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We consider the topological protection of entanglement and particle fluctuations for a general one-dimensional
chiral topological insulator with winding number Z. We prove, in particular, that when the periodic system is
divided spatially into two equal halves, the single-particle entanglement spectrum has 2|Z| protected eigenvalues
at 1/2. Therefore the number fluctuations are bounded from below by AN? > |Z|/2 and the entanglement
entropy by S > 2|Z|In2. We note that our results are obtained by applying directly an index theorem to the
microscopic model and do not rely on an equivalence to a continuum model or a bulk-boundary correspondence

for a slowly varying boundary.
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I. INTRODUCTION

While a trivial insulator can be continuously connected to
the atomic limit without closing the gap, this is not possible
in a nontrivial phase of a symmetry-protected topological
insulator without breaking the symmetry [1-3]. Consequently,
we might expect that the ground-state wave function in a
symmetry-protected topological phase has nontrivial entan-
glement properties with respect to a spatial cut. That is, for
some positive constant ¢, the von Neumann entanglement
entropy should be bounded § > ¢ > 0 [4-8]. An interesting
question to investigate is then how this bound depends on the
topological invariants of the system under consideration.

One possible way to approach this question is to construct
a bulk-boundary correspondence first. Bulk-boundary corre-
spondences, however, are complex because they are based on
a relationship between two similar but nonequivalent systems.
That is, the bulk refers to a Hamiltonian with periodic bound-
ary conditions while the boundary refers to a Hamiltonian
with an edge. For discrete lattice models, the existence of
protected boundary states is established in practice by assum-
ing that the boundaries vary extremely slowly spatially [3,9—
15]. Only for specific one-dimensional models such as the
Su-Schrieffer-Heeger (SSH) chain [16], has a more rigorous
proof for a sharp boundary been given [17,18]. If one accepts
that the arguments for slowly varying boundaries also apply
to sharp boundaries and, in addition, considers the flat-band
deformation of the model under consideration, then one can
show that gapless edge modes result in degeneracies of the
many-body entanglement spectrum [8]. It is important to
note though that this approach cannot give the exact number
of protected eigenvalues in the single-particle entanglement
spectrum because the flattened Hamiltonian can have addi-
tional physical edge modes not present in the original model.

In contrast to previous works, we study entanglement
without the use of the flat-band limit or any slowly varying
approximation for the boundaries and directly express the
number of protected eigenvalues in terms of the topological
invariant. To do so, we apply a different type of index theo-
rem to a general, discrete, one-dimensional chiral topological
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insulator. As one of the main results, we will obtain an entan-
glement bound for a full Z classification of one-dimensional
chiral symmetric insulators with any number of bands. This
includes chiral unitary (AIII), chiral orthogonal (BDI), and
chiral symplectic (CII) systems. For a periodic system with
winding number Z € Z we will show that there are 2|Z| topo-
logically protected entanglement modes leading to the bound
S > 2|Z|In2. We will also establish an important topolog-
ically protected bound on the particle number fluctuations,
AN? > |Z|/2. While the entanglement entropy is hard to mea-
sure experimentally, the number fluctuations are a function
of the particle distributions alone. Those can be obtained
straightforwardly, for example, in experiments on cold atomic
gases in optical lattices using spectroscopy with single-site
resolution [19]. Since the particle fluctuations bound entan-
glement from below, they can be used—either experimentally
or in numerical calculations—as an order parameter to detect
topological phase transitions.

Our paper is organized as follows: We first define the
chiral model with winding number Z and introduce the no-
tation used in the following. We then present an elementary
proof for bounds on the entanglement entropy and the particle
number fluctuations. Finally, we prove that the single-particle
entanglement spectrum has exactly 2|Z| protected eigenvalues
at 1/2.

