-Hermitian term under the periodic boundary condition for a finite system. This allows the constancy of
the topological index in the process of varying the balance strength at arbitrary rate, exhibiting the robustness of
the topology for the non-Hermitian Kitaev chain under time-dependent perturbations. The underlying mechanism
is investigated through the equivalent quantum spin system obtained by the Jordan-Wigner transformation for
infinite chain. In addition, the exact solution shows that a resonant non-Hermitian impurity can induce a pair
of zero modes in the corresponding Majorana lattice, which asymptotically approach the edge modes in the
thermodynamic limit, manifesting the bulk-boundary correspondence. Numerical simulation is performed for
the quench dynamics for the systems with slight deviation from the fixed lines to show the stability region in

time. This work reveals the interplay between the pair creation and annihilation pairing processes.
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I. INTRODUCTION

The exact solution of a model Hamiltonian plays an impor-
tant role in physics and sometimes may open the door to the
exploration of new frontiers in physics. One recent example is
the discovery of the solution for a non-Hermitian harmonic
system, which is a starting point of PT-symmetric quan-
tum mechanics [1-4]. In traditional quantum mechanics, the
fundamental postulate of the Hermiticity of the Hamiltonian
ensures the reality of the spectrum and the unitary dynamics
for a closed quantum system [5]. In general, any Hermitian
Hamiltonian can also be decomposed into two non-Hermitian
sub-Hamiltonians that are Hermitian conjugates of each other.
Intuitively, the reality of the spectrum is rooted in the balance
of the actions of the two non-Hermitian sub-Hamiltonians. In
this sense, the Hermiticity is not necessary for the balance,
since the balance can be established across a distance by a
pseudo-Hermitian Hamiltonian [6-11], for instance, a simple
gain-loss-balanced system in Refs. [12—14]. However, exact
solutions for non-Hermitian quantum many-body systems are
rare but provide valuable insights into the physics of quantum
matter. In this work, we present a much more compelling ex-
ample to demonstrate the balance in a non-Hermitian quantum
many-body system and reveal the interplay between Hermi-
tian and non-Hermitian components.

We study a non-Hermitian variant of a p-wave Kitaev chain
[15] by introducing staggered imbalanced pair creation and
annihilation terms. The staggered arrangement provides the
balance between two neighboring dimers. In most works, the
balanced terms usually arise from single-particle processes,
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such as hopping or on-site potential terms. In previous work
[16], it has been shown that a non-Hermitian term for the
pairing process can alter the phase diagram in the ground state.
In this work, the non-Hermitian components are extended.
Based on the exact solutions, we find that there exists a family
of lines, at which the ground state of the Hamiltonian remains
unchanged in the presence of a non-Hermitian term under the
periodic boundary condition for a finite system. The ground
state is only determined by the intercept of a given line,
referred to as a fixed line.

It is well known that the topological superconducting phase
in the original Kitaev model has been demonstrated by the
winding number of the Majorana lattice and unpaired Ma-
jorana modes exponentially localized at the ends of open
Kitaev chains [17-19]. For the present model, our result
is the constancy of the winding number in the process of
varying the balance strength at an arbitrary rate, exhibiting
the robustness of the topology for a non-Hermitian Kitaev
chain under time-dependent perturbations. In addition, the
exact solution shows that a resonant non-Hermitian impurity
can induce a pair of zero modes in the corresponding Majo-
rana lattice, which asymptotically approach the edge modes
in the thermodynamic limit, manifesting the bulk-boundary
correspondence. The underlying mechanism is investigated
through the equivalent quantum spin system [20] obtained
by the Jordan-Wigner transformation [21] for finite chains.
Starting from the explicit ground states of the open spin chain,
we elaborate that the non-Hermitian terms have no energy
contribution in the bulk and show how the stringlike boundary
term hybridizes two ferromagnetic states. We also investigate
the stability region in time for systems with a slight deviation
from the fixed lines by performing numerical simulation of
quench dynamics. This work reveals the interplay between the

