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The relentless miniaturization of transistors drives the search for alternative metals to copper for low-
dimension interconnects. Indeed, some elementary metals, like ruthenium, become less resistive than copper
at low dimensions, leading to smaller losses in the connection lines. For most parts, such knowledge is still
lacking for binary metals and other alloys. In this work, we carry such an investigation based on first princi-
ples, combining electron-phonon and surface scatterings in the relaxation time approximation of Boltzmann’s
transport equation. We discuss the validity of different proxies of the resistivity at low dimensions (both for thin
films and rectangular nanowires), including the so-called ρλ product, that do not require the computation of the
electron-phonon relaxation time. We then identify a few promising binary systems that can in principle compete
with copper at low dimensions, namely NiAl, RuAl, and Cu3Al. Finally, we derive on the way the analytical
solution of Boltzmann’s transport equation for rectangular nanowires.

DOI: 10.1103/PhysRevB.108.125117

I. INTRODUCTION

In order to keep losses and the RC time constant of the
chip in check, the resistivity of connection lines—also re-
ferred to as the interconnect—must be minimized [1,2]. While
copper does the job for thick lines, its resistivity significantly
increases upon dimension reduction. This observation can
be rationalized based on the Mayadas-Shatzkes model [3]
where this increase is attributed to surface scatterings and
to the reduction of grain size upon growth of the thin film
(i.e., increase of grain scatterings). In order to minimize this
effect, one needs either to find a way to enlarge the grain
size in the copper thin films (through process) [4] or an al-
ternative material that shows a slower increase of resistivity
with reducing dimensions, as well as a sufficiently low bulk
resistivity [1,5–10]. In this work, we discuss how ab initio
computations can provide insights for the latter road.

The bulk resistivity of a (perfect) single crystal is limited
by electron-phonon scatterings, and can be estimated com-
bining first-principles calculations and Boltzmann’s transport
equation (BTE) [11]. While the latter can be in principle
solved iteratively [11,12], the relaxation time approximation,
either in its self-energy (SERTA) or its momentum (MRTA)
form [11], is generally performed to combine it with surface
scatterings. In either way, the BTE must be fed with very
dense electron and phonon meshes to converge the electrical
resistivity, far too dense to compute in a brute force manner
ab initio. To overcome this limitation, the phonons are gen-
erally interpolated using a Fourier interpolation while the
electrons are interpolated using either Wannier functions
(EPW [13] or PERTURBO [14]) or a non-self-consistent cy-
cle (ABINIT [15–20]) to reach the desired mesh density.
The bulk resistivity of elementary metals have been suc-
cessfully investigated with those approaches [21–24]. Even
with these interpolation schemes, such computations remain
computationally challenging on systems larger than a dozen

of atoms. It is then useful to introduce proxies—that are in-
dependent of the relaxation time—to estimate the resistivity
increase at low dimensions in a given material and to compare
it to copper.

In that regard, the most popular approach relies on the
so-called ρλ quantity [5,7,25,26] that only depends on the
electron velocities around the Fermi level, with different vari-
ants. More recent proxies also include an angular dependency
[9] (rfilm) for thin films and rectangular nanowires. Their
derivations however suppose, to the best of our knowledge,
a constant relaxation time approximation, i.e., no wave vector
nor band index dependency, which needs to be demonstrated.
A more formal derivation way is still lacking.

In this work, we investigate in a first phase the resistiv-
ity of elementary metals using first-principles methods, and
highlight the importance of the growth orientation on their
low-dimension resistivity. We derive analytically the origin of
the ρλ product, highlighting the presence of a missing term
related to the growth orientation in the expression and leading
to a new definition ρλ(ûn). We then discuss the validity of
resistivity proxies by comparing them with first-principles
calculations of the resistivity increase at low dimensions for a
set of binary metals. We find that both the ρλ(ûn) and rfilm are
suited to predict the resistivity increase at low dimension. We
extend this analysis to rectangular nanowires, deriving the an-
alytical expression of Boltzmann’s transport equation with 2D
confinement, as well as the corresponding proxy. In parallel,
we investigate the low-dimension resistivity of a few binary
metals. Among the investigated materials, NiAl, RuAl, and
Cu3Al are showing the most interesting perspectives for an
interconnect application.

II. THEORY

The conductivity tensor σαβ—the inverse of the resistiv-
ity tensor ραβ—can be obtained from the relaxation-time
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approximation [11]:

σαβ = [ρ−1]αβ = − nse2

Nk�

∑
n,k

∂ fn,k

∂ε
vα

n,kv
β

n,kτn,k, (1)

where n is the band index, k is the electronic wave vector, ns is
the band occupation (1 if spin or fully relativistic treatment of
spin-orbit coupling are considered, 2 otherwise), e the electron
charge, Nk the total number of k points, � the volume of
the primitive cell. ∂ fnk/∂ε is the derivative with respect to
energy of the Fermi-Dirac distribution for the electronic state
(n, k). vα

n,k = 1/h̄ × ∂εn,k/∂kα is the velocity in the cartesian
direction α, with h̄ is the reduced Planck constant and εn,k the
eigenenergy state. Finally, τn,k is the electron-phonon relax-
ation time which can be estimated, for example, in SERTA:

1

τnk
= 2π

h̄

∑
mq

∫
BZ

dq
�BZ

|gmnν (k, q)|2hν,mn(k, q) (2)

or MRTA,

1

τnk
= 2π

h̄

∑
mq

∫
BZ

dq
�BZ

|gmnν (k, q)|2hν,mn(k, q)

×
(

1 − vn,k.vm,k+q

|vn,k|2
)

, (3)

where �BZ is the volume of the Brillouin zone (BZ),
hν,mn(k, q) is the electron-phonon coupling matrix element
between the electronic states (n, k) and (m, k + q) through
the phonon mode (ν, q). The hν,mn factor selects the possible
transitions as follows:

hν,mn(k, q) = (nq,ν + fm,k+q)δ(εn,k − εm,k+q + ωq,ν )

+ (nq,ν + 1 − fm,k+q)δ(εn,k − εm,k+q − ωq,ν ),

(4)

where ωq,ν is the phonon frequency of mode ν at the phonon
wavevector q, δ stands for the Kronecker delta and nνq is the
Bose-Einstein distribution.

