
PHYSICAL REVIEW B 108, 125106 (2023)

Scaling theory of intrinsic Kondo and Hund’s rule interactions in magic-angle
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Motivated by the recent studies of intrinsic local moments and Kondo-driven phases in magic-angle twisted
bilayer graphene, we investigate the renormalization of Kondo coupling (JK ) and the competing Hund’s rule
interaction (J) in the low-energy limit. Specifically, we consider a surrogate single-impurity generalized Kondo
model and employ the poor man’s scaling approach. The scale dependent JK and J are derived analytically within
the one-loop poor man’s scaling approach, and the Kondo temperature (TK ) and the characteristic Hund’s rule
coupling (J∗, defined by the renormalized value of J at some small finite-energy scale) are estimated over a wide
range of filling factors. We find that TK depends strongly on the filling factors as well as the value of JK . Slightly
doping away from integer fillings and/or increasing JK may substantially enhance TK in the parameter regime
relevant to experiments. J∗ is always reduced from the bare value of J , but the filling-factor dependence is not
as significant as it is for TK . Our results suggest that it is essential to incorporate the renormalization of JK and
J in the many-body calculations, and Kondo screening should occur for a wide range of fractional fillings in
magic-angle twisted bilayer graphene, implying the existence of Kondo-driven correlated metallic phases. We
also point out that the observation of distinct phases at integer fillings in different samples may be due to the
variation of JK in addition to disorder and strain in the experiments.
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I. INTRODUCTION

Studying moiré systems has become one of the central
themes in condensed matter physics since the discovery of
interaction-driven phases and superconductivity in magic-
angle twisted bilayer graphene (MATBG) [1,2]. Notably, the
ability to tune the bandwidth in MATBG motivates numer-
ous experiments aiming for correlation-induced phenomena
[1–17]. While it is generally believed that interaction is the
key to understanding the rich phases in MATBG [18–57], a
unified understanding encompassing all aspects is still miss-
ing. An outstanding problem from the theoretical perspective
is the obstruction due to the C2zT symmetry preserving fragile
topological minibands [58–60], which suggests the absence
of a lattice description for the two minibands of MATBG.
However, studying strongly correlated phenomena typically
requires a well-defined lattice description. (In fact, strongly
correlated phenomena are essentially a synonym for the
physics of electron-electron interactions on a background lat-
tice, as exemplified by, e.g., the paradigmatic Mott-Hubbard
model.) Thus, it is desirable to derive an effective theory
naturally compatible with the strong correlations, such as
incorporating Hubbard interaction in the topological band pic-
ture.

Recently, Song and Bernevig proposed a topological
heavy-fermion approach (THF) for magic-angle twisted bi-
layer graphene (MATBG) [61]. The idea is to reconstruct
several low-energy bands of the Bistrizer-MacDonald (BM)
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model [62] by coupling a lattice of localized “heavy” f
fermions (akin to the zeroth pseudo-Landau levels at AA
stacking registries [63,64]) and bands of topological “itinerant
conduction band” c fermions. The THF approach can over-
come the topological obstruction in the low-energy minibands
and allows for a reliable lattice model description [61,65],
thus providing a unified strongly correlated description for
MATBG. Within the THF formalism, the interacting MATBG
Hamiltonian can be viewed as a generalized periodic Ander-
son model along with competing interactions [66,67], and
the possibility of Kondo-driven and local-moment phases are
explored in MATBG [66–70]. The THF ideas have been gen-
eralized to other moiré graphene systems [64,71] and MATBG
with a magnetic field [72].

Among various possible strongly correlated scenarios, it
is natural to investigate whether Kondo correlation is rele-
vant to MATBG [66–70,73,74]. Using the THF formalism,
a Kondo lattice description for MATBG can be derived
straightforwardly in the local-moment regime [66–69]. Re-
markably, hybridization between the SU(8) local moments
and itinerant c fermions can realize a correlated topological
(semi)metal within the Read-Newns mean-field approxima-
tion [66]. While Ref. [66] proposes a potential Kondo-driven
correlated topological semimetal phase at the charge neu-
trality point (CNP), several works suggest a correlated
insulating state at ν = 0 [68,69]. Aside from the possible
existence of various Kondo-driven phases, the local mo-
ments provide a natural explanation for the Pomeranchuk
effect [67,69].

In this work, we study the Kondo temperature and the
renormalized Hund’s rule interaction in MATBG using the
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THF formalism combined with the poor man’s scaling ap-
proach [75]. Our goal is to provide a simple semiquantitative
understanding of the filling-dependent Kondo correlation and
the competing interaction in MATBG, which has not been
investigated systematically. We incorporate the essential in-
teraction effects in the minimal THF model and construct a
surrogate single-impurity model incorporating the key fea-
tures of the original Kondo lattice problem. We then derive
analytical one-loop poor man’s scaling flows for the Kondo
coupling (JK ) and the Hund’s rule interaction (J). Using the
analytical flow equations, we obtain the Kondo temperature
(TK ) and the characteristic Hund’s rule interaction (J∗, de-
fined by the renormalized J at some small finite energy) as
functions of filling factors associated with MATBG. While
TK may be parametrically small near the integer fillings,
doping slightly away from the integer filling can substan-
tially enhance TK . We also find that TK is exponentially
sensitive to the value of JK for the parameter regime of in-
terest. Thus, TK can be significantly boosted with a slightly
larger JK . Meanwhile, J∗ is always reduced from the bare
value of J , but the filling-factor dependence for J∗ is less
significant than that for TK . Our results indicate the impor-
tance of incorporating renormalization of JK and J in the
many-body calculations and suggest Kondo-driven correlated
metals for a wide range of fractional fillings. In addition,
the existence of Kondo-driven correlated (semi)metal phases
of MATBG is very sensitive to the interaction strength near
integer fillings. As such, the observation of distinct phases
at integer fillings (e.g., insulator versus semimetal at the
CNP) in different samples may very well be due to the
variation of JK in addition to disorder and strain in the ex-
periments.

The rest of the paper is organized as follows: In Sec. II,
we review the THF model and construct a surrogate single-
impurity model for scaling calculations. Then, we derive the
analytical poor man’s scaling flows at the one-loop level
in Sec. III. The analytical results with different parame-
ters are analyzed systematically in Sec. IV. In Sec. V, we
discuss the implications of our results and possible gener-
alization. Many important technical details are provided in
the Appendixes. In Appendix A 1, we provide the analytical
expressions of the c-fermion band structures, wave functions,
density of states, and hybridization functions. We do the same
in Appendix A 2 except that the dynamical mass term is incor-
porated. The derivations of T -matrix contributions are given
in Appendix B. In Appendix C, the flows of impurity potential
scattering terms are summarized. We also discuss the poor
man’s scaling approach for an impurity Anderson model in
Appendix D.

II. MODEL

The low-energy minibands of the BM model [62] for
MATBG can be reconstructed through the THF model [61],
which describes a triangular lattice of localized f fermions
coupled to dispersing topological c-fermion bands. This refor-
mulation provides a systematic way of constructing a lattice
model in MATBG, which is crucial for studying physics
driven by strong correlation. We first review the THF model
and then introduce a surrogate single-impurity model, which

can be used for studying the scaling properties of Kondo
coupling and Hund’s rule interaction.

A. Topological heavy-fermion model

In the following, we review the THF model [61] pro-
posed by Song and Bernevig in order to provide an essential
background for our work. The main idea is to reconstruct
the low-energy MATBG bands into hybridization between
localized orbitals and delocalized topological bands. We also
discuss the expression of the projected Coulomb interaction
in the THF model.

First, the localized states ( f fermions) have the px ± ipy-
like Wannier orbitals [61] and are associated with the zeroth
pseudo-Landau levels at AA registries [63,64]. These f -
fermion orbitals form a triangular lattice with a lattice constant
aM , described by an exactly flat band

Ĥ0, f = −μ f

∑
R

∑
α,η,s

f †
R,α,η,s fR,α,η,s, (1)

where μ f is the chemical potential of the f fermions, and
fR,α,η,s is the f -fermion annihilation operator with valley η,
spin s, orbital α (α = 1, 2), and position R.

Second, the delocalized topological bands (c fermions) are
described by a four-orbital k · p Hamiltonian given by

Ĥ0,c =
∑

η,s,a,a′

∑
q

c†
q,a,η,s

[
h(η)

aa′ (q) − μcδaa′
]
cq,a′,η,s, (2)

where ĥ(η)(q) is a 4 × 4 matrix, μc is the chemical poten-
tial of the c fermion, cq,a,η,s is the c-fermion annihilation
operator with valley η, spin s, orbital a (a = 1, 2, 3, 4), and
wave vector q. Note the c fermion has a cutoff set by the
microscopic graphene lattice constant instead of aM . Thus, q
is not restricted by the first moiré Brillouin zone defined by
the triangular superlattice.

Finally, the c and f fermions are coupled through a hy-
bridization term given by [61]

Ĥ0,c f = 1√
Ns

∑
R

∑
η,s,α,a

∑
q

[
V (η)

αa (q)eiq·R f †
R,α,η,scq,a,η,s + H.c.

]
,

(3)

where Ns is the number of sites in the moiré triangular lattice,
and V (η)

αa (q) is a 2 × 4 hybridization matrix.
The matrices ĥ(η) and V̂ (η) are expressed by

ĥ(η)(q) =
[

0̂2×2 v∗(ηqxσ̂0 + iqyσ̂z )
v∗(ηqxσ̂0 − iqyσ̂z ) Mσ̂x

]
, (4)

V̂ (η)(q) = e− |q|2λ2

2 [γ σ̂0 + v′
∗(ηqxσ̂x + qyσ̂y), 0̂2×2]. (5)

In the above expressions, σ̂0 and σ̂μ represent the 2 × 2 iden-
tity operator and μ component of Pauli matrix, respectively,
v∗ = −4.303 eV Å, M = 3.697 meV, γ = −24.75 meV, v′

∗ =
1.622 eV Å, λ = 0.3375aM , and aM = 134.24 Å [61]. The
parameters correspond to w0/w1 = 0.8, w1 = 110 meV, and

θ = 1.05◦ in the BM model [61]. The form factor e− |q|2λ2

2 in
V̂ (η) is due to the finite width of the localized f orbitals, which
suppresses the contributions of large momenta.