©2023 American Physical Society
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FIG. 1. (a) Schematic of a 1D Kitaev model for spinless fermion with non-Hermitian imbalanced pair terms. It consists of two sublattices
A and B in black and white, respectively. Here, J is the hopping strength between two adjacent sites. A, is the strength of the p-wave pair
creation (annihilation) on the odd (even) dimer, while A, is the strength of the p-wave pair annihilation (creation) on the even (odd) dimer.
(b) Schematic illustration of fixed lines. The fixed lines are a family of parallel lines with slope —1 in the A,-A, plane. The Hamiltonians
with parameters at each line share the same ground state with the same energy, which are determined only by the intercepts of the line. The
intercepts of the five representative lines are —2, —1, 0, 1, and 2. (c) Plot of the fidelity for the dynamic process in the system with different
time-dependent parameters in Eq. (17). It indicates that when the time-dependent parameters only move along a fixed line, the fidelity is always

equal to 1.

pair creation and annihilation pairing processes at different
locations.

This paper is organized as follows. In Sec. II, we de-
scribe the model Hamiltonian and present the exact solution.
In Sec. III, we study the corresponding Majorana lattice to
show the exact zero modes in the presence of an engineered
impurity. In Sec. IV, we investigate our model in the spin
representation. In Sec. V, we present the features of the dy-
namic behavior when the quench Hamiltonian deviates from
the fixed lines. Finally, we give a summary and discussion
in Sec. VI. Some details of derivations are placed in the
Appendix.

II. MODEL AND FIXED LINES

We consider the following non-Hermitian fermionic
Hamiltonian H = H(A,, Ap, ) on a lattice of length 2N
(even N):

N N
H= JZC?C[.H +Hec. + 1 Z (1 —2my)
I=1 I=1
N
+ Z(Aacﬁjczjﬂ + Aucajcajog
j=1

ey

+ Apcajyicaj + AbCL_IC;j),

where c; (c;) is a fermionic creation (annihilation) operator

on site [, n; = c;fcl, J is the tunneling rate, and real number
A, is the strength of the p-wave pair creation (annihilation)

on the odd (even) dimer, while A, the strength of the p-wave
pair annihilation (creation) on the even (odd) dimer. u is
J
—2u J(1 + e
J(1 + €*) —2u
e = —ik
0 Abe - Aa
Ay — Ape® 0

the chemical potential. The non-Hermitian Kitaev model is
schematically illustrated in Fig. 1(a). For a closed chain, we
define cy4+1 = ¢; and for an open chain, we set coy4; = 0.
The Kitaev model is known to have a rich phase diagram
in its Hermitian version, i.e., H — H + Hf, or A, = A,.
In particular, in the nontrivial topological region, the ground
state is twofold degenerate in the large N limit, which stems
from the Majorana zero modes. In this work, we focus on what
happens when A, # A,. To be more precise, we investigate
the influence of the non-Hermitian terms on the topological
phase and the edge modes of the corresponding Majorana
lattice.

We introduce the Fourier transformations in two sublattices

C2j-1 _L ikj [ %k
(5)-mxG) o

and, inversely, the spinless fermionic operators in k space o,

By are
Ok _ L —ikj [ €2j-1 3
<ﬂk> w2 () @
where j=1,2,...,N, k=2mn/N, and m=0,]1,
2,...,N—1. The Hamiltonian with periodic boundary

condition can be block diagonalized by this transformation
due to its translational symmetry, i.e.,

H = Z Hk=H0+H7‘[+ Z W;jhkl/fk,

kel0,7] ke(0,)

“

satisfying [Hy, Hy'] = 0, where the operator vector w,j =

(ozZ ﬁkT a_p  B_i), and the core matrix is expressed ex-
plicitly as
0 Ap — Aae_ik
Aaeik — Ab 0
2u —J(1 + e~ ) )
—J(1 + &%) 2
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Here, Hy and H,; have the form
Hoy = 2Ja o + 2J Bl + 211ty — B Bo)
+ (A — A)(eg B + @ofo), (6)

Hy = 2u(oza) — BiBy)
+ (Ap + A (el BL + Brax). (7

The eigenvalue ¢, and eigenvector |¢;) of Ay, satisfying
hi|lox) = €xlex), can be obtained analytically or numerically,
which will be used for numerical simulation of quench
dynamics.