II. CHIRAL MODEL

We consider a periodic one-dimensional chirally sym-
metric, noninteracting system described by a tight-binding
Hamiltonian. The system has L unit cells and each unit cell has
M elements. The system has chiral symmetry if there exists a
local unitary and Hermitian operator I' which anticommutes
with the single-particle Hamiltonian. This implies that there
are two sublattices A, B and that particles can only hop from
A to B and vice versa but not within the same sublattice.
Therefore the Hamiltonian in the basis where I' is diagonal is
of off-diagonal form. One can then convince oneself that the
spectrum has zero eigenvalues and corresponding flat bands
if the number of elements belonging to the A and the B
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sublattices is not equal. We therefore restrict ourselves in the
following to the case of M = 2N elements per unit cell with N
elements belonging to sublattice A and N elements belonging
to sublattice B.

Let a” (b’;) be an annihilation operator of an a (b) element
in unit cell j and of type n. The index j ranges from O to
L — 1, while n ranges from 0 to N — 1. Thus there are a total
of 2 x N x L different annihilation operators. We can then
define Fourier-transformed operators by a = ﬁ > e Ma

and b} = \LFL > ;e ™. Tt is convenient to write these op-

¥ f
erators as a vector l/fk (ak ,ak ,...,aiv ) and 1/fkb =
(b}j, b%T, A ™). For a bilinear system, the Hamiltonian
operator H and matrix H (k) are then related by

H= Z H(k)(w’;) 1)
Vi

Since this is a chiral symmetric system, hopping only occurs
between a and b elements. Because we have chosen to first list
all the N elements in sublattice A and then all the N elements
in sublattice B, H (k) is off-diagonal and can be written as

_ 0 hk _ 0 dek
-3 5)-(% %) e

Here, we have used a polar decomposition k; = diq; where dj.
is a positive, semidefinite Hermitian matrix and g is a unitary
matrix (see also Appendix A of Ref. [20]). The single-particle
eigenstates of the system will appear in chiral pairs |E,fi) with
band index ¢ and energies +FE ,f Lastly, we will define the
Fourier transform of the ¢ matrix as

1
g; = i > Mg 3)

III. CORRELATION MATRIX

=[li. E.) of
H at half filling. We are interested in calculating two-point
correlators such as (a?fb’j”) = (\P0|a?fb’;'|\llo) where i, j are
lattice sites. Using the Fourier-transformed matrix G;, we find
that the correlators are given by

We will consider the ground state |Wy)

1 o

(a”‘a’}’) = 25,"1'8”,”“ <bn b >_ ) 1j8n,mv

(b?ldm> = i(qui)m,nv (azr'ﬁbm> = (qz )m ne (4)
W3 ! 2«/_ !

We now split the ring into a left and a right half. We
introduce new operators c© (c®) based on whether they are
on the left (right) side of the cut. For 0 < j < % — 1 and
0 < n < N — 1, the operators are defined as

L . n R . n
CiNan = Qjs CixLN4n = d-1-)>
L _n R _
CO+LN+n = b}, C+LIN+n = /A &)

Then we can write the correlation matrix as

G Crr
pr— 6
¢ <CRL Cr ) ’ ©

where the index L, R indicates whether the correlators involve
lattice sites in the left or right half or between the two. In
the eigenbasis, the Hermitian correlation matrix is diagonal
with eigenvalues which are either 1 or 0. Therefore the equa-
tion C? = C holds, which leads to the useful relationship [4]

CL(1 — Cpr) = CrxCy, @)

which we will use later.

Since correlators between two a or two b elements are
only nonzero if the operators are on the same site and of the
same type, the C; matrix can further be broken down into
submatrices. It can be seen from Eq. (4) that

| - |

where Q is an Ly % block Toplitz matrix,

2
q]z
N

We will see later that the block Toplitz structure of the ma-
trix Q makes it possible to relate the topological invariant to
the single-particle entanglement spectrum. Since this requires
sophisticated tools from matrix analysis, we will first provide
an elementary proof of the lower bounds on the number fluc-
tuations and on the entanglement entropy in the subsystem in
terms of the chiral topological invariant.

