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GW density matrix for estimation of self-consistent GW total energies in solids
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The GW approximation is a well-established method for calculating ionization potentials and electron
affinities in solids and molecules. For numerous years, obtaining self-consistent GW total energies in solids
has been a challenging objective that is not accomplished yet. However, it was shown recently that the
linearized GW density matrix permits a reliable prediction of the self-consistent GW total energy for molecules
[F. Bruneval, M. Rodríguez-Mayorga, P. Rinke, and M. Dvorak, J. Chem. Theory Comput. 17, 2126 (2021)] for
which self-consistent GW energies are available. Here we implement, test, and benchmark the linearized GW
density matrix for several solids. We focus on the total energy, lattice constant, and bulk modulus obtained from
the GW density matrix and compare our findings to more traditional results obtained within the random-phase
approximation (RPA). We conclude on the improved stability of the total energy obtained from the linearized
GW density matrix with respect to the mean-field starting point. We bring compelling clues that the RPA and the
GW density matrix total energies are certainly close to the self-consistent GW total energy in solids if we use
hybrid functionals with enriched exchange as a starting point.

DOI: 10.1103/PhysRevB.108.125107

I. INTRODUCTION

While a few self-consistent GW (scGW ) calculations for
the band gaps of real solids are available [1–3], scGW total
energies are still not available today, certainly because of their
high computational cost. However, there exist hints that scGW
could be accurate: First, the results on the homogeneous elec-
tron gas are extremely good [4–6]; second, the random-phase
approximation (RPA) which derives from the same family
has been shown to yield total energies capable of describing
the tenuous van der Waals interactions [7–13]. Unfortunately,
scGW calculations are very involved in real solids. That is
why it would be highly desirable to obtain scGW quality
energies without actually performing the cumbersome self-
consistency.

Pursuing the quest for a non-self-consistent approxima-
tion to scGW , a series of studies have been published in the
early 2000s [14–19]. More recently, some of us proposed an
alternative non-self-consistent total energy expression based
on the GW density matrix, labeled γ GW [20,21]. Benchmarks
on small molecules for which scGW calculations are possi-
ble [22,23] confirmed the remarkable properties of the γ GW

total energies: Although it is evaluated non-self-consistently
using a generalized Kohn-Sham (gKS) input, the resulting
total energy remains quite insensitive to the gKS choice and
approximates very well the reference scGW total energies.

In this context, this paper focuses on the evaluation of
total energies in solids. We port to the solid systems the γ GW

total energy with the sensible prospect that it will remain a
good approximation to the scGW total energy. In doing so,
we obtain the correlated density matrix γ GW as a physically
meaningful intermediate object with unique properties due to
correlation.

When considering solid systems several technical ques-
tions have to be addressed. First, the closed formulas obtained
for finite systems [20,24] have to be adapted for numerical
efficiency. Second, the pseudopotentials [25] that are custom-
ary in the plane-wave basis codes are typically designed to be
used in conjunction with standard semilocal approximations
to density-functional theory (DFT). Therefore, it is necessary
to investigate which type of pseudopotential is suitable for
obtaining consistently GW -type total energies.

With this, we will study the performance of the γ GW total
energy for solids. We will compare it to the popular RPA total
energy which may be derived as the GW approximation of the
Klein functional [14,26,27]. As all these calculations are per-
formed as a one-shot procedure, memory about the mean-field
starting point is present. We will particularly investigate this
issue by varying the content of exact exchange α in the hybrid
functional PBEh(α), zero being the standard Perdew-Burke-
Ernzerhof (PBE) functional [28] and 0.25 yielding regular
PBE0 [29]. It is therefore always necessary to specify the
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exact procedure used to obtain a one-shot energy. We do so
here using the @ notation (e.g., RPA@PBE stands for the RPA
total energy evaluated with self-consistent PBE inputs).

The paper is organized as follows: In Sec. II, we recapit-
ulate the theoretical foundation for the GW density matrix
and derive the working equations. In Sec. III, we detail the
technical aspects of the implementation in a plane-wave code
and assess the pseudopotential choice. Section IV shows some
of the unique properties of the GW density matrix, exem-
plified with bulk silicon. In Sec. V, we benchmark the total
energies obtained with the different approximations with a test
set of seven standard covalent semiconductors and one layered
material. Finally, Sec. VI concludes our paper.

II. THEORY AND WORKING FORMULAS

A. Green’s-function-derived density matrix

In the many-body perturbation theory, the central quantity,
namely the one-particle Green’s function G(r, r′, ω), contains
a great deal of information. In particular, by virtue of the
Galistkii-Midgal formula [30], it is sufficient to calculate the
total energy of an electronic system.

Also it straightforwardly yields the density matrix γ (r, r′):

γ (r, r′) = − i

2π

∫ +∞

−∞
dωeiηωG(r, r′, ω), (1)

where η is a vanishing positive real number that enforces
the sensitivity to the occupied manifold of the time-ordered
Green’s function G. Hence, the electronic density can be ob-
tained as the diagonal: ρ(r) = γ (r, r).

Therefore, the Green’s-function methods, such as the GW
approximation, can give access to an approximate density
matrix.

B. Linearized Dyson equation

In the many-body perturbation theory, the overall strategy
is to connect the exact Green’s function G to a known Green’s
function G0. The connection between the two is ensured by
the complicated self-energy �xc that is in charge of all the
correlation effects.

The expression of G0 that is derived from a mean-field ap-
proach [Kohn-Sham (KS), Hartree-Fock (HF), etc.], is simple:

G0(r, r′, ω) = 2
∑

ki

ϕki(r)ϕ∗
ki(r

′)
ω − εki ± iη

, (2)

where ϕki(r) and εki are the mean-field wave functions and
eigenvalue for state i at the k point and the small positive η

ensures the correct location of the poles for a time-ordered
function (above the real axis for occupied states εki < μ and
below the real axis for empty states εki > μ, μ being the
Fermi level). Spin-restricted calculations are assumed here
and the factor 2 accounts for it.

Then the connection from G0 to G is made with the so-
called Dyson equation:

G = G0 + G0(�xc − Vxc)G, (3)

where Vxc is the exchange-correlation operator (possibly in-
cluding nonlocal exchange) and the space and frequency
indices have been omitted for conciseness.

The self-energy �xc is itself a functional of the exact G.
When approximating �xc and G, only a self-consistent solu-
tion ensures the conservation of the electron count [31]. In
particular, for the GW approximation of �xc that is most often
evaluated with a one-shot procedure, the violation of electron
conservation is well documented [18,21,32,33].