In addition to the single-particle bands, the THF model
also contains interactions. The Coulomb interaction can be
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projected into the THF basis, and ĤI = ĤU + ĤV + ĤW + ĤJ ,
where [61]

ĤU = U

2

∑
R

: n̂ f ,R :: n̂ f ,R :, (6)

ĤV = 1

2

∫
r,r′

: ρ̂c(r) : V (r − r′) : ρ̂c(r′) :, (7)

ĤW = �0

∑
R,a

Wa : n̂ f ,R :: ρ̂c,a(R) :, (8)

ĤJ = − J

Ns

∑
η,α,s1,s2

∑
R

∑
q,q′

e−i(q′−q)·Re− λ2 (|q|2+|q′ |2 )
2

×
[

: f †
R,α,η,s1

fR,α,η,s2 :: c†
q′,α+2,η,s2

cq,α+2,η,s1 :
− f †

R,ᾱ,−η,s1
fR,α,η,s2 c†

q′,α+2,η,s2
cq,ᾱ+2,−η,s1

]
. (9)

In the above expressions, : Â : denotes the normal order of
Â, �0 is the area of a moiré unit cell, n̂ f ,R denotes the local
number of f fermions, ρ̂c,a(r) denotes the local density of
c fermions with orbital a, ρ̂c(r) = ∑

a ρ̂c,a(r), 1̄ = 2, and
2̄ = 1. The normal order is explicitly given by : Â :≡ A −
〈G|A|G〉, where

〈G|c†
q,a,η,scq,a′,η′,s′ |G〉 = 1

2δq,q′δa,a′δη,η′δs,s′ , (10a)

〈G| f †
R,α,η,s fR,α′,η′,s′ |G〉 = 1

2δR,R′δα,α′δη,η′δs,s′ , (10b)

〈G| f †
R,α,η,scq,a′,η′,s′ |G〉 = 0. (10c)

In Ref. [61], the coupling constants are estimated as fol-
lows: U = 57.95 meV, W1,2 = 44.03 meV, W3,4 = 50.2 meV,
and J = 16.38 meV. Since U2 	 U , we ignore the U2 term
completely. We also note that the values of interaction terms
are extracted with w0/w1 = 0.8, w1 = 110 meV, and θ =
1.05◦ in the BM model [61].

Now, we discuss the roles of the interaction terms. First,
the ĤU term denotes the onsite density-density interaction
among f fermions. We ignore the nearest-neighbor U2 term as
U2/U ≈ 0.04 	 1 [61]. The ĤV term describes the Coulomb
interaction between c fermions. The Hartree approximation
of HV gives a correction to μc [61,68], and the c-fermion
band velocity may be slightly renormalized by the ĤV term.
However, the interaction effect of ĤV is unlikely to induce
a phase transition in c fermions for the parameter regime of
interest. The ĤW term incorporates the density-density inter-
action between c and f fermions. When the number of f
fermions per site is frozen to Nf , the density-density inter-
action is reduced to a bilinear term in c fermions, ĤW →
�0(Nf − 4)

∑
R,a Wa : ρ̂c,a(R) :. Since W1 = W2 < W3 = W4,

ĤW with fixed Nf per site can be viewed as a chemical po-
tential term (which is absorbed in μc) and a dynamical mass
term ∝(Nf − 4)(W3 − W1) in the c-fermion bands [69]. We
will discuss the dynamical mass term later. Lastly, the ĤJ term
is crucial for correlated insulating states in the Hartree-Fock
calculations [61], and ĤJ can be viewed as a U(4) ferromag-
netic Kondo coupling.

Before moving forward, we comment on the values of μ f

and μc. In the single-particle problem, one should consider
μ f = μc. However, in the presence of strong correlation, the
values of μ f and μc are renormalized due to the ĤU , ĤV , and
ĤW terms. In the Kondo-driven correlated metals, μ f and μc

FIG. 1. Band structures of c fermions. (a) Single-particle bands
described by Eq. (2). (b) c-fermion bands incorporating the dynami-
cal mass contribution for Nf < 4 described by Eq. (11). M± = M ±
W̄ . The Nf > 4 case can be obtained by performing a particle-hole
transformation.

are determined by self-consistent equations for given values of
ν f and νc, the filling factors of f and c fermions, respectively.
Thus, we ignore all the contributions to μ f and μc but focus
on the filling factors ν f = 4 − Nf and νc. As such, we ignore
the contribution of ĤV completely, and we only retain the
dynamical mass contribution in ĤW , which will be discussed
later.

With all the ingredients and approximations mentioned
above, the THF model can be reduced to a generalized pe-
riodic Anderson model ĤPAM = Ĥ0, f + Ĥ0,c + Ĥ0,c f + ĤU +
ĤJ [given by Eqs. (1), (2), (6), and (9)]. When Nf is frozen
and Nf = 4, we consider a dynamical “mass” term added to
Ĥ0,c such that

Ĥ0,c →
∑

η,s,a,a′

∑
q

c†
q,a,η,s

[
h(η)

aa′ (q) + Waa′ − μcδaa′
]
cq,a′,η,s,

(11)

where the dynamical mass term

Ŵ =
[

0̂2×2 0̂2×2

0̂2×2 −W̄ 1̂2×2

]
, (12)

and W̄ = −(Nf − 4)(W3 − W1). The definition of W̄ such that
W̄ > 0 for Nf < 4. We note that TrŴ = 0, suggesting that
Ŵ contains a finite chemical potential shift. This choice of
Ŵ here is convenient for our calculations. Using a different
choice of Ŵ (along with a correspondingly modified μc)
gives the same results. In this work, we include the Ŵ term
and consider only the local-moment regime. We defer the
complete treatment of ĤW (incorporating valence fluctuation)
to future work. The band structures are summarized in Fig. 1.

B. Single-impurity model

At sufficiently high temperatures, we can treat the sys-
tem as decoupled impurities of f sites hybridized with the
c-fermion band. In such a limit, we can reduce the problem
to a surrogate single-impurity model, a proxy of the original
lattice model, and apply the well-established poor man’s scal-
ing approach [75–77].
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The surrogate impurity model is given by ĤAnd = Ĥc,0 +
Ĥimp, f + Ĥimp,c f , where Ĥc is given by Eq. (2),

Ĥimp, f = − μ f n̂ f + U

2
(n̂ f − 4)2, (13)

Ĥimp,c f = 1√
Ns

∑
η,s,α,a

∑
q

[
V (η)

αa (q) f †
α,η,scq,a,η,s + H.c.

]
, (14)

Ĥimp,J = − J

Ns

∑
η,α,s1,s2

∑
q,q′

e− λ2 (|q|2+|q′ |2 )
2 (15)

×
[

: f †
α,η,s1

fα,η,s2 :: c†
q′,α+2,η,s2

cq,α+2,η,s1 :
− f †

ᾱ,−η,s1
fα,η,s2 c†

q′,α+2,η,s2
cq,ᾱ+2,−η,s1

]
. (16)

We consider the impurity at R = 0 without loss of generality
and suppress all the position indices.

The impurity model in the decoupled limit (i.e., absence of
Ĥimp,c f ) can be solved exactly. The many-body energy level
with n fermions (n = 0, 1, . . . , 8) is given by

En = −μ f n + U

2
(n − 4)2. (17)

The energy differences between nearby energy levels are as
follows:

En−1 − En = U
(

9
2 − n

) + μ f , (18)

En+1 − En = U
(
n − 7

2

) − μ f . (19)

For a nondegenerate ground state with Nf fermions, we derive

Nf − 9
2 < μ f /U < Nf − 7

2 . (20)

When μ f /U = n − 7
2 with an integer n = 1 − 7, En and En+1

become the degenerate ground-state levels.
In the presence of Ĥimp,c f , the charge fluctuations can

renormalize the energy levels and result in a rich low-
temperature phase diagram. In particular, one can derive the
Kondo coupling via the Schrieffer-Wolf transformation pro-
vided that the ground state has exactly Nf fermions (Nf =
1, 2, . . . , 7) and U � |γ |. The Kondo impurity Hamiltonian
is given by

Ĥimp,K = JK

Nsγ 2

∑
α,η,a,s

α′,η′,a′,s′

∑
q,q′

[
V (η′ )

α′a′ (q′)
]∗

V (η)
αa (q)

× : f †
α,η,s fα′,η′,s′ :: c†

q′,a′,η′,s′cq,a,η,s : P̂Nf , (21)

where P̂Nf is the projection operator onto the subspace with
exactly Nf localized f fermions per site. The value of JK is
determined by

JK = γ 2

(
1

ENf +1 − ENf

+ 1

ENf −1 − ENf

)
. (22)

When μ f = (Nf − 4)U , we obtain JK = 4γ 2/U [66].
In addition, a potential scattering term also arises during

the Schrieffer-Wolf transformation,

Ĥimp,δ = δ

Nsγ 2

∑
α,η,a,a′,s

∑
q,q′

∑
R

[
V (η)

αa′ (q′)
]∗

V (η)
αa (q)

× c†
q′,a′,η,scq,a,η,sP̂Nf , (23)

where

δ = γ 2

2

(
− 1

ENf +1 − ENf

+ 1

ENf −1 − ENf

)
. (24)

Since Ĥimp,δ contains only scatterings of a = 1, 2, it induces
an imbalance of the local chemical potentials among c-
fermion orbitals, similar to the role of ĤW interaction locally.

In this work, we ignore the potential scattering terms and
concentrate only on Kondo coupling and Hund’s rule interac-
tion. The potential impact due to Ĥimp,δ will be discussed in
Sec. V. Thus, the minimal surrogate impurity Kondo model
is given by ĤKondo = Ĥ0,c + Ĥimp,K + Ĥimp,J . We note that
Ĥimp,K and Ĥimp,J have distinct matrix elements and act on
different orbital sectors of c fermions. Therefore, careful treat-
ments for both Ĥimp,K and Ĥimp,J are required.

III. POOR MAN’S SCALING

In this section, we apply the poor man’s scaling [75–79] to
the single-impurity Kondo model ĤKondo = Ĥ0,c + Ĥimp,K +
Ĥimp,J and study the scaling flows of JK and J . The Kondo
model here is derived when the number of localized f
fermions is frozen, i.e., a well-defined local moment is
formed. In principle, one can determine local-moment and
mixed-valence regimes by analyzing the impurity Anderson
model. (See Appendix D for a discussion on formalism.) In
this work, as already mentioned, we concentrate only on the
local-moment regime and investigate the Kondo coupling and
Hund’s rule interaction.

The poor man’s scaling approach aims to provide a sys-
tematic understanding of the low-temperature physics with
kBT 	 U/2. The idea is to integrate out the high-energy de-
grees of freedom and incorporate the renormalization effect
in a progressive perturbative fashion. To begin, we consider
the itinerant c fermions with energy E ∈ [−D, D], and then
the energy intervals [−D,−D + δD] and [D − δD, D] are
integrated out for an infinitesimal δD. Note that the largest D
should be less than U/2 for the validity of a well-defined local
moment. Through the interactions between c fermions and the
local moment, the physical parameters are renormalized us-
ing the second-order perturbation theory. Unlike the standard
renormalization group approach, the cutoff is not rescaled
back to D after each iteration in the poor man’s scaling ap-
proach. Nevertheless, we can still derive flow equations for
several physical quantities as functions of the running cutoff

FIG. 2. The one-loop diagram of poor man’s scaling for Kondo
coupling. (a) Particle contribution. (b) Hole contribution. σ , σ ′, and
σ ′′ indicate the local moment state; q, q′, and p indicate the momen-
tum of c fermions; n, n′, and m indicate the quantum number (spin,
valley, and orbital) of c fermions.
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parameter (i.e., the half-bandwidth D). Only the one-loop
accuracy is incorporated in this work.