Q)i = €))

IV. TOPOLOGICALLY PROTECTED
ENTANGLEMENT BOUND

The chiral topological invariant Z € Z is a winding number
and can be defined as [2,3]

7= Ltr/qu,faqu. (10)
2

Using the Fourier transform (3), we can rewrite Z in terms of
the §; matrix as

R

T=lim — ;Jtr[qjq,-]. (11)
We note that Eq. (11) is oan/ a topological invariant in the ther-
modynamic limit with tr[g 4] exponentially localized around
j = 0. However, for a ﬁmte system it will become increas-
ingly close to the invariant as the system size increases. We
can now calculate the particle fluctuations in the left partition.
Using Egs. (8) and (9) and tr[q”';q~ i1 = 0, we obtain

AN? = tr{Co(1 — Cp)] = — > lilrlgig1 > 2w
L L oL - JIirlg;q;l = 7
That is, a chiral insulator with winding number Z has number
fluctuations in the partition which are bounded from below by
IZ1/2.
To obtain a bound on the entanglement entropy S, we will

show that the inequality
S > 41In(2)AN? > 2|Z|In(2) (13)

holds. First, we note that the second inequality follows di-
rectly from Eq. (12). For the first inequality, we can write the
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expression in terms of the eigenvalues §; of Cy,
~ Y& g+ (1 - &)In(1 - £)] > 42 &1 — &),

(14)
with & € [0, 1]. We argue now that this inequality holds for
each individual &; (see also Ref. [21]): (i) The functions on
the left- and right-hand side are symmetric around &; = 1/2.
It thus suffices to consider &; € [0, 1/2]. (ii) Both functions
are equal for £ =0 and & = 1/2. (iii) Both functions are
concave. (iv) Taylor expanding around zero, we see that the
left-hand side is larger than the right-hand side in a finite in-
terval around zero. Since the functions are equal at§; = 0, 1/2
and are concave they cannot cross in the interval &; € (0, 1/2)
which thus proves Eq. (14).

Note that we have assumed periodic boundary conditions
throughout this section. Therefore we get an |Z|In(2) lower
bound for the entanglement entropy for each cut of the chain.
That is, |Z| In(2) is the bound for an infinite line with one cut
and 2|Z|In(2) is the bound for a periodic ring.

V. ENTANGLEMENT SPECTRUM

We can think about entanglement in terms of the density
matrix of the subsystem which is determined by the correla-
tions within the subsystem. Alternatively, we can also think
about entanglement as being caused by correlations between
the two subsystems. We can make this statement more precise
by using Eq. (8) in a basis where C;, (1 —C.), and thus
CLRCZR are diagonal. The eigenvalues are therefore related by

, 1 1\’
n; =Z—(Si—§), 15)

where nl-z are the eigenvalues of CLRCZR and §; the eigenval-
ues of Cr. This means that we can express the entanglement
entropy as

S=—Y [&In&+ (1 —&)In(l —&)]
__ LI LS I (L S .-
- E[{i/E)
LR L 1 Jr_
(i) o

We can consider the lower bound of the entanglement in
a topological phase as the entanglement which cannot be
removed by adiabatic, symmetry-conserving changes of the
Hamiltonian. We can transform the Hamiltonian until most of
the sites are in the atomic limit. However, there will remain
(not necessarily unique) configurations of maximally entan-
gled pairs of sites with one site on the left and the other one
on the right of the cut (see Fig. 1).

Each one of these independent pairs will contribute In 2 to
the entanglement entropy. This implies that the corresponding
eigenvalues of CLRCZR are nf = 1/4, which means, accord-
ing to Eq. (15), that C; has eigenvalues & = 1/2. Having
a lower bound of S > 2|Z|In2 therefore suggests that the
single-particle entanglement spectrum {&;} has—similar to the
inversion symmetric case [4,6]—protected eigenvalues at 1/2.