In a previous study of ours [21], it was demonstrated an-
alytically and verified numerically that linearizing the Dyson
equation completely cures the problem of electron count con-
servation in the GW approximation. The linearized Dyson
equation (LDE) reads

G = G0 + G0(�xc − Vxc)G0, (4)

where the last G in Eq. (3) had been simply replaced by G0.
The LDE is customary in the context of the Sham-Schüter
equation [34].

This electron-conserving equation is then applied with the
GW approximation to �xc.

C. GW self-energy-based density matrix

The GW approximation [35] is simply sketched here, since
it has been the subject of numerous detailed reviews [36–38].

The screened Coulomb interaction W is defined with a
Dyson-like equation:

W = v + vχ0W, (5)

where χ0 = −2iGG is the non-interacting polarizability and v

is the usual bare Coulomb interaction.
The GW self-energy then reads

�xc = iGW. (6)

It is convenient to decompose the self-energy into pure
exchange and correlation. The exchange part �x is static,
whereas the correlation part carries the frequency dependence
�c(ω). These quantities are routinely obtained with a one-shot
procedure in standard periodic codes [39,40]

Some general properties of the density matrix are detailed
in Appendix A. For instance, it is demonstrated that the den-
sity matrix can be fully characterized with a single k-point
index within the first Brillouin zone, even though it is a func-
tion of two spatial indices.

Now let us focus on the GW density matrix. It is handy to
project into the mean-field orbitals |ki〉, which form a valid
orthogonal basis:

γki j = 〈ki|γ |k j〉

=
∫

drdr′ϕ∗
ki(r)γ (r, r′)ϕk j (r′). (7)

The first term on the right-hand side of Eq. (4) is G0. Let us
insert it in Eq. (1) and project on the orbital basis to obtain the
spin-summed density matrix elements:

γ
gKS
ki j = 2δi jθ (μ − εki ). (8)

This expression has been obtained by closing the contour in
the upper part of the complex plane so that only the poles
located above the real axis have survived.
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A similar approach can be used for the static terms in the
right-hand part of Eq. (4), G0(�x − Vxc)G0:

�γ HF
ki j = 2θ (μ − εki )θ (εk j − μ)

〈ki|�x − Vxc|k j〉
εki − εk j

. (9)

We denote it with a “HF” superscript because this contribution
to the (spin-summed) linearized density matrix is obtained
from a pure exchange self-energy; thus, it vanishes when
the HF approximation is employed to obtain the mean-field
orbitals (i.e., �γ HF = 0 for γ gKS = γ HF).

For the last term in Eq. (4), G0�cG0, the self-energy �c has
a frequency dependence and therefore the calculations cannot
be performed analytically in contrast with the two previous
terms; it is convenient to perform the integration along the
imaginary axis, so as to keep some distance with the poles of
G0 and of �c. Closing the contour, we transform the real-axis
integration of Eq. (1) into

�γ GW
ki j = 1

π

∫ +∞

−∞
dω

〈ki|�c(μ + iω)|k j〉
(μ + iω − εki )(μ + iω − εk j )

. (10)

The complete spin-summed linearized GW density matrix
finally reads

γ GW = γ gKS + �γ HF + �γ GW . (11)

Lastly, the corresponding electronic density is
ρGW (r) = γ GW (r, r).

D. Total energies from the GW density matrix

In previous studies [20,21], we introduced a new total
energy functional:

Eγ GW

total = T [γ GW ] + Vne[ρGW ] + EH [ρGW ]

+ Ex[γ GW ] + Ec[G0] + Vnn, (12)

where the kinetic energy T , the electron-nucleus interaction
Vne, the Hartree energy EH , and the exchange energy Ex are
evaluated with the γ GW density matrix. Klimeš et al. [41] also
used the GW (or RPA) density matrix to improve subparts of
the energy. Just the correlation energy Ec cannot be calculated
with γ GW and is pragmatically obtained from the Galitskii-
Migdal equation [21]:

Ec[G0] = 1

4π

∫ +∞

−∞
dωTr{vχ0(iω) − vχ (iω)}, (13)

where χ = χ0 + χ0vχ is the RPA polarizability.
This one-shot energy expression has the desirable property

that all the input quantities conserve the number of electrons.
Of course, being a one-shot total energy, it keeps a dependence
with respect to the starting point. This will be studied in detail
in Sec. V.

E. RPA total energy

For completeness, we report here without derivation the
RPA expression for the total energy as we will extensively
compare ERPA

total and Eγ GW

total in the following.

The RPA correlation is defined as [42]

�c[G0] = 1

4π

∫ +∞

−∞
dω Tr{vχ0(iω) + ln[1 − vχ0(iω)]}.

(14)

By construction, �c[G0] contains the correlation part of the
kinetic energy. The total one-shot energy expression reads

ERPA
total = T [γ gKS] + Vne[ρgKS] + EH [ρgKS]

+ Ex[γ gKS] + �c[G0] + Vnn. (15)

The one-shot RPA total energy is known to have a no-
ticeable starting point dependence [15,21,43,44]. We will
quantify this in Sec. V in comparison with Eγ GW

total .

III. IMPLEMENTATION AND COMPUTATIONAL DETAILS

The linearized GW density matrix in periodic systems has
not been studied before to the best of our knowledge. It should
be noted though that the linearized GW density matrix appears
as an intermediate quantity in the RPA forces derived by
Ramberger et al. [45].

In this section, we provide a detailed description of our
implementation of γ GW in the ABINIT code [40]. We also high-
light the key technical aspects that are crucial for producing
accurate results.

A. Implementation in a periodic plane-wave approach

ABINIT is a standard plane-wave-based DFT code. The core
electrons are frozen and hidden in a pseudopotential. While
the Kohn-Sham part of ABINIT is able to use the more accu-
rate and smoother projector augmented-wave atomic datasets
[46–48], the extension to GW is very delicate [49,50]. As of
today, the GW part of ABINIT is fully validated only for regular
norm-conserving pseudopotentials [51,52].

The existing implementation in ABINIT provides us with
〈ki|�c(μ + iω)|k j〉 for any value of ω. From this starting
point, we have then implemented a Gauss-Legendre quadra-
ture to perform the integral in Eq. (10). The symmetry relation

〈ki|�c(μ − iω)|k j〉 = 〈k j|�c(μ + iω)|ki〉∗ (16)

is employed to limit the integration from zero to +∞. A grid
with typically 50 to 120 grid points is sufficient to ensure
a very accurate convergence: We monitor the electron count
deviation, which is always kept below 10−3. In the future,
grid design could be optimized to minimize the computational
burden [33,53].

The static term from Eq. (9) has been implemented as
well, for any type of exchange-correlation potential Vxc, in-
cluding those based on hybrid functionals. Note that for a
Hartree-Fock mean-field starting point, the static term �x −
Vxc vanishes. Furthermore, it is clear from Eq. (9) that the
linearized density matrix is limited to systems with a finite
band gap, or else diverging denominators would occur.