In the following, we focus on the case with u = 0. The
Hamiltonian H can be expressed in the diagonal form of the
Hamiltonian

H=Hy+H,+ Y. Y & A A, 8)

ke(0,m) po

where

ek =p 2Jcos]i 2—+—(A +Ab)zsin2]i
po 2 ¢ 2

k
+io (A, — Ap)cos > ©)]

and the form of A’;a is presented in the Appendix and is in-
dependent of the value of (A, — Aj), satisfying the canonical
commutation relations

LA
{AS ALy} = 81eypdocr,
k

{450 Ao} = {0

A} =0 (10)

Then the ground state is
1
G) = 5 (ez By + Dieg — £3)I0)

x [T AL AL |Vac) (1)
ke(0,m)

with ground state energy

Eg=2 ) Res*, — QI+ A, +4,).  (12)
ke(0,m)

Here |Vac) is the vacuum state of the set of operator {A’;(7 ,

i.e., A’;J|Vac) =0, while |0) is the vacuum state of the
fermion operators. We find that |G) and E, are both inde-
pendent of the strength of the non-Hermiticity A, — Aj along
the zero-u line in the phase diagram. To describe this phe-
nomenon, we dub the lines with slope —1 in the A,-A, plane
“fixed lines,” which are clearly depicted in Fig. 1(b).

Based on the above analysis, one can consider a time-
dependent Hamiltonian H(#) with the constraint d(A, +
Ap)/dt =0, but d(A, — Ap)/dt # 0. Considering the fact
that the ground state and the energy are independent of the
value of A, — A, when d(A, + Ap)/dt =0, based on the
fact

H(®)|G) = H(t)|G) = &]G) 13)
or

exp[—iH (n7)7]|G) = €*7|G), (14)

we have

|®()) =T exp [—i/tH(t)dt]|G)
0

N
= }i_l)I%)THexp(—isgt)l G)

n=1
= ¢?|G), (15)

where 7T is the time-order operator and ¢ is an overall phase.
The Hamiltonian H(¢) is the Hamiltonian shown in Eq. (1)
with time-dependent parameters A,(¢) — Ap(¢). In Fig. 1(c),
we provide the fidelity

F(t) = [(®(0)|[ D)%, (16)
for a concrete system with

A, =1+sint?, A,=1—sin@>+72), a7

by taking different ¢ = 0, 0.5, 1. The plot shows that the
fidelity is always equal to 1 at the fixed line. This allows
for the constancy of the winding number extracted from the
ground state in the process of varying the balance strength
at an arbitrary rate d(A, — Ap)/dt, exhibiting the robustness
of the topology for the non-Hermitian Kitaev chain under
time-dependent perturbations d(A, — Ap)/dt [16]. However,
the situation may change under the open condition, which will
be investigated in the following section.

III. MAJORANA ZERO MODES

As mentioned above, it has been appreciated previously
that bulk-boundary correspondence holds in the Hermitian
Kitaev model. The analysis in the last section shows that the
ground state remains unchanged at the fixed lines, maintaining
the topology feature in the presence of non-Hermitian terms.
However, the periodic condition plays an important role in
such a conclusion, which will also be demonstrated in the
next section in the context of the quantum spin model. In other
words, the non-Hermitian terms should break the constancy of
the ground state when an open boundary condition is taken.
A natural question is whether edge modes still exist for the
opened Majorana lattice in the presence of non-Hermitian
terms.

We begin with a defected Kitaev system by introducing a
resonant impurity located at a dimer across two sites (1, 2N).
The Hamiltonians read

Hp =H — \M,
M = Aac;NcJ{ + Apcicon +JC§N01 + JchfczN, (18)

where A controls the strength of the impurity and A =1
indicates the open chain. We introduce Majorana fermion
operators

aj:c';—}—cj, bjz—i(Cj—Cj), (19)
which satisfy the relations
{aj,ap} =28, 5, {bj,bj}=23;,
{aj,bj/} =0. (20)
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The inverse transformation is

cj:%(aj—l—ibj), Cj = %((,lj—lbj) (21)

The Majorana representation of the Hamiltonian has the form

N

. . . . A, — A
Hp = Z K+(lb2ja2j+1 + lsz—lazj) + k_(ibyjarj—1 + ibyj1a2j) + —————

