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Belief propagation is a well-studied algorithm for approximating local marginals of multivariate probability
distribution over complex networks, while tensor network states are powerful tools for quantum and classical
many-body problems. Building on a recent connection between the belief propagation algorithm and the problem
of tensor network contraction, we propose a block belief propagation algorithm for contracting two-dimensional
(2D) tensor networks and approximating the ground state of 2D systems. The advantages of our method are
threefold: (1) the same algorithm works for both finite and infinite systems; (2) it allows natural and efficient
parallelization; and (3) given its flexibility, it would allow us to deal with different unit cells. As applications,
we use our algorithm to study the 2D Heisenberg and transverse Ising models, and show that the accuracy of the

method is on par with state-of-the-art results.
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I. INTRODUCTION

Two-dimensional quantum systems represent an important
class of problems of long-lasting theoretical and practical
interest. Many such systems are notoriously difficult to in-
vestigate numerically, especially in the strongly correlated
regime. For this reason, developing efficient and accurate
numerical methods is always in need. Quantum Monte Carlo
[1] and tensor network (TN) methods [2] have both been
demonstrated to be successful approaches for 2D systems in
the past decades. However, the quantum Monte Carlo methods
often suffer from the sign problem [3]. Projected entangled
pair states (PEPSs) are a class of two-dimensional TNs [2,4—
6] that can be used to study both finite (fPEPS) and infinite
(iPEPS) 2D systems. In particular, the iPEPS algorithms have
attracted great attention during the last 20 years because of
their lack of a sign problem and their ability to deal with
strongly correlated systems [7—13]. A key challenge for PEPS
algorithms is an efficient and stable procedure for computing
expectation values of local observables, which can become a
#P-hard problem in the worst cases in 2D and higher dimen-
sions [14]. In a number of physical scenarios, the problem
tends to be more tractable but it still requires high compu-
tational resources and advanced numerical schemes. Existing
approaches include, for example, the boundary matrix product
state (bMPS) method [4,15], the corner transfer matrix (CTM)
method [16,17], Monte Carlo sampling [18,19], and variants
of TN renormalization schemes [20-22].

Borrowing ideas from classical probabilistic models, we
propose an alternative method for (approximately) contract-
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ing two-dimensional TNs, which is highly parallelizable and
is flexible to deal with both finite and infinite 2D systems.
There is a close similarity between quantum and classical
many-body systems and multivariate probabilistic models. In
both cases, the states live in spaces of exponential dimension
and it is important to (approximately) compute local prop-
erties of the system: local expectation values in the former
cases and local marginals in the latter case [23]. Therefore,
methods developed in one field could often benefit the other.
Belief propagation (BP) is a well-established statistical infer-
ence algorithm for computing local marginals of multivariate
probabilistic models on complex networks, which is known
to be exact for tree networks [24]. BP has been widely ap-
plied to very diverse areas, ranging from Bayesian inference
[24], statistics physics [25-27], combinatorial optimizations
[28,29], and epidemic spreading [30] to name a few. For
networks that contain a large number of loops or long-range
correlations, BP could result in poor performance since it only
considers the direct neighbors of each node and treats the
environment of a node in a separable way. This shortcoming
has been the subject of extensive research that resulted in
a plethora of algorithms that generalize and improve BP in
different ways [31-41]. Broadly speaking, these algorithms
clump together neighboring nodes and treat small loops ex-
actly at the expense of higher computational resources and
elaborated bookkeeping.

Attempts to use BP to approximate TN contraction were
presented in Refs. [42,43]. When applied with the imaginary
time evolution (ITE) to PEPS, it was shown to be equivalent
to the simple-update algorithm [42], in which the environment
is approximated in a separable, mean-field way [21]. In this
paper, we present a generalization of the BP algorithm of
Ref. [42], which we call block belief propagation (blockBP).

©2023 American Physical Society
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The algorithm partitions the system into nonoverlapping
blocks of spins, and uses the framework of Ref. [42] to de-
fine BP messages between these blocks. From the converged
messages, one can obtain an approximation of the local envi-
ronment of every block, which is far superior to the mean-field
environment of the original BP, since the loops within each
block are accounted for. We benchmark our algorithm on
the 2D Heisenberg model and transverse Ising (TI) model,
where we show that it can reach similar precision to cur-
rent state-of-the-art methods. Importantly, we show that our
approach can be easily parallelized, thus leading to a much
higher computational efficiency compared to other TN-based
state-of-the-art methods. Furthermore, we also demonstrate
that the same algorithm can be readily used both for finite
systems and infinite systems with translational invariance.
Lastly, the algorithm can be applied to different unit cells and
systems with different geometries. As such, blockBP might
also be potentially used in quantum chemistry problems with
less regular structures [44].