The matrix representation of γ GW is obtained on the gKS
states |ki〉 for i � Nb. We then diagonalize it to obtain the
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TABLE I. Energy cutoff for the wave functions (Eϕ
cut, in hartree),

energy cutoff for the plane-wave expansion of the screened Coulomb
interaction W (EW

cut, in hartree), number of bands (Nb) in G0 and
in Eqs. (9) and (10), number of pure imaginary frequencies (NωW )
used for W (iω), and number of frequency points (Nω�

), used for the
quadrature along the imaginary axis in Eq. (10).

Si C SiC zb-BN AlP AlAs Ge h-BN

Eϕ
cut 12 25 50 40 35 35 30 55

EW
cut 8 15 15 15 15 10 10 25

Nb 150 175 175 175 175 175 175 1400
NωW 120 120 120 120 120 120 120 40
Nω�

60 60 60 60 60 60 60

natural orbitals in the gKS basis:

Nb∑
j=1

γki jUk jλ = nkλUkiλ, (17)

where nkλ, the eigenvalues, are the so-called natural occupa-
tions and where Uk jλ, the eigenvector coefficients, form the
natural orbitals.

In other words, the natural orbitals φkλ(r) = 〈r|kλ〉 can be
obtained from the unitary matrix Ukiλ:

φkλ(r) =
Nb∑

i=1

Ukiλϕki(r). (18)

Then all the one-body operator expectation values are read-
ily obtained. For instance, the kinetic energy T is calculated
as

T = 1

Nk

∑
kλ

nkλ〈kλ|T̂ |kλ〉 (19)

= 1

Nk

∑
kλ

nkλ

∑
i j

U ∗
kiλUk jλ〈ki|T̂ |k j〉. (20)

Finally, we would like to emphasize that the formal proof
of the conservation of electron count [21] requires that the
state range in the internal sum of G0 in Eq. (2) is the same as
the one used in the basis expansion in Eq. (7). This restriction
is enforced in all our calculations.

Table I summarizes the numerical parameters used for the
eight crystals considered in this paper. All the calculations
for face-centered cubic crystals reported in this paper use
four shifted k-point grids, as commonly used in ABINIT. The
grid discretization is 4×4×4, which yields 256 k points in
the full Brillouin zone and ten in the irreducible wedge.
The calculation on hexagonal boron nitride (h-BN) uses a
�-centered 12×12×6 k-point grid for exact exchange and a
4×4×2 grid for the rest. These parameters ensure smooth
energy-volume curves and total energies that are converged
within 0.02 hartree (see Supplemental Material [54]). We
evaluate the computational effort to scale as O(N4), similar to
a conventional GW calculation. However, here both the calcu-
lations of W and of � scale as O(N4), whereas in conventional
GW calculations of band structures only the W part does.

FIG. 1. HF total energies as a function of lattice constant with
different codes and pseudopotentials for bulk silicon. The equilib-
rium lattice constant for each calculation is given in the legend.

B. Adequate norm-conserving pseudopotentials

As mentioned in the previous paragraph, our imple-
mentation uses norm-conserving pseudopotentials. In the
preliminary stages of our paper, we concluded that while the
details of the pseudopotential are not critical when studying
band structures they become of the utmost importance when
investigating structural properties.

Norm-conserving pseudopotentials are designed to re-
produce the electronic and energetic properties of a given
mean-field approximation. For instance, using a PBE pseu-
dopotential for a hybrid functional is not advised in prin-
ciple. As no “GW -suitable” pseudopotentials exist, we have
enforced the minimal requirement that the selected pseudopo-
tential be able to reproduce HF structural properties.

In Fig. 1, we show a wide comparison among codes and
techniques for bulk silicon at the HF level of theory. Silicon
is chosen as a typical example. The results for two other
crystals are reported in the Supplemental Material [54] with
identical conclusions. The all-electron (AE) of CRYSTAL [55]
with the accurate basis set designed by Heyd et al. [56] and
the projector augmented-wave (PAW) results of VASP [39]
agree very well. We consider them as the reference, since by
construction the Gaussian basis set used in CRYSTAL describes
all the electrons at once and since in the PAW framework,
though frozen-core, the core-valence interactions are com-
pletely recalculated for each approximation.

Then we turn to the regular PBE pseudopotential obtained
from the PSEUDODOJO suite [57]. This pseudopotential is
highly tested and should be rather transferable as it relies
on Hamann’s ONCVPSP scheme [52] that introduces several
projectors per angular momentum. However, based on Fig. 1,
the HF energy-volume curve departs significantly from the
reference. This error is intrinsic to the pseudopotential be-
cause using it in QUANTUM ESPRESSO [58] gives the exact
same result. In our opinion, the inability of the ONCVPSP

pseudopotentials to reproduce HF energy-volume curves is
not due to Hamann’s scheme itself, but rather due to the prac-
tical choice of large cutoff radii selected in the PSEUDODOJO
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initiative. Generating our own dedicated ONCVPSP pseudopo-
tentials would be possible of course, but would require a
significant effort. Fortunately, alternatives already exist.

In a previous work [13], one of us mitigated this prob-
lem by using pseudopotentials generated for KLI [59],
which devises a local potential that simulates the nonlocal
exact-exchange operator. This improves over the ONCVPSP

pseudopotentials but is not quantitative enough.
Recently, in the quantum Monte Carlo (QMC) community,

there has been an effort to support the design of “correlation
consistent” effective core potentials (ccECPs) [60]. These
norm-conserving pseudopotentials are meant to be used in
combination with correlated methods beyond the usual mean-
field ones. Figure 1 shows that this type of pseudopotential
produces results in close agreement with AE and PAW for HF:
The lattice constants match within 0.1%.

We conclude that the ccECP pseudopotentials are our
preferred norm-conserving pseudopotentials to obtain quan-
titative results.

(i) They have been designed specifically for explicit-
correlation methods and GW belongs to this family.

(ii) They are best to reproduce HF lattice constants.
The main drawback of these pseudopotentials is the high

cutoff energy that is necessary to converge the total energies in
plane waves. In the following, all the reported results employ
ccECP pseudopotentials.

IV. GW DENSITY MATRIX IN CRYSTALLINE SOLIDS

As summarized in Appendix A, the spin-summed natural
occupations nkλ should continuously span the range from 0 to
2 at variance with regular Fermi-Dirac ground-state occupa-
tions fki that are only 0 or 2.

These natural occupations for realistic crystalline solids
can be compared to the momentum distribution function nk
for the homogeneous electron gas in Refs. [36,61], but for
the homogeneous electron gas the momentum k is enough to
uniquely characterize the quantum state. For solids, we need
an additional quantum number λ (similar to a band index).