Equation (1) gives the conductivity of a perfect bulk crystal
from Boltzmann’s transport equation in the relaxation time
approximation. With this approximation, one can also solve
such an equation including surface scatterings [9,25,27,28].
In a first phase, we consider the finite dimension along the
growth orientation of the film û with h thickness. In the case
of fully diffuse surfaces, Eq. (1) is still valid upon the intro-
duction a modified scattering time:

τnk(h, û) = τ
ep
nk

(
1 + |λnk.û|

h

[
1 − exp

{ −h

|λnk.û|
}])

, (5)

where τ
ep
nk is the electron-phonon relaxation time and û is

the film orientation and λα
nk = vα

nkτnk the mean-free path of a
given electron mode. Effectively, the surface scattering leads
to a reduction of the relaxation time of the electron modes with
an out-of-plane component, and leaves unaffected the ones
propagating in-plane. The surface specularity is introduced
using the parameter p which expresses the fraction of electron
that are scattered specularly by the surface; the relaxation time

becomes

τnk

τ
ep
nk

= 1 + |λnk.û|
h

1 − p

1 − p exp
(

−h
|λnk .û|

)
[

1 − exp

{ −h

|λnk.û|
}]

.

(6)

When p = 0, the surface is fully diffuse and one recovers
Eq. (5) where the resistivity increase is the most important,
while in the case of fully reflective surfaces, there is no impact
of the film thickness on the resistivity. Note that the specular-
ity coefficient p is generally assumed to be a constant, i.e.,
independent of the electron momentum.

Based on Eqs. (1) and (5), the electrical conductivity at low
dimensions results from the interplay between two quantities,
namely, (i) the bulk conductivity and (ii) a rescaling factor
related to the electron mean-free path along the thin film
growth orientation. The more electrons are parallel to this sur-
face, the further the electrical conductivity downscales with
decreasing dimensions. This downscaling is in consequence
directly related to the Fermi surface anisotropy of the material
under question.

Since electron-phonon computations are relatively costly,
estimating the increase of resistivity at low dimensions with
only knowledge of the electronic band structure is useful. In
this view, the (ρλ)−1 product [5,7,26] has been introduced as
a proxy to predict the resistivity variation at low dimension:

1

ρλ
= − nse2

Nk�

∑
n,k

∂ fn,k

∂ε

|vn,k.n̂|
|vn,k|

2

, (7)

where n̂ is the in-plane transport direction. Based from Eq. (5),
we can demonstrate formally its origin. Taylor-expanding the
exponential close to h = 0 in the case of electron modes
nearly aligned to the surface orientation vector, one finds

τnk(h, û) ≈ τ
ep
nk (h, û)

h

2|λnk.û| + O(h3), (8)

where the zero- and first-order terms of the Taylor expan-
sion cancel out. Reinjecting Eq. (8) in Eq. (1), recalling that
λα

nk = vα
nkτnk, one finds

σαβ (h ≈ 0) ≈ −hnse2

Nk�

∑
n,k

∂ fn,k

∂ε

|vn,k.ê|2
2|vnk||v̂nk.û| , (9)

where we have introduced v̂nk the unitary direction vector
of the electron velocity v̂n,k = vn,k/|vn,k|. This expression
diverges when |v̂nk.û| → 0, and we introduce thus an angular
cutoff θ :

1

ρλ(ûn)
= − nse2

Nk�

∑
|v̂nk .û|>θ

∂ fn,k

∂ε

|vn,k.n̂|2
2|vnk||v̂nk.û| . (10)

This expression is extremely similar to the approximation
(ρλ)−1 [Eq. (7)], albeit for the 1/|v̂nk.û| factor that introduces
the Fermi surface anisotropy. One can directly note that this
approximation is unsuited for electrons whose wave vector
is perpendicular to the film orientation (e.g., 2D material). A
more suited approximation would then be

σαβ (h ≈ 0) ≈ σ ‖ − hnse2

Nk�

∑
|v̂nk .û|>θ

∂ fn,k

∂ε

|vn,k.n̂|2
2|vnk||v̂nk.û| , (11)
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where we have introduced

σ ‖ = − nse2

Nk�

∑
|v̂nk .û|<θ

∂ fn,k

∂ε
|vn,k.n̂|2τnk. (12)

From this expression, it appears that, in order to achieve the
lowest resistivity increase in a thin film, one has either to
find a material with a preferential transport perpendicular to
the film thickness (typically a 2D material) or to identify a
material with a small ρλ(ûn) product, which is independent
of the relaxation time (and thus cheaper to compute). In that
respect, Kumar et al. introduced the scaling coefficient rfilm(û)
[9]:

1

rfilm
= − 3nse2

8Nk�

( ∑
nk |vn,k.n̂|2∂ fn,k/∂ε

)2

∑
nk |vn,k.n̂|2|vn,k.û|∂ fn,k/∂ε

, (13)

derived from Eq. (5) neglecting the exponential term and
supposing a constant electron-phonon time. We will discuss
the validity of these different proxies to predict the increase of
resistivity at low dimensions in Sec. V. Note nevertheless that
achieving a low increase of resistivity [small ρλ(ûn)] should
not come at a too big expanse on the bulk resistivity if one
wants to compete with copper. We will discuss the importance
of these two different terms (bulk resistivity and resistivity
increase) in the incoming sections for both thin films and
rectangular nanowires.

