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Unified role of Green’s function poles and zeros in correlated topological insulators
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Green’s function zeros, which can emerge only if correlation is strong, have been for long overlooked and
believed to be devoid of any physical meaning, unlike Green’s function poles. Here, we prove that Green’s
function zeros instead contribute on the same footing as poles to determine the topological character of
an insulator. The key to the proof, worked out explicitly in two dimensions but easily extendable in three
dimensions, is to express the topological invariant in terms of a quasiparticlethermal Green’s function matrix
G∗(iε, k) = 1/[iε − H∗(ε, k)], with Hermitian H∗(ε, k), by filtering out the positive-definite quasiparticle
residue. In that way, the topological invariant is easily found to reduce to the Thouless, Kohmoto, Nightingale,
and den Nijs formula for quasiparticles described by the noninteracting Hamiltonian H∗(0, k). Since the poles
of the quasiparticle Green’s function G∗(ε, k) on the real frequency axis correspond to poles and zeros of
the physical-particle Green’s function G(ε, k), both of them equally determine the topological character of an
insulator.
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I. INTRODUCTION

The determinant of the retarded Green’s function G0(ε, k),
with ε the frequency and k the momentum, for periodic mod-
els of noninteracting electrons have poles whenever ε hits
the dispersion energy εn(k) of a band n, i.e., a single-particle
excitation. Similarly, the poles of the determinant of the fully
interacting G(ε, k) can be associated to coherent, i.e., with
infinite lifetime, single-particle excitations, which thus have
a clear physical meaning. The manifold in the Brillouin zone
where these poles are at ε = 0 defines the Fermi surface, in
which case the system is metallic.

However, the determinant of G(ε, k) in presence of inter-
action may also develop zeros [1], whose manifold at ε = 0
defines the so-called Luttinger surface [2]. For long time,
these zeros have not been given any physical significance,
despite Volovik [3] early on recognized that a Luttinger sur-
face bears the same nontrivial topological content of a Fermi
surface. Only recently, the Green’s function zeros started to
attract growing physical interest. For instance, it has been
shown that a Luttinger surface defined by the simple roots of
det(G(0, k)) does sustain Landau’s quasiparticles [4], even in
non-symmetry-breaking Mott insulators [5]. Those quasipar-
ticles have the same physical properties as conventional ones
at a Fermi surface, with the major difference that they are
incompressible [6] and do not contribute to charge transport
[5]. Elaborating on Volovik’s observation [3], Gurarie [7] and
Essin and Gurarie [8] have proposed that, upon increasing
electron correlations, topological edge modes, i.e., edge poles
of the Green’s function, may transform into edge zeros with-
out making the topological insulator a trivial one or closing
the single-particle gap. More recently, this intriguing scenario
has been further explored in Ref. [9], whose authors show
that model topological insulators turn, upon rising interaction
strength, into Mott insulators with topologically trivial lower
and upper Hubbard bands, but with in-gap valence and con-
duction bands of Green’s function zeros that are topological
and yield Green’s function edge zeros. This result suggests

that an edge-bulk correspondence exists also for Green’s
function zeros, thus clarifying the mechanism underlying the
transformation of edge poles into edge zeros [7,8].

All these small pieces of evidence suggest that Green’s
function zeros, that may arise only in strongly correlated
systems, do have a physical meaning as important as that
of Green’s function poles. This connection has been uncov-
ered when the zeros cross the chemical potential, thus, in the
presence of a Luttinger surface [3–5]. However, despite the
supporting evidences [7–9], the direct role of Green’s function
zeros in assessing the topological character of an insulator has
not been explicitly demonstrated. That is precisely the goal of
this work.

II. TKNN FORMULA FOR INTERACTING INSULATORS

The expression of the topological invariant of two-
dimensional periodic insulators in presence of interaction,
which coincides with the zero-temperature Hall conductance
in units of e2/2π h̄ [10,11], at least when perturbation theory
is valid (see Appendix B), reads as

W (G) = 1

24π2

∫
dε dk εμνρ Tr(G(iε, k) ∂μG(iε, k)−1

× G(iε, k) ∂νG(iε, k)−1 G(iε, k) ∂ρG(iε, k)−1),
(1)

where G(iε, k) = G(−iε, k)† is the interacting Green’s
functions in the Matsubara formalism (see Appendix A), with
ε the Matsubara frequency, and it is a matrix represented
in a generic basis of single-particle wave functions. We
hereafter assume that G(iε, k) is invertible, which implies
that the system is an insulator without any Luttinger surface.
It can be easily demonstrated that the winding number
W (G1 G2) = W (G1) + W (G2) and that W (G) = 0 if G is
Hermitian (see Appendix C).
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Zhong and Zhang have shown [12] that the topological
invariant (1) reduces to the Thouless, Kohmoto, Nightingale,
and den Nijs (TKNN) expression of the quantized Hall con-
ductance [13] in which the role of the Bloch waves of the
occupied bands is played by the eigenstates of the Hermi-
tian matrix −G(0, k)−1 with negative eigenvalues. The proof
is based on the observation that the two maps (ε, k) →
G(iε, k)−1 and (ε, k) → iε + G(0, k)−1 are homotopic, and
thus the winding number (1) of the former map coincides with
that of the latter, which, in turn, reduces to the TKNN formula.