In Fig. 2, we represent the natural occupations nkλ for a
fixed k point (1/8, 0, 0). This particular k point was selected
as an example: The other k points produce very similar results.
The PBE occupations fki are shown as a reference. Then the
natural occupations for γ HF@PBE, the static part of the den-
sity matrix, are plotted. While their sum precisely equalizes
the number of electrons Ne, the values can exceed 2 and be
below 0. These occupation values violate the constraints of
the exact density matrix. However, after adding the dynamic
correlation, the γ GW @PBE has all its spin-summed natural
occupations between 0 and 2. Four natural orbitals have an
occupation close to 1.8–1.9 and then many more (15 or so)
have a nonvanishing occupation. A PBE mean-field starting
point was chosen to magnify the effect. Starting from HF
would yield perfectly normal natural occupations for γ HF The
overall shape of the occupation is similar to the homogeneous
electron gas result [36,61].

However, one notices that N (k) = ∑
λ nkλ for a given k

slightly deviates from the number of electrons Ne. This in-
triguing observation does not violate an exact constraint. We
only proved mathematically [21] that the sum of the natural

FIG. 2. Spin-summed natural occupations obtained from PBE,
γ HF@PBE, and γ GW @PBE density matrices in bulk silicon for k
point (1/8, 0, 0) in reciprocal lattice vectors. The natural occupations
are ordered by descending values, from 1 to 150, which is Nb, the
dimension of the matrix. The x axis has been cut to show the first
and the last values.

occupation over the whole Brillouin zone∑
k

∑
λ

nkλ = Ne (21)

is valid. Appendix B demonstrates that this variation with k is
possible.

As this observation can be considered surprising when
compared to the usual mean-field occupations fki, it is in-
sightful to monitor the sum N (k) across the Brillouin zone.
In Fig. 3, we report the deviation �N (k) = N (k) − Ne in
a cut plane in the Brillouin zone. The �N (k) function is
interpolated from a refined �-centered 6×6×6 with four shifts

FIG. 3. Electron count deviation �N (k) as a function of the
wave vector k in the first Brillouin zone for bulk silicon. k = k1b1 +
k2b2 + k3b3 is reported in reduced coordinates (bi are the recip-
rocal lattice vectors). The plane k3 = 0 is represented. The isoline
�N (k) = 0 is drawn with a bold black line. Special points � and X
are marked.
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FIG. 4. Total energies for the water molecule in the gas phase (left-hand panel) and crystalline silicon (right-hand panel) as a function of
the gKS starting point. The water results were extracted from a previous study [21]. The silicon QMC value comes from Ref. [64].

k-point grid (864 points in the full Brillouin zone). We use the
Shankland-Koelling-Wood interpolation technique [62] as im-
plemented in ABIPY [40]. The numerical integration of �N (k)
over the whole Brillouin zone yields 4×10−4, which is very
close to the expected zero.

From Fig. 3, we observe an electron transfer from the �

point region to the Brillouin zone edge. The weight transfer is
not large (at most ≈0.01–0.02), but still sizable. The electron
count N (k) is an observable and could be possibly measured
in angle-resolved photoemission spectroscopy [63]. Note that
this electron count transfer is a pure electronic correlation
effect. Any static approximation of the self-energy � would
nullify it.

V. STRUCTURAL PROPERTIES OF CRYSTALLINE
SOLIDS WITHIN THE GW DENSITY MATRIX AND RPA

A. Covalent-bonded crystals

In this section, we analyze the calculation of structural
parameters for crystalline solids using the total energy ex-
pressions introduced in Eqs. (12) and (15). Our main question
is which expression works “best” in the context of one-shot
calculations, i.e., which expression best approximates a hy-
pothetical reference scGW that is not currently available for
crystalline systems. In molecules, where reference scGW cal-
culations were produced [21], the accuracy of the γ GW total
energy was demonstrated.

A way to measure the robustness of a one-shot total energy
expression is to explore its sensitivity to the starting point.
Here we use the PBEh(α) hybrid functional family:

Vxc = α�x + (1 − α)vPBE
x + vPBE

c , (22)

where the parameter α controls the amount of exact-exchange
�x.

Calculations were carried out for seven covalent crystals
(Si, C, SiC, zb-BN, AlP, AlAs, and Ge). In the main text, we
will mostly report silicon results. However, the complete set
of results is made available as Supplemental Material [54].

In Fig. 4, we compare the total energy behavior for
two different systems: Water, a small molecular system,
and crystalline silicon. The results for the water molecule
were extracted from Ref. [21] that was using a different

implementation based on Gaussian basis [65]. The figure re-
ports the total energies for PBEh(α), for Eγ GW

total , for ERPA
total , and

when available for scGW . The overall similarity between the
two panels is striking: RPA is rather sensitive to the starting
gKS, whereas γ GW is much less so. RPA increases with α,
whereas γ GW decreases. RPA and γ GW rejoin for large values
of α.

For water, where the scGW reference exists, the RPA and
γ GW total energies give the best approximation of the full
scGW total energy when they are equal. Owing to the sim-
ilarity between the two panels of Fig. 4, we can reasonably
anticipate that in bulk silicon, the scGW total energy will
be best approximated by γ GW and by RPA with PBEh(0.75),
PBEh(1.00), or HF, however with no formal proof.

If supplied with the scGW Green’s function, all total en-
ergy formulas should match [14,15,19]. The above results
tend to make us think that the noninteracting Green’s function
G0 for PBEh(0.75), PBEh(1.00), or HF is close to the scGW
Green’s function G for both the molecular and the solid-state
systems.

The striking difference between the molecule and the solid
in Fig. 4 is the agreement or the disagreement with respect
to the gKS total energies. While for the molecule the RPA
and the γ GW were much undershooting the total energy with
respect to PBEh(α) (too negative correlation energies), the
match is very good for crystalline silicon. The accurate quan-
tum Monte Carlo approach reports −7.8644 hartree for silicon
[64], whereas γ GW and RPA respectively give −7.8708 and
−7.8692 hartree with the same ccECP pseudopotentials. This
excellent agreement of the absolute total energies reminds us
about the amazingly accurate scGW energies in the homo-
geneous electron gas [4–6] that precisely match the quantum
Monte Carlo values [66].

We conclude with some reasonable confidence that the
scGW total energy in bulk silicon is certainly close to the
gKS, close to Eγ GW

total , and close to RPA@PBEh(1.00). We also
stress that RPA@PBE, which is the most commonly accepted
implementation of RPA functional, underestimates noticeably
the total energy. Our confidence in these results is further
strengthened when considering the results for the other six
crystalline systems reported in the Supplemental Material
[54]. They all support the same conclusion.