III. COMPUTATIONAL DETAILS AND BENCHMARKS
ON ELEMENTARY METALS

In a first phase, we investigate the electrical resistivity of
an arbitrary set of elementary metals in their experimental
crystalline structures reported at room temperature [29], i.e.,
Cu, Ag, Al, Au, Pd, and Ir in their FCC phases, Mo and W in
their BCC phases, Ru in its hexagonal phase. The objective of
this analysis is, on the one hand, to characterize the expected
accuracy of the present methodology (for the subsequent bi-
nary investigation), and on the other hand to evaluate their
increase of resistivity at low dimensions.

Density functional theory (DFT) computations are per-
formed using the ABINIT [15–17,30] software package, with
the LDA exchange-correlation functional and with norm-
conserving ONCVPSP scalar-relastivistic pseudopotentials
[31], available at the PSEUDODOJO website (v0.4.1) [32]. For
W, we also use a fully relativistic pseudopotential instead for
sake of a later comparison between these two descriptions
of spin-orbit coupling. The stringent plane-wave cut-off en-
ergies (0.4 mHa/atom convergence) are used, as suggested
by the pseudopotential documentation files for each of the
considered element. To enforce continuity of stress with
varying the unit cell volume, a plane-wave cut-off smear-
ing of 0.5 Ha is applied during relaxation, and is kept in
all the consecutive computations for sake of consistency
(phonons and electron-phonon). A Fermi-Dirac smearing of
the electronic occupation ranging from 0.001 to 0.005 Ha
and 18×18×18 k-point mesh for cubic systems (except Pd,
going up to 24×24×24) and a 12×12×8 for hexagonal sys-
tems, respectively, are found to lead to a satisfactory precision
(0.5 mHa/atom on the total energy). The phonon and sub-

TABLE I. Electrical resistivity computed in this work from
MRTA (ρMRTA), SERTA (ρSERTA) compared to experiments (ρexp)
[4,34–39], and Tong et al. (ρSERTA

Tong ) [21] at 300 K.

Temperature ρMRTA ρSERTA ρSERTA
Tong ρexp

Metal (K) [μ� cm] [μ� cm] [μ� cm] [μ� cm]

Cu 293 1.68 1.97 1.90 1.52
Ag 293 1.52 1.51 1.60 1.49
Au 293 2.23 2.23 2.75 2.22
Al 293 2.48 3.01 2.97 2.62
Ir 293 4.13 3.84 − 5.00
Pd 300 7.81 7.68 12.20 9.76
Mo 293 5.52 6.04 − 5.45
W* 293 4.83 5.10 − 5.30
Ru 300 5.79 5.51 − 7.02

*with spin-orbit coupling.

sequent electron-phonon computations are performed on the
corresponding relaxed structures.

For the phonon mesh, the Brillouin zone is sampled using
a 9×9×9 and 6×6×4 zone-centered q-point mesh for cubic
systems and Ru, respectively. Phonon-limited electrical resis-
tivities are then estimated at 300 K using both the SERTA
and MRTA approximations, and using a non-self-consistent
and a Fourier interpolation schemes for the electrons and the
phonons [19,20], respectively. Tetrahedron integration is used
both for the relaxation time and conductivity computations.
Convergence studies for these elementary metals with respect
to this dense interpolated k-point mesh are performed up to
10%, leading to a q-point mesh twice as dense along each
direction. They are reported in Figs. S1 to S3 of Ref. [33]. It
is found that for most of the considered metals, the resistivity
computed by the internal BTE solver of ABINIT varies to a
good approximation exponentially: in the following, we use
the resistivity extrapolated asymptotically for sake of compar-
ison to experiments. This leads to resistivity values converged
within 1% with respect to the asymptotic value. Note that
other choices of extrapolation functions are legitimate, for,
e.g., 1/k, which leads to 3% to 10% lower asymptotic resis-
tivity depending on the considered material.

The corresponding experimental resistivities are reported
in literature at temperatures ranging from 273.15 to 300 K
[4,34–39]. For sake of comparison, we extrapolate either
the experimental values using the experimental temperature
coefficient—when available- or the computed resistivities us-
ing the value obtained at 214 K. Not taking into account
of such subtle variations change the resistivity by ∼2.5%,
to be considered alongside the experimental error bar (typi-
cally 0.5%–2% [39]), and the eventual residual contribution
from grain scatterings when the system is not a single crystal
(see Table I). For instance, for Al, Ag, or Cu, differences of
6.4%–12% are reported between single and polycrystalline
crystals resistivities [4,34]. The computed values are com-
pared to experiments in Fig. 1 and Table I; they show a good
agreement between computations and experiments, especially
when single-crystal data are experimentally reported. For the
other polycrystalline crystals, namely, Ir and Pd, some dis-
crepancies can be explained by grain scattering contributions.
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FIG. 1. Comparison between computed bulk electrical resistivity
at room temperature using SERTA (blue square) or MRTA (red star)
and experimental ones. The results of Tong et al. [21] are also shown
using green disks. For sake of legibility, the difference between
theoretical and experimental resistivities is shown on the y axis, as
function of the experimental one. The dash lines correspond to ±10%
and ±20% error bars. The experimental resistivity of metals labeled
with an asterisk are measured on polycrystalline samples. For Ru and
Pd, denoted with the † symbol, the results are reported for 300 K and
are averaged over the principal crystalline directions for the former.