Here, we would like to prove explicitly the equivalence re-
lation but using a different map (ε, k) → G∗(iε, k)−1, which,
we believe, has the more transparent physical meaning of
the inverse of the quasiparticle Green’s function, which we
discuss more extensively at the end of the section. Specifically,
following [5,6] we write the interacting Green’s function ma-
trix as (see also Appendix A)

G(iε, k) = 1

iε − H0(k) − �(iε, k)

=
√

Z (ε, k)
1

iε − H∗(ε, k)

√
Z (ε, k)

≡
√

Z (ε, k) G∗(iε, k)
√

Z (ε, k) , (2)

where H0(k) is the noninteracting Hamiltonian represented in
the chosen basis of single-particle wave functions,

�(iε, k) = �(−iε, k)† ≡ �1(iε, k) + i �2(iε, k),

�1(iε, k) = �1(iε, k)† = �1(−iε, k)

= �(iε, k) + �(−iε, k)

2
,

�2(iε, k) = �2(iε, k)† = −�2(−iε, k)

= �(iε, k) − �(−iε, k)

2i

the self-energy matrix in that same basis, which accounts for
all interaction effects,

Z (ε, k) = Z (−ε, k) =
(

1 − �2(iε, k)

ε

)−1

, (3)

a positive-definite matrix if the system is insulating without a
Luttinger surface (see Appendix A), which can be regarded as
the quasiparticle residue, and

H∗(ε, k) = H∗(−ε, k)

=
√

Z (ε, k) (H0(k) + �1(iε, k))
√

Z (ε, k) (4)

is the Hermitian quasiparticle Hamiltonian. It follows that the
winding number (1) can be written as

W
(
G

) = W (
√

Z G∗
√

Z ) = W (G∗) + W (Z )

= W (G∗)

since the winding number of the positive-definite matrix Z
vanishes.

A further reason for choosing the map (ε, k) →
G∗(iε, k)−1 is that, under the analytic continuation on the
real axis from above, iε → ε + i0+, i.e., for the retarded

components of Green’s function and self-energy, the poles of
G∗(ε, k) correspond to both poles and zeros of G(ε, k), i.e.,
the vanishing eigenvalues of the quasiparticle residue matrix
(3) on the real axis, thus making more explicit their deep
connection.

In the basis that diagonalizes H∗(ε, k), i.e.,

H∗(ε, k)|α(ε, k)〉 = εα (ε, k)|α(ε, k)〉,

where one can choose |α(ε, k)〉 = |α(−ε, k)〉,

W (G) = 1

24π2

∫
dε dk εμνρ

×
∑
αβγ

1

iε − εα (ε, k)

1

iε − εβ (ε, k)

1

iε − εγ (ε, k)

× ∂μG∗(iε, k)−1
αβ ∂μG∗(iε, k)−1

βγ ∂μG∗(iε, k)−1
γα,

(5)

having defined

∂μG∗(iε, k)−1
αβ ≡ 〈α(ε, k)|∂μG∗(iε, k)−1|β(ε, k)〉

= i δμ0 δαβ − 〈α(ε, k)|∂μH∗(ε, k)|β(ε, k)〉
≡ i δμ0 δαβ − Fμ

αβ (ε, k).

The term in (5) with α = β = γ vanishes because of the
antisymmetric tensor, so that we are left with the cases of
either two states equal and different from the third, or of all
states different, which we denote as W (1)(G) and W (2)(G),
respectively. Specifically,

W (1)(G) = − 1

8π2

∫
dε dk εμνρ

×
∑
αβ

′ 1

iε − εβ (ε, k)
∂μ

(
1

iε − εα (ε, k)

)

× {
F ν

αβ (ε, k) Fρ

βα (ε, k)
}
,

W (2)(G) = − 1

24π2

∫
dε dk εμνρ

×
∑
αβγ

′ 1

iε − εα (ε, k)

1

iε − εβ (ε, k)

× 1

iε − εγ (ε, k)

{
Fμ

αβ (ε, k) F ν
βγ (ε, k) Fρ

γα (ε, k)
}
,

(6)

where �′ means the summation over different indices.
Let us begin by analyzing W (1)(G) in Eq. (6). We note that,

for α 	= β,

F ν
αβ (ε, k) = 〈α(ε, k)|∂νH∗(ε, k)|β(ε, k)〉

= (εα (ε, k) − εβ (ε, k)) 〈∂να(ε, k)|β(ε, k)〉
= (εβ (ε, k) − εα (ε, k)) 〈α(ε, k)|∂νβ(ε, k)〉,

(7)
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so that

W (1)(G) = − 1

8π2

∫
dε dk εμνρ

×
∑
αβ

(εα (ε, k) − εβ (ε, k))2

iε − εβ (ε, k)

×∂μ

(
1

iε − εα (ε, k)

)
×〈∂να(ε, k)|β(ε, k)〉〈β(ε, k)|∂ρα(ε, k)〉

= − 1

16π2

∫
dε dk εμνρ

∑
αβ

∂μ Sαβ (ε, k)

×〈∂να(ε, k)|β(ε, k)〉〈β(ε, k)|∂ρα(ε, k)〉, (8)

where the constraint α 	= β is automatically fulfilled and one
can readily demonstrate that

Sαβ (ε, k) = 2 ln
iε − εα (ε, k)

iε − εβ (ε, k)
− iε − εα (ε, k)

iε − εβ (ε, k)

+ iε − εβ (ε, k)

iε − εα (ε, k)
,

which has a discontinuous imaginary part crossing ε = 0 if
εα (0, k) εβ (0, k) < 0. We can write

Sαβ (ε, k) = Kαβ (ε, k)
+ 2π i sign(ε) [θ (εα (ε, k)) − θ (εβ (ε, k))],

where Kαβ (ε, k) is now continuous at ε = 0, so that,
since Sαβ (ε, k) is antisymmetric, and εα (ε, k) 	= 0, ∀ α, ε, k,
then

W (1)(G) = i

2π

∫
dk εi j

∑
α

θ ( − εα (0, k))

× 〈∂iα(0, k)|∂ jα(0, k)〉

− 1

16π2

∫
dε dk εμνρ

∑
αβ

∂μ Kαβ (ε, k)