II. THE blockBP ALGORITHM

To present the blockBP algorithm, we assume basic fa-
miliarity with TN such as MPS and PEPS [2,45]. More
information for the unfamiliar reader can be found in the
Appendixes A and B. Consider a 2D many body whose state
is given by a PEPS |¢) = Zil _____ i Tr(Tl’l - -T,f”)lih ey I,
Here, T1, ..., T, represent the local tensors of the PEPS with
dimension of the virtual legs, also known as bond dimension,
D, and iy, ..., i, denote the physical legs. Virtual legs are
omitted for brevity and Tr(- - - ) denotes TN contraction.

The blockBP algorithm is an efficient method to approx-
imate the local environments in a 2D PEPS. The first step
of the algorithm is to move to a double-layer PEPS. This is
a closed TN that represents the scalar (y|v) by contracting
the physical legs between a bra TN (¥| and a ket TN |{)—
see Figs. 1(a) and 1(b). Next, we partition the system into
nonoverlapping blocks as in Fig. 1(c). The goal of the blockBP
algorithm is to simultaneously find an approximation to the
environment of each block. The exact environment can be
written as a periodic MPS that surrounds the block [Fig. 1(e)],
which is equal to the contraction of the entire doubled-layered
PEPS outside the block. Knowing the environment of each
block allows an easy calculation of the expectation values
within each block, as well as an optimal update of the tensors
of the block during an ITE or variational algorithms. However,
calculating it directly might be a daunting task when the
system size is large.

The key approximation of the blockBP algorithm is to
break the block environment into a product of MPSs, where
each MPS belongs to a block edge corresponding to an
adjacent block [see Figs. 1(e) and 1(f)]. This inflicts an un-
avoidable error on the environment, as it breaks some of its
entanglement, but in many cases this error is negligible (see
discussion on this point below).

The MPS states that make each environment are calculated
in a self-consistent way using a BP algorithm. We define
a message-passing algorithm in which at step ¢ each block
receives (sends) MPS messages from (to) its adjacent blocks
along their common edge. We denote by mffL g the MPS
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FIG. 1. (a), (b) Forming a double layer 2D PEPS by contracting
the physical legs of |y) and (y|. (c) Partitioning of the system into
blocks (grey regions). (d) Computing the left output MPS message
for a given block. (e) The exact block environment. (f) The blockBP
environment, which approximates the exact block environment using
a product of the converged incoming MPS messages. These can be
used to compute the local environments inside the center of the block.

message from block A to block B at the fth iteration. Let Ty
denote the part of the double layer PEPS that corresponds to
block A. This is an open TN with double-layer legs at each
edge of the block. The MPS message from block A to block
B at the ¢ 4 1 iteration is obtained by contracting 74 with all
incoming MPS messages to block A of the £th iteration, except
for the message from B [see Fig. 1(d)]:

mt ) =Tr[T0 [T mil.]- (1
A’eNa\{B}

When the underlying blocks graph is a tree, then just as in
ordinary BP, the fixed point of Eq. (1) describes the exact
environment of each block. Note that, indeed, in such a case,
the environment of each block breaks into a product of MPSs.

The iteration in Eq. (1) can be done efficiently using, e.g.,
the bMPS method. In addition, messages of different blocks
can be computed in parallel. We stop the iterations when the
average distance between the normalized MPS messages at
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two consecutive iterations is sufficiently small (say, smaller
then € = 1073). This usually happens in less than ten steps.

For blocks of size 1, our algorithm reduces to the BP con-
traction algorithm of Ref. [42], which has been shown to be
equivalent to the simple-update algorithm. These algorithms
are exact on treelike (i.e., loop free) TNs, but may fail on
more complicated graphs. In contrast, for larger block sizes
blockBP can yield very accurate correlations inside a block,
as it considers exactly the loops within it. We note, however,
that as the entanglement around every block is broken between
every two adjacent block edges, some inaccuracies are un-
avoidable. In noncritical systems, this problem can be largely
mitigated if we consider only observables in the center of a
block [see Fig. 1(e)]. For these sites, most of the correlations
in the local environment come from nearby tensors, which lie
inside the block and are therefore properly accounted for. By
increasing the block size, the accuracy for the center sites can
be improved at the expense of higher computational costs. In
this respect, our algorithm shares some similarities with the
cluster-update algorithm [46], where the local environment of
row i is calculated by contracting a mean-field environment of
the rows at distance § from i, together with the full TN of the
rows i — 4, ..., 1+ 8 that surround #, although we do not need
to rely on a mean-field environment.

The relation between the block size, the system size, and
the center size can be chosen differently depending on the
specific tasks to balance the computational efficiency and
the accuracy. In addition, since we only calculate the local
environment of spins at the center of each block, we need
several partitions of the system in blocks to cover all the
bonds (neighboring spins) in the system. Bookkeeping the
different partitions becomes much easier if we work with
periodic boundary conditions (PBCs), in which different par-
titions correspond to shifting the lattice in different directions.
This technique is useful also in the case of open boundary
conditions (OBCs), as we can embed an OBC PEPS in a
PBC PEPS by setting the bond dimension at the boundaries
to 1. Furthermore, we can easily adjust it for an infinite,
translational invariant PEPS described by tensors in a unit cell
@APEPS). In such case, one block is sufficient to calculate the
environment of a unit cell at its center. The block sends and
receives messages to itself, which mimics the case where it is
surrounded by its own copies.