(a) Inversion

(b) Chiral

Leowoe

FIG. 1. Topologically protected entanglement for (a) inversion
symmetry and (b) chiral symmetry. Each blue bond represents an
entanglement contribution of In 2.

In the chiral case our hypothesis based on the above observa-
tion is that there are 2|Z| many protected eigenvalues at 1/2.
In the following, we will prove this hypothesis.

Before stating the proof, we note that we call the eigen-
values {&;} of the correlation matrix C; the single-particle
entanglement spectrum which is consistent with Refs. [4,6].
Sometimes this spectrum is instead called the entanglement
occupancy spectrum [22]. The reduced density matrix for
the left partition is given by p; ~ exp(—H) where H is the
entanglement Hamiltonian. The single-particle eigenvalues
g; of H are related to those of the correlation matrix Cp
by & = 1/[exp(e;) + 1]. Thus & = 1/2 implies &; = 0. The
many-body spectrum of p; then will have degeneracies [8].

For L finite we can define, similar to Eq. (9),

_ qiﬂ‘—i
p= = . 17
()i Ni7 (17
Then we can write C;, = 1(D + D) with
D=l< I —(QT+Q%))
2\—(Q+0) 1 ’
~_ 1 1 —(Q"-0"

b= 2(—(Q— 0) 1 ) (1)

Since (Q & Q) are unitary, both D and D are idempotent
D? = D, D*> = D. This implies that the eigenvalues of D, D
are either O or 1. If D and D have a common eigenvector with
eigenvalue O for D and 1 for D or vice versa, then C;, has an
eigenvalue 1/2. We note that the opposite is not true. There
could be additional eigenvalues at 1/2 but we will see that
such additional eigenvalues are unrelated to the topological
properties of the system and would therefore be accidental and
not protected. From Eq. (18) we find that the eigenvector d|
with eigenvalue A = 0 and the eigenvector d; with eigenvalue
A = 1 of D are of the form

1 v 1 v
w=Ji(oton) =7l -etan) 0

with an N x L/2 dimensional vector v. One can now inspect
when dy is an eigenvector of D with eigenvalue 1 and d,
an eigenvector of D with eigenvalue 0. In both cases one
finds that this is the case if either v € ker(Q) or (Q + Q)v €
coker(Q). In the case where L and therefore the size of
the NL x NL correlation matrix Cy, is finite, the rank-nullity
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theorem implies that
ind(Q) = dim[ker(Q)] — dim[coker(Q)]
= dim[ker(Q)] — dim[ker(QT)] =0. (20)

This is equivalent to saying that in the finite-dimensional case
the column and the row rank of Q are the same. Note that this
means that the protected eigenvalues at 1/2 always come in
pairs. Here, this is sensible since the system is periodic.

Numerically, we confirmed that if dim[ker(Q)] = n then 2n
is—ignoring possible accidental eigenvalues at 1/2 due to a
fine tuning of parameters—the number of protected eigenval-
ues of Cy, at 1/2. These come from common eigenvectors of
D, D as discussed above. We also confirmed that 2|Z| — 2n,
with Z defined by Eq. (11), for increasing system size L.

To discuss the thermodynamic limit L — oo, we make
use of the fact that many results are known for infinite-
dimensional Toplitz matrices [23]. We define our physical
system starting at the entanglement cut of the system. That
is, there is only one edge here as opposed to the periodic,
finite-dimensional case where there are two edges. The left
subsystem is described by the correlation matrix Cy, in Eq. (8)
where the four matrix blocks are infinite-dimensional matri-
ces. In particular, the Q block is an infinite-dimensional block
Toplitz matrix, defined by Eq. (9). For the infinite-dimensional
case, we will refer to the Q operator as Q to distinguish it from
the finite-dimensional case. A brief summary of the relevant
aspects of operator theory is given in the Appendix.