=1

4

A, — A
- )»[K+ib21val + k_ibiazy + ——(away + bibyy)

b
1 (azjasjy1 + bojriboj + azjazj— ‘|‘b2j—lb2j)i|

(22)

with k1 = [2J & (A, + A,)]/4. We write down the Hamiltonian in the basis ¢* = (—iay, b1, —ias, by, —ias, bs, .. .) in the form
Hp = ¢ hpy, (23)

where hp represents a 4N x 4N matrix. Here, the matrix /p can be explicitly written as

A
hp =

J=1

2N
K K_
+ Z <7+|I,B)(l + LA+ — [+ 1 B) (Al +H.c.)
=1

N
a_Ab . . . . . . . .
TZ(m,A)(z] + 1A+ 2j + 1, B)(2j, Bl + 2], A)(2j — 1,A| 4+ |2j — 1, B){2j, B|]) — H.c.

- x[%qu, B)(1,A| +H.c.) + %(Il,B)(ZN,Al +Hec)+ %(IZN, AY(1, Al + |1, B)2N, B| — H.c.)i|. 24)

In Fig. 2 the geometry of the lattice hp is illustrated. We
start with the perfect case with A = 0 and the matrix describes
a uniform ladder with unequal hopping strength under the
periodic boundary condition. The spectrum of the matrix can
be easily obtained as

1
Ek = :l:Z\/(2J)2 cos’ K + (Ay + Ap)?sin? K

Ay — A
ii% cos K, (25)

which is one-quarter of sﬁa in Eq. (9), where the wave vector
K=mn/N,m=0,1,2,...,N — 1. When & is considered
as the energy band of a non-Hermitian system, i.e., a tight-
binding ladder, the half filled ground state energy can be
obtained as

E, = —%V max (27, A, + Ap)E(e), (26)
® 6 6 6 66 6 6 ¢
C_ U _ ©_ ¢ C_+v ¢ ¢
2N 1
K K A, -4, A, -4, . (/
2 2 8 8 fa b

FIG. 2. Geometry for the Majorana lattice described in Eq. (24).
The system consists of two sublattices, ia and b, indicated by black
and white circles, respectively. The red and purple solid lines indicate
the couplings between the sublattices. The yellow and green arrows
are the unidirectional hopping. There is an engineered impurity,
which is labeled as the dashed lines and arrows. The corresponding
zero modes are plotted in Fig. 3.

(

which is obviously independent of A, — A;. Here function E
means the complete elliptic integral of the second kind and
e represents the eccentricity of the ellipse with width 2J and
height A, + A,.

The translational symmetry is broken when we take A #
0. Our goal is to find out the zero modes when taking the
open boundary. To this end, we consider the cases with
resonant conditions A=A, =1—y " and A_ =1—y",
respectively. Under this condition, there always exist two zero
modes for any given N. Importantly, it provides explicit ex-
pressions of the zero modes even in the finite N limit. The
coefficient y has the form

BNLVE, Ayl (Dg — Dy +4J2 =207 — A2 — A}
22 = AyAy) ’
@7)

which determines the values of A = 1 or oo, in the large N
limit. Accordingly, Hp describes an open ladder of 4N and
(4N — 4) sites, respectively, when N turns to infinity. Straight-
forward derivations show the following exact results. There
are a pair of zero modes

hplyL) = hplyr) = 0, (28)

for arbitrary N, when taking .. = A.. Leaving aside the overall
normalization, (i) for A = A_, we have the explicit expression
of zero modes
2N
L) =Y v/ (12j = 1LA) + BI2j — 1. B)),

j=1
(29)

2N
lwr) =Y ¥V /(12), B) + BI2j, A)),
j=1
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FIG. 3. Profiles of the zero modes from Eq. (31) for Majorana
lattices in Fig. 2 with N = 8. The first row is the plot for the system
with the condition A = A_ and the second row with the condition
A = Ay. The color bars indicate the amplitudes of two different
sublattices. All four patterns exhibit evident skin effect.

while (ii) for A = A, we have

2N
lyr) =Y ¥V (12j — 1, B) = BI2j — 1,A)),
= (30)

2N
L) =Yy (127, A) — BI2j, BY),
j=1

where the coefficient is B = [4J2 + (Ap — A,)?
—2J1/(Ap — Ay). The exact result is demonstrated by
the plot of the profile of the normalized edge state

V) L)
WE) = + , 31)
Ve = Al T 2l

in Fig. 3 for finite N. It is obvious that the zero modes are
standard edge modes, demonstrating the bulk-edge correspon-
dence at A = 1 in the thermodynamic limit.