For Pd, we suspect that most of the deviation arises from the
treatment of spin-orbit coupling: the inclusion of fully rela-
tivistic pseudopotentials and corresponding corrections leads
to drastic changes in its electronic band structure close to the
Fermi level (see Fig. S4). For other atomic species such as
Au, W, or Ir, although being heavier elements, we do not
observe such an impact and expect thus much less sensitiv-
ity on the resistivity. To further assess this, we compute the
electrical resistivity of W using both scalar relativistic and
fully relativistic pseudopotentials coupled for the second case
with spin-orbit coupling. We use the corresponding relaxed
crystalline and phonon band structures. The change in term of
resistivity, going from scalar to fully relativistic, is found to be
∼3%, i.e., quite small compared to other approximations (e.g.,
SERTA versus MRTA, see later). This motivated us to remain
at the scalar-relativistic treatment of spin-orbit coupling in the
following for sake of consistency and computational time.

Comparing now the relaxation time approximations for
Boltzmann’s transport equations, i.e., SERTA and MRTA,
we observe that MRTA (6% relative error) performs slightly
better than SERTA (12% relative error) with respect to ex-
periments. The difference is especially large for some outliers
(∼20% for Cu and Al), that it has to be kept in mind while
moving to the investigation of alternative metals. For sake
of comparison, we also show the results of Tong et al. ob-
tained using a Wannier interpolation scheme for the electrons
at 300 K [21]. A good agreement is observed overall ex-

FIG. 2. Convergence study of the bulk electrical resistivity of Mo
as function of the inverse of k-point mesh density (corresponding
k-point mesh is n−1 × n−1 × n−1) for different integration techniques
for the resistivity, i.e., blue disks for tetrahedron, red crosses for plain
integration and stars for Gaussian smearing. The mean value of the
four first points is shown as dash lines. γ corresponds to the smearing
value for the Gaussian broadening.

cept for Pd. We suspect that these discrepancies originate
from the spin-orbit coupling treatment (scalar-relativistic here
versus fully relativistic in Ref. [21]), the inclusion of non-
local contributions for the velocities and the much denser
phonon q-point mesh used in this work with respect to theirs
(144×144×144 versus 30×30×30) that all have shown to
have a drastic impact on the mobility of semiconductors [40].
Further contributions may originate from different pseudopo-
tentials, exchange-correlation, and smearing value used at the
electron-phonon level.

IV. RESISTIVITY OF ELEMENTARY METALS
AT LOW DIMENSIONS

In a second phase, we investigate the variation of the
electrical resistivity with decreasing thickness; to do so, we
need then the velocities on the whole Brillouin zone (surface
scattering breaks the symmetry of the system). This could in
principle be done directly in ABINIT, but we decide to imple-
ment it in python. We regenerate them based on the ABINIT

output (the velocities are only printed for the irreductible
Brillouin zone) and SPGLIB [41] as post processing:

vnk′ = (
R−1ST

kk′R
)T

vnk, (14)

where R is the lattice vector matrix, S the matrix opera-
tion in real space to go from k to k′ and T stands for
matrix transpose. The conductivity is then computed ex-
ternally to ABINIT [through Eqs. (1) and (5)] with a plain
integration (trapezoidal method) or by adding a Gaussian
broadening, similarly to what is done in EPW [11]. As shown
in the convergence study in Fig. 2 or the ones in Ref. [33],
these values converge asymptotically towards the same values
of ABINIT for sufficiently dense interpolated k-point mesh
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(see, for example, Figs. S1 to S3), but in a relatively erratic
manner. This erraticness is smoothened by the use of a Gaus-
sian smearing, but it introduces a shift of the asymptotic value
with respect to the tetrahedron method for too large value of
the Gaussian smearing. The values given by those methods
have thus to be carefully compared to the ones from the
tetrahedron integration; for bulk resistivity, we use the data
from the densest k-point mesh for each material, whose corre-
sponding resistivity always falls within 10% of the asymptotic
value. We then check the convergence of the resistivity in-
crease at 6 nm with respect to bulk; we observe the same
erratic convergence for plain integration that gets smoothen
with the Gaussian broadening. To assess the plain integration
precision, we compare then to the Gaussian-smeared results
for a broadening that reproduce well the bulk resistivity (see
Fig. S5); this way we expect an accuracy of ±10% for the
resistivity increase.