We will first discuss the case N = 1, i.e., the case where
each unit cell has one a and one b element. An example
would be the SSH chain [16,24]. Then Q is a regular Toplitz
matrix with §; being a complex number. Toplitz’s theorem
then states that because the matrix elements §; are the Fourier
coefficients of the function g, Q is a bounded operator. The
function ¢ is called the symbol of Q. The operator Q is
Fredholm because dim[ker(Q)] and dim[coker(Q)] are finite
since g is unitary and nontrivial. Next, we have a continuous
symbol g = exp(—iy,) with y; € R. Therefore Gohberg’s
theorem (a special case of the Atiyah-Singer index theorem
[25]) applies and we can relate the algebraic index of Q with
the winding number Z = wind(gy, 0) of its symbol ¢g; around
zero. This leads to

7 = —ind(Q) = dim[coker(Q)] — dim[ker(Q)]. (21)

Due to Coburn’s lemma [23] we have for the case N = 1,

dim[coker(0D)], Z>0,
T = { —dim[ker(D)], <0, (22)
dim[ker(Q)] = dim[coker(Q)] =0, Z =0.

From Eq. (8), we can identify the eigenvectors of C; with
protected eigenvalues 1/2. If v € ker(Q), then this eigenstate

is (v O)T. On the other hand, if v € coker(Q), then this

eigenstate is (0 U)T. We therefore conclude that for the case
N =1, a chiral topological insulator with winding number Z
has |Z| protected eigenvalues of C; at 1/2 per edge. Thus a
one-dimensional periodic system has 2|Z| protected eigenval-
ues in total, as there are two edges in this case.

In the general case, where we have N > 1 types of a and
b elements per unit cell, O is of block Toplitz form. As in

the N = 1 case, we can still associate a bounded Fredholm
operator Q with it in the thermodynamic limit since g is a
continuous, unitary symbol. This also means that Gohberg’s
theorem, Eq. (21), still holds. However, the stronger state-
ment (22) based on Coburn’s lemma is, in general, no longer
true. This means, in particular, that both dim[ker(Q)] and
dim[coker(Q)] can be nonzero at the same time. There can
therefore be more than 2|Z| eigenvalues at 1/2 in the peri-
odic case. However, Eq. (21) tells us that only the difference
dim[coker(Q)] — dim[ker(Q)] is protected by topology. This
implies that also in this case there are exactly 2|Z|-many
protected eigenvalues 1/2 in the single-particle entanglement
spectrum of a chiral topological insulator. Note that this re-
sult immediately implies the lower bounds which we have
proven independently of the index theorem in the previous
section.

VI. CONCLUSIONS

A unifying characteristic of topological insulators is that
their entanglement entropy with respect to a spatial cut cannot
be adiabatically deformed to zero [4]. This implies that lower
nontrivial bounds for the entanglement entropy have to exist
which are related to their respective topological invariants. It
is also natural to expect that such bounds manifest themselves
directly in the entanglement spectrum in terms of protected
eigenvalues. Proving such bounds and the protection of eigen-
values in the entanglement spectrum is, however, a nontrivial
task which needs to be based on the symmetries of the specific
system under consideration. This program has been carried
out previously for inversion and C, symmetric systems in
Refs. [4-6].

It would, in our view, be even more interesting to provide
such proofs for the three nonspatial symmetries underlying
the tenfold classification scheme of noninteracting fermionic
topological matter. Here, we have taken a step in this direction
by proving that a periodic, chiral one-dimensional topological
insulator with winding number Z has 2|Z| protected eigenval-
ues at 1/2 in its single-particle entanglement spectrum. This
immediately implies lower bounds for the particle fluctuations
in the partition AN? > Z/2 and for the entanglement entropy
S > 2|Z|In2. We also note that 2|Z| protected eigenvalues at
1/2 in the spectrum of the correlation matrix C; imply that
there are 2|Z| protected single-particle eigenvalues ¢; = 0 in
the spectrum of the entanglement Hamiltonian H. The many-
body spectrum of the reduced density matrix p; ~ exp(—H)
thus will have a multiplicity of 22!, Following Ref. [8], our
result therefore also proves the bulk-boundary correspondence
for a one-dimensional chiral topological insulator: If we con-
sider a chiral chain with open boundaries, then such a system
will have at least 2|Z| gapless edge modes, i.e., there are |Z|
such modes per edge.