125107-6



GW DENSITY MATRIX FOR ESTIMATION OF … PHYSICAL REVIEW B 108, 125107 (2023)

FIG. 5. Energy-lattice constant curves for crystalline silicon for RPA functional (left-hand panel) and γ GW energy functional (central
panel). Equilibrium lattices are summarized in the right-hand panel. The experimental lattice constant is given as a reference.

However if scGW is very accurate for solids and less accu-
rate for finite systems, the atomization energies that measure
the energy gain when forming a bulk crystal as compared to
the isolated atoms are likely to have a low accuracy in scGW .
This should be explored in the future.

Let us now focus on the complete energy versus lattice
constant curves and check the sensitivity to the starting point
not only for the total energy but also for the equilibrium lattice
constant a and for the bulk modulus B.

Figure 5 reports on the same scale the RPA and the γ GW

total energies for different gKS starting points and in the
right-hand panel the equilibrium lattice constant as a function
of the gKS starting point. We can see again that the RPA
total energy in the left-hand panel of Fig. 5 is much more
sensitive to the starting point compared to γ GW total energy in
the central panel. However, when focusing on the equilibrium
lattice constant itself, the sensitivity to the starting point is
much weaker: At most 0.03 bohr.

All panels in Fig. 5 support again the same conclusion: The
RPA and γ GW total energies agree best when using PBEh(α)
with large α or even when using HF. The statements drawn
for silicon perfectly hold for the other six crystalline systems
presented in the Supplemental Material [54].

Finally, we summarize the lattice constants and bulk mod-
uli of the seven covalent crystals that we have studied in
Table II. We focus on two gKS starting points PBEh(0.00)
(i.e., standard PBE) and PBEh(0.75). While for the PBE
starting point the RPA@PBE and γ GW @PBE lattice con-
stants differ by about 0.06 bohr, the RPA@PBEh(0.75) and
γ GW @PBEh(0.75) lattice constants always agree within 0.01
bohr. The same type of conclusion holds for the bulk modulus
B. This is another proof that PBEh(0.75) is a good starting
point to evaluate the different GW -based total energy ex-
pressions. Most probably, the properties a and B evaluated
with RPA@PBEh(0.75) or γ GW @PBEh(0.75) are reliable es-
timates to the scGW result.

In the end, we also compare to experiment. Table II shows
that all the GW -based energy expressions yield structural
properties in excellent agreement with respect to the exper-
iment: A 0.1% deviation for lattice constants and 8% for
bulk moduli. The different expressions and starting points
have a minor influence on this. This conclusion is valid
for the covalent crystals. However, it is worth consider-
ing whether this conclusion still holds for weak van der
Waals interactions, which are one of the attractive features of
RPA.

TABLE II. Lattice constants a (bohr), bulk moduli B (GPa), mean absolute error (MAE), and mean absolute percentage error (MAPE) of
seven covalent crystals obtained with several total energy methods.

Si C SiC zb-BN AlP AlAs Ge MAE MAPE

PBEh(0.00) a 10.407 6.774 8.310 6.861 10.471 10.847 10.947 0.101 1.00
B 88.44 441.76 216.68 380.18 82.72 69.98 62.24 21.961 10.5

RPA@PBEh(0.00) a 10.282 6.815 8.257 6.867 10.308 10.725 10.769 0.011 0.12
B 97.08 477.44 235.25 401.35 96.78 83.57 86.10 12.123 8.7

γ GW @PBEh(0.00) a 10.232 6.713 8.180 6.800 10.287 10.668 10.708 0.011 0.12
B 104.58 420.75 262.57 417.06 101.56 87.73 85.70 11.451 8.3

PBEh(0.75) a 10.260 6.675 8.170 6.728 10.322 10.680 10.682 0.036 0.49
B 111.93 502.28 270.10 461.11 102.44 88.02 87.30 31.026 15.7

RPA@PBEh(0.75) a 10.254 6.759 8.210 6.831 10.301 10.683 10.738 0.012 0.13
B 103.37 438.89 252.60 408.86 99.96 85.94 81.01 10.407 7.8

γ GW @PBEh(0.75) a 10.255 6.748 8.207 6.825 10.301 10.681 10.732 0.010 0.11
B 103.91 436.08 254.39 410.23 100.22 86.59 82.07 11.619 8.4

Expt. a 10.261 6.741 8.213 6.833 10.301 10.675 10.692
B 99 443 225 369-400 86 77 76
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FIG. 6. Energy as a function of the spacing between the layers
for h-BN with different gKS approximations and different starting
points for RPA.

B. Van der Waals bonded layered material

In order to test if the weak van der Waals interactions
would correctly be described by scGW , we analyzed a layered
material, namely the h-BN. RPA@LDA and RPA@PBE were
proven to be able to describe properly the spacing between the
layers [13,67].

The task of evaluating the γ GW for h-BN is beyond our cur-
rent computational capabilities. Indeed, for the weak van der
Waals interactions, the energy scales are so low that extremely
converged calculations are required. Fortunately, based on the
previous discussion, we assume that the scGW total energy is
also well approximated by RPA@PBEh(0.75).

In Fig. 6, we report the energy versus spacing between the
layers. Local-density approximation (LDA) is known to give
the correct spacing thanks to a lucky compensation of errors
[67], whereas PBE that improves the exchange over LDA does
not benefit from this and yields a much too large spacing. Our
RPA@LDA reproduces within 0.25 bohr the earlier estimates
from Refs. [13,67]. This agreement is quite good considering
the computational power difference and considering the fact
that we use newly developed pseudopotentials.

Next, let us comment that the RPA@PBEh(0.75) result (see
Fig. 6) shows our best approximate to scGW . The obtained
lattice spacing is in very good agreement with respect to the
experiment (6.18 versus 6.25 bohrs).

This example shows that tuning the starting point in RPA
does not destroy the quantitative agreement with respect to
the experiment. This interesting conclusion calls for further
studies in the future.

VI. CONCLUSION

The linearized GW density matrix γ GW has been intro-
duced in realistic solid-state systems. We have carefully tested
the norm-conserving pseudopotential approximation and have
concluded that QMC pseudopotentials, such as ccECP [60],

are compulsory in this context for accurately determining
RPA and γ GW lattice constants. On a benchmark of seven
covalent crystals (Si, C, SiC, zb-BN, AlP, AlAs, and Ge), we
have proven numerically that γ GW actually fulfils the exact
constraints: Its natural occupation numbers range from 0 to 2
(when spin is summed) and they sum up to the correct number
of electrons. In addition, the correlated nature of γ GW al-
lows the electron occupancy to reorganize across the Brillouin
zone, in strong contrast with all the mean-field approaches,
where the electron count remains constant in the Brillouin
zone for crystals with a band gap.