A. Scaling of JK term in the local-moment regime

First, we focus on the scaling of Kondo coupling JK . To
derive the scaling equations, we employ the T -matrix formal-
ism [76,77]. We progressively integrate out the high-energy
c fermions and reduce the half-bandwidth from D to D − δD
in each step. This procedure produces corrections to ĤKondo =
Ĥ0,c + Ĥimp,K through perturbing Ĥimp,K . The T -matrix Feyn-
man diagrams at the one-loop level are illustrated in Fig. 2.
The detailed derivations can be found in Appendix B. We
summarize the main results here. After reducing the half-
bandwidth from D to D − δD, a correction to the low-energy
Hamiltonian is generated:

δĤ = T (p) + T (h), (25)

where

T (p) ≈
[

Nf JKδD
∑

b

�b(D + μc)

πγ 2D

]
Ĥimp,K , (26)

T (h) ≈
[

(8 − Nf )JKδD
∑

b

�b(−D + μc)

πγ 2D

]
Ĥimp,K . (27)

T (p) (T (h)) is the contribution from the particle (hole) excita-
tion in the c-fermion bands with the prefactor Nf (8 − Nf )
indicating the number of the particle (hole) channels. The
diagrams for the particle and hole contributions are illustrated
in Fig. 2. �b describes the hybridization between f fermion
and the bth c-fermion band, given by

�b(E ) = πρb(E )�0

∣∣∣∣∣
∑

a

V (η)
αa (p)�η

b,a(p)

∣∣∣∣∣
2∣∣∣∣∣

Eb(p)=E

, (28)

where ρb is the density of states associated with the bth band.
The value of �b(E ) is independent of η and α used in the
calculations

When νc = 0 and Nf = 4, the problem has a particle-hole
symmetry, and the large-D behavior is reminiscent of the
pseudogap Kondo problem [79–84]. Away from the special
point, the particle and hole contributions are generically un-
equal, and potential scatterings [given by Eq. (23)] arise. We
discuss the potential scatterings in Sec. V and Appendix C.

Taking δD → 0, one can obtain the one-loop poor man’s
scaling equation for JK given by

dJK

dD
= − Nf J2

K

[∑
b

�b(D + μc)

πγ 2D

]

− (8 − Nf )J2
K

[∑
b

�b(−D + μc)

πγ 2D

]
. (29)

We are interested in the flow of JK from an initial half-
bandwidth Di to D f (Di > D f ). Equation (29) is reduced
to the scaling flow for the SU(8) Coqblin-Schrieffer model
when �b(E ) is a constant [77]. The minus sign in Eq. (29)
indicates that JK flows up as D decreases. The scaling equa-
tion here is strictly valid for JK (D)�0ρc(D) 	 1, where ρc is

the c-fermion density of states per spin per valley. Otherwise,
higher-order corrections are required.

To gain more insight about the flow of JK , we integrate
Eq. (29) and derive

JK (D f ) =
{

1

JK (Di )
− Nf

∫ Di

D f

dD

[∑
b

�b(D + μc)

πγ 2D

]

− (8 − Nf )
∫ Di

D f

dD

[∑
b

�b(−D + μc)

πγ 2D

]}−1

.

(30)

For a sufficiently small D f , JK (D f ) diverges, and the energy
scale is associated with the Kondo temperature DK = kBTK

within the one-loop accuracy. The Kondo energy scale can be
obtained by solving the following equality:

1

JK (Di )
= Nf

∫ Di

DK

dD

[∑
b

�b(D + μc)

πγ 2D

]

× (8 − Nf )
∫ Di

DK

dD

[∑
b

�b(−D + μc)

πγ 2D

]
. (31)

Unlike the standard Kondo problems with constant density of
states and constant couplings, the analytic expression of DK

here is challenging due to the complicated expression of �b.
Thus, we extract DK numerically for different filling factors
and discuss the results in Sec. IV.

B. Scaling of J term

In addition to the Kondo coupling, it is also interesting to
investigate the scaling of the Hund’s rule interaction J term.
Since the J term comes from the c- f exchange Coulomb
interaction, the matrix elements differ greatly from the Kondo
coupling JK term. The derivations of T -matrix contributions
are provided in Appendix B. We summarize the main results
in the following.

At CNP (i.e., Nf = 4, μc = 0), the scaling equation can be
derived analytically and is given by

dJ

dD
= 4J2

[∑
b

�̄b(D)

πD

]
, (32)

where

�̄b(E ) = πρb(E )�0
[
e−λ2|p|2 ∣∣ψ (η)

b,α+2(p)
∣∣2]∣∣

Eb(p)=E (33)

is the modified hybridization function of bth band. �̄b gives
the same result for α = 1, 2 and is independent of η. Equa-
tion (32) is reduced to the SU(4) ferromagnetic Kondo model
scaling when �̄b(E ) is set to a constant. The plus sign in
Eq. (32) indicates J flows down as D decreases. For the gen-
eral cases, we obtain an approximated scaling equation given
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by

dJ

dD
= Nf

2
J2

∑
b

�̄b(D + μc)

πD

+
(

4 − Nf

2

)
J2

∑
b

�̄b(−D + μc)

πD
. (34)

With Nf = 4 and μc = 0, the expression in Eq. (34) is re-
duced to Eq. (32). Similar to the scaling flow for JK , impurity
potential scatterings arise away from CNP. The potential scat-
tering term associated with J is described by Eq. (C3) in
Appendix C. Again, this leading-order flow equation is valid
when J (D)�0ρc(D) 	 1.

The scale dependent J can be obtained by integrating
Eq. (34), and is given by

J (D f ) =
{

1

J (Di )
+ Nf

2

∫ Di

D f

dD

[∑
b

�̄b(D + μc)

πD

]

+ 8 − Nf

2

∫ Di

D f

dD

[∑
b

�̄b(−D + μc)

πD

]}−1

,

(35)

where Di is the initial half-bandwidth, D f is the final half-
bandwidth, and Di > D f � 0. Note that �̄b has a different
energy dependence than �b. For example, with Nf = 4 and
μc = 0, the integral

∫ Di

0 dy�̄3,4(y)/y is finite. (The corre-
sponding integral for �3,4 is always divergent.) As a result, we
find that J (D → 0) remains finite when μc = 0 and Nf = 4.
Away from Nf = 4 and μc = 0, J (D → 0) = 0 holds gener-
ally.

IV. RESULTS

In this section, we present the numerical results based
on the one-loop poor man’s scaling equations derived in the
previous section. In particular, we focus on the estimate of
TK and the characteristic J as functions of Nf and νc (filling
factor of c fermions). The chemical potentials μ f and μc are
typically strongly modified in the self-consistent equations of
the original Kondo lattice calculations [66,76,77]. Therefore,
the dependence of filling factors provides more direct access
to the MATBG experiments. These results provide useful
guidance for quantum many-body calculations for the Kondo
lattice model for MATBG [66–68].

Before we discuss the results, it is useful to emphasize
that we treat Nf and νc as theoretical tunable parameters. The
precise values of Nf and νc for a given total filling can be
determined by free-energy calculations for the Kondo lattice
model for MATBG. However, our results provide a qualita-
tive understanding of the filling dependence. For Nf = 4, we
consider the particle-hole symmetric single-particle c-fermion
bands without any spectral gap. For Nf = 4, a dynamical mass
is generated in the local-moment regime (where Nf is fixed per
site), and a spectral gap and particle-hole asymmetry develop.
It is useful to convert μc to νc with the following formula:

νc(μc) = 4�0

∫ μc

0
dE

[
4∑

b=1

ρb(E )

]
, (36)

FIG. 3. The filling factor νc as a function of μc with different Nf .
The brown, magenta, cyan, orange lines represent Nf = 4, 3, 2, 1,
respectively. The strong particle-hole asymmetry for Nf = 4 is a con-
sequence of the dynamical mass due to the W term. For Nf = 5, 6, 7,
one can simply use particle-hole transformation of Nf = 1, 2, 3.

where νc(μc) is the c-fermion filling factor as a function of
the chemical potential μc, and the factor of 4 denotes the
degeneracy factor of spin and valley. In the Kondo lattice
problem, the total filling factor ν = (4 − Nf ) + νc [66,68].
The poor man’s scaling calculations here aim to resolving the
TK and estimating the characteristic J corresponding to the
same filling in MATBG. The function νc(μc) depends on the
value of Nf as shown in Fig. 3 because of the dynamical mass
in the c-fermion band. Again, the dynamical mass effect is due
to the Kondo lattice model for MATBG, and we incorporate
such an effect in the surrogate single-impurity model.

We summarize all the parameters used in the follow-
ing. v∗ = −4.303 eV Å, M = 3.697 meV, γ = −24.75 meV,
v′

∗ = 1.622 eV Å, λ = 0.3375aM , aM = 134.24 Å, U =
57.95 meV, W̄ = W3 − W1 = 6.17 meV, JK = 42.28 meV, and
J = 16.38 meV. These parameters correspond to w0/w1 =
0.8, w1 = 110 meV, and θ = 1.05◦ in the BM model [61].

In the rest of this section, we first discuss the general
properties of the results near CNP. Then, we examine the
filling dependence of results using the parameters provided
in Ref. [61].

A. Near charge neutrality point (Nf = 4)

In this subsection, we focus on the local-moment regime
with Nf = 4 corresponding to ν f = 0 in MATBG. In this case,
the c-fermion bands are described by Eq. (2). We discuss
the results with different values of νc > 0. Because of the
particle-hole symmetry in the single-particle c-fermion bands,
the results only depend on |νc|.

The poor man’s scaling flows of JK and J [given by
Eqs. (30) and (35)] with a few representative values of νc

are plotted in Fig. 4. We use the estimated values of JK and
J from Ref. [61] and an initial half-bandwidth Di = U/2 =
28.9 meV. In Fig. 4(a), the value of JK flows toward infin-
ity for a sufficiently small D, indicating the onset of Kondo
screening. Generically, the divergence manifests at a higher
DK for a larger |νc|, where DK is the energy scale indicat-
ing JK becomes divergent within the one-loop accuracy. The
renormalization of J shows the opposite trend. In Fig. 4(b),
the value of J decreases as D decreases. For νc = 0, J van-
ishes at D = 0, suggesting J is irrelevant under scaling flow
for νc = 0. For νc = 0, J remains finite at D = 0, and the
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FIG. 4. The poor man’s scaling flows with Nf = 4. (a) The
Kondo coupling JK with the bare value JK (Di ) = 42.28 meV and
Di = U/2 = 28.9 meV. (b) The Hund’s rule coupling J with
J (Di ) = 16.38 meV at Di = U/2 = 28.9 meV. Black lines indicate
νc = 0; green lines indicate νc = 0.05; blue lines indicate νc = 0.1;
red lines indicate νc = 0.2. The flows depend strongly on the value
of νc. JK�0ρ(D) < 1 and J�0ρ(D) < 1 for all the results presented
here.

suppression of J may not be significant. This is due to the
form of �̄b [Eq. (A8)] such that the common low-energy
logarithmic divergence in Eq. (35) is absent for νc = 0.