The inclusion of surface scattering requires some knowl-
edge on the preferential orientation of growth of the thin
film. For all the elementary metals investigated in this work,
the preferential growth orientations are known experimen-
tally: [111] for FCC, [110] for BCC, and [001] for HCP [7].
Note that, in general, the addition of surface scattering in
Boltzmann’s transport equation leads to a lift of degeneracy
between the components of the resistivity tensor in-plane;
however, these experimentally observed preferential growth
orientations do not lead to such a lift. Due to the high diffu-
sivity of copper [7], a liner is deposited in the interconnects
to avoid reliability issues with the surrounding dielectrics.
We accounted here for the presence of a 3-nm-thick TaN
liner layer grown on top of copper with the same in-plane
dimension. The corresponding stack is thus effectively two
resistances in parallel, one of copper (that varies with its film
thickness) and one of TaN, for which we use an electrical
resistivity of 95 μ� cm extracted from experiments [42]. In
practice, the use of a higher resistivity for TaN only weakly
impacts the stack resistivity curve, except at extremely low
dimensions (<3 nm), where the validity of our approach
becomes questionable in any case.1 The results of our in-
vestigations are shown in Fig. 3. As one can see, the Cu
+ liner becomes more resistive than most of the other el-
ementary metals at low dimensions. Most of the crossings
occurs between 20 and 4 nm. This is consistent with ex-
perimental observations [7] although the crossing occurs at
higher thickness, from 3 to 6 nm, as well as other theoretical
works [9]. Note that grain scattering and its corresponding
evolution with decreasing dimensions are not included here.
These effectively lead to an additional increase of the resis-
tivity [3] compared to the case where only (diffuse) surface
scattering is considered. These can be in practice the most
critical contributions [3,7], but it is impossible to capture this
using a first-principles approach without introducing empir-
ical parameters to the best of our knowledge. Consequently,
the results we report here reflect the “best case scenario,”
namely, the resistivity variation of perfect single-crystals in
their thin films forms. Concerning the surface specularity, we
find for all the (elementary and binary) metals investigated in

1No confinement on the electronic band structure is included here.

FIG. 3. Variation of the resistivity in elementary metals thin films
with decreasing thickness. In full (dash) line, we show the results for
a single crystal with a specific growth orientation. Meanwhile, the
shaded areas correspond to the interval [〈ρ〉û(h) − Sû(h), 〈ρ〉û(h) +
Sû(h)], i.e., related to the angular average and variance -indicating
how sensitive the thin film is to its change in growth orientation.

this work a (nearly) linear relationship between the resistivity
increase and the specularity coefficient (see Fig. S5); in the
following, we report the resistivity increase for fully diffuse
surfaces (largest resistivity increase), but one can take a 1 − p
fraction of it to get the resistivity increase for the correspond-
ing specularity.

In contrast to elementary metals, the preferential growth
orientation of thin films made of binary metals is not always
known experimentally. It is thus also interesting to evaluate
the sensitivity of the resistivity with respect to different sur-
face orientations. To do so, we defined the angular average
and standard deviation of the resistivity with respect to the
growth orientation as

〈ρ〉û(h) = 1

A

∫∫
ρ̄(h, û[φ, θ ]) sin θ dφdθ (15)

and its variance

S2
û (h) = 1

A

∫∫
(ρ̄(h, û[φ, θ ]) − 〈ρ〉û)2 sin θ dφdθ, (16)

where A is the angular area defined by all the nonequiva-
lent possible û surface vectors, φ and θ the azimutal and
polar angles, and ρ̄ the averaged in-plane eigenvalues of
the resistivity tensor for the given surface orientation. This
thus takes into account of the eventual symmetry breaking
induced by surface scattering. The averaged value provides
information on the increase of resistivity if the system would
have a (pseudo)isotropic surface, while the interval [〈ρ〉û(h) −
Sû(h), 〈ρ〉û(h) + Sû(h)] reflects the overall sensitivity of this
average with respect to the film growth orientation. For ele-
mentary metals, we report in Fig. 3 this interval using shaded
area. The well-oriented surface lies, in most of the cases,
outside of this interval, especially at low dimensions. For
Au, the resistivity spans from 6 to ∼7–8 μ� cm at 7 nm for
example. In other words, the anisotropy of the Fermi surface
is critical for most of these elementary metals, and it is thus
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FIG. 4. Increase of resistivity from bulk to 6 nm as function of different ρλ proxies: (left) nondirectional ρλ from Eq. (7) (center) Gall’s rfilm

from Eq. (13) and (right) the directional ρλ(ûn) from Eq. (9). The full line corresponds to the robust regression using the smooth approximations
to the L1-Norm. The Pearson correlation coefficient (r) and the residuals are also shown for sake of information. The pink horizontal line
corresponds to the increase of resistivity in the case of Cu + 3 nm TaN.

crucial to specify the film growth orientation used in that
context. In consequence, in the following for binary metals,
we will always show the resistivity increase for different
surface orientations, namely the [100], [110], and [111] (for
cubic systems) ones. This does not exclude that the material
could grow preferentially along other surface orientations, but
this approach provides an insight on the overall sensitivity to
growth orientation in the investigated materials.

V. BINARY METALS AND PROXY VALIDITY

Ideally, DFT could be used to screen the most interesting
binary metals to compete with Cu for low-dimension intercon-
nects. However, the increase of resistivity at those dimensions
is not only caused by surface scatterings but also the reduction
of grain size [3,7], which is very difficult to predict from an
ab initio point-of-view, as discussed in the previous section.
We can nevertheless investigate the magnitude of the surface
scattering contribution and see what binary metals show the
lowest one, as well as to compare it to (computed) bulk
resistivities. Indeed, this latter contribution will nevertheless
be limiting for the resistivity, and materials with important
increase and large bulk resistivity can be excluded for low-
dimension interconnects.