The one-shot total energy expression Eγ GW

total has been found
to be superior to the usual RPA total energy expression in
terms of sensitivity to the gKS starting point.

We provide strong evidence to support the assumption that
γ GW -based total energy is a reliable substitute for scGW ,
which remains unachievable at present. As a cheaper alterna-
tive, RPA can also be used, but we advocate applying it on top
of gKS functionals with a large content of the exact exchange,
at least 75%, such as PBEh(0.75) or HF to best approximate
scGW . Our last statement disagrees with the current wisdom
that recommends RPA@PBE based on comparison to experi-
ment.

Our implementation is available in the public version of the
open source code ABINIT [68].
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APPENDIX A: THE UNIT-CELL DENSITY MATRIX
IN THE NATURAL ORBITAL REPRESENTATION

1. The diagonal density matrix γ (r, r′ ) in k

Imposing the Born–von Kármán periodic conditions, we
can write the double Fourier expansion of γ (r, r′) in recipro-
cal space as

γ (r, r′) = 1

Nk�

∑
kk′GG′

ei(k+G)·rγkk′ (G, G′)e−i(k′+G′ )·r′
, (A1)

where Nk is the number of k points and � is the volume of the
unit cell and G and G′ are reciprocal lattice vectors.

By virtue of the translation invariance in the unit cell, the
shift of the two space indices with R = n1a1 + n2a2 + n3a3

(with n1, n2, n3 ∈ Z and a1, a2, and a3 being the primitive
lattice vectors) does not change the density matrix [69]:

γ (r, r′) = γ (r + R, r′ + R). (A2)

When inserting the double Fourier transform, this implies

ei(k−k′ )·R = 1. (A3)
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This condition is fulfilled if and only if (k − k′) belongs to
the reciprocal lattice. And as k and k′ both belong to the first
Brillouin zone, the only possible reciprocal lattice vector the
difference can match is 0.

As a consequence, one can insert the Kronecker sign δkk′

in Eq. (A1)

γ (r, r′) = 1

Nk�

∑
kGG′

ei(k+G)·rγk(G, G′)e−i(k+G′ )·r′
(A4)

and obtain the desired expression that shows that γ is block
diagonal with respect to k.

2. Natural orbitals and occupations

Now for each discrete value of k, one can diagonalize γk:∑
G′

γk(G, G′)ũkλ(G′) = nkλũkλ(G), (A5)

where ũkλ(G) are the eigenvectors and nkλ the eigenvalues,
indexed with λ.

By construction,

γ (r, r′) = γ (r′, r)∗ (A6)

implies

γk(G, G′) = γk(G′, G)∗. (A7)

γk(G, G′) is a Hermitian matrix and thus the nkλ are real
valued and the ũkλ form a unitary matrix

Using this decomposition,

γk(G, G′) =
∑

λ

nkλũkλ(G)ũ∗
kλ(G′). (A8)

Inserting this in Eq. (A4), we obtain

γ (r, r′) = 1

Nk�

∑
kλ

∑
G

ei(k+G)·rũkλ(G)

× nkλ

∑
G′

ũ∗
kλ(G′)e−i(k+G′ )·r′

. (A9)

Let us introduce the natural orbital in real space φkλ(r) that
has a Bloch wave form [70]:

φkλ(r) = 1√
Nk�

∑
G

ei(k+G)·rũkλ(G) (A10)

= 1√
Nk�

eik·rũkλ(r). (A11)

The final expression in real space reads

γ (r, r′) =
∑
kλ

nkλφkλ(r)φ∗
kλ(r′), (A12)

that looks extremely similar to the mean-field (gKS) expres-
sion

γ gKS(r, r′) =
∑

ki

fkiϕki(r)ϕ∗
ki(r

′), (A13)

where fki are the Fermi-Dirac occupations and ϕki(r) the
mean-field wave functions.

However, there are subtle differences that are much more
meaningful.

(1) In gKS DFT, ϕki(r) sums up to the exact electronic den-
sity, whereas the natural orbital sums up to the exact density
and density matrix.

(2) For the ground state, the spin-summed fki are con-
strained to be 0 or 2, whereas the spin-summed nkλ

continuously span the range from 0 to 2 (not proven here).
(3) Since

∫
drγ (r, r) is normalized to the number of

electrons Ne, both fki and nkλ sum up to Ne. However, for
insulators, while

∑
i fki = Ne, for each k individually, no

equivalent exists for the natural occupations nkλ, as we show
in the Appendix B.

APPENDIX B: NONINTEGER N(k) VALUES
FOR INDIVIDUAL k

The noninteger values reported for the electron count,
N (k), are a consequence of the electron correlation effects.
In this Appendix, we gain some insights into this result.

1. The many-electron wave function in crystals

The basis of Bloch waves is complete; therefore,
the real-space N-electron wave function can be writ-
ten as a linear combination of Slater determinants
[(N!)−1/2|ϕkμi(r1) . . . ϕkν j (rN )|] built using Bloch waves:

ϕki(r) = 1√
Nk�

∑
G

eik·ruki(r), (B1)

which are usually the ones obtained from a mean-field
method (like the ones obtained from a gKS DFT calcula-
tion). However, other basis sets can be used to build the
Slater determinants, such as the Bloch waves corresponding
to the natural orbitals. In this representation, the real-space
(spinless) N-electron wave function can be written as a con-
figuration interaction (CI) expansion

�(r1, r2, . . . , rN )

= 1√
N!(

√
Nk�)N

∑
kμ...kν

∑
i∈�kμ

. . .
∑
j∈�kν

Ckμi...kν j

× ei(kμ·r1+...+kν ·rN )ukμi(r1) . . . ukν j (rN ), (B2)

where the sum
∑

kμ...kν
runs over all k points in the first

Brillouin zone, and the Ckμi...kν j are the expansion coefficients
(that are adequately adjusted to ensure that � preserves the
correct symmetries). Let us highlight that in Eq. (B2) the
Hartree product of Bloch’s waves contains waves that belong
to different k points (i.e., � is the many-body wave function
of the supercell).

The Born–von Kármán periodic conditions imposed
to the many-electron wave function [71] state that
�(r1, r2, . . . , rN ) = �(r1 + T, r2 + T, . . . , rN + T) for
T = n1N1a1 + n2N2a2 + n3N3a3 (with Nk = N1N2N3). As a
consequence, ei(kμ+...+kν )·T = eiK·T = 1 and

K = kμ + · · · + kν (B3)

= χ1

N1
b1 + χ2

N2
b2 + χ3

N3
b3, (B4)
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where χn ∈ Z. The many-electron wave functions are eigen-
functions of the many-body translation operator T̂R, i.e.,

T̂R�K(r1, r2, . . . , rN ) = �K(r1 + R, r2 + R, . . . , rN + R)

(B5)

= eiK·R�K(r1, r2, . . . , rN ), (B6)

with eiK·R eigenvalues. Since the many-body Hamiltonian
Ĥ (within the Born-Oppenheimer approximation) commutes
with the T̂R operator [71], the solutions to the many-body
Hamiltonian can be taken associated with a given K value
(i.e., Ĥ�K = E�K). Actually, the many-electron wave func-
tions associated with K + G (with G = χ1b1 + χ2b2 + χ3b3

being a reciprocal lattice vector) also lead to the same eigen-
value eiK·R upon application of the T̂R operator and may
contribute to the CI expansion.