Kondo temperature is often sensitive to the strength of
Kondo coupling and the c-fermion density of states [76,77].
To examine the Kondo temperature, we compute the energy
scale DK at which JK (DK ) diverges for a wide range of ini-
tial values of J (0)

K ≡ JK (Di ) with an initial half-bandwidth
Di = U/2 = 28.9 meV. In Fig. 5, we show the Kondo tem-
perature as a function of J (0)

K for different νc. For J (0)
K >

60 meV, we obtain DK = kBTK > 0.5 meV for all cases.

FIG. 5. Kondo temperature as a function of J (0)
K with Nf = 4.

We run the scaling equation with J (0)
K ≡ JK (Di ) and Di = U/2 =

28.9 meV. The Kondo temperature (TK ) is determined by Eq. (31)
with DK = kBTK . Black lines indicate νc = 0; green lines indicate
νc = 0.05; blue lines indicate νc = 0.1; red lines indicate νc = 0.2.
TK depends strongly on the values of J (0)

K and νc.

FIG. 6. Exponential scaling of Kondo temperature for Nf = 4.
TK as a function of 1/[J (0)

K ρ(μc )�0] is plotted for different values of
μc. From right to left: μc = 0 (black line), 1 meV, 2 meV, 3 meV,
..., 10 meV (green line). The results are obtained with Di = U/2 =
28.9 meV.

We find that the larger the νc, the higher the value of TK .
For 40 meV < J (0)

K < 60 meV, TK shows an exponential de-
pendence on the value of J (0)

K as plotted in the inset of
Fig. 5. Particularly, using J (0)

K = 42.28 meV, we obtain DK =
kBTK ≈ 4.14 × 10−4 meV, which is comparable to the previ-
ous estimate in Ref. [69]. We note that the above result does
not rule out the possibility of a Kondo-driven semimetal [66]
at charge neutrality of MATBG because the value J (0)

K is not
precisely known, and the Kondo temperature estimate is very
sensitive to JK as suggested in Fig. 5. In addition, TK can be
significantly enhanced by a small nonzero value of νc. For
example, using J (0)

K = 42.28 meV and νc = 0.05, we obtain
kBTK ≈ 0.8 meV, which is three orders of magnitude larger
than the estimated TK at νc = 0.

Another interesting question is whether the poor man’s
scaling produces the celebrated relation TK ∝ exp(−C/g)
[76,77], where C is some constant, and g is the dimensionless
Kondo coupling parameter. In Fig. 6, we plot TK as a function
of g ≡ 1/[J (0)

K ρ(μc)�0], where ρ(μc) is the c-fermion density
of states per spin per valley and �0 is the moiré unit-cell
area. We find that the Kondo temperature generically follows
the TK ∝ exp(−C/g) dependence for the parameter regime of
interest. Moreover, the constant C depends strongly on the
value of μc. We find that C ≈ 1

4 for μc = 0, and the value
of C continuously increases with μc. For μc > M ≈ 3.7 meV
(corresponding to νc > 0.0073), C saturates to 1

2 . Note that
νc = 0.05 corresponds to μc ≈ 9.65 meV. The above results
again suggest strong filling-factor dependence (or, equiva-
lently, μc) of TK .

Finally, we discuss Hund’s rule coupling. In Fig. 7, we
consider different values of J (0) = J (Di ) (with Di = U/2 =
28.9 meV) and plot the value of J∗ = J (D f ) at a much lower
scale D f [D f = 1 meV in Fig. 7(a) and D f = 0.1 meV in
Fig. 7(b)]. J∗ is always reduced from the bare value J (0), and
the reduction is stronger for a larger |νc| or a smaller D f .
Based on the scaling flow [Eq. (34)], J (D) typically vanishes
as D → 0 (except for νc = 0). With D f � 0.1 meV, the value
of J∗ is not substantially smaller than J (0) for the parame-
ters we explored here. The weaker renormalization of J (as
compared to JK ) can be understood through the expression of
�̄b [Eq. (A8)], which has a much weaker logarithmic infrared
divergence at low energy as compared to �b.
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FIG. 7. Characteristic Hund’s rule coupling J∗ = J (Df ) with
Nf = 4. (a) Df = 1 meV. (b) Df = 0.1 meV. The results are ob-
tained with Di = U/2 = 28.9 meV. Black lines indicate νc = 0;
green lines indicate νc = 0.05; blue lines indicate νc = 0.1; red lines
indicate νc = 0.2; gray dashed lines indicate J∗ = J (0).

B. Filling-factor dependence

When Nf = 4, the density-density interaction [the HW term
given by Eq. (8)] between c and f fermions can produce a
strong renormalization of the c-fermion bands. In the local-
moment regime (i.e., Nf is fixed), the c-fermion dispersion
acquires a dynamical mass term as described by Eq. (11).
Consequently, a spectral gap manifests and the dispersion
is particle-hole asymmetric. We incorporate the modified c-
fermion bands into the poor man’s scaling calculations for
Nf = 4. In this section, we focus on JK (Di ) = 42.28 meV,
J (Di ) = 16.38 meV, and Di = U/2 = 28.9 meV. Formally,
each interaction term is renormalized as the half-bandwidth is
depleted, and the dynamical mass should vary in the process.
For simplicity, we use W3 − W1 = 6.17 meV and ignore the
renormalization of W̄ for all the calculations.

In Fig. 8, Kondo temperature TK and the characteristic
Hund’s rule coupling J∗ = J (1 meV) are computed as func-
tions of Nf and νc. For Nf = 4, the results are symmetric
under νc → −νc operation because of the particle-hole sym-
metry. For Nf = 4, the results show significant asymmetry
in νc, which is enhanced for a larger |4 − Nf |. Specifically,
TK with Nf < 4 is typically larger (smaller) than Nf = 4 for
νc < 0 (νc > 0), and J∗ with Nf < 4 is smaller (larger) than
Nf = 4 for νc < 0 (νc > 0). The results suggest that the renor-
malization is typically stronger (weaker) for νc < 0 (νc > 0)
with Nf < 4. Meanwhile, for −0.1 � νc < 0, TK with Nf < 4
is slightly smaller than Nf = 4, suggesting a weaker renor-
malization of JK in this small parameter regime.

There are two sources that cause the asymmetry in νc.
First, the one-loop poor man’s scaling contributions can be
classified by the particle and hole channels, which are pro-
portional to the available numbers of particles (Nf ) and
holes (8 − Nf ), respectively. When ρc(D + μc) > ρc(−D +
μc) [ρc(D + μc) < ρc(−D + μc)], the single-particle contri-
bution is generally stronger (weaker) than the single-hole
contribution. The overall contribution is Nf times the single-
particle contribution plus 8 − Nf times the single-hole contri-
bution. Therefore, for Nf < 4, the renormalization of νc < 0

FIG. 8. Kondo temperature (TK ) and characteristic Hund’s rule
coupling (J∗) as functions of Nf and νc incorporating the dynam-
ical mass W̄ term. (a) Kondo temperature as a function of νc.
(b) Characteristic Hund’s rule coupling as a function of νc. J∗ is
set by J (Df = 1 meV). The results are obtained using JK (Di ) =
42.28 meV, J (Di ) = 16.38 meV, and Di = U/2 = 28.9 meV. For
Nf = 4, we incorporate the dynamical mass term W̄ in the c-fermion
bands. Brown solid dots indicate Nf = 4; magenta solid squares
indicate Nf = 3; cyan solid triangles indicate Nf = 2; orange opened
diamonds indicate Nf = 1.

is typically stronger than for νc > 0. Second, the dynamical
mass W̄ generates asymmetric c-fermion bands and a spectral
gap. For νc < 0 (νc > 0), the contribution from the particle
(hole) channel is strongly suppressed by the spectral gap.
Thus, the presence of spectral gap enhances (suppresses) the
renormalization for νc < 0 (νc > 0) as long as Nf < 4. The
structure of the one-loop contribution and the presence of
the spectral gap explain the overall trend of the results: The
renormalization of νc < 0 is mostly stronger than νc > 0 for
Nf < 4, and the asymmetry is the strongest for Nf = 1. While
the above ideas can explain most of the results, TK for Nf < 4
in the regime −0.1 � νc < 0 cannot be accounted for by the
above arguments. The counterintuitive results in this regime
are due to the asymmetric c-fermion bands and the structure
of �b. On the other hand, this subtle feature is absent in J∗.

Finally, it is interesting to examine if the dynamical mass
W̄ term is essential for the estimated TK and J∗. In Fig. 9,
we compute TK and J∗(1 meV) as functions of Nf and νc

without the W̄ term. We find the similar asymmetry in νc,
suggesting stronger renormalization for νc < 0 and weaker
renormalization for νc > 0 with Nf < 4. The results can be
explained by the one-loop poor man’s scaling contribution,
and the c-fermion bands are completely particle-hole symmet-
ric. It is worth noting that the asymmetry in TK (J∗) is slightly
stronger (weaker) without the W̄ term.

125106-8



SCALING THEORY OF INTRINSIC KONDO AND HUND’S … PHYSICAL REVIEW B 108, 125106 (2023)

FIG. 9. Kondo temperature (TK ) and characteristic Hund’s rule
coupling (J∗) as functions of Nf and νc without the dynamical mass
W̄ term. (a) TK as a function of Nf and νc. (b) J∗ as a function of
Nf and νc. J∗ is set by J (Df = 1 meV). The results are obtained
using JK (Di ) = 42.28 meV, J (Di ) = 16.38 meV, and Di = U/2 =
28.9 meV. We consider the bare c-fermion bands without W̄ dynam-
ical mass. Brown solid dots indicate Nf = 4; magenta solid squares
indicate Nf = 3; cyan solid triangles indicate Nf = 2; orange opened
diamonds indicate Nf = 1.

V. DISCUSSION

Using the one-loop poor man’s scaling approach and
inspired by the THF model [61], we derive analytical
scale-dependent intrinsic Kondo (JK ) and Hund’s rule (J) in-
teractions in a surrogate single-impurity model for MATBG.
We find that Kondo temperature (TK ) varies sensitively with
the value of JK and the filling factor for the parameter regime
associated with MATBG experiments. We also provide a de-
tailed account of the characteristic value of J as a function of
filling factor. Note that the poor man’s scaling calculations
with given Nf and νc can be interpreted as the filling ν =
(4 − Nf ) + νc in MATBG, and the dynamical mass due to ĤW

term is also incorporated for Nf = 4. Our results systemati-
cally estimate the renormalized interactions and TK , which is
essential for many-body calculations in MATBG. Moreover,
we anticipate that Kondo-driven metals likely exist for a wide
range of fractional fillings as kBTK > 1 mK generally, and J∗
is always suppressed from the bare value. Lastly, the strong
filling-factor dependence of TK and J∗ suggests that corre-
lation can be controlled by an external gate (i.e., changing
filling). This effect is primarily due to the density of states
of the c-fermion bands and is similar to the recent studies of
single vacancy in graphene [85] and single magnetic impurity
coupled to twisted bilayer graphene [86], where nontrivial
density of states arises.