To efficiently perform the contractions in Eq. (1), we use
the bMPS method with a bond dimension y,,, which we typi-
cally set to x,, = D?. Once the messages have converged, we
use them to calculate the local environment of spins in the
center of a block so as to compute observables or optimize
the tensors in the center to approach the ground state. To this
aim, we use the bMPS algorithm once more, this time with a
larger bond dimension y, which we set to x = 2D? 4 10 if
not specified otherwise.

In this paper, to obtain the ground state, we use blockBP in
combination with ITE, and we refer to this as blockBP update.
More details can be found in Appendix B. Note that in our
algorithm we make use of bMPS, but only over small portions
of the system, our blocks, and not on the entirety of the system
as in the bMPS algorithm.

Before presenting our numerical results, we summarize the
important features of blockBP: (1) It works for both finite and

TABLE I. Ground-state energies of the 21 x 21 transverse Ising
model with B = 2.5,3,3.5. We used a block size of 7 x 7 (nine
blocks in total) for blockBP.

D 2.5 3 35

2 —2.77340(2) —3.18128(6) —3.64849(3)
bMPS [47] 3 —2.77346(1) —3.18242(1) —3.64873(1)

4 —277346(1) —3.18243(1)  —3.64873(1)

2 —2.77334(7)  —3.18121(9)  —3.64842(7)
blockBP 3 —2.77346(3) —3.18242(3)  —3.64872(9)

4 —277346(4)  —3.18244(4)  —3.64873(1)

infinite 2D systems, as Eq. (1) is agnostic about the bound-
aries, and the differences between them are automatically
revealed when computing messages. For finite systems, when-
ever the boundary is met, the information before the boundary
will be lost because the virtual dimension of the tensor at the
boundary is 1. Without a boundary, instead the fixed point
will directly correspond to the infinite limit. (2) The overall
complexity of blockBP is that of bMPS times a constant factor
due to the overhead of computing the messages. However,
Eq. (1) can be evaluated independently for each block, and
after the messages have converged, the calculation of local
environments inside the center is also completely indepen-
dent. Since these are the most computation-intensive parts of
the algorithm, blockBP can be efficiently parallelized on dis-
tributed architectures. (3) blockBP is flexible on the choice of
the unit cells (size and geometry), which is particularly useful
for infinite systems with large unit cells. In the following, we
demonstrate the efficiency and accuracy of blockBP for both
finite and infinite 2D systems.

III. BLOCKBP FOR FINITE SYSTEMS

We first demonstrate the accuracy of blockBP by applying
it to compute the ground state of the finite-size TI model,
whose Hamiltonian is Hy & — > i) 0i0; —B) , of with

B the strength of the transverse field, and antiferromag-

netic Heisenberg (AFMH) model with Hamiltonian Hapy &

Yup(ofal + o]0} +ofo7)/4. Both models are defined on a
square lattice with nearest-neighbor interactions. For the ITE
of finite systems, we chose the center size to be the same as
the block size for efficient update. The final energies for the
finite systems are computed using bMPS. The energies per site
of the final PEPS are shown in Table I for TI and in Table II
for AFH, which are compared to the bMPS full-update results
from Ref. [47]. We see that the blockBP energies are very
accurate for all cases. For D = 6, the blockBP energies are
slightly larger, which is likely because a larger block size
should be used to account for longer range correlations. We
use at most D = 6 due to the unfavorable scaling of the al-
gorithm with D, namely, o(D"), essentially because we use
bMPS for each block.

The accuracy of PEPS algorithms relies on the accu-
racy of the computed local environment of each bond. To
study this, we used blockBP to compute the reduced density
matrices (RDMs) in the ground state of the TI model at
B =25,3.0,3.5 and compared it to the RDMs that were
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TABLE II. Ground-state energies of the AFH model of sizes
10 x 10 and 14 x 14, for which We used block sizes of 5 x 5 and
7 x 7, respectively.

10 x 10 14 x 14
D bMPS [47] blockBP bMPS [47] blockBP
2 —0613102) —0.61310(1) —0.62631(1) —0.62631(3)
3 —0.61999(1) —0.62012(0) —0.63246(1) —0.63273(4)
4 —0.62637(2) —0.62636(2) —0.63832(3) —0.63831(8)
5 —0.62739(1) —0.62737(7) —0.63901(1) —0.63905(2)
6 —0.62774(1) —0.62759(3) —0.63930(1) —0.63928(3)

calculated using bMPS on the same PEPS. We used a system
of 21 x 21 spins with OBCs, where the ground state was
approximated by PEPS with D = 2, 3, 4 and was calculated
using the bMPS full-update algorithm. For blockBP, we used
a block size of 7 x 7 with a center of 2 x 2. To compare the
blockBP and bMPS RDMs, we calculated the trace distance

D(p,0) def %||p — o|; of two-local RDMs of the horizontal
bonds. For B = 2.5, 3.5, which are away from the critical
value (B, &~ 3.044 [48]), the RDMs computed by these two
methods were very close to each other with average distances
lower than 107 for all the Ds considered, while for B = 3.0
we got, on average, a trace distance of 21073 (see Appendix C
for details on this, and Appendix D for further discussion
on convergence). Interestingly, although the accuracy of the
RDMs computed using our blockBP near the critical point
is lower by about two orders of magnitude than the accuracy
away from criticality, the ground-state energy of the resultant
PEPS using blockBP update is as good as those from the
bMPS full-update (Table I).