For this investigation, we start from the materials reported
as being metallic in the Material Project database [43]. We
restrict this analysis to bulk alloys with Cu, Al, Mo, or Ru in
their composition and to their corresponding phases located
on the convex hull. Interconnect materials require next to a
low electrical resistivity, a low sensitivity to electromigration
to meet reliability criterion [7]. The extent of the electro-
migration reflects the binding energy of atoms on surfaces
and how keen they are to diffuse during the operation of the
transistor. As a consequence, contenders to copper must have
a binding/cohesive equal or ideally higher than it. We then

ranked the selected candidates based on their cohesive energy
and a ρλ product [Eq. (7)]. Candidates with higher cohesive
energy and smaller ρλ product than the one of copper were
selected. We also excluded materials that either include ele-
ments with states close to the Fermi surface that are sensitive
to spin-orbit coupling (like Pd and Pt) or whenever magnetism
is reported for the corresponding phase on the Material Project
database. Due to electron-phonon computational cost, we only
consider binaries with 4 or less atoms per unit cell. Further-
more, we excluded any phase that are found to be dynamically
unstable based on their phonon band structure (see Figs. S6 to
S10). This leaves us with 10 materials for which we followed
the same methodology as the one described in Sec. III to
compute the phonon-limited resistivity. The coarse k-point
and q-point meshes are adapted compared to the elementary
metals based on their (relaxed) lattice parameters. For the
interpolated meshes, we first compute the electrical resistiv-
ity based on relatively coarse k-point and q-point meshes
ranging from 36×36×36 to 48×48×48, and 72×72×72 to
96×96×96, respectively, and extrapolate the trend exponen-
tially for denser meshes. We only pushed the convergence
up to 10% for the bulk electrical resistivity for the materials
that show an extrapolated asymptotic resistivity lower than
8 μ� cm. The addition of additional points in the convergence
is found to always lead to a higher extrapolated resistivity
based on the tetrahedron method (see Figs. S11 and S12). We
show the convergence studies for the materials with extrap-
olated resistivity lower than 8 μ� cm, namely, NiAl, RuAl,
Cu3Al, AuAl2, and ScAl3, in the corresponding figures in
Ref. [33].

We compare in Fig. 4 the increase of in-plane resistivity
from bulk to 6 nm (SERTA) and the different ρλ prox-
ies defined in Sec. II, computed using the same k-point
mesh than the electron-phonon ones and that for different
surface orientations. For the directional ρλ(û), we use a θ
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FIG. 5. Increase of resistivity at 6 nm vs bulk resistivity for the
different binary metals investigated in this work and for different
film growth orientations. Both results obtained using MRTA and
SERTA are shown for sake of information. The materials of potential
technological interest are the ones that show a cumulative resistivity
lower than the one of Cu with liner.

cutoff of 5%. Note that the increase of resistivity is strongly
anisotropic: for RuAl, it can varies by a factor ∼2 depending
on the chosen growth orientation, as expected already from
the elementary metals analysis (see Sec. IV). For some of
these crystals, the degeneracy in-plane of the resistivity tensor
is broken, meaning that we have now to consider the two
in-plane components separately: as one can see for ScAl3,
the variation is pretty significant, going from 8 to 13 μ� cm
depending on the in-plane direction for transport.

To evaluate the relevance of the different proxies intro-
duced in Sec. II [Eqs. (7), (13), and (9)], we use a robust
regression technique using the L1-Norm [44] to fit the re-
sistivity increase versus the proxy, and compute the Pearson
correlation coefficient between these two quantities. We find
that both the Gall’s rfilm and our directional ρλ(ûn) are good
estimators of the resistivity increase at low dimensions based
on the Pearson correlation coefficient and the residuals of the
robust regression. In contrast, the predictive power of ρλ is
found to be lacking. This is not an unexpected behavior since
by construction, such an approximation cannot capture the
Fermi surface anisotropy with respect to the growth orien-
tation, in contrast to rfilm and ρλ(ûn) that have a directional
component with respect to it. However, the two latter can be
used to screen materials for low-dimension interconnects. The
resistivity increase at 7 nm can then be in good approximated
as �ρ ≈ 1.43×1016ρλ(û) − 0.19 μ� cm.

In Fig. 5, we compare the bulk resistivity to its increase
from bulk to 6 nm for the most interesting materials. Both
SERTA and MRTA are here compared; for the bulk resistivity,
the variations can be pretty significant: up to 20% for RuAl
(see Fig. S13) while the difference is of smaller magnitude for
the increase of resistivity (except for NiAl). For a material
to be interesting for low-dimension interconnect, it should
yield a total resistivity (bulk + increase of resistivity) lower
than Cu + liner. As one can see, there are a few candidates

that meet this criterion: based on our computations, Cu3Al,
NiAl or RuAl are in principle competing than Cu below 6 nm
depending on the growth orientation. NiAl and Cu3Al are of
particular interest since their bulk resistivity is smaller than
RuAl: indeed, the increase of resistivity predicted here is ob-
tained considering perfectly diffuse surfaces, while they could
be partially reflective. In this case, the increase of resistivity
would be smaller than the one reported here, up to zero for
perfectly reflective surfaces. Note that for copper + liner, most
of the resistivity increase comes from the thickness of the
additional liner (distance from pristine copper shown with a
star symbol to the purple full line).