A particularly interesting question is whether Kondo-
driven semimetal [66] exists near the CNP in MATBG. In
Fig. 5, we show that TK with Nf = 4 and νc = 0 varies
strongly for 40 mK < JK <60 mK. Using the estimated pa-
rameters in [61], we find JK ≈ 42.28 meV, corresponding to
kBTK ≈ 4.14 × 10−4 meV, comparable to a previous estimate
in Ref. [69]. With JK ≈ 60 meV, we obtain kBTK ≈ 0.5 meV,
significantly larger than the estimate using JK ≈ 42.28 meV.
The results suggest an extreme JK dependence in the value of
TK . Moreover, small doping (e.g., νc = 0.05) can significantly
boost TK as shown in Fig. 5. Note that TK corresponds to
the energy scale of Kondo screening, and the Kondo-driven
phases in MATBG happen at a lower energy, corresponding
to a coherent off-diagonal long-range order. In addition, the
correlated insulating states may preempt the Kondo-driven
phases, which J governs. Assuming that Tc is the transition
temperature of the correlated insulator, the condition of re-
alizing a Kondo-driven phase is TK > Tc. Since TK is very
sensitive to JK and νc, and J is always suppressed at low
energies, the existence of a Kondo-driven semimetal near
the CNP cannot be ruled out. The strong parameter depen-
dence of TK also suggests that TK can vary significantly over
different samples. The correlated insulating states dominate
for Tc > TK , while Kondo-driven topological semimetal can
occur for TK > Tc. Our analysis near CNP suggests that the
gapped versus semimetallic behaviors in different MATBG
experiments may depend on the variation of JK (and J). If
this idea is correct, then Kondo physics plays an extremely
important qualitative role in the physics of MATBG.

Now, we discuss the implication of nonzero integer fillings
in MATBG. First, the c-fermion dispersion is modified by
a dynamical mass term originating from ĤW . The modified
c-fermion band does not preserve particle-hole symmetry.
Second, particle and hole contributions to the scaling are
different. Generally, the contribution from the hole channel
dominates for Nf < 4. The overall trend for Nf < 4 is that
the νc < 0 regime has a stronger renormalization than the
νc > 0 regime (except for −0.1 � νc � 0) as we show in
Fig. 8. Assuming μc = 0 (corresponding to νc = 0+) and
JK = 42.28 meV, we estimate the TK value corresponding to
ν = −1,−2,−3 in MATBG (corresponding to Nf = 3, 2, 1).
We find that kBTK ≈ 9 × 10−4 meV for ν = −1, kBTK ≈
10−3 meV for ν = −2, and kBTK ≈ 1.99 × 10−6 meV for ν =
−3. The values of TK with νc = 0− are smaller than the
above estimates. Again, a nonzero |νc| and a larger JK [67]
can boost TK significantly. Finally, potential scattering terms
arise generically due to the imbalance between particle and
hole contributions. The occurrence of potential scattering may
hinder our quantitative estimates for nonzero integer fillings.

In this work, we focus only on the local-moment regime
where charge fluctuation is completely suppressed. In prin-
ciple, one can study the poor man’s scaling of the Anderson
model and analyze various regimes, including local-moment
and mixed valence regimes. Moreover, studying the scaling of
the Anderson model can provide a more quantitative estimate
of interaction parameters. In Appendix D, we derive the poor
man’s scaling flows for each many-body level. We discuss a
few generalities in the following. Similar to the SU(2) Ander-
son model, the scaling flows tend to suppress ENf ±1 − ENf ,
where Nf is the number of f fermions on the impurity site.

125106-9



YANG-ZHI CHOU AND SANKAR DAS SARMA PHYSICAL REVIEW B 108, 125106 (2023)

In Ref. [61], the THF model is valid with a half-bandwidth
of around 80 meV, larger than the Di = 28.9 meV used in the
scaling calculations. Thus, we generally expect that ENf ±1 −
ENf is reduced from the bare value at Di, and JK is enhanced
concomitantly. The possibility that the actual Tk may be larger
because of variations in the effective parameters, therefore,
cannot be ruled out and should be further investigated.

An outstanding issue of our analysis is the generation of
impurity potential scattering. At CNP, the potential scatter-
ing may arise from Eq. (23), and the value of δ remains
constant during the poor man’s scaling procedure, suggesting
a line of fixed points analogous to the asymmetric SU(2)
Anderson model [87]. Away from CNP, potential scatterings
generally arise during the poor man’s scaling calculations. In
Appendix C, we derive the one-loop scaling flows in Eq. (C4)
for δ and δ′ potential scattering terms. The δ term describes the
scattering of c fermions with orbital index a = 1, 2, while the
δ′ term describes the scattering of c fermions with orbital in-
dex a = 3, 4. Since JK > J is generally true, the overall effect
of these potential scatterings induces a mass term similar to
the dynamical mass term from the interaction. For Nf < 4, we
find that the effect of potential scattering tends to enhance the
dynamical mass term from interaction, i.e., the spectral gap of
c fermions gets larger as D is decreased. We note that the one-
loop equations cannot fully describe the δ term as JK diverges
for a sufficiently small D f . Going beyond one-loop results is
necessary to understand the role of potential scattering.

We conclude by discussing several possible generaliza-
tions of this work. The current analysis is based on the
perturbative one-loop poor man’s scaling approach, which is
strictly valid for JKρc(D)�0 	 1. It might be interesting to
study higher-order corrections and perhaps the nonperturba-
tive numerical renormalization group for a better quantitative
understanding of TK and δ. Moreover, the analysis based on
the surrogate single-impurity model may not capture all the
important features in the Kondo lattice for MATBG, which is
our primary interest. To this end, a systematic analysis using
lattice methods such as the dynamical mean-field theory may
be necessary. The analysis of this work can be generalized
to magic-angle twisted trilayer graphene, where an analyti-
cal THF formulation has been obtained recently [71]. In the
trilayer graphene system, there is another type of itinerant
fermions, the d fermions, which hybridize with the localized
f fermions through the displacement field. We anticipate that
the scaling flows are much richer in the trilayer graphene case
as the problem is akin to a two-channel Kondo problem.
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APPENDIX A: DELOCALIZED c-FERMION BANDS

In this Appendix, we discuss the energy bands and wave
function of the itinerant c fermions. First, we discuss the bare
c-fermion dispersion. Then, we incorporate the effect of a
dynamical mass due to ĤW .

1. Single-particle bands

The bands are determined by the k · p Hamiltonian,

ĥ(η)(q) =
[

0̂2×2 v∗(ηqxσ̂0 + iqyσ̂z )
v∗(ηqxσ̂0 − iqyσ̂z ) Mσ̂x

]

=

⎡
⎢⎢⎣

0 0 v∗|q|eiθη,q 0
0 0 0 v∗|q|e−iθη,q

v∗|q|e−iθη,q 0 0 M
0 v∗|q|eiθη,q M 0

⎤
⎥⎥⎦,

(A1)

where the angle θη,q is defined by ηkx + iky ≡ |q|eiθη,q . ĥ(η)

can be diagonalized analytically using Mathematica. The ex-
pressions of the energy bands are given by

E1(q) = 1
2 (−M −

√
M2 + 4v2∗|q|2), (A2a)

E2(q) = 1
2 (M −

√
M2 + 4v2∗|q|2), (A2b)

E3(q) = 1
2 (−M +

√
M2 + 4v2∗|q|2), (A2c)

E4(q) = 1
2 (M +

√
M2 + 4v2∗|q|2). (A2d)

The energy bands are independent of valley, so the valley
index is ignored. The corresponding wave functions are given
by

�
(η)
1 (q) = 1√

2
[u1(q),−u∗

1(q),−v1(q), v∗
1 (q)]T , (A3a)

�
(η)
2 (q) = 1√

2
[−u2(q),−u∗

2(q), v2(q), v∗
2 (q)]T , (A3b)

�
(η)
3 (q) = 1√

2
[−u3(q), u∗

3(q),−v3(q), v∗
3 (q)]T , (A3c)

�
(η)
4 (q) = 1√

2
[u4(q), u∗

4(q), v4(q), v∗
4 (q)]T , (A3d)

where

u1(q) =
1
2 (−M + √

M2 + 4v2∗|q|2)eiθη,q√
1
4 (−M + √

M2 + 4v2∗|q|2)2 + v2∗|q|2
, (A4a)

v1(q) = v∗|q|√
1
4 (−M + √

M2 + 4v2∗|q|2)2 + v2∗|q|2
, (A4b)

u2(q) =
1
2 (M + √

M2 + 4v2∗|q|2)eiθη,q√
1
4 (M + √

M2 + 4v2∗|q|2)2 + v2∗|q|2
, (A4c)

v2(q) = v∗|q|√
1
4 (M + √

M2 + 4v2∗|q|2)2 + v2∗|q|2
, (A4d)

u3(q) = u2(q), v3(q) = v2(q), (A4e)

u4(q) = u1(q), v4(q) = v1(q). (A4f)

Additionally, we obtain

V̂ (η)�
(η)
1 = 1√

2
|u1(q)|

[
γ eiθη,q − v′

∗|q|e−i2θη,q

−γ eiθη,q + v′
∗|q|e−i2θη,q

]
, (A5a)
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V̂ (η)�
(η)
2 = 1√

2
|u2(q)|

[−γ eiθη,q − v′
∗|q|e−i2θη,q

−γ eiθη,q − v′
∗|q|e−i2θη,q

]
, (A5b)

V̂ (η)�
(η)
3 = 1√

2
|u3(q)|

[−γ eiθη,q + v′
∗|q|e−i2θη,q

γ eiθη,q − v′
∗|q|e−i2θη,q

]
, (A5c)

V̂ (η)�
(η)
4 = 1√

2
|u4(q)|

[
γ eiθη,q + v′

∗|q|e−i2θη,q

γ eiθη,q + v′
∗|q|e−i2θη,q

]
. (A5d)

The density of states per spin per valley for each band can
be derived as follows:

ρ1(E ) = �(−E − M )
−2E − M

4πv2∗
, (A6a)

ρ2(E ) = �(−E )
−2E + M

4πv2∗
, (A6b)

ρ3(E ) = �(E )
2E + M

4πv2∗
, (A6c)

ρ4(E ) = �(E − M )
2E − M

4πv2∗
, (A6d)

where �(x) is the Heaviside function.
The hybridization between f fermion and the bth c-

fermion band is described by �b as follows:

�1(E ) = �(−E − M )
−E − M

8v2∗
�0e

− λ2

v2∗
(E2+EM )