× 〈∂να(ε, k)|β(ε, k)〉〈β(ε, k)|∂ρα(ε, k)〉, (9)

where i, j = 1, 2. The second term, which we denote as I , is
only contributed by Im Kαβ (ε, k), which is odd in ε, vanishes
at ε → ±∞, and, by definition, is continuous at ε = 0. That
allows partial integration, which, through Eq. (7), leads to

I = − 1

8π2

∫
dε dk εμνρ

∑
αβ

Kαβ (ε, k)

× 〈∂μα(ε, k)|∂νβ(ε, k)〉〈β(ε, k)|∂ρα(ε, k)〉

= − 1

8π2

∫
dε dk εμνρ

∑
αβγ

Kαβ (ε, k)

εα (ε, k) − εγ (ε, k)

× 1

εβ (ε, k) − εγ (ε, k)

1

εα (ε, k) − εβ (ε, k)

× {
Fμ

αγ (ε, k) F ν
γ β (ε, k) Fρ

βα (ε, k)
}
. (10)

Since I is real, we can take the complex conjugate, send ε →
−ε, and then either exchange β and γ as well as μ and ρ, thus
getting

I = − 1

8π2

∫
dε dk εμνρ

∑
αβγ

−Kαγ (ε, k)

εα (ε, k) − εγ (ε, k)

× 1

εβ (ε, k) − εγ (ε, k)

1

εα (ε, k) − εβ (ε, k)

× {
Fμ

αγ (ε, k) F ν
γ β (ε, k) Fρ

βα (ε, k)
}
, (11)

or, instead, exchange α and γ as well as ν and ρ, in that way
obtaining

I = − 1

8π2

∫
dε dk εμνρ

∑
αβγ

−Kγ β (ε, k)

εα (ε, k) − εγ (ε, k)

× 1

εβ (ε, k) − εγ (ε, k)

1

εα (ε, k) − εβ (ε, k)

× {
Fμ

αγ (ε, k) F ν
γ β (ε, k) Fρ

βα (ε, k)
}
. (12)

Therefore, recalling that Kαβ (ε, k) = −Kβα (ε, k) is antisym-
metric, we can rewrite I as one third of the sum of (10), (11),
and (12), thus,

I = 1

24π2

∫
dε dk εμνρ

∑
αβγ

Kαβ (ε, k) + Kβγ (ε, k) + Kγα (ε, k)

(εα (ε, k) − εβ (ε, k))(εβ (ε, k) − εγ (ε, k))(εγ (ε, k) − εα (ε, k))

{
Fμ

αγ (ε, k) F ν
γ β (ε, k) Fρ

βα (ε, k)
}

= 1

24π2

∫
dε dk εμνρ

∑
αβγ

′ 1

iε − εα (ε, k)

1

iε − εβ (ε, k)

1

iε − εγ (ε, k)

{
Fμ

αβ (ε, k) F ν
βγ (ε, k) Fρ

γα (ε, k)
}

= − W (2)(G),

where the equivalence between the first and the second equations can be readily worked out.
In conclusion, we have proved that the winding number (1) can be written, not unexpectedly, as

W (G) = − 1

16π2

∫
dε dk εμνρ ∂μ

{∑
αβ

Sαβ (ε, k)〈∂να(ε, k)|β(ε, k)〉〈β(ε, k)|∂ρα(ε, k)〉
}

,

namely, as the integral of a full derivative of a function that has a discontinuity at ε = 0, for which reason the integral does not
vanish and yields

W (G) = i

2π

∫
dk εi j

∑
α

θ ( − εα (0, k))〈∂iα(0, k)|∂ jα(0, k)〉, (13)
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i.e., the TKNN expression [13] for quasiparticlesdescribed
by the noninteracting Hamiltonian H∗(0, k). Since H∗(ε, k)
includes by definition both poles and zeros of the re-
tarded Green’s function, we conclude that both of them
contribute on equal footing to the topological invariant
W (G).

We emphasize that only through the representation (2) of
the Green’s function G(iε, k) we have been able to straight-
forwardly derive the simple expression of W (G) in Eq. (13).
Since that same representation is also the key to the proof
that Landau’s quasiparticles exist at Luttinger as well as Fermi
surfaces [4,5], we suspect it is not just a mathematical trick but
hints at a deeper physical meaning. Indeed, we are convinced
that the bands of H∗(0, k) lying inside the single-particle gap
of a Mott insulator describe fractionalized quasiparticles not
carrying all electron’s quantum numbers, for instance, neu-
tral but spinful, even when they do not cross the chemical
potential. Moreover, since those fractionalized quasiparticles
cannot have any weight in the physical single-particle exci-
tations, it is reasonable to expect that they are associated to
the existence of in-gap bands of zeros of the physical retarded
Green’s function.

Finally, we remark that all above results have been
obtained in two dimensions (2D). However, the expression
of topological invariants in three-dimensional (3D) insulators
[12,14–18] also involves winding numbers that generalize
(1) in higher dimensions [12], or describes other invariants
like polarization [17]. Therefore, it remains true that the
quasiparticle residue (3) disappears from the expression of
the topological invariant, which is therefore only determined
by the quasiparticle Green’s function G∗(iε, k) [see Eq. (2)],
exactly like in 2D. For instance, we can readily show, simply
following [19], that the parity of the eigenvalues of H∗(0, k) at
time-reversal-invariant momenta determines the topological
invariant [14] of interacting Z2 topological insulators with
inversion symmetry.