IV. PARALLEL COMPUTATION

In Fig. 2, we show the scaling of the runtime per ITE
step (iteration) for blockBP with block size 5 x 5 against the
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FIG. 2. Scaling of the blockBP runtime for an imaginary time
evolution step versus the number of processes 71, and for the AFH
model of size 40 x 40, using a block size 5 x 5. The solid line
shows the corresponding runtime of bMPS using a single thread for
comparison.
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FIG. 3. Relative energy compared to the exact energy Eyc ob-
tained by quantum Monte Carlo [49] for the infinite AFH model.
The green dashed line with circle shows the results computed using
BlockBP while the red dashed line with square shows the CTM
results [50].

number of processes (Mproc), for the 40 x 40 AFH model. We
can clearly see that the runtime of blockBP scales almost
linearly as 1/nproc @S Rproc iNCreases up to nproe = 32. Instead,
bMPS acts sequentially on the whole system, and for this
reason no approach to parallelize it has, to the best of our
knowledge, been found. For nyo. = 1, 2, blockBP is slower
than bMPS due to the overhead of computing the messages,
but beyond these values of nyc We see a clear advantage of
using blockBP.

V. BLOCKBP FOR INFINITE SYSTEMS

Finally, we apply blockBP to study infinite quantum and
classical systems. We first compute the ground state of the
infinite AFH model as an iPEPS, for which we chose a unit
cell size as 2 x 2 and a block size of 4 x 4. The final energies
are computed by embedding the 2 x 2 iPEPS into a 52 x 52
finite PEPS with randomly initialized boundaries, and then
computing the energy in the center using bMPS. We have
verified the correctness of our energy estimate by checking
that the resultant energies have well converged against the
finite PEPS size. From the results in Fig. 3, we can see that our
precision is on par with the CTM results from Ref. [50], while
only requiring a computational complexity that is similar to
the bMPS algorithm applied to just a 4 x 4 system.

In Fig. 4, we further study the infinite classical Ising model
and the TI model to demonstrate the versatility of blockBP.
In Fig. 4(a), we look at the local magnetization m, of the
Gibbs state of the 2D classical Ising model on a square
lattice (with Hamiltonian H =}, ;, 0707}) as a function of
the inverse temperature 8. This can be written exactly as a
TN with x = 2, which is an ideal test ground for computing
local observables since it does not require updating. In this
case, we used infinite blockBP to calculate m, = (o) for the
spin in the center of the block and consider the effect of
different block sizes compared to Onsager’s exact solution
[51,52] (continuous line). We see that with block size 5 x 5,
we already obtain very accurate results away from the critical
point (with B, ~ 0.44) and, increasing the block size, we
obtain more accurate results near S.. Here we note that our
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FIG. 4. (a) Local magnetization m, as a function of the inverse
temperature g for the infinite classical Ising model. The red solid line
is Onsager’s exact solution. (b) m, as a function of B for the infinite
quantum Ising model for D = 2 (orange dashed line with circle) and
D = 3 (cyan dashed line with triangle), where we have used a 2 x 2
unit cell and a block size 4 x 4. The corresponding solid lines are
results from Ref. [50]. The inset shows m, computed using larger
block sizes near the critical point for D = 3.

results close to S, are not as accurate as those obtained in
Refs. [13,20,22,53,54], however, they are more accurate than
the results obtained using other variants of the BP algorithms
such as in Refs. [38,39,55].

In Fig. 4(b), we used blockBP + ITE to compute the local
magnetization m, = (o,) at the ground state of the infinite
TI model for different values of the external field B, and
compared our results to those obtained by the CTM from
Ref. [50]. We set the center size to be 2 x 2 and use a block
size 4 x 4. To compute m, for the final converged infinite
system, we have copied the block into a 52 x 52 finite TN
and computed the average m, at the central 2 x 2 cell using
bMPS. We can see that away from criticality (B, ~ 3.044
[48]), our results agree well with the CTM results, especially
for D = 3. For D = 2, our results approach better the results
at D = 3 for B < 3.1. We note that with 4 x 4 block size, our
simulation is extremely efficient (~0.4s and ~1.1s per itera-
tion for D = 2 and D = 3, respectively, using a single core of
2.3 GHz frequency). As in the classical Ising model, with a
small block size we are not able to accurately reproduce m,
near B.. Nevertheless, the results close to the phase transition
can be systematically improved by increasing the block size.