A crucial step in our proof for the entanglement spectrum
has been the identification of an operator O—related to the
correlation matrix of a partition of the system—which is of
block Toplitz form. For such operators with continuous sym-
bols an index theorem applies which connects the algebraic
index of the operator O with the winding number of its symbol
qx- The latter is equivalent to the topological invariant of the
system.
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There are a number of experimental systems which fall
into the category of one-dimensional chiral topological insu-
lators, the prime example being the SSH chain which, while
originally proposed as a model for polyacetylene, has lately
also been realized in cold atomic gases [26]. For such sys-
tems our bound AN? > T/2 might be of use because particle
fluctuations are more easily accessible than the entanglement
entropy, for example, by single-atom spectroscopy, and can
already provide a strong indication for a topological phase.
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APPENDIX: OPERATOR THEORY

The purpose of this Appendix is to give a summary of the
theorems used from operator theory. Here we follow mostly
Ref. [23].

Formally, we consider the Hilbert space H of ket vec-
tors |W)—a Banach space with an inner product—and B(H),
the space of bounded linear operators on H. In the thermo-
dynamic limit, our proof for the bounds on the number of
protected eigenvalues requires us to work with infinite dimen-
sional matrices A of Toeplitz form. In order to apply index
theorems for these types of operators, the first task is to show
that A is bounded, i.e. A € B(H).

1. Infinite Block Toplitz Matrices

For complex blocks a, € Cyxy we define a sequence
{an}32 _ - Then an infinite block Toplitz matrix A is defined
as

A= | (A1)

Consider the Euclidean £2 norm ||¥|| = /{W[W) on a vector
|W) € ‘H. We say A is a bounded operator if for all |¥), there
exists a positive real number M such that [[A|W)|| < M||W]].
Given the linearity of matrices, the matrix A is a bounded
linear operator A € B(H) if it is bounded.

A bounded linear operator A is Fredholm if the dimension
of its kernel, dim[ker(A)], and the dimension of its co-kernel,
dim[coker(A)] = dim[ker(A")], are both finite. In that case, we
define the index of A as

ind(A) = dim[ker(A)] — dim[coker(A)]. (A2)

2. Symbol function a

Next, we consider a function a: T — Cyyy from the
complex unit circle T to the complex matrices Cy,y. We
typically write this function as a(e) for # € R, since this
ensures the domain is on the unit circle.

Under certain conditions, which we will specify below, we
can define a winding number of the determinant det(a) around
the origin. If a is differentiable and nonvanishing, the winding
number is given by

1 2
wind[det(a)] = —tr / d6 9y logdet(a)
Tl 0

1 2
= —_tr/ dda'da. (A3)
0

2mi

When the function a has Fourier coefficients equal to the
elements a, of the block Toplitz matrix A, then we call a the
symbol of A. Furthermore, we often refer to A as T (a).

3. Theorems

In this section, we connect the infinite block Toplitz matrix
A with it’s corresponding symbol a.

Toplitz’ Theorem: A Toplitz matrix A is a bounded linear
operator if and only if there exists a symbol a such that

2

= — a(e?y e 94e.
2 0

a; (Ad)
Toplitz” Theorem was originally shown for Toplitz matrices
and then later generalized to block T6plitz matrices.

Gohberg’s Theorem: A = T (a) is Fredholm if and only if
det(a) has no zeros on T'. In that case,

ind[T (a)] = —wind[det(a)]. (AS5)

Coburn’s Lemma: Consider the case when a(e”) is not
a matrix but simply a complex number. If a(e”) does
not vanish identically, then either dim[ker(7 (a))] =0 or
dim[coker(T (a))] = 0.
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