III. A TOY EXAMPLE

We now analyze a toy model inspired by Ref. [9].
Specifically, we consider an interacting Bernevig-Hughes-
Zhang (BHZ) model [20], whose inverse Green’s function for
a fixed spin reads as

Ĝ(iε, k)−1 = iε − ε(k) τ̂3 − λ sin k1 τ̂1

+ λ sin k2 τ̂2 − �̂(iε, k)

= iε − Ĥ (k) − �̂(iε, k), (14)

where ε(k) = M − cos k1 − cos k2, a hat is introduced to
distinguish matrices from scalars, and τ̂a, a = 1, 2, 3, are
the Pauli matrices in the two-orbital subspace. Without
interaction, the model describes a topological insulator
if ε(�) ε(M) < 0, with M = (π, π ), which occurs if
0 < |M| < 2.

We assume that [9]

�̂(iε, k) = �2

iε + Ĥ ′(k)
, (15)

with � > 0 and where Ĥ ′(k) has the same form as Ĥ (k) in
(14) but with renormalized parameters, thus ε(k) → ε′(k) =

M ′ − t ′( cos k1 + cos k2) and λ → λ′. It follows that Ĥ ′(k) is
topological if 0 < |M ′| < 2, which we take for granted.

We also assume that the model is deep inside the Mott
insulating regime, which implies that � is in magnitude
much larger than all the other parameters in (14). In this
case, the poles of the retarded Green’s function, Ĝ(ε +
i0+, k), describe two lower and two upper Hubbard bands,
with dispersion, respectively, εLHB(k) � −� + δε1(2)(k)  0
and εUHB(k) � +� + δε1(2)(k) � 0, where δε1(2)(k) are the
eigenvalues of Ĥ (k) − Ĥ ′(k). The occupied lower Hubbard
bands have opposite Chern numbers so that, from the point of
view of the Green’s function poles, the system is a trivial Mott
insulator, as noted in [9]. However, aside from those poles,
the retarded Green’s function also has valence and conduction
bands of zeros with dispersion the eigenvalues of −Ĥ ′(k) in
Eq. (15), which are therefore topological [9].

The obvious question is whether the nontrivial topology
of the Green’s function zeros has any physical significance.
For that, we follow the analysis of the previous section. Upon
defining E ′(k)2 = ε′(k)2 + λ′2 ( sin2 k1 + sin2 k2) one readily
finds that the quasiparticle residue (3) reads as in this case

Ẑ (ε, k) = ε2 + E ′(k)2

ε2 + E ′(k)2 + �2
= Z (ε, k) Î, (16)

and is proportional to the identity matrix Î , and thus

Ĥ∗(ε, k) = Z (ε, k)

(
Ĥ (k) + �2

ε2 + E ′(k)2
Ĥ ′(k)

)
,

which has exactly the same form as Ĥ with frequency-
dependent parameters ε∗(ε, k) and λ∗(ε, k) that can be easily
determined. At ε = 0 and for large �,

Ĥ∗(0, k) = Z (0, k)

(
Ĥ (k) + �2

E ′(k)2
Ĥ ′(k)

)
� Ĥ ′(k),

explicitly showing that only the Green’s function zeros
contribute to the topological invariant (13) in this toy example,
and with opposite sign respect to the topology of the valence
band of zeros that are described by −Ĥ ′. We emphasize that
the exact correspondence between the in-gap quasiparticle
bands, eigenvalues of the Hamiltonian Ĥ∗(0, k), and the
inverted bands of zeros of the retarded physical Green’s
function holds only in the limit of infinite Mott-Hubbard gap.

IV. CONCLUDING REMARKS

The winding number W (G) of the physical electron
Green’s function G(iε, k) ∈ GL(n,C) can be written as the
winding number W (G∗) of a quasiparticle Green’s function
G∗(iε, k) = 1/[iε − H∗(ε, k)] [see Eq. (2)], whose poles on
the real frequency axis are associated to both poles and zero
of G(ε, k). We have shown explicitly that W (G∗) reduces
to the famous TKNN formula for free electrons, here the
quasiparticles, described by the Hamiltonian H∗(0, k).

This result implies that, against all expectations, the zeros
of the real frequency Green’s function do have a topological
relevance, which is consistent with earlier studies [3–9], and
nonetheless striking. Indeed, one would naïvely argue that the
position of the in-gap zeros could be easily changed from the
positive to the negative side of the real frequency axis, or
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vice versa, by slightly modifying the Hamiltonian parameters,
e.g., moving the chemical potential inside the insulating gap.
However, if one accepts our viewpoint that in-gap bands of
zeros, or, more correctly, in-gap bands of the quasiparticle
Hamiltonian H∗(0, k), may describe genuine excitations that
do not carry all electron’s quantum numbers, then their re-
sponse to a shift in chemical potential is expected to differ
substantially from that of noninteracting bands.

An enlightening example is in our opinion offered by a
Hubbard atom with Hamiltonian U (n − 1)2/2, the simplest
realization of a Mott insulator. Its Green’s function on the real
frequency axis,

G(ε) = 1

2

(
1

ε + U/2
+ 1

ε − U/2

)
,

has poles at ε = ±U/2 and a zero at ε = 0. Through Eqs. (2)
and (3) one finds that, for imaginary frequencies,

Z (ε) = ε2

ε2 + U 2/4
, G∗(iε) = 1

iε
.