VI. SUMMARY AND OUTLOOK

In summary, we have proposed a belief propagation algo-
rithm for approximately contracting 2D TNs. Our approach
is straightforwardly applicable for both finite and infinite
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FIG. 5. Updating a local site tensor in the zip-up algorithm to
multiply an MPS by an MPO, which corresponds to Eq. (AS). The
left block is represented by the tensor Af; by while the right block by

dp, | ~a . . .
B * . The tensor Y, d,l dyy 1 obtained contracting these two tensors

Crp1-brg
with 0 and X
TR, bybig

systems, different unit cell sizes, and can be readily general-
ized to different geometries. Furthermore, our method allows
straightforward and efficient parallelization. The accuracy and
efficiency of the method are demonstrated with applications
to prototypical quantum 2D systems, and benchmarked with
state-of-the-art results based on ITE. Future directions of in-
vestigation include testing the algorithm on different lattices,
including higher dimensions and/or different geometries, as
well as using gradient-based methods to optimize the PEPS
instead of ITE [56], as done for CTM [57,58].
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APPENDIX A: DETAILS OF THE BLOCKBP
IMPLEMENTATION

The two building blocks of our blockBP algorithm are
(1) computing the fixed points of the MPS messages and (2)

(@ (b ©

v YY VY —_— «—
* *

“4_.

TQ___ A A u__;

FIG. 6. Procedures to compute the local environment for the
black bond inside a specific block taken from Fig. 1(e) of the main
text. The standard bMPS algorithm for finite PEPS is used for this
calculation.

125111-5



CHU GUO, DARIO POLETTI, AND ITAI ARAD

PHYSICAL REVIEW B 108, 125111 (2023)

(@ D
20

LQlS
o\

_1073

_10—4

107°

5 10 15

106

1077

FIG. 7. Trace distances between the single site reduced density matrices of the horizontal bonds computed using bMPS and blockBP with
block size 7 x 7. The ground states of the 21 x 21 transverse Ising model for different local fields B are used to compute the reduced density
matrices. The columns from left to right are results for D = 2, 3, 4, respectively [i.e., (a), (d), (g) correspond to D = 2 and so on], while the
rows from top to bottom are results for B = 2.5, 3.0, 3.5, respectively [i.e., (a)—(c) are for B = 2.5].

performing computations (either computing local observables
or updating the site tensors) inside the center of each block.
We use the bMPS [47] algorithm for both tasks, however, it is
important to stress that in our case the bMPS algorithm is only
applied to a small portion of the system, our blocks instead of
the entire system, thus making our computations much more
manageable and also parallelizable.

Let us consider, for example, the case shown in Fig. 1(d)
of the main text. Here one wants to evaluate the message
going from right to left from a certain block. We then need
to contract the local tensor with the three incoming mes-
sages from the top, the right, and the bottom. Each of these
messages is represented by an MPS. The contraction of the
messages with the tensors in the block is done from right to
left, column by column, each time keeping a bond dimension
of (at most) x,, = D?, where D is the virtual bond dimension
of the tensors in the block. If the block we are considering is at
the boundary of a finite system, then the MPS messages going
into and out of it consist of only trivial tensors.

Once the messages have converged, we can compute an
observable within a block or update the local site tensors
inside a block during the ITE. Following Fig. 1(f) of the main
text, we need to evaluate the contraction between the four
converged incoming MPS messages, from top, bottom, left,
and right with the tensors of the block (note that this can
be straightforwardly generalized to other 2D lattices). Also,
in this case one uses the bMPS algorithm on a single block
plus messages, from any of the sides of the block. Since we
aim to be more accurate when evaluating local observables
at the center of the block, we use a larger bond dimension
x = 2D? 4 10 when doing these contractions.

The most computationally intensive subroutine involved in
both tasks in the case of a square lattice is to multiply one line
of three-legged tensors which represent an (updated) environ-
ment, with a line of four-legged tensors, e.g., the tensor of
the block next to the environment. While this can be done by
using the standard matrix product operator (MPO) time MPS
arithmetic [45], and then compressing the resulting MPS, we
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FIG. 8. Trace distances between the single site reduced density matrices of the horizontal bonds computed using bMPS and simple update.

The other settings are the same as Fig. 7.

use the following zip-up algorithm that fuses these two oper-
ations into one to reduce both the memory and computational
cost, as shown in Ref. [15].