Compared to the ground state for a periodic boundary con-
dition, the profiles of edge modes |y r) are now dependent
on the value of A, — A,. This means that the non-Hermitian
components have an effect on the eigenstates when the trans-
lational symmetry is broken. It may be because the balance
between the staggered imbalanced pair creation and annihila-
tion terms is broken. To understand how the non-Hermitian
components cancel each other out, in the following section,
we study the model in the spin representation.

IV. DISSIPATIONLESS FERROMAGNETIC ORDER

It has been noted that the Kitaev chain, a p-wave super-
conductor, can be mapped into a quantum spin XY model
with a transverse field via a Jordan-Wigner transformation
[21], replacing the spinless fermion creation and annihilation
operators with spin flip operators. Accordingly, the present
non-Hermitian Kitaev model should correspond to a non-
Hermitian XY model. Intuitively, a spin model can provide
a clear physical picture for understanding the balance of non-
Hermitian terms from different locations. The non-Hermitian
extensions for quantum spin XY model have been studied via
several examples [22-24]. However, the non-Hermitian spin
model mapped from a Kitaev model is slightly special. It
possesses a subtle boundary term involving a string operator.
In this section, we consider this problem based on the simplest
case with A, + A, = 2J.

Introducing the Jordan Winger transformation

Jj—1 J—1
cj = Hofa»_, c; = l_[afcr;”, (32)
i=1 i=1
the Kitaev Hamiltonian can be expressed as
(A, — A
H = JHy + B A ; 2 (33)

where both terms

2N-1 IN-1
_ X X 4 y_y
Hy = — § 0107 — 1_[ 9i |91 %N (34)
I=1

i=

and
N N—1
— X y y X\ _ y X x Yy
H= 2 :(GZj—laZj +52j—1"2j) § :(02j02j+1 +(72j02j+1)
= =1

2N-1
+ < I1 af) (o7o3y + o3y07) (35)
i=2
are all Hermitian. We note that H, represents the sim-
plest Ising model but with a subtle boundary condition
(l'[izivz_ laiz )0} 05y, Which contains a stringlike nonlocal oper-
ator [T12Y,0%. The effect of the boundary condition has rarely
been considered in previous investigations on the Ising model
and is important in this work. It is well known that the GHZ
states [25-27]

e 2N
IGHZ®) = — ([ [Imi =] [ 10 (36)
5 11 t 11 !
are the ground state doublet of Hy when the boundary con-
dition is modified by taking (I, '0¥)o] 03y —> ofo3y or
(M2 o 7)07 03, —> 0. Here the kets are defined as 07| 1); =
[1); and 6}'||); = —|{);. However, straightforward derivation
shows that

Ho|GHZ*) = (—2N + 1 + 1)|GHZ%), 37)

which indicates that [GHZ™) is the ground state singlet of H.
Remarkably, when 7 is taken into account, one can find the
relation

o} (0" — 0},1)IGHZ*) = 0, (38)
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for [ € [2,2N — 1] in the bulk. It is clear that the non-
Hermitian spin coupling terms from two neighboring dimers
cancel each other out when they are applied to the bulk of
the ferromagnetic state. Furthermore, applying H to the state
|GHZ®), we have
HIGHZF) = (0703 + 03y_,05y)IGHZ®)
2N-1
+ (oo3y + o3y07) ( ]_[ af> |IGHZ*), (39)
i=2
i.e., the action of #H on state |GHZT) is only left at the
boundary. Then we have

H|GHZ™) =0, (40)
due to the fact that
2N—1
(o703 + oy07) ( [1 af) |GHZ™)
i=2
= (o7 03y + 0307 ) (£)|GHZ™). 41)