×
[
γ 2 + v′2

∗
v2∗

(E2 + EM )

]
, (A7a)

�2(E ) = �(−E )
−E + M

8v2∗
�0e

− λ2

v2∗
(E2−EM )

×
[
γ 2 + v′2

∗
v2∗

(E2 − EM )

]
, (A7b)

�3(E ) = �(E )
E + M

8v2∗
�0e

− λ2

v2∗
(E2+EM )

×
[
γ 2 + v′2

∗
v2∗

(E2 + EM )

]
, (A7c)

�4(E ) = �(E − M )
E − M

8v2∗
�0e

− λ2

v2∗
(E2−EM )

×
[
γ 2 + v′2

∗
v2∗

(E2 − EM )

]
, (A7d)

where �(x) is the Heaviside function.
In addition, we are also interested in the modified hy-

bridization functions in the J term calculations given by

�̄1(E ) = �(−E − M )
−E
8v2∗

�0e
− λ2

v2∗
(E2+EM )

, (A8a)

�̄2(E ) = �(−E )
−E
8v2∗

�0e
− λ2

v2∗
(E2−EM )

, (A8b)

�̄3(E ) = �(E )
E

8v2∗
�0e

− λ2

v2∗
(E2+EM )

, (A8c)

�̄4(E ) = �(E − M )
E

8v2∗
�0e

− λ2

v2∗
(E2−EM )

. (A8d)

2. c-fermion bands with a dynamical mass

In the local-moment regime (i.e., Nf at each site), an ef-
fective mass term due to the ĤW term can be derived for
Nf = 4. This interaction-induced mass term can modify the
low-energy physics significantly. We focus on Nf = 1, 2, 3
(corresponding to ν f = −3,−2,−1). Nf = 5, 6, 7 can be ob-
tained by performing a particle-hole transformation.

The effective band structure with Ŵ term is determined by

ĥ(η)(q) + Ŵ

=

⎡
⎢⎢⎣

0 0 v∗|q|eiθη,q 0
0 0 0 v∗|q|e−iθη,q

v∗|q|e−iθη,q 0 −W̄ M
0 v∗|q|eiθη,q M −W̄

⎤
⎥⎥⎦,

(A9)

where W̄ = −(Nf − 4)(W3 − W1) > M > 0. The expressions
of the energy bands are given by

E1(q) = 1
2 (−M − W̄ −

√
(M + W̄ )2 + 4v2∗|q|2), (A10a)

E2(q) = 1
2 (M − W̄ −

√
(M − W̄ )2 + 4v2∗|q|2), (A10b)

E3(q) = 1
2 (−M − W̄ +

√
(M + W̄ )2 + 4v2∗|q|2), (A10c)

E4(q) = 1
2 (M − W̄ +

√
(M − W̄ )2 + 4v2∗|q|2). (A10d)

The above expressions are reduced to the single-particle re-
sults in Eq. (A2) after setting W̄ = 0. At � point (i.e., q = 0),
E1(0) = −M − W̄ , E2(0) = M − W̄ , E3(0) = 0, E4(0) = 0.
The band structures with Ŵ show strong particle-hole asym-
metry and a spectral gap W̄ − M. The corresponding wave
functions take the same form as Eq. (A3) with new ub and vb

given by

u1(q) =
1
2 (−M − W̄ +√

(M + W̄ )2 + 4v2∗|q|2)eiθη,q√
1
4 (−M − W̄ +√

(M + W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11a)

v1(q) = v∗|q|√
1
4 (−M − W̄ +√

(M + W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11b)

u2(q) =
1
2 (M − W̄ + √

(M − W̄ )2 + 4v2∗|q|2)eiθη,q√
1
4 (M − W̄ + √

(M − W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11c)

v2(q) = v∗|q|√
1
4 (M − W̄ + √

(M − W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11d)

u3(q) =
1
2 (M + W̄ + √

(M + W̄ )2 + 4v2∗|q|2)eiθη,q√
1
4 (M + W̄ + √

(M + W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11e)
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v3(q) = v∗|q|√
1
4 (M + W̄ + √

(M + W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11f)

u4(q) =
1
2 (−M + W̄ + √

(M − W̄ )2 + 4v2∗|q|2)eiθη,q√
1
4 (−M + W̄ + √

(M − W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
,

(A11g)

v4(q) = v∗|q|√
1
4 (−M + W̄ + √

(M − W̄ )2 + 4v2∗|q|2)2 + v2∗|q|2
.

(A11h)

Again, the above expressions are reduced to the single-particle
results in Eq. (A3) after setting W̄ = 0.

We also derive the density of states per spin per valley for
each band as follows:

ρ1(E ) = �(−E − M − W̄ )
−2E − M − W̄

4πv2∗
, (A12a)

ρ2(E ) = �(−E + M − W̄ )
−2E + M − W̄

4πv2∗
, (A12b)

ρ3(E ) = �(E )
2E + M + W̄

4πv2∗
, (A12c)

ρ4(E ) = �(E )
2E − M + W̄

4πv2∗
. (A12d)

It is worth mentioning that the total density of states at E = 0+
is significantly enhanced in the presence of the Ŵ term.

The hybridization functions between f fermion and the bth
band are given by

�1(E ) = �(−E − M+)
−E − M+

8v2∗
�0e

− λ2

v2∗
(E2+EM+ )

×
[
γ 2 + v′2

∗
v2∗

(E2 + EM+)

]
, (A13a)

�2(E ) = �(−E − |M−|)−E + M−
8v2∗

�0e
− λ2

v2∗
(E2−EM− )

×
[
γ 2 + v′2

∗
v2∗

(E2 − EM−)

]
, (A13b)

�3(E ) = �(E )
E + M+

8v2∗
�0e

− λ2

v2∗
(E2+EM+ )

×
[
γ 2 + v′2

∗
v2∗

(E2 + EM+)

]
, (A13c)

�4(E ) = �(E )
E − M−

8v2∗
�0e

− λ2

v2∗
(E2−EM− )

×
[
γ 2 + v′2

∗
v2∗

(E2 − EM−)

]
, (A13d)

where M± = M ± W̄ .
The modified hybridization functions (associated with poor

man’s scaling of J) are given by

�̄1(E ) = �(−E − M+)
−E
8v2∗

�0e
− λ2

v2∗
(E2+EM+ )

, (A14a)

�̄2(E ) = �(−E − |M−|)−E
8v2∗

�0e
− λ2

v2∗
(E2−EM− )

, (A14b)

�̄3(E ) = �(E )
E

8v2∗
�0e

− λ2

v2∗
(E2+EM+ )

, (A14c)

�̄4(E ) = �(E )
E

8v2∗
�0e

− λ2

v2∗
(E2−EM− )

. (A14d)

APPENDIX B: DERIVATION OF T -MATRIX CORRECTIONS

1. Kondo coupling

The Kondo coupling can be expressed as follows:

Ĥimp,K = JK

Nsγ 2

∑
α,η,a,s

α′,η′,a′,s′

∑
q,q′

[
V (η′ )

α′a′ (q′)
]∗

V (η)
αa (q)Sα,η,s;α′,η′,s′

(
c†

q′,a′,η′,s′cq,a,η,s − 1

2
δ(a,η,s),(a′,η′,s′ )δq,q′

)
P̂Nf , (B1)

where Sα,η,s;α′,η′,s′ ≡ f †
α,η,s fα′,η′,s′ − 1

2δ(α,η,s),(α′,η′,s′ ) and δ(α,η,s),(α′,η′,s′ ) = δα,α′δη,η′δs,s′ ,

T (p)(E ) = J2
K

N 2
s

∑
q2,q

′
1

∑
α1,η1,a1,s1
α′

1,η
′
1,a

′
1,s

′
1

∑
α2,η2,a2,s2

α′
2,η

′
2,a

′
2,s

′
2

[
V

(η′
1 )

α′
1a′

1
(q′

1)
]∗

V (η2 )
α2a2

(q2)

γ 2
c†

q′
1,a

′
1,η

′
1,s

′
1
cq2,a2,η2,s2Sα1,η1,s1;α′

1,η
′
1,s

′
1
Sα2,η2,s2;α′

2,η
′
2,s

′
2
P̂Nf

×
∑

b

′∑
p

[
V (η1 )

α1a1
(p)

]∗
V

(η′
2 )

α′
2a′

2
(p)

γ 2

�
(η1 )
b,a1

(p)
[
�

(η′
2 )

b,a′
2
(p)

]∗

E − Eb(p) + μc
δη1,η

′
2
δs1,s′

2
, (B2)
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T (h)(E ) = J2
K

N 2
s

∑
q1,q

′
2

∑
α1,η1,a1,s1
α′

1,η
′
1,a

′
1,s

′
1

∑
α2,η2,a2,s2
α′

2,η
′
2,a

′
2,s

′
2

V (η1 )
α1a1

(q1)
[
V

(η′
2 )

α′
2a′

2
(q′

2)
]∗

γ 2
cq1,a1,η1,s1 c†

q′
2,a

′
2,η

′
2,s

′
2
Sα1,η1,s1;α′

1,η
′
1,s

′
1
Sα2,η2,s2;α′

2,η
′
2,s

′
2
P̂Nf

×
∑

b

′′∑
p

[
V

(η′
1 )

α′
1a′

1
(p)

]∗
V (η2 )

α2a2
(p)

γ 2

[
�

(η′
1 )

b,a′
1
(p)

]∗
�

(η2 )
b,a2

(p)

E + Eb(p) − μc
δη′

1,η2δs′
1,s2 , (B3)

where
∑′

p sums over all the momenta with D − δD < Eb(p) − μc < D and
∑′′

p sums over all the momenta with −D < Eb(p) −
μc < −D + δD. In the above expressions, the Kronecker delta functions on valley and spin sectors are due to the valley and
spin conservation in the c fermions. The orbital degrees of freedom are not unconstrained. As a result, we need to separate
the internal summations

∑
α,α′ into

∑
α,α′ (δα,α′ + δᾱ,α′ ), where 1̄ = 2 and 2̄ = 1. The equal-orbital contributions give rise to

corrections to the Kondo coupling and impurity potential scattering terms. On the other hand, the opposite-orbital contributions
generate additional terms that are not important for our analysis, and these contributions can be ignored after summing over the
band indices as long as D � μc, m. Thus, we focus on the equal-orbital contributions in the T -matrix calculations. Thus, the
internal summations involve the following identities:∑

ν ′
f †
ν ′ fν1 f †

ν2
fν ′P̂Nf = [

Nf δν1,ν2 + (1 − Nf ) f †
ν2

fν1

]
P̂Nf , (B4)

→
∑
ν ′

Sν ′;ν1Sν2;ν ′P̂Nf =
[(

Nf

2
+ 1

4

)
δν1,ν2 − Nf Sν2;ν1

]
P̂Nf , (B5)

∑
ν ′

f †
ν1

fν ′ f †
ν ′ fν2P̂Nf = [

(N − Nf + 1) f †
ν1

fν2

]
P̂Nf , (B6)