We can write the input MPS |X) as

L
1X) = ZX;I,bszazz,ba . .XbaLvaL+l (A1)
=1

and the input MPO O as

L

A a),a1 05,02 a; .ar
0= E Oc'c,005 e, -+ O (A2)
Jj=1

CLsCL+1 "

Our task is to calculate a fixed bond dimension MPS [|Y),
which approximates O|X). We begin by first initializing |Y)
randomly:

L

I¥) = Z Ydll,szd2%d3 T YdLLadL+l : (A3)
=1

Then we use an iterative algorithm to minimize the distance:

1Y)y — ox)|I°
= (Y|Y) — (Y|OIX) — (X|OT|Y) + (X|0TO|X). (A%)

Note that the last term on the right-hand side of Eq. (A4) is
a constant and can be neglected during the optimization. To
optimize |Y'), we iteratively update each site tensor of it using
DMRG-like sweeps. For a specific site [, we first compute

G4
de,dl+1 - Z

br,cr,biyi,crvnar

Ad ota gl xa (A5)

c1,by 7 CHCH 1 ey bry b by ?

where the rank-3 tensors A and B can be computed iteratively
using

g g
d, di—y ap_ Ap_1>ai-1 yrar-1
Ap = A Yaa Ocia X, 0
cr,by cro1,bi T dyoy,dy -1 11,01
bi-v,ci-1,di-y,ai-1,a)_

(A6)
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FIG. 9. The ground-state energy E obtained using bMPS (light
blue squares) and blockBP (green circles) as a function of the imagi-
nary time evolution steps. The inset shows the difference between the
energies computed for the two algorithms, namely, AE = Eyjockgp —
Epmps, the initial state for both cases is chosen as the ground state of
the 10 x 10 AFH model with D = 3 and we have used dt = 0.01 in
both cases.

and
/
Bd,H _ § : Bdt+2 Y”Hl
cri1,big cry2,b142 " diyr,dig
biya,cria,diva,ary,ap,

% 0“I+| YA+l yrapy
Cl1:C142 Vb 1,by42°

(A7)

with AZI' b = Bff:l‘ b., = 1. During the left to right sweep, we
perform a QR decomposition (QR decomposition of a matrix

M means that M = QR where Q is a unitary matrix and R is
an upper triangular matrix) of ¥,',

QR dl d1+1

and get
Z Qd, shS, d1+1 ’

and then we take Q 4.5 as the new site tensor. During the
right to left sweep, we perform an LQ decomposition (LQ
decomposition of a matrix M means that M = LQ where L is

(A8)

a lower triangular matrix and Q is a unitary matrix) of Y, d’

and get
Z La, YQY Wiy’

and then we take Q as the new site tensor. Equation (AS5)
is also demonstrated in Fig. 5. In addition, from Eq. (AS5)
we have —||Y“’d,+] 2= 1Y) = O|X)||> = (X|0"O|X), which
is exactly the loss function subtracted by a constant term,
therefore it can be used to monitor the convergence, similar to
the ground-state energy in DMRG [45]. In our simulations, we
have set the convergence criterion to be the standard deviation
of —||¥ d(j ’ dinn |? for a full sweep (left to right and then right to
left) divided by the mean value, with a tolerance of 107° and
the maximum number of sweeps to be 10.

For computing the MPS messages of a double layer TN,
the MPS messages are randomly initialized as a matrix

diy1

LQ (A9)

d/ dt+|

product density operator [59] using normal distribution, while
for single-layer TN which is used for classical models (see the
simulation of the classical Ising model below), the MPS mes-
sages are simply initialized as a random MPS using uniform
distribution. Assuming that the mean square error between
the MPS messages in the /th step and those in the [ — 1 step
is €, the convergence criterion in this case is chosen to be
€, /€1, with a tolerance of 10~ and the maximum number of
iterations to be 10.

APPENDIX B: THE IMAGINARY TIME EVOLUTION
ALGORITHM FOR PEPS

Generally, two different approaches are used to optimize
the PEPS tensors for computing the ground state, namely,
variational minimization and ITE. In this paper, we focus
on the second approach. For a 2D Hamiltonian on a square
lattice, written as H = Zi h;, where i stands for all the
nearest-neighbor pairs of sites (bonds) and /; denotes the local
Hamiltonian term on the ith bond, we first perform a first-
order expansion of the imaginary time evolutionary operator
U(dt) = e M9 for a small time interval dt as

U(df) ~ e—hldre—hzdle—hgdt . (Bl)

Each term on the right-hand side of Eq. (B1) acts on a specific
bond, referred to as a gate. Changing the order of these terms
on the right-hand side of Eq. (B1) still results in a first-order
approximation, therefore one could freely adjust the order to
maximally reuse the intermediate computations during the
time evolution. In our implementation, we will first apply
the gates on the horizontal bonds row by row, and then apply
the gates on the vertical bonds column by column.