The above investigation has shown that |GHZ™) is still the
ground state of H. The ground state wave function is indepen-
dent of the value of (A, — A,) which is in accord with the
analysis in the last section. The underlying mechanism is that
a pair of non-Hermitian terms from two neighboring dimers
cancel each other out, leaving the GHZ states with perfect
ferromagnetic order. For the other phases, A, + A, # 2J,
next to the fixed line we mentioned in this section, there also
exists a corresponding fixed line on which the ground state
is the same as that of the corresponding Hermitian quantum
XY model. The topological feature of the Hamiltonian with
A, # 0, Ap = 0 has been studied in Ref. [16]. In addition, the
obtained result can be applied to other quantum spin systems.
For example, when we consider a Heisenberg ring with an
additional non-Hermitian term i }_"_ (03,_,03 = 03,05,1),
it is easy to find that the ferromagnetic states in the x direction
remain unchanged. The ferromagnetic order does not dissipate
in the presence of such non-Hermitian fluctuations.

V. STABILITY OF QUENCH DYNAMICS

In this section, we present the features of the dynamic be-
havior when the quench Hamiltonian deviates from the fixed
lines by small nonzero w. To be precise, in the following, we
consider the numerical simulation of the quench process under
the Hamiltonian

Hpre = H(Aav Ap, O)» Hpos = H(Aaa Abs I'L)v (42)

where H(A,, Ap, i) is defined at the beginning in Eq. (1). To
capture the effect of small 4 on the dynamics, we introduce
the concept of fidelity, which is a measure of the stability of
the original quantum state under the perturbation. An initial
quantum state |®(0)) evolves during time ¢ under postquench
Hamiltonian Hpos reaching state |®(2)) = e~ |®(0)). The
fidelity is defined as

F (1) = [{D(0)|e™" | D(0)) . (43)
In our study, the initial state is prepared as the ground state of
Hpype, ie., |@(0)) = |G). Obviously, we always have F(t) =
1 when Hye = H(A,, Ay, 0) and Hpos = H(A,, A}, 0) with
A+ Ay = A, + A It is expected that the fidelity obeys
F(¢) ~ 1 within a period of time in the presence of small p.

The numerical results of F (¢) obtained by exact diagonaliza-
tion of each invariant subspace are indicated by k.

The results for systems with representative parameters
Ay + Ap > 2J and <2J are presented in Fig. 4. We can see
that the results are in accord with our predictions for zero u.
We note that the fidelity experiences a sudden drop from 1
to 0 when the time reaches a boundary. For a fixed small u,
such a boundary in the time axis shrinks as the ratio A,/A
increases. On the other hand, for a fixed ratio A,/Ay, such a
boundary in the time axis shrinks as the u increases. The aim
of Fig. 4 is to demonstrate the continuity of the ground state
when the parameter u crosses over the zero point. The result
indicates that there is no sudden change in the ground state
when the parameter deviates from the fixed lines, i.e., each
fixed line is not the critical line or quantum phase boundary.

VI. SUMMARY

In summary, we investigate the stability of the ground state
of the p-wave Kitaev model at fixed lines in the phase diagram
in the presence of a non-Hermitian pair term. Based on the ex-
act solutions, we find that the ground state remains unchanged
in the presence of a restrained non-Hermitian pair term under
the periodic boundary condition for a finite system. When
the translational symmetry is broken, the non-Hermitian term
affects the ground state for a finite system. However, the exact
solution shows that a resonant non-Hermitian impurity can
induce a pair of zero modes in the corresponding Majorana
lattice, which asymptotically approach the edge modes in the
thermodynamic limit, manifesting the bulk-boundary corre-
spondence. We have investigated the underlying mechanism
through the equivalent quantum spin system obtained by the
Jordan-Wigner transformation for finite chains. The numeri-
cal simulation of quench dynamics shows that the obtained
results still hold for slight deviation from the fixed lines. In
the present work we proposed a non-Hermitian Kitaev model,
with the non-Hermiticity arising from locally imbalanced but
globally balanced pair creation and annihilation. To date, the
proposed non-Hermitian Kiteav model in the literature mainly
comes from the imaginary potentials. This study provides
the insight into the topological phase that emerges from the
interplay between spatially separated pairing processes. In
addition, the corresponding Majorana lattice of our model is
non-Hermitian but possesses zero edge modes. This model
can be realized in photonic systems and the edge modes can
be detected in experiments [28]. Recently, it has been shown
that the phase diagram of a Hermitian Kitaev model can be
demonstrated in the dynamic process [29]. An interesting
topic for our future work will be to investigate the dynamics
of the present model.
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APPENDIX