Rectangular nanowire resistivity

Equation (5) provides the reduction of electron-phonon
scattering time for a thin film, but cannot be straightforwardly
applied when the dimensions are shrunk along two directions,
like for a rectangular nanowire. We consider here the cases
of a rectangular nanowire of thickness h of width w = 3h or
w = h (aspect ratio w/h of 1:3 or 1:1, respectively). In these
cases, the relaxation times must be corrected to account for
confinement effects both along the thickness and the width.
Following the derivation provided in Appendix, one finds

τnk = τ
ep
nk

(
1 − Rû − Rŝ + 2RûRŝ − {Rŝ − Rû + 2RûRŝ}

× exp

[−1

Rû

])
if w|	λ · û| � h|	λ · ŝ|

τnk = τ
ep
nk

(
1 − Rû − Rŝ + 2RûRŝ − {Rû − Rŝ + 2RûRŝ}

× exp

[−1

Rŝ

])
if w|	λ · û| > h|	λ · ŝ|, (17)

where Rû = |	λ · û|/h and Rŝ = |	λ · ŝ|/w, while û and ŝ are
the confinement directions. Taylor expanding the exponen-
tial around 0 leads to a new approximation, independent
of the electron-phonon lifetime, for the low-dimension
resistivity,

τnk ≈ h

2|	v · û|
(

1 − h

w

|	v · û|
|	v · ŝ|

)
+ O(h3) if w|	v · û| < h|	v · ŝ|

τnk ≈ w

2|	v · v̂|
(

1 − w

h

|	v · ŝ|
|	v · û|

)
+ O(h3) if w|	v · û| > h|	v · ŝ|

τnk ≈ h

3|	v · û| + O(h4) if w|	v · û| = h|	v · ŝ|, (18)

compared to the thin film case, the relaxation times -and con-
sequently the conductivity- are reduced whatever the choice
of the problem parameters, even in the case where w|	v · û| =
h|	v · ŝ| (factor 1/3 in this case versus 1/2 for the thin film
case). In principle, a new screening of the materials based on
this new quantity should be performed. However, one notes
that the additional confinement in-plane is superimposed to
the out-of-plane one: the resistivity increase in a rectangular
nanowire is always larger than in a thin film of an equivalent
thickness, as a consequence of Eq. (18). If the resistivity
increase was already bad in the case of a thin film, it will
only get worse in the case of a rectangular nanowire. In conse-
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FIG. 6. Variation of the resistivity for nanowires of (left) elemen-
tary metals and (right) the most promising binary metals, with respect
to their thickness (aspect ratio w = 3h). The resistivity variation for
the copper +TaN liner in a thin film is shown in dash black for sake
of comparison. The shaded areas shows the variation of the curve
depending on the confinement direction along the width direction.
The thickness of the TaN liner for Cu is 3 nm.

quence, we limit this additional investigation to the materials
that came out from the thin film analysis. We show in Fig. S14
the correlation between the increase of resistivity from bulk to
a 7-nm-thick rectangular nanowire and the corresponding ρλ

(based on Eq. (18)). They are found to be well correlated in
the case of 1:3 aspect ratio, but not as much for 1:1 mostly due
to 2 outliers (W and ScAl3). Predictions based on ρλ for this
aspect ratio thus would require some precautions.

The results for the resistivity increase for 1:3 rectangular
nanowires are shown in Fig. 6, considering either the exper-
imentally known growth orientation, or the one that yields
the lowest resistivity increase for binaries. We then consider
the in-plane confinement along two different orthogonal crys-
talline directions: [1-10] and [11-2] for FCC crystals, [101]
and [011] for BCC crystals, [100] and [010] for hexagonal
crystals, [010] and [001] for SC crystals grown along [100].
We find little variations between these confinement directions
as shown in Fig. 6 (shaded areas). Note that this shall however
varies depending on the considered aspect ratio (here 1:3).

One can directly see that the crossings between the dif-
ferent resistivity curves that were observed for elementary
metals and binaries are reproduced in the case of rectangular
nanowires, and they occur at comparable thicknesses than
for thin films (∼10 nm or smaller). The same binary met-
als identified based on their thin films resistivity come out
from this investigation: RuAl, NiAl and Cu3Al all turn out
to be promising materials for low-dimension interconnects.
At 7 nm, only Al, RuAl and Ir theoretically show a resistiv-
ity lower than 10 μ� cm, while Al, Ru, Mo, W, NiAl and
CuAl3 all fall below 20 μ� cm. Depending on the in-plane
confinement direction, Cu can also fall below 20 μ� cm (for
the [1-10] confinement orientation). Finally, we reproduce the
data at 7 nm in Fig. 7 for both 1:3 and 1:1 aspect ratios and
compare them to the bulk resistivity predicted from SERTA
and MRTA. The transport direction is taken as [11-2] for FCC

FIG. 7. Comparison of the resistivity increase in nanowire from
bulk to 7 nm with respect to the bulk resistivity for two different
aspect ratios (top: 1:3, bottom: 1:1). The full line corresponds to the
Cu + TaN limit (materials below that line have lower resistivity than
Cu + liner).

crystals, [011] for BCC ones, [100] for HCP crystal, [001]
for NiAl, [001] for RuAl and Cu3Al, [11-2] for ScAl3 and
AuAl2 (confinement directions are perpendicular). Overall,
the same conclusions can be drawn from this analysis as the
ones observed for the thin film: RuAl, NiAl, Al, Cu3Al, Ir and
Ru all show the smallest increase of resistivity, followed by
Mo and Cu3Al. For 1:3 rectangular wires, Ir, Ru and RuAl
show the smallest increase, while RuAl clearly stands out for
square wires. For other aspect ratios, not investigated in this
work, the resistivity increase lies between the results reported
here for thin films and the ones for nanowires, provided that
the confinement directions with respect to the crystallographic
axes are kept the same.

VI. CONCLUSION

In this work, we investigated the evolution of the electrical
resistivity of elementary and binary metals in sub-10-nm-thick
films, coupling first-principles simulations with the exact res-
olution of the Boltzmann transport equation in such confined
geometries. We first have highlighted the importance of the
growth orientation on the resistivity increase at low dimen-
sions, discussing the validity of different approximations to
estimate such a change without computing electron-phonon
relaxation times. We then evaluated the impact of confinement
on binary metals for low-dimension interconnects, both con-
sidering thin films and rectangular nanowires. For the latter
case, we derived an analytical solution and concluded that
RuAl, NiAl, and Cu3Al all turn out to be interesting candi-
dates for such applications. This however requires validation
that their grain scattering contributions can be kept under
control experimentally.