2. The density matrix and the second-order reduced
density matrix in crystals

Let us define the density matrix elements (from the many-
body wave function �) as

γki j = 〈� |̂b†
kib̂k j |�〉 (B7)

and the second-order reduced density matrix (2-RDM) ele-
ments as

�
kτ j,kϑ m
kμi,kν l = 1

2 〈� |̂b†
kμib̂

†
kν l b̂kϑ mb̂kτ j |�〉 (B8)

whose kn values fulfill the condition

kμ + kν − kτ − kϑ + G = 0, (B9)

which ensures the correct translational symmetry of the 2-
RDM, i.e.,

�(r1, r2, r′
1, r′

2) = �(r1 + R, r2 + R, r′
1 + R, r′

2 + R),

(B10)

where �(r1, r2, r′
1, r′

2) is the 2-RDM in space representation
(see for example Refs. [72,73] for more details). The 2-RDM
contains more information about the system than the density
matrix. Indeed, the matrix elements of the density matrix can
be obtained from the partial trace of the 2-RDM:

γki j = 2

N − 1

∑
k′

∑
l∈�k′

�
k j,k′l
ki,k′l , (B11)

where �k′
ν

is the subspace formed by all the one-electron wave
functions sharing the same k′

ν value. For completeness, let
us mention that the matrix formed using the γki j elements is
Hermitian and upon diagonalization produces the occupation
numbers nkλ discussed in Appendix A.

3. The APSG ansatz for crystals

Here we prove in the specific case of an antisymmetrized
product of strongly orthogonal geminals (APSG) ansatz [74]
for the many-electron wave function that electron count trans-
fer can occur across k points due to electronic correlation
effects. If it is true for this subclass of wave functions, then
the statement also holds for the exact wave function.

The APSG ansatz for the many-electron wave function
with spin, where an even number of electrons present in the
system is assumed (as we employed throughout this paper),
reads

�APSG
K (x1, x2, . . . , xN ) = Â

N/2∏
P=1

ψP(x2P−1, x2P ), (B12)

where x = (r, σ ) is the spatial and spin coordinate with σ =
α, β referring to the spin index, Â stands for the antisym-
metrizer responsible for intergeminal permutations of electron
coordinates, and the geminal wave functions ψP(x2P−1, x2P )
are wave functions containing one α and one β electron.
Because of this, the geminal wave function is a two-electron
wave function; the sum of the occupation numbers for each
spin channel must be ∑

[k,i∈�k]∈P

nki = 1 (B13)

with [k, i ∈ �k] ∈ P indicating that the ith Bloch wave be-
longing to the kth k point (i.e., the Bloch wave’s natural
orbital φki) is one of the Bloch waves used in the construction
of the Pth geminal. The Pth geminal wave function written in
terms of the natural orbital Bloch waves reads as

ψP(x2P−1, x2P )

= 2−1/2
∑

[k,i∈�k]∈P

cki[φki(r2P−1)α2P−1φ
∗
ki(r2P )β2P

− φki(r2P )α2Pφ∗
ki(r2P−1)β2P−1], (B14)

where the time-reversal symmetry is being employed to relate
the degenerated Bloch waves containing electrons with oppo-
site spin [75,76] forming a Kramers pair (i.e., φki and φ∗

ki form
a Kramers pair). Let us remark that the presence of complex-
conjugated Bloch waves (natural orbitals) is related to states
filled by β spin electrons; this choice is completely arbitrary.
Also, the time-reversal symmetry imposed on the many-
electron wave function leads to �K=0 for spin-compensated
systems.

Since the {ψP} geminal wave functions are built with
the strong orthonormality requirement, i.e., the condition
that ∀P �=Q

∫
dx2ψP(x1, x2)ψQ(x′

1, x2) = δPQ, then the Bloch
waves’ natural orbitals are present in only one geminal wave
function. When all the ψP are built containing only one
Kramers pair as

ψP(x2P−1, x2P ) = 2−1/2[φki(r2P−1)α2P−1φ
∗
ki(r2P )β2P

− φki(r2P )α2Pφ∗
ki(r2P−1)β2P−1], (B15)

the many-body wave function (�K) defined in Eq. (B12) cor-
responds to a single Slater determinant; thus, the Hartree-Fock
approximation is recovered, where the natural orbital basis
and the so-called canonical orbitals (the mean-field ones) co-
incide.

The structure of the APSG wave function allows us to
express the total energy in terms of the natural orbitals, the
occupation numbers, and some undetermined phases. Then,
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the total APSG energy takes the following form:

EAPSG
[{

fkμi
}
,
{
nkμi

}
,
{
φkμi

}]
= 2

∑
kμ

∑
i∈�kμ

nkμi〈kμi|̂h|kμi〉

+
N/2∑

P

∑
[kμ,i∈�kμ ]
[kν , j∈�kν ]

∈P

ζkμiζkν j
√

nkμinkν j〈kμikν j|kν jkμi〉

+
N/2∑
P �=Q

∑
[kμ,i∈�kμ ]∈P
[kν , j∈�kν ]∈Q

nkμinkν j (2〈kμikν j|kμikν j〉

− 〈kμikν j|kν jkμi〉), (B16)

where we have employed the known condition for APSG
wave functions that allows us to express the CI coefficients in
terms of occupation numbers (c2

ki = nki or cki = ζki
√

nki), the
phases ζ 2

kμi = 1, ĥ refers to all one-body operators of the elec-
tronic Hamiltonian (i.e., the kinetic energy and the interaction
with the external potential), and 〈kμikν j|kτ kkϑ l〉 are the usual
two-electron integrals. Notice that the energy minimization
procedure implies optimization of the occupation numbers,
natural orbitals, and phases. Since this wave function can be
entirely written in terms of the natural orbitals and occupation
numbers, it has been widely used in the context of reduced
density matrix functional theory to propose energy functionals
[77–85].