→
∑
ν ′

Sν1;ν ′Sν ′;ν2P̂Nf =
[(

N − Nf

2
+ 1

4

)
δν1,ν2 + (N − Nf )Sν1;ν2

]
P̂Nf , (B7)

where ν is the shorthand notation for (α, η, s) and N = 8. Lastly, the angular average eliminates the mixing between γ and v′
∗

terms, and the calculations are further simplified.
With the ideas mentioned above, the T -matrix contributions (with E = 0) become

T (p)(E = 0) ≈ J2
K

Ns

(
�0δD

−D

) ∑
q2,q

′
1

∑
α2,η2,a2,s2
α′

1,η
′
1,a

′
1,s

′
1

[
V

(η′
1 )

α′
1a′

1
(q′

1)
]∗

V (η2 )
α2a2

(q2)

γ 2
c†

q′
1,a

′
1,η

′
1,s

′
1
cq2,a2,η2,s2

×
[
−Nf Sα2,η2,s2;α′

1,η
′
1,s

′
1
+

(
Nf

2
+ 1

4

)
δ(α′

1,η
′
1,s

′
1 ),(α2,η2,s2 )

] ∑
b

ρb(D + μc)

[
γ 2 + v′2

∗ |p|2
γ 2

|ub(p)|2
]∣∣∣∣

Eb(p)−μc=D

(B8)

=
[

Nf J2
K

π

δD

D

∑
b

�b(D + μc)

γ 2

]
1

Ns

∑
q2,q

′
1

∑
α2,η2,a2,s2
α′

1,η
′
1,a

′
1,s

′
1

[
V

(η′
1 )

α′
1a′

1
(q′

1)
]∗

V (η2 )
α2a2

(q2)

γ 2
c†

q′
1,a

′
1,η

′
1,s

′
1
cq2,a2,η2,s2Sα2,η2,s2;α′

1,η
′
1,s

′
1
+ · · · ,

(B9)

T (h)(E = 0) ≈ − J2
K

Ns

(
�0δD

−D

) ∑
q1,q

′
2

∑
α1,η1,a1,s1
α′

2,η
′
2,a

′
2,s

′
2

V (η1 )
α1a1

(q1)
[
V

(η′
2 )

α′
2a′

2
(q′

2)
]∗

γ 2
c†

q′
2,a

′
2,η

′
2,s

′
2
cq1,a1,η1,s1

×
[

(N − Nf )Sα1,η1,s1;α′
2,η

′
2,s

′
2
+

(
N − Nf

2
+ 1

4

)
δ(α1,η1,s1 ),(α′

2,η
′
2,s

′
2 )

]

×
∑

b

ρb(−D + μc)

[
γ 2 + v′2

∗ |p|2
γ 2

|ub(p)|2
]∣∣∣∣

Eb(p)−μc=−D

(B10)

=
[

(N − Nf )J2
K

π

δD

D

∑
b

�b(−D + μc)

γ 2

]
1

Ns

∑
q1,q

′
2

∑
α1,η1,a1,s1
α′

2,η
′
2,a

′
2,s

′
2

V (η1 )
α1a1

(q1)
[
V

(η′
2 )

α′
2a′

2
(q′

2)
]∗

γ 2

× c†
q′

2,a
′
2,η

′
2,s

′
2
cq1,a1,η1,s1Sα1,η1,s1;α′

2,η
′
2,s

′
2
+ · · · , (B11)

where we have ignored the potential scattering terms in the final expressions. The minus sign in T (h) is due to swapping the
fermionic operators.
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2. Hund’s rule coupling

We express the impurity Hund’s rule coupling as follows:

Ĥimp,J = − 1

Ns

∑
η,α,s1,s2

∑
q,q′

e− λ2 (|q|2+|q′ |2 )
2

[
J1Sα,η,s1;α,η,s2 : c†

q′,α+2,η,s2
cq,α+2,η,s1 :

−J2Sᾱ,−η,s1;α,η,s2 c†
q′,α+2,η,s2

cq,ᾱ+2,−η,s1

]
, (B12)

where we will set J1 = J2 = J at the end of calculations. The J1 and J2 terms describe two distinct processes in the perturbation
theory. From the symmetry point of view, it is sufficient to focus on the renormalization of J1 term as the entire Hund’s rule
coupling can be expressed as a U(4) interaction. Thus, we focus only on J1 term in this section.

At the one-loop level, the T -matrix contributions to the J1 term are as follows:

T̄ (p)(E ) = J2
1

N 2
s

∑
q,q′

∑
α1,η1,s1,s′

1
α2,η2,s2,s′

2

e− λ2

2 (|q|2+|q′|2 )c†
q′,α1+2,η1,s′

1
cq,α2+2,η2,s2Sα1,η1,s1;α1,η1,s′

1
Sα2,η2,s2;α2,η2,s′

2

×
∑

b

′∑
p

e−λ2|p|2 ψ
(η1 )
b,α1+2(p)

[
ψ

(η2 )
b,α2+2(p)

]∗

E − Eb(p) + μc
δη1,η2δs1,s′

2

+ J2
2

N 2
s

∑
q,q′

∑
α1,η1,s1,s′

1
α2,η2,s2,s′

2

e− λ2

2 (|q|2+|q′|2 )c†
q′,α1+2,η1,s′

1
cq,ᾱ2+2,−η2,s2Sᾱ1,−η1,s1;α1,η1,s′

1
Sᾱ2,−η2,s2;α2,η2,s′

2

×
∑

b

′∑
p

e−λ2|p|2 ψ
(b,−η1 )
ᾱ1+2 (p)

[
ψ

(b,η2 )
α2+2 (p)

]∗

E − Eb(p) + μc
δ−η1,η2δs1,s′

2
, (B13)

T̄ (h)(E ) = J2
1

N 2
s

∑
q,q′

∑
α1,η1,s1,s′

1
α2,η2,s2,s′

2

e− λ2

2 (|q|2+|q′|2 )cq′,α1+2,η1,s1 c†
q,α2+2,η2,s′

2
Sα1,η1,s1;α1,η1,s′

1
Sα2,η2,s2;α2,η2,s′

2

×
∑

b

′′∑
p

e−λ2|p|2
[
ψ

(η1 )
b,α1+2(p)

]∗
ψ

(η2 )
b,α2+2(p)

E + Eb(p) − μc
δη1,η2δs′

1,s2

+ J2
2

N 2
s

∑
q,q′

∑
α1,η1,s1,s′

1
α2,η2,s2,s′

2

e− λ2

2 (|q|2+|q′|2 )cq′,ᾱ1+2,−η1,s1 c†
q,α2+2,η2,s′

2
Sᾱ1,−η1,s1;α1,η1,s′

1
Sᾱ2,−η2,s2;α2,η2,s′

2

×
∑

b

′′∑
p

e−λ2|p|2
[
ψ

(η1 )
b,ᾱ1+2(p)

]∗
ψ

(−η2 )
b,α2+2(p)

E + Eb(p) − μc
δη1,−η2δs′

1,s2 , (B14)

where
∑′

p sums over all the momenta with D − δD < Eb(p) − μc < D and
∑′′

p sums over all the momenta with −D < Eb(p) −
μc < −D + δD. Similar to the Kondo case, we retain only the equal-orbital contributions.

With the ideas mentioned above, the T -matrix contributions become

T̄ (p)(E = 0) ≈
(
J2

1 + J2
2

)
Ns

(
�0δD

−D

) ∑
q,q′

∑
α1,η1,s2,s′

1

e− λ2

2 (|q|2+|q′|2 )c†
q′,α1+2,η1,s′

1
cq,α1+2,η1,s2

×
∑

s1

Sα1,η1,s1;α1,η1,s′
1
Sα1,η1,s2;α1,η1,s1

∑
b

ρb(D + μc)
[
e−λ2|p|2 ∣∣ψ (η1 )

b,α1+2(p)
∣∣2]∣∣

Eb(p)−μc=D
, (B15)

T̄ (h)(E = 0) ≈ −
(
J2

1 + J2
2

)
Ns

(
�0δD

−D

) ∑
q,q′

∑
α1,η1,s1,s′

2

e− λ2

2 (|q|2+|q′|2 )c†
q,α1+2,η1,s′

2
cq′,α1+2,η1,s1

×
∑

s′
1

Sα1,η1,s1;α1,η1,s′
1
Sα1,η2,s′

1;α2,η2,s′
2

∑
b

ρb(−D + μc)
[
e−λ2|p|2 ∣∣ψ (η1 )

b,α1+2(p)
∣∣2]∣∣

Eb(p)−μc=−D. (B16)

The internal summations are given by

∑
s′

f †
α,η,s′ fα,η,s′

1
f †
α,η,s2

fα,η,s′ =
(

1 −
∑

s′
f †
α1,η1,s1

fα1,η1,s1

)
f †
α1,η1,s2

fα1,η1,s′
1
+ δs′

1,s2

(∑
s′

f †
α1,η1,s1

fα1,η1,s1

)
, (B17)
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∑
s′

Sα,η,s′;α,η,s′
1
Sα,η,s2;α,η,s′ = −

(∑
s′

f †
α1,η1,s1

fα1,η1,s1

)
Sα,η,s2;α,η,s′

1
+ δs′

1,s2

(
1

4
+ 1

2

∑
s′

f †
α1,η1,s1

fα1,η1,s1

)
, (B18)

∑
s′

f †
α,η,s2

fα,η,s′ f †
α,η,s′ fα,η,s′

1
= f †

α1,η1,s2
fα1,η1,s′

1

(
3 −

∑
s′

f †
α1,η1,s1

fα1,η1,s1

)
, (B19)

∑
s′

Sα,η,s′;α,η,s′
1
Sα,η,s2;α,η,s′ = Sα,η,s2;α,η,s′

1

(
2 −

∑
s′

f †
α1,η1,s1

fα1,η1,s1

)
+ δs′

1,s2

(
5

4
− 1

2

∑
s′

f †
α1,η1,s1

fα1,η1,s1

)
, (B20)

where we ignored terms associated with potential scatterings in the equations with S . Unlike the Kondo coupling calculations,
the summations of products of two S are rather complicated because of

∑
s′ f †

α1,η1,s1
fα1,η1,s1 .

Particle-hole-symmetric case

In a special limit that μc = 0 and ρ(D) = ρ(−D), the expression can be simplified using the Hubbard operator identity [77]∑
s′

[
Sα,η,s′;α,η,s′

1
,Sα,η,s2;α,η,s′

] =
∑

s′

[
f †
α,η,s′ fα,η,s′

1
, f †

α,η,s2
fα,η,s′

] =
∑

s′
f †
α,η,s′ fα,η,s′δs′

1,s2 − 2 f †
α,η,s2

fα,η,s′
1
= −2Sα,η,s2;α,η,s′

1
.