It is tempting to associate the zero-frequency pole of the
quasiparticle G∗(iε) and the vanishing quasiparticle residue
Z (0) = 0 to the free spin 1

2 of the isolated atom. In contrast, a
noninteracting atom U = 0 has

G(iε) = G∗(iε) = 1

iε
, Z (ε) = 1,

consistently with the fact that the zero-frequency excitations
are physical single-particle ones, Z (0) = 1. We now imagine
to couple the atom to a metallic reservoir with which it ex-
changes electrons, as one would do in statistical mechanics to
fix the chemical potential, and assume that the atomic level is
at energy εd with respect to the chemical potential of the reser-
voir. The atom plus the reservoir thus describe a conventional
Anderson impurity model. In the case of the Hubbard atom
with εd  U , one expects that the zero-frequency pole of the
quasiparticle Green’s function is immediately promoted to a
Kondo resonance pinned at the bath chemical potential, thus,

G∗(iε) = 1

iε
→ 1

iε + i TK sign(ε)
, Z (ε) → TK

�
,

where � is the bare hybridization width and TK the Kondo
temperature. In other words, the coupling to the bath allows
revealing the hidden physical meaning of the zero, i.e., its
being a free spin prompt to Kondo screening. On the contrary,
in the case of the noninteracting atom

G∗(iε) = 1

iε
→ 1

iε − εd + i � sign(ε)
,

which describes a resonant level centered at εd . It is remark-
able that, while the noninteracting atom simply inherits the
chemical potential of the bath, the Hubbard atom does not; the
Kondo resonance is always pinned at the chemical potential
even though the atomic level is offset by εd . This very simple
example not only supports our interpretation that in-gap quasi-
particle bands in Mott insulators may describe fractionalized
excitations, but also suggests that these bands respond very
differently from conventional ones to a change in chemical
potential induced by the contact with a charge reservoir, in
contrast to a recent claim [21].

Our analysis also extends the notion of topological tran-
sitions and adiabatic transformations for strongly interacting
electrons. Indeed, it was already known that some topologi-
cal invariants are contributed by zero-frequency roots of the
Green function [3]. That, however, seems at odds with the
expected behavior of topological invariants under adiabatic
transformations since neither a closure of the charge gap
nor any symmetry breaking occurs when Green’s function
zeros cross the chemical potential. In light of our results, this
phenomenon acquires a straightforward physical explanation:
Green’s function zeros crossing the chemical potential form
a Luttinger surface that hosts gapless excitations [4,5] despite
the finite charge gap, thus providing the nonadiabaticity re-
quired to change topology.

Finally, our results raise several questions worth being
addressed in the future. The correspondence between topo-
logical bands and edge modes of Green’s function zeros [7–9]
suggests that, similarly to the conventional case of edge poles,
the edge zeros are ultimately responsible of the quantized
Hall conductance (13), although the surface is charge insu-
lating. In the model quantum spin-Hall insulator of Sec. III,
that puzzling prediction can be explained by noticing that,
according to Ref. [5], the edge quasiparticles at the Luttinger
surface, actually a point, can carry a spin current, thus a
quantized spin-Hall conductance. However, that simple expla-
nation would not work for a hypothetical Chern Mott insulator
with edge zeros crossing the chemical potential. Therefore,
even though the results of Sec. II prove that bulk bands of
Green’s function zeros contribute to the topological invariant
(1), the actual role of edge zeros remains unclear.

A further question regards fractional Chern insulators. In-
deed, if the winding number (1) does correspond to the Hall
conductance, which may not always be the case (see Ap-
pendix B), one may wonder how it may ever be fractional
since the TKNN formula should yield an integer value. In
view of the similar issue that arises in the fractional quantum
Hall effect [22], we believe that the ground-state degeneracy,
also expected in a fractional Chern insulator [23], is the key
ingredient. Specifically, we suspect that H∗(0, k) calculated
over each ground state has valence bands with ill-defined
Chern number because, e.g., they touch the zone boundaries
with finite slope. However, assuming, for simplicity, that the
ground state is threefold degenerate, the Hall conductance is
better defined as [22]

σH = 1
3 (W (G1) + W (G2) + W (G3))

= 1
3 W (G1 G2 G3),

where Gn is the Green’s function calculated over the ground
state |n〉, n = 1, 2, 3. The sum of the three winding numbers
corresponds to the TKNN formula applied to the quasiparticle
valence bands of all three ground states. We speculate (see,
e.g., Ref. [24]) that all these bands as a whole correspond to a
well-behaved single band once unfolded into a threefold larger
Brillouin zone, whose Chern number is therefore an integer �,
thus σH = �/3, a fractional value. Incidentally, it is suggestive
that the sum of the winding numbers is just the winding
number of G = G1 G2 G3, which is still a complex invertible
matrix. The above is just a speculation that we believe worth
investigating.
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We conclude by emphasizing that the winding number
(1) in two dimensions, although being a topological invari-
ant, does not necessarily coincide with the quantized Hall
conductance when perturbation theory breaks down (see Ap-
pendix B). Similarly, we cannot exclude that the extensions
of the Green’s function winding number in three dimensions
[12,14,17,19] might be unrelated to the physical observables
they are supposed to reproduce when there is no adiabatic con-
nection between the interacting system and the noninteracting
one. That leaves open the question about the actual physical
meaning of those winding numbers [25,26].
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APPENDIX A: PROPERTIES OF THERMAL
GREEN’S FUNCTIONS

Hereafter, we consider a generic basis of Bloch wave
functions φak(k), where a includes also the spin label, with
associated creation c†

ak and annihilation cak operators. We
assume that lattice translational symmetry is not broken.
The Green’s function matrix in imaginary time τ ∈ [−β, β],
where β = 1/T , is defined through its components, diagonal
in momentum,

Gab(τ, k) = −〈Tτ (cak(τ ) c†
bk )〉, (A1)

where Tτ is the time-ordering operator and cak(τ ) =
eHτ cak e−Hτ the imaginary-time evolution of the operator.
The Fourier transform of (A1) in Matsubara frequencies
iε� = (2� + 1)πT is readily found to be

Gab(iε�, k) = 1

�

∑
n,m

(e−βEn + e−βEm )

× 〈n|cak|m〉〈m|c†
bk|n〉

iε� − (Em − En)
,

where � = Tr(e−βH ) is the partition function, |n〉 and |m〉
many-body eigenstates with eigenvalues En and Em, respec-
tively. We note that Gab(iε�, k)∗ = Gba(−iε�, k), and thus