The energy contribution in the second line of Eq. (B16)
is coming from the geminal wave functions and describes in-
trageminal interactions (i.e., the ones among the two electrons
belonging to the geminal wave function). On the other hand,
energy contribution in the third line of Eq. (B16) describes
intergeminal interactions, which are taken at the mean-field
level (i.e., as Hartree-Fock interactions). Also, let us high-
light that imposing the correct translation symmetry to �APSG

K
automatically enforces the correct symmetry in the 2-RDM
elements, making the 2-RDM elements fulfill the condition
presented in Eq. (B9).

Since the natural orbitals belonging to different �k sub-
spaces (e.g., k and k′) can be employed in the construction
of the geminal wave functions [see Eq. (B14)] the constraint
given by Eq. (B9) takes the following form for the geminal’s
wave function:

k′ − k′ − k + k = 0 = G, (B17)

which ensures the correct translation symmetry in �APSG
K ,

the 2-RDM matrix elements, and the density matrix. Notice
that the complex conjugation associated with the time-reversal
symmetry of the Kramers pairs was employed.

The occupation numbers of the natural orbitals that belong
to the geminal are optimized under the constraint given in
Eq. (B13) during the energy minimization procedure (recall-
ing that the CI coefficients can be written as cki = ζki

√
nki for

the �APSG
K ansatz). Hence, the coupling of natural orbitals be-

longing to different k points is allowed; thus, a reorganization
of electrons among k points can take place during the energy
minimization procedure. Moreover, it is known [86] that the

occupation numbers are not likely to become zero; then, the
reorganization of electrons among k points is not forbidden.

In summary, the �APSG
K ansatz is a valid approximation to

the many-electron wave function that permits us to illustrate
the reasons leading to the reorganization of electrons among
k points. Obviously, a more general valid CI expansion ansatz
(or the exact full-CI expansion) could also lead to a reorgani-
zation of the electrons among k points since the �APSG

K ansatz
is a particular case of the exact �K, where the electron pairs
do not interact. Then, let us conclude that the reorganization
of electrons among k points that lead to noninteger Ne values
for each k value is purely a consequence of the electronic cor-
relation effects. In this paper, the electronic correlation effects
are captured with the γ GW approximation, which produces the
reorganization of electrons among k points. And, this leads to
the noninteger Ne values obtained for each k point that were
used to compute the �N (k) values presented in Fig. 3.

In the next section, we present an example based on the Si
crystal where the reorganization of electrons among k points
is allowed using a �APSG

K ansatz.

4. Example of an allowed electronic density reorganization
among the k points in the Si crystal

For a working example, let us take the Si crystal computed
excluding all the core states (i.e., using a pseudopotential and
retaining only eight electrons per unit cell). At the Hartree-
Fock (or gKS DFT) level, eight states forming four Kramers
pairs are occupied for each k-point value. From the band
structure, it is easy to recognize that the highest (in terms of
energy) occupied state with an α electron is localized at the
� point [k = (0, 0, 0) = k�]. On the other hand, the lowest
(in terms of energy) unoccupied state for the electrons with α

spin belongs to the X point [k = (0.5, 0.5, 0) = kX ]. Let us
label these states as ϕk�4 and ϕkX 5, respectively. The energy
difference between the ϕk4 and ϕk5 states is small (the experi-
mental value is approximately 1 eV), which leads to the small
indirect band gap obtained for this system.

In the following, let us organize in ascending order in terms
of energy all the mean-field Bloch waves for the whole system
(i.e., of the supercell). And, as it is usually done in the search
for the optimal �APSG

K=0 , let us write the initial guess for the
APSG ansatz in terms of the mean-field Bloch waves. But, let
us search for a particular �APSG

K ansatz where all the gemi-
nal wave functions contain only one Kramers pair (i.e., are
treated at the Hartree-Fock level) except for the last geminal
[the P = N/2 in (B14)] that is built coupling the Bloch waves
ϕk�4 and ϕkX 5, i.e.,

ψN/2(xN−1, xN ) = 2−1/2[ck�4(ϕk�4(rN−1)αN−1ϕ
∗
k�4(rN )βN

+ ϕk�4(rN )αNϕ∗
k�4(rN−1)βN−1)

+ ckX 5(ϕkX 5(rN−1)αN−1ϕ
∗
kX 5(rN )βN

+ ϕkX 5(rN )αNϕ∗
kX 5(rN−1)βN−1)], (B18)

with ck�4 = ζk�4
√

nk�4 and ckX 5 = ζkX 5
√

nkX 5 being varia-
tional parameters subject to the condition nk�4 + nkX 5 = 1 [to
fulfill the requirement presented in Eq. (B13)]. This type of
geminal approach, where only two states (four considering
spin) are present in the geminal wave function, is known
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as a perfect pairing approach. Next, let us assume that the
mean-field Bloch waves ϕk�4 and ϕkX 5 coincide with the op-
timal natural orbitals in order to skip the orbital optimization
procedure.

Next, let us focus on the energy contribution arising from
the N/2 geminal to the second term in the right-hand side of
the APSG energy [see Eq. (B16)]:

nk�4〈k�4k�4|k�4k�4〉 + nkX 5〈kX 5kX 5|kX 5kX 5〉
+ 2ζk�4ζkX 5

√
nk�4nkX 5〈k�4kX 5|kX 5k�4〉. (B19)

We set the usual approximation for (fixing) the phases (i.e.,
ζk�4ζkX 5 = −1 [77,78,80,81]) for the interaction among the
states above and below the Fermi level and allow all two-
electron integrals to be equal (which can occur in the extreme
case when degenerated states are involved). The occupa-
tion numbers that would minimize the energy contribution
are nk�4 = nkX 5 = 1/2, illustrating that a reorganization of
electrons occurs among the � and X k points. In the Si crystal,
the mean-field Bloch waves are not completely degenerate in
terms of energy and do not correspond to the optimal natural

orbitals; then, the actual optimal occupation numbers differ
from 1/2. But, they also differ from the initial values at the
mean-field level, where nk�4 = 1 and nkX 5 = 0. Moreover,
beyond the perfect pairing approach, the coupling of states to
form a geminal wave function can include states belonging to
other k points. Since the geminal wave functions are built with
states for the α and the β electron; the state for the α electrons
is associated with a k′′ k point while the state for the β is
related to a −k′′ k point. The Hartree product in Eq. (B14)
conserves the K = k′′ − k′′ = 0 value, which could lead to
further reorganization of electrons among different k points
beyond the perfect pairing approach. Thus, for example, the
coupling of states belonging to �, X , �, etc., is allowed in
the Si crystal. Actually, the coupling of all k-point values
in the first Brillouin zone is valid to build geminal wave
functions.

Finally, let us remark that this example is based on a
valid approximation to the many-electron wave function (i.e.,
a �APSG

K ansatz), where we illustrate that the reorganization
of electrons among k points is purely a consequence of the
electronic correlation effects.
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