(B21)

With the Hubbard operator identity, we obtain

T̄ (p) + T̄ (h) ≈ 2

(
J2

1 + J2
2

)
Ns

(
�0δD

D

) ∑
q,q′

∑
α1,η1,s2,s′

1

e− λ2

2 (|q|2+|q′|2 )c†
q′,α1+2,η1,s′

1
cq,α1+2,η1,s2Sα1,η1,s2;α1+2,η1,s′

1

×
∑

b

ρb(D)
[
e−λ2|p|2 ∣∣ψ (η1 )

b,α1+2(p)
∣∣2]∣∣

Eb(p)=D. (B22)

Setting J1 = J2 = J , we obtain

J (D − δD) = J (D) − 4J2δD
∑

b=3,4

�̄b(D)

πD
, (B23)

where �̄b is the modified hybridization function.
Thus, the poor man’s scaling equation for J is given by

dJ

dD
= 4J2

∑
b=3,4

�̄b(D)

πD
= J2

2πv2∗

[
e
− λ2

v2∗
(D2+DM ) + �(D − M )e

− λ2

v2∗
(D2−DM )]

. (B24)

3. General case

For the general case, we surmise that
∑

s′ f †
α1,η1,s1

fα1,η1,s1 can be replaced by the expectation value, i.e., 〈∑s′ f †
α1,η1,s1

fα1,η1,s1〉 =
Nf /4. Thus,

∑
s′

Sα,η,s′;α,η,s′
1
Sα,η,s2;α,η,s′ ≈ − Nf

4
Sα,η,s2;α,η,s′

1
+

(
Nf

8
+ 1

4

)
δs2,s′

1
, (B25)

∑
s′

Sα,η,s′;α,η,s′
1
Sα,η,s2;α,η,s′ ≈8 − Nf

4
Sα,η,s2;α,η,s′

1
+

(
8 − Nf

8
+ 1

4

)
δs2,s′

1
. (B26)

The T -matrix contributions are approximated by

T̄ (p)(E = 0) ≈
(
J2

1 + J2
2

)
Ns

(
�0δD

−D

)∑
q,q′

∑
α1,η1,s2,s′

1

e− λ2

2 (|q|2+|q′|2 )c†
q′,α1+2,η1,s′

1
cq,α1+2,η1,s2

×
(

−Nf

4
Sα1,η1,s2;α1,η1,s′

1
+ 2 + Nf

8
δs2,s′

1

)∑
b

ρb(D + μc)
[
e−λ2|p|2 ∣∣ψ (η1 )

b,α1+2(p)
∣∣2]∣∣

Eb(p)−μc=D

=
[

Nf

4

J2
1 + J2

2

π

δD

D

∑
b

�̄b(D + μc)

]
1

Ns

∑
q,q′

∑
α1,η1,s2,s′

1

e− λ2

2 (|q|2+|q′|2 )c†
q′,α1+2,η1,s′

1
cq,α1+2,η1,s2Sα1,η1,s2;α1,η1,s′

1
+ · · · ,

(B27)
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T̄ (h)(E = 0) ≈ −
(
J2

1 + J2
2

)
Ns

(
�0δD

−D

) ∑
q,q′

∑
α1,η1,s1,s′

2

e− λ2

2 (|q|2+|q′|2 )c†
q,α1+2,η1,s′

2
cq′,α1+2,η1,s1

×
(

8 − Nf

4
Sα1,η1,s1;α1,η1,s′

2
+ 10 − Nf

8
δs1,s′

2

) ∑
b

ρb(−D + μc)
[
e−λ2|p|2 ∣∣ψ (η1 )

b,α1+2(p)
∣∣2]∣∣

Eb(p)−μc=−D

=
[

8 − Nf

4

J2
1 + J2

2

π

δD

D

∑
b

�̄b(−D+μc)

]
1

Ns

∑
q,q′

∑
α1,η1,s1,s′

2

e− λ2

2 (|q|2+|q′|2 )c†
q,α1+2,η1,s′

2
cq′,α1+2,η1,s1Sα1,η1,s1;α1,η1,s′

2
+ · · · ,

(B28)

where we have ignored the potential scattering term in the final expression.
Setting J1 = J2 = J , we obtain

J (D − δD) = J (D) − Nf

2

J2(D)

π

δD

D

∑
b

�̄b(D + μc) −
(

4 − Nf

2

)
J2(D)

π

δD

D

∑
b

�̄b(−D + μc). (B29)

When μc = 0 and Nf = 4, this reproduces the exact particle-hole-symmetric result. The poor man’s scaling equation is given by

dJ

dD
= Nf

2
J2

∑
b

�̄b(D + μc)

πD
+

(
4 − Nf

2

)
J2

∑
b

�̄b(−D + μc)

πD
. (B30)

APPENDIX C: IMPURITY SCATTERING TERMS

Based on the T -matrix calculations, impurity potential scattering terms are generated. The potential scattering terms from
JK and J are distinct and correspond to orbital sector a = 1, 2 and a = 3, 4, respectively. The impact of the impurity potential
scatterings on MATBG is beyond the purpose of this work. For completeness, we summarize the results in this Appendix.

The potential scattering terms from T (p)(E = 0) + T (h)(E = 0) are given by

δĤimp,δ =
{

−
(

Nf

2
+ 1

4

)
J2

KδD

[∑
b

�b(D + μc)

πDγ 2

]
+

(
N − Nf

2
+ 1

4

)
J2

KδD

[∑
b

�b(−D + μc)

πDγ 2

]}

× 1

Ns

∑
q,q′

∑
α,η,s

∑
a,a′

[
V (η)

αa′ (q′)
]∗

V (η)
αa (q)

γ 2
c†

q′,a′,η,scq,a,η,sP̂Nf . (C1)

Note that δĤimp,δ vanishes exactly when Nf = 4 and μc = 0.
The potential scattering terms from T̄ (p)(E = 0) + T̄ (h)(E = 0) are given by

δĤimp,δ′ =
{

−
(

Nf

8
+ 1

4

)(
J2

1 + J2
2

)
δD

[∑
b

�̄b(D + μc)

πD

]
+

(
8 − Nf

8
+ 1

4

)(
J2

1 + J2
2

)
δD

[∑
b

�̄b(−D + μc)

πD

]}

× 1

Ns

∑
q,q′

∑
α,η,s,s

e− λ2

2 (|q|2+|q′|2 )c†
q′,α+2,η,scq,α+2,η,s. (C2)

Again, δĤimp,δ′ vanishes exactly when Nf = 4 and μc = 0. We focus only on J1 = J2 = J . The potential scattering due to J can
be described by

Ĥimp,δ′ = δ′

Ns

∑
q,q′

∑
α,η,s,s

e− λ2

2 (|q|2+|q′|2 )c†
q′,α+2,η,scq,α+2,η,s, (C3)

where the bare value of δ′ is set to zero.
The one-loop scaling flows are given by

dδ

dD
=

(
Nf

2
+ 1

4

)
J2

K

[∑
b

�b(D + μc)

πDγ 2

]
−

(
N − Nf

2
+ 1

4

)
J2

K

[∑
b

�b(−D + μc)

πDγ 2

]
, (C4a)

dδ′

dD
=

(
Nf

4
+ 1

2

)
J2

[∑
b

�̄b(D + μc)

πD

]
−

(
8 − Nf

4
+ 1

2

)
J2

[∑
b

�̄b(−D + μc)

πD

]
. (C4b)
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FIG. 10. Corrections to energy levels at second-order perturba-
tion theory. (a) Particle contribution. (b) Hole contribution. Dashed
lines indicate the f -fermion propagators; solid lines indicate c-
fermion propagators; p is the loop momentum; n indicates the
number of f fermions.

Since J2
K is typically much larger than J2, |δ| is parametrically

larger than |δ′| in general. This causes an imbalance in the
orbital space a = 1, 2 and a = 3, 4. In the lattice problem, the
contribution from these potential scatterings tends to compen-
sate the dynamical mass term due to ĤW .

APPENDIX D: DERIVATION OF POOR MAN’S SCALING
OF ANDERSON MODEL

The impurity Anderson model is described by ĤAnd =
Ĥc,0 + Ĥimp, f + Ĥimp,c f + Ĥimp,J [Eqs. (2) and (13)–(15)].
The role of the Ĥimp,J term is already discussed in the main
text. We note several crucial differences in our model from
the original Anderson model. First, the electron occupation
ranges from n = 0 to 8 instead of n = 0, 1, 2. Second, the
density of states of the c-fermion band has a strong energy
dependence, essentially a linear density of states in the high-
energy regime. Despite these complications, we can still apply
the poor man’s scaling approach following Refs. [78,79].

With a sufficiently large energy cutoff (or c-fermion
bandwidth), the hybridization term Ĥimp,c f induces charge
fluctuation in the localized f site, and in turn rises to renor-
malization of f -fermion energy levels as illustrated in Fig. 10.
Following Ref. [78], we compute the flow of f -fermion
energy levels by integrating out the high-energy modes pro-
gressively.

The bare f -fermion energy levels are given by En =
−μ f n + U (n − 4)2/2. One can easily show that En+1 +
En−1 − 2En = U , similar to the symmetry SU(2) Anderson
model [78]. Upon renormalization, energy levels acquire dif-
ferent corrections. As a result, one needs to examine En with
n = 0, 1, . . . , 8 altogether.

Using the second-order perturbation theory (depicted by
Fig. 10) and reducing the half-bandwidth from D to D − δD,
we derive the expression of En(D − δD) as follows:

En(D − δD) = En(D) − n�(p)
n (D) − (8 − n)�(h)

n (D), (D1)

where

�(p)
n (D) = 1

Ns

′∑
p

∑
b

∣∣∑
a V (η)

αa (p)� (η)
b,a (p)

∣∣2

En−1(D) − En(D) + Eb(p) − μc
,

(D2)

�(h)
n (D) = 1

Ns

′′∑
p

∑
b

∣∣∑
a V (η)

αa (p)� (η)
b,a (p)

∣∣2

En+1(D) − En(D) − Eb(p) + μc
.

(D3)

In the above expressions, �b,a(p) and Eb(p) denote the wave
function and energy of the bth c-fermion band,

∑′
p sums

over D − δD < Eb(p) − μc < D and
∑′′

p sums over −D <

Eb(p) − μc < −D + δD. The �
(p)
n (�(h)

n ) term denotes the
contribution of creating a particle (hole) excitation in c-
fermion band. The prefactor n in front of �

(p)
n indicates the

available number of f fermions for transferring to the c-
fermion conduction bands. Similarly, the prefactor 8 − n in
front of �(h)

n indicates the available occupancy of localized
f orbital for accepting fermions from the c-fermion valence
bands.

With an infinitesimal δD, one can derive the flow equation

dEn

dD
= n

π

∑
b �b(D + μc)

En−1(D) − En(D) + D

+ 8 − n

π

∑
b �b(−D + μc)

En+1(D) − En(D) + D
. (D4)

To analyze the Anderson model, one needs to run the flow
equations for all the many-body energy levels.
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