G(iε�, k)† = G(−iε�, k). (A2)

This property must evidently hold true also for the inverse
matrices. Therefore, using Dyson’s equation

G(iε�, k)−1 = iε� − H0(k) − �(iε�, k),

where H0(k) is the noninteracting Hamiltonian that includes
the chemical potential term −μ N , and �(iε�, k) the self-
energy, both being matrices in the same basis of Bloch wave
functions, one concludes that also

�(iε�, k)† = �(−iε�, k). (A3)

We can write G(iε�, k) = G1(iε�, k) + i G2(iε�, k) where

G1(iε�, k) = G(iε�, k) + G(iε�, k)†

2

= G(iε�, k) + G(−iε�, k)

2
,

G2(iε�, k) = G(iε�, k) − G(iε�, k)†

2i

= G(iε�, k) − G(−iε�, k)

2i
,

are both Hermitian, G1 even and G2 odd in ε�. Specifically,
the matrix elements of G2 read as

G2 ab(iε�, k) = − ε�

�

∑
n,m

(e−βEn + e−βEm )

× 〈n|cak|m〉〈m|c†
bk|n〉

ε2
� + (Em − En)2

.

Since G2 is Hermitian, it can be diagonalized by a unitary
transformation cak → cαk that yields the eigenvalues

G2 α (iε�, k) = − ε�

�

∑
n,m

(e−βEn + e−βEm )

× |〈n|cαk|m〉|2
ε2
� + (Em − En)2

,

which are negative for ε� > 0 and positive otherwise.
It follows that, once we write �(iε�, k) = �1(iε�, k) +
i �2(iε�, k), where

�1(iε�, k) = �(iε�, k) + �(iε�, k)†

2

= �(iε�, k) + �(−iε�, k)

2
,

�2(iε�, k) = �(iε�, k) − �(iε�, k)†

2i

= �(iε�, k) − �(−iε�, k)

2i
,

are also both Hermitian, the former even in ε� and the latter
odd, the eigenvalues of �2(iε�, k) are negative for ε� > 0 and
positive otherwise, just like those of G2(iε�, k).

The quasiparticle residue matrix is defined by (3), i.e.,

Z (ε�, k) = Z (−ε�, k) =
(

1 − �2(iε�, k)

ε�

)−1

,

and is therefore a semi-positive-definite matrix that be-
comes strictly positive definite in insulators without Luttinger
surfaces, where �2(0, k) = 0. Similarly, the quasiparticle
Hamiltonian (4), i.e.,

H∗(ε�, k) = H∗(−ε�, k)

=
√

Z (ε�, k) (H0(k) + �1(iε�, k))
√

Z (ε�, k) ,

is Hermitian and even in ε�. Therefore, if |α(ε�, k)〉 is eigen-
state of H∗(ε�, k) with eigenvalue εα (ε�, k), we can always
define |α(−ε�, k)〉 = |α(ε�, k)〉 the eigenstate of H∗(−ε�, k)
with the same eigenvalue εα (ε�, k). We end emphasizing that
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FIG. 1. Top panel: current-current correlation function χi j (iω) in
skeleton diagrams. Black arrow lines are interacting single-particle
Green’s functions G, whose Matsubara frequency and momentum are
explicitly shown; green triangle represents the noninteracting current
vertex �0

j , while dark green triangle the fully interacting one �i.
Bottom panel: Bethe-Salpeter equation satisfied by the interacting �i

in terms of the interaction vertex �0 irreducible in the particle-hole
channel.

the representation (2) of the Green’s function in terms of the
quasiparticle one,

G∗(iε, k) = 1

iε − H∗(ε, k)
,

with Hermitian H∗(ε, k) is a rigorous result that remains valid
also when H∗(0, k) has zero eigenvalues, i.e., when Fermi
and/or Luttinger surfaces are present.

APPENDIX B: TOPOLOGICAL INVARIANT
IN TWO DIMENSIONS

The Hall conductance in noninteracting insulators is quan-
tized in units e2/2π h̄, where the integer quantum is a
topological invariant known as the first Chern number. This
is calculated upon the occupied bands and is robust under any
smooth deformation of the Hamiltonian. On the other hand,
in the case of interacting electrons, band theory of indepen-
dent electrons does not hold and yet a quantized topological
invariant, which reduces to the Chern number if the interac-
tion is switched off, can be still defined. However, while the
expression of this invariant, the winding number (1), could be
well anticipated by algebraic topology arguments, we believe
that the most accepted derivation (see, e.g., Refs. [10,11])
is not formally correct. Therefore, we here rederive the Hall
conductance by standard quantum many-body theory [27].

Hereafter, we consider a periodic model of interacting
electrons and use units in which h̄ = 1. The off-diagonal
component σi j , i 	= j, of the conductivity tensor is related to
the current-current response function χi j (ω) through

σi j = − lim
ω→0

e2

iω
χi j (ω),

FIG. 2. Diagrammatic representation of ∂χi j (iω)/∂iω up to first
order in the skeleton expansion. The cyan circle represents ∂/∂iω.
Note that all diagrams must be evaluated at ω = 0 after taking the
derivative.

where, in the basis of the Hamiltonian eigenstates |n〉, with
eigenvalues En,

χi j (ω) =χ ji(−ω) = 1

Z

∑
nm

e−βEn − e−βEm

ω − Em + En

×
∫

dx dy 〈n|Ji(x)|m〉〈m|Jj (y)|n〉,

with Ji(x) the ith component of the current density operator
at position x. Therefore, the antisymmetric component of the
current-current tensor is, for small ω,

χi j (ω) − χ ji(ω)