In this Appendix, we derive the solution of the Hamilto-
nian H = Ho + Hx + ) 400 w,jhkwk with zero w, where
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A, + Ay =17

(a1) 9 w =0 (a2) uw=1x103 (a3) p=1x102 :
A[l

1
(b1) 5 (b2) A, + Ay =23 (b3)
Aa

1

0 9 18 0 9 18
ted tJ tJ

FIG. 4. 2D color contour plots of the fidelity in Eq. (43) for the quench processes. The system parameters A,/A, and u are indicated
in the panels. The unitary fidelity in (al) and (b1l) demonstrates our exact results. Panels (a2), (a3) and (b2), (b3) are the cases with
two different values of small p. The deep shadows indicate the region of zero fidelity. The sharp edge indicates the sudden drops of the
fidelity.

w,j = (o, Bl o« Bx) and the core matrix i can be for k € (0, ), where

rewritten in the form 1
k . (i-k)2

A+ Ay Ay — Ay Ay = ﬁ[(l + poi e D)oy

hy =JI r I's. Al
k 1+ > >+ 5 3 (AD)

F(pe® b 4 g emiki2yg,
Here, matrices . iO—k/2)N
+ (1 —poie Ja’,

0 vy O 0 (0 A
ro_pi_|w 0 0 0 A +(—p 0 +ic e M)A ] (A7)
1 =11 = 0 0 0 - ( ) d
0 0 -y O an
—k T
and Ay = (A35) (0 = —p.0 — —0), (A8)
0 0 0 Yok with
reri—| © 0 Ve O (A3) sink(2J — A, — Ap)
2= =1 0 0 o |’ tan 6 = (A9)
Vi 0 0 0 2]+ Ay + Ap+cosk(Q] — A, — Ap)
while and v/ being the normalization factors. The spectrum is
0 0 0 -y k\* k
r i 0 0 Vi 0 Ad s’;a = p\/<2.] cos z) + (Aq + Ap)?sin® 3
=G=lo -, 0 o (A4)
k
ve (00 0 +i0 (g — Ap)cos . (A10)
is anti-Hermitian with y;, = 1 + ¢/*. Obviously, we have o o , )
The Hamiltonian H is diagonalized since the set of operators
[he(Aas AT = Bi(Ap, Ay). (A5) @ pU,A’:m) satisfies the canonical commutation relations
Direct derivation shows that i
Z X {Apg7A o’ } = Skk’app’amr’a
ek A A , (A6) ,
po“tpottpo k ¥ —k =k
(Al AL ={A,,.A,,}=0. (A11)
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Notably, we have
k ko k —k \T
AWA/JF - (ZpFApﬂ)
1 ) .
= g2pe @Bl p— o)

+ (1 =N By + g7 al )

+ (@@ DB+ fral )l (AL2)
and
820 + 85)3 = 2Resfw, (A13)
which are independent of A, — A,, witho = —o. It indicates
that any pair eigenstate in the form
-k —k
Wpair) = Ay Ay | Vac) (Al4)
is independent of A, — A, and has real energy
(A15)

Epgir =2 Z Reeﬁa.
{k}

Here |Vac) is the vacuum state of the set of operators {A’;m},

ie., A’;0|Vac) = 0. On the other hand, the ground state of
Hy, + H,, with
Hy = 2Jo Bo + 27 Bjeto

+ (Ap — A} By + aoBo),

Hy = (8p + M) (e By + Brorx), (A16)
can be easily obtained by diagonalization, yielding
(Ho + Hr)lg) = —(2J + Ao + Ap)lg), (A17)
with
18) = 3(@i B + Dieg — £IO), (A18)

where |0) is the vacuum state of the fermion operators. Obvi-
ously, the ground state is enclosed in the set of eigenstates in

the form [Ypair)| g).
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