The application of a specific gate G; = e~ "“" is formulated
as an optimization problem to minimize the loss function
1) — Gi|¥) 1>, where |') is the new PEPS with all the
tensors the same as |{) except the two tensors at bond i and
|l - || means the two-norm. Performing the local optimization
requires us to calculate the environment around the tensors
being updated, which is the central difference among var-
ious PEPS updating algorithms. In our approach, we first
use blockBP to compute the boundary messages as MPSs
for each block, which plays the role of the environment for
each block. Then performing ITE on the tensors inside each
block becomes almost the same as the original PEPS updating
problem, except that we are dealing with a much smaller finite
PEPS, and that there are four nontrivial MPSs on the bound-
aries (the standard finite PEPS update can also be taken as a
special case where the boundaries are trivial MPSs for which
the site tensors only contain a single element 1). As such, we
can use existing finite PEPS update algorithms to update the
tensors inside each block. In our implementation, we use the
bMPS method algorithm inside each block, as demonstrated
in Fig. 6 for applying a single gate on the black bond in a
block taken from Fig. 1(e) of the main text. In Fig. 6(a), we
map our problem to be exactly the same as the standard finite
PEPS problem by padding four trivial tensors with single
element 1 at the four corners. Then we treat the top and bottom
rows of tensors as two MPSs, the middle rows of tensors as
MPOs, and apply the MPOs onto the boundary MPSs (see
Appendix A for the MPO-MPS multiplication) until there are

125111-8



BLOCK BELIEF PROPAGATION ALGORITHM FOR ...

PHYSICAL REVIEW B 108, 125111 (2023)

(a) - D=2 (b), e D=3 (€) .o D=4
R ) b
904 Fy = —0.6594424 =31 “‘ Ey = —0.66427 , “ Ey = —0.6687
1 ] \
572 —44 1 1
c —9.24 -4+ bMPS (x = 2D? + 10) <) TN D =) 1
. == bMPS (y = 2D* 4 20) & ﬁ“‘ & |
| —9.4 =3~ blockBP (x = 2D? + 10) I —51 1 I =31 |
& 8 —+- blockBP (y = 20? +20) | M ! & gy
- OCl =
* 6 \ 5P
961 B '. 4 ‘.
-8R % 8 B4 54 5% X | ! 44
—9.81 < =7 - 5 B BB —39 4 5% < T 54 B¢ 54 5 K- KK
5 10 15 20 25 5 15 20 25 5 10 15 20 25
k k k

FIG. 10. Ground state energies of the infinite AFH model as a function of k computed using bMPS and blockBP for (a) D =2, (b) D =3
and (c) D = 4. For all those panels the cyan dashed lines with squares and x are energies computed using bMPS with x = 2D? + 10 and
x = 2D? + 20 respectively, while the green dashed lines with circle and + are energies computed using blockBP with x = 2D? + 10 and

x = 2D? + 20 respectively.

only three rows left, as shown in Fig. 6(b). After that, we
perform tensor contractions from left and right until only the
minimal environment for the two tensors is left, as shown
in Fig. 6(c). Finally, we perform the alternating least-squares
scheme, in which one of the two tensors will be updated at a
time while keeping the other as constant, until the final loss
converges. Overall, our implementation of bMPS update for
each block closely follows the algorithm in Ref. [46].

APPENDIX C: EVALUATION OF REDUCED DENSITY
MATRIX FOR FINITE SYSTEMS

Here we study the quality of the local environments in our
blockBP by computing the two-site RDMs on each horizontal
bond using blockBP and compare them to the RDMs com-
puted using bMPS. The comparison is shown in the form of
a heat map in Fig. 7, where we consider the ground state of
a 21 x 21 transverse Ising model with OBC. The blockBP
RDMs were computed using 7 x 7 blocks. Quantitatively,
what we do is compute the reduced density matrix for the site
in row i and columns j and j + 1 with both methods, i.e.,

PP, and pP*KBF, and compute the trace distance between

can see that for B = 2.5, 3.5, which are away from the critical
value (B, ~ 3.044 [48]), the RDMs computed by these two
methods are very close to each other with an average distance
lower than 1073 for all the bond dimensions D considered,
while for B = 3.0 we getd ~ 1073 on average. This indicates
that bMPS and blockBP lead to quantitative similar results,
especially away from the transition point.

For comparison, in Fig. 8 we used the same setting as in
Fig. 7, and calculated the trace distance between the RDMs
computed using simple-update (or, in other words, the plain
BP algorithm where the message MPS has only one leg) and
the RDMs computed using bMPS. As can be seen from these
heat maps, in these cases, the trace distance is of the order
107!, showing that blockBP environments are far superior

to those of the plain BP or, equivalently, the simple-update
algorithm.

APPENDIX D: CONVERGENCE OF BLOCKBP
FOR FINITE SYSTEMS

In the main text, we benchmarked the ITE algorithm with
the blockBP update against the same algorithm with the bMPS

them, d = Tr(| p}jljffj]f‘lp - p}jlj\ff_fl 1)/2 with |Z| = ~v/ZTZ. We  full update. We considered the AFMH model and looked at
P| 1600 Js) 9
5001 R4 % 10*5 e
/ 14001 ,/ ’
© ’ O ’ © ) 5 g
D=4 / | D=4 Vs 3] xm=D
§ 4501\ g @/ § 1200 y =40 Vs § 10 Y =2D% 4 10 g
z 7 2 /@ 3
& e % 10001 , 2 o
8 400 R g J 8 10%4 J
@ o v 5001 ’ @ ,
= ’ = @/ B @/
350 »° 6001 PR 104 IR
Ve PR -’
< 100.& <
16 24 32 40 16 24 32 40 2 3 4 5 6
X Xm D