2
� − ω

1

Z

∑
nm

e−βEn − e−βEm

(Em + En)2

×
∫

dx dy 〈n|Ji(x)|m〉〈m|Jj (y)|n〉

= ω
∂χi j (ω)

∂ω |ω=0
,

which is imaginary, and thus, switching to Matsubara frequen-
cies and for i 	= j,

σi j − σ ji

2
= i e2 ∂χi j (iω)

∂iω |ω=0
,

where now

χi j (iω) = −
∫ β

0
dτ eiωτ

∫
dx dy 〈 Tτ (Ji(x, τ ) Jj (y, 0)) 〉

is the correlation function in the Matsubara formalism, with
τ the imaginary time. Figure 1 shows the representation of
χi j (iω) in skeleton diagrams. It is worth noticing that only
one of the two current vertices is fully interacting, otherwise,
we would double count interaction effects as mistakenly done
in Ref. [11].

We are interested in the derivative of χi j (iω) with re-
spect to iω calculated at ω = 0, which, by inspection of
Fig. 1, can be represented as in Fig. 2, where, only because
of the derivative, the current vertices are now both fully
interacting. Through the Ward-Takahashi identity the fully in-
teracting current vertex at ω = 0 is simply �i = −∂G−1/∂ki,
and, since ∂G = −G ∂G−1 G, we can write in 2D and
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for T = 0

σ12 − σ21

2
= e2

2π
νH

= e2

(2π)3

∫
dε dk Tr(G(iε, k) ∂k1 G(iε, k)−1 G(iε, k) ∂εG(iε, k)−1 G(iε, k) ∂k2 G(iε, k)−1) + e2

2π
KL

= e2

2π

{
1

24π2

∫
dε dk εμνρ Tr(G(iε, k) ∂μG(iε, k)−1 G(iε, k) ∂νG(iε, k)−1 G(iε, k) ∂ρG(iε, k)−1) + KL

}

= e2

2π
[W (G) + KL], (B1)

where νH is the quantized Hall conductance, εμνρ , with indices running from 0 to 2, the antisymmetric tensor, ∂0 = ∂ε and
∂1(2) = ∂k1(2) , and W (G) [see (1)] is the winding number of the map (ε, k) → G(iε, k) ∈ GL(n,C), assuming that the Green’s
function G(iε, k) is an n × n invertible matrix, with n the dimension of the single-particle wave-function basis, which is true
provided the system is insulating and has no Luttinger surface.

The additional term aside from the winding number involves the derivative of the irreducible vertex �0 and reads as explicitly

KL = iπ

(2π )6

∑ ∫
dε dk dε′ dk′ εi j ∂iGba(iε, k) Fab;a′b′ (iε, k; iε′, k′) ∂ jGb′a′ (iε′, k′), (B2)

where

Fab;a′b′ (iε, k; iε′, k′) = lim
ω→0

1

2iω
{�0(iε + iω k a, iε′ k′ a′; iε′ + iω k′ b′, iε k b)

− �0(iε k a, iε′ + iω k′ a′; iε′ k′ b′, iε + iω k b)} = −Fa′b′;ab(iε′, k′; iε, k), (B3)

with

�0(iε + iω k a, iε′ k′ a′; iε′ + iω k′ b′, iε k b)

= �0(iε′ k′ a′, iε + iω k a; iε k b, iε′ + iω k′ b′),

the irreducible vertex in the particle-hole channel with trans-
ferred frequency ω. Since

�0(iε + iω k a, iε′ k′ a′; iε′ + iω k′ b′, iε k b)∗

= �0(−iε k b,−iε′ − iω k′ b′; −iε′ k′ a′,−iε − iω k a),

and Gba(iε, k)∗ = Gab(−iε, k), one can readily show that KL

in (B2) is indeed real. We observe that F in (B3) is odd under
(iε, k, ab) ↔ (iε, k′, a′b′), unlike what claimed in [10,11],
which compensates the change of sign of the antisymmetric
tensor εi j under i ↔ j. Therefore, KL may well be finite
in principle. Nonetheless, one may still argue that F could
vanish. Indeed, the irreducibility in the particle-hole channel
suggests that �0 depends on iω only through the frequency
carried by the particle-particle channel, as can be verified
by inspection of few orders in the skeleton expansion. That
frequency remains invariant if in the top panel of Fig. 1 we
change the frequency of the upper Green’s function from
iε + iω to iε, and that of the lower one from iε to iε + iω,
thus ω → −ω in the particle-hole channel. If that is true, �0 is
even in ω, and since it must also be smooth, then its derivative
at ω = 0 has to vanish, as also argued by Ref. [17] on the basis
of the skeleton expansion. However, once perturbation theory
breaks down, one cannot exclude that the full series develops
odd contributions, and thus that KL becomes nonzero.

Further insight in that direction can be gained through the
Streda formula [28,29]

∂ρ

∂B |B=0
= e

2πc
νH, (B4)

where ρ is the electron density. The spin-Hall conductance
is defined similarly provided ρ is replaced by the spin den-
sity [30]. The electron density at T = 0 can be calculated
through [6]

ρ = n

2
+

∫
dε dk
(2π)3

Tr(G(iε, k))

= n

2
−

∫
dε dk
(2π)3

∂ ln det G(iε, k)

∂iε
+ IL

= n

2
−

∫
dε dk
(2π)3

∂ ln det G∗(iε, k)

∂iε
+ IL

=
∫

dk
(2π)2

θ (−εα (0, k)) + IL, (B5)

where n is the number of bands, including spin, we used the
fact that

ln det G(iε, k) = ln det G∗(iε, k) + ln det Z (ε, k),

and ln det Z (ε, k) gives no contribution to the integral since its
derivative is odd, and, finally,

IL =
∫

dε dk
(2π)3

Tr

(
G(iε, k)

∂�(iε, k)

∂iε

)

= 1

π

∫
dk

(2π)2
Im I (i0+, k).