In this work, we restricted ourselves to the relaxation-time
approximation (SERTA or MRTA) to find a solution to this
equation for confined geometries. This however leads to a rel-
atively important uncertainty on the bulk resistivity (∼10%).
While most recent code developments allow one to solve
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iteratively Boltzmann’s transport equation considering only
phonon as a source of scattering [12], the inclusion at the
same time of surface scattering remains to be investigated. A
simple way out would be the rescaling of the electron-phonon
relaxation time to fit the bulk electrical resistivity from the
iterative solution, then apply the analytical expressions (5) and
(17) for thin films and rectangular nanowires, respectively.
One however approximates in this case the impact of the
iterative BTE on the increase of resistivity due to confinement.

Another challenge for a full-scale screening lies in the
estimation of the bulk electrical resistivity and its computa-
tional cost. Using a variational approach to solve the BTE
[45] may allow one to reduce the density of the electron and
phonon wave-vector meshes to obtain converged bulk electri-
cal resistivity. However, one would loose information on the
wave-vector resolution required to include surface scattering.
For this second difficulty, one could use the ρλ(ûn) or rfilm to
predict the resistivity increase, with the values provided in this
paper. This could allow one to screen materials based on their
bulk resistivity and the contribution from surface scattering in
a more effective manner.
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APPENDIX

1. Derivation for 2D-confinement Boltzmann’s
transport equation

To derive the 2D confinement case, we start from
Boltzmann’s transport equation in the relaxation time approx-
imation:

−e
∂ f 0

nk

∂εnk
vnk · E = gnk

τnk
+ vnk · ∇rgnk (A1)

with f 0
nk is the equilibrium Fermi distribution, E is the electric

field, and gnk is the perturbation in term of the carrier distri-
bution. We consider here a rectangular wire; at one boundary
(that depends on the sign of the velocity), the distribution
change must be zero.

For the sake of the derivation, we consider here that the
growth orientation of the film is along z (thickness h) and the
in-plane confinement is along y (width w); see Fig. 8. The
general solutions of this problem are exponential functions,
although the corresponding solution space is constrained by
the boundary conditions of the problem. We suppose here
that the surfaces are fully diffuse, leading to g(y, 0) = 0 and
g(0, z) = 0 for positive velocities (both along y and z). Using
the method of characteristics, this downselects the exponential
solutions to

g(A)
nk = −eτnk

∂ f 0
nk

∂εnk
vnk · E + u(A)

(
y

λy
− z

λz

)
exp

(−y

λy

)
(A2)

and

g(B)
nk = −eτnk

∂ f 0
nk

∂εnk
vnk · E + u(B)

(
y

λy
− z

λz

)
exp

(−z

λz

)
,

(A3)

FIG. 8. Schematic representation of the rectangular nanowire
structure. It is considered to be infinite along the transport direction
(perpendicular to both the width and thickness directions).

where u(A)(y/λy − z/λz ) are u(B)(y/λy − z/λz ) integration
functions, and where the two different functions correspond to
two different domains in space: the former (A) corresponds to
the electrons that are coming from the left surface of the wire,
while the (B) corresponds to the electrons from the bottom
surface. The existence of two domains of solutions directly
arises from the shape of the differential equation and from the
boundary conditions, the latter imposing no y or z dependency
of the solution that would cover the whole spatial domain,
i.e., a trivial solution. With two spatial domains that contains
only one of the boundary or the other at the time, nontrivial
solutions are possible, provided they are exactly matched at
the domain separation. From a geometrical inspection of the
problem (see Fig. 8), the line that delimits the frontier between
these two domains is

y

λy
= z

λz
(A4)

that either intercepts the right surface at (w,wλz/λy) or the
top surface at (hλy/λz, h), depending on the parameters of the
problem: one keeps the solution whose y or z intercept is on
the positive axis. At the crossing line between the domains,
the distribution of electrons should be continuous, leading to
u(A) = u(B) = eτnk∂ f 0

nk/∂εnkvnk · E. We are now interested to
the current density flowing in the system, supposing that the
external electric field is applied along x. The partial contribu-
tion of the electron (n, k) to the total current density is

jnk,x = −evnk,x

wh

∫ w

0

∫ h

0
gnk(y, z)dydz. (A5)

This can be solved analytically to find the expression for the
relaxation time considering the 2D confinement. Since the
separation line between (A) and (B) can intercept either the
y and z axes, there are two possible solutions for the relax-
ation time of the electron (n, k) depending on the different
parameters of the problem, namely,

τnk = τ
ep
nk

(
1 − Rz − Ry + 2RzRy − {Ry − Rz + 2RzRy}

× exp

[−1

Rz

])
if w|λz| � h|λy|

τnk = τ
ep
nk

(
1 − Rz − Ry + 2RzRy − {Rz − Ry + 2RzRy}

× exp

[−1

Ry

])
if w|λz| > h|λy|,

where we have introduced Ry = λy/w and Rz = λz/h for
sake of legibility. If one would consider now both negative
and positive components for the electron mean-free path,
one can show the above-mentioned solution still works al-
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beit that Ry = |λy|/w and Rz = |λy|/w. In the limit of
h/λz → ∞ or w/λy → ∞, while keeping the other ra-

tio finite, one recovers Eq. (5), as one would have
expected.
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