FIG. 11. Runtime per ITE sweep of blockBP for finite AFH model with size 14 x 14 against the hyperparameters x (a), x,, (b) and D (c).
We have used a block size of 7 x 7. A single thread of the Intel(R) Core(TM) i7-11850H CPU (2.5 GHz) is used.
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FIG. 12. Runtime per ITE sweep of blockBP for infinite transverse Ising model against the hyperparameters x (a), x. (b), and block size
(c). In (a), (b) we have used a block size of 4 x 4; we have also used D = 3 for all panels. A single thread of the Intel(R) Core(TM) i7-11850H

CPU (2.5 GHz) is used.

the final result of the energy. Here we further demonstrate
that even the evolution of our blockBP update towards the
ground state has a very similar dynamics as bMPS, given
the same parameters and the same initial state. This is due to
the fact that both algorithms use the same Trotterized ITE [60]
and they estimate in a very similar manner the Trotter steps.
Specifically, in Fig. 9 we consider the ITE of a 10 x 10 AFH
model using both bMPS and blockBP update (with block size
5 x 5) with dt = 0.01 and D = 4. For both algorithms, we
took as the initial condition the ground state obtained using
bMPS for D = 3. We can see from the inset that the difference
between bMPS and blockBP is around 107> throughout the
ITE.

APPENDIX E: COMPUTING LOCAL OBSERVABLES
OF INFINITE SYSTEM USING BLOCKBP

In the following, we show the precision of our blockBP
when used for computing local observables of an infinite
system. Concretely, taking the infinite TN ground state com-
puted in Fig. 4 in the main text using blockBP for different

104<

3] 7’
10 g

Xm :D2 7

1024 o2 Ve
X =2D2 4 10 2

time per sweep (s)

1014 e

10°4

t
o g

2 3 1

D

FIG. 13. Runtime for five ITE sweeps of blockBP for infinite
AFH model against D. We have used a block size of 4 x 4. Eight

threads of the Intel(R) Core(TM) i7-11850H CPU (2.5 GHz) are
used.

bond dimensions D, we compared two different ways of
computing its energy. In the first approach, we embedded the
TN with central block of size 2 x 2 into a finite system of
size (2k + 2) x (2k 4+ 2) where the boundaries are randomly
initialized, and then we compute the energy in the 2 x 2 center
using bMPS. Since the the system is infinite, by embedded
we mean that the blocks are repeated to form the system. In
the second approach, we calculated the ground energy using
blockBP with a 2k x 2k block size. In this case, the boundary
of the system is given by the MPS messages, while for bMPS
we have used a random MPS. The results are shown in Fig. 10.
Given the high accuracy of the results, we show both for
blockBP and bMPS the energy minus an offset value of E.
We see that both approaches converge to the fifth digit for
large enough k, but that the blockBP results converge much
faster—already with a small k = 3. Therefore, blockBP can
also be used as an efficient method to accurately compute
local observables in infinite systems. Figure 10 also shows the
ground-state energies computed using a larger x = 2D? 4 20
and, as we can see, they are very close to the energies com-
puted using x = 2D? + 10 (the latter is chosen as the default
throughout this paper).

APPENDIX F: RUNTIME SCALING OF BLOCKBP
AGAINST HYPERPARAMETERS

Here we show more details of the runtime scaling of our
blockBP versus the four hyperparameters, namely, the bond
dimension D of the PEPS, the bond dimension yx used during
bMPS update, the bond dimension y,, used for computing the
MPS messages, and the block size. Specifically, in Fig. 11,
we show the runtime scaling of blockBP for the finite AFH
model against yx, x,, and D with block size fixed to be 7 x 7.
In Fig. 12, we show the runtime scaling of blockBP for the
infinite TI model against x, x,,, and block size with D fixed
to be 3. In Fig. 13, we show the runtime scaling of blockBP
for the infinite AFH model against D, with x and x,, using
their default values as in the main text. From Figs. 11 and 12,
we can see that the runtime scales extremely rapidly with D,
and scales slightly faster than linear against y,, and the block
size, while in comparison the scaling against x is a lot slower
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than x,,. The latter is due to the fact that when computing
messages, we have used several iterations, while during the
bMPS update performed in each block, only two iterations
are required (one horizontal and one vertical). Nevertheless,
as shown in the main text, the default value of x,, = D? could
already result in accurate results in all the cases considered
in this paper. In Fig. 13, we show the runtime scaling of the

infinite AFH model against D, with x and y,, set to their
default values. We note that the runtime scaling of a fast full
update algorithm has been studied in Fig. 13 of Ref. [50],
where we can see that for D < 5 we are faster while forD = 6
we are slower. However, we stress that this comparison is not
exact since the computational resources used for Fig. 13 of
Ref. [50] are not shown in that paper.
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