The function I (iε, k) = I (−iε, k)∗ is defined as [6]

I (iε, k) = �(iε, k) − Tr(�(iε, k) G(iε, k)),
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having written the Luttinger-Ward functional, which can be
constructed fully nonperturbatively [31], as

�[G] = T
∑

�

∫
dk

(2π)2
eiε�0+

�(iε�, k).

In the perturbative regime, Im I (iε, k) ∼ ε for small ε

and thus IL = 0, in which case (B5) reduces to the well-
known statement of Luttinger’s theorem [32]. However,
when perturbation theory breaks down, IL is generally
nonzero [6].

In presence of a magnetic field B, the derivative of the
first term in (B5) with respect to B and calculated at B = 0
yields the Streda formula for noninteracting electrons de-

scribed by the quasiparticle Hamiltonian H∗(0, k), which is
just the TKNN expression (13). It follows that

∂IL

∂B |B=0
≡ e

2πc
KL, (B6)

namely, that the winding number (1) may not correspond
to the quantized Hall conductance when perturbation theory
breaks down and IL 	= 0, in accordance, e.g., with the results
of [25,26].

APPENDIX C: PROPERTIES OF THE WINDING NUMBER

Using the property of the antisymmetric tensor, the equiv-
alence G(iε, k)† = G(−iε, k), and the fact that one of the
derivatives in the winding number (1) is ∂ε = −∂−ε , one finds
that

W (G)∗ = 1

24π2

∫
dε dk εμνρ Tr(G(−iε, k) ∂ρG(−iε, k)−1 G(−iε, k) ∂νG(−iε, k)−1 G(−iε, k) ∂μG(−iε, k)−1)

= − 1

24π2

∫
dε dk εμνρ Tr(G(iε, k) ∂ρG(iε, k)−1 G(iε, k) ∂νG(iε, k)−1 G(iε, k) ∂μG(iε, k)−1)

= 1

24π2

∫
dε dk ερνμ Tr(G(iε, k) ∂ρG(iε, k)−1 G(iε, k) ∂νG(iε, k)−1 G(iε, k) ∂μG(iε, k)−1) = W (G),

thus that W (G) is real, as expected. Now suppose that the function G(iε, k), aside from satisfying (A2), which guarantees that
W (G) is real, is also Hermitian. It follows that G(iε, k) = G(iε, k)† = G(−iε, k), thus G(iε, k) is even in ε, hence its derivative
is odd. As a consequence, the winding number trivially vanishes being an integral over ε ∈ [−∞,∞] of an odd function. This
is precisely the reason why W (Z ) = 0 since the quasiparticle residue matrix Z (ε, k), Eq. (3) of the main text, is Hermitian and
even in ε.

Proof of W (G1 G2 ) = W (G1) + W (G2 )

We shortly write

W (G) = 1

24π2

∫
dx εμνρ Tr(G(x) ∂μG(x)−1 × G(x) ∂νG(x)−1 G(x) ∂ρG(x)−1),

where x = (x0, x1, x2) is a three-component vector. Assume that G(x) = G1(x) G2(x), then, since

G ∂μG = G1 G2 ∂μ

(
G−1

2 G−1
1

)
= G1

(
G2 ∂μG−1

2 + ∂μG−1
1 G1

)
G−1

1 ,

the winding number of the product can be written as, defining, for simplicity, G ≡ G(x),

W (G1G2) = 1

24π2

∫
dx εμνρ Tr

[(
G2 ∂μG−1

2 + ∂μG−1
1 G1

)(
G2 ∂νG−1

2 + ∂νG−1
1 G1

)(
G2 ∂ρG−1

2 + ∂ρG−1
1 G1

)]
=W (G1) + W (G2) + 3

24π2

∫
dx εμνρ Tr

[
G2 ∂μG−1

2 G2 ∂νG−1
2 ∂ρG−1

1 G1 + ∂μG−1
1 G1 ∂νG−1

1 G1 G2 ∂ρG−1
2

]
.

(C1)

Since G ∂μG−1 = −∂μG G−1 and εμνρ (∂μ∂νG) = 0 if G is smooth, we find that

I ≡ εμνρ Tr
[
G2 ∂μG−1

2 G2 ∂νG−1
2 ∂ρG−1

1 G1 + ∂μG−1
1 G1 ∂νG−1

1 G1 G2 ∂ρG−1
2

]
= −εμνρ Tr

[
∂μG2 ∂νG−1

2 ∂ρG−1
1 G1 + ∂μG−1

1 ∂νG1 G2 ∂ρG−1
2

]
= −εμνρ Tr

[
∂μ

(
G2 ∂νG−1

2

)
∂ρG−1

1 G1 + ∂ν

(
∂μG−1

1 G1
)

G2 ∂ρG−1
2

]
. (C2)

Integrating by part the first term, and then switching the indices μ ↔ ν in the first term and μ ↔ ρ in the second one, we obtain

I = −εμνρ Tr
[− G2 ∂νG−1

2 ∂μ

(
∂ρG−1

1 G1
) + G2 ∂ρG−1

2 ∂ν

(
∂μG−1

1 G1
)]

= −εμνρ Tr
[
G2 ∂μG−1

2 ∂ν

(
∂ρG−1

1 G1
) − G2 ∂μG−1

2 ∂ν

(
∂ρG−1

1 G1
)] = 0, (C3)

125115-9



ANDREA BLASON AND MICHELE FABRIZIO PHYSICAL REVIEW B 108, 125115 (2023)

which proves that

W (G1 G2) = W (G1) + W (G2). (C4)
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