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Confined states and topological phases in two-dimensional quasicrystalline π-flux model
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Motivated by topological equivalence between an extended Haldane model and a chiral-π -flux model on a
square lattice, we apply π -flux models to two-dimensional bipartite quasicrystals with rhombus tiles in order
to investigate topological properties in aperiodic systems. Topologically trivial π -flux models in the Ammann-
Beenker tiling lead to massively degenerate confined states whose energies and fractions differ from the zero-flux
model. This is different from the π -flux models in the Penrose tiling, where confined states only appear at the
center of the bands as is the case of a zero-flux model. Additionally, Dirac cones appear in a certain π -flux model
of the Ammann-Beenker approximant, which remains even if the size of the approximant increases. Nontrivial
topological states with nonzero Bott index are found when staggered tile-dependent hoppings are introduced in
the π -flux models. This finding suggests a direction in realizing nontrivial topological states without a uniform
magnetic field in aperiodic systems.
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I. INTRODUCTION

The discovery of exotic phases in quasicrystals, such as
quantum criticality [1], superconductivity [2], and magnetism
[3], has stimulated further research about the role of aperiod-
icity in establishing these phenomena. Although quasicrystals
lack translational symmetry [4–6], they possess unique struc-
tural properties such as self-similarity, originating from their
higher-dimensional structures. Recent advances in realizing
quasicrystals enable researchers to analyze aperiodicity in
combination with other physical phenomena [7–10]. Further
efforts are needed to understand and explore classical and
quantum phases in such systems [11–19] including topolog-
ical phases of matter, which have become a central issue in
various fields of condensed matter physics [20–22]. Interest-
ingly, aperiodicity in quasicrystals does not prevent them from
hosting topological phases [23–39] including Chern insulators
[40–48], topological superconductors [49–53], non-Hermitian
topological phases [54,55], and higher-order topological
phases [56–59].

In this paper, we present a proposal for generalizing
the Haldane model [60] on a honeycomb lattice to qua-
sicrystalline systems. The Haldane model describes nontrivial
topological states without an external magnetic field. While
previous studies have generalized this model to quasicrys-
talline systems [45,46], a procedure similar to a conventional
generalization using π -flux models [61–65] applied to other
translational systems such as a square lattice has not been

*These authors contributed equally to this work.

employed. We extend the π -flux model to two-dimensional
bipartite quasicrystals with rhombus tiles, where π flux pene-
trates tiles with specific configurations. As examples of such
quasicrystalline systems, we analyze two quasicrystals, Pen-
rose tiling, and Amman-Beenker tiling [66]. We find that
in contrast to zero-flux limit, π -flux configurations in the
Amman-Beenker tiling introduce massively degenerate con-
fined states whose energies are not at the center of energy
bands. These states are strictly localized, similar to well-
known confined states [67–78] and dispersionless flat bands
of periodic kagome and Lieb lattices, etc. [79–89]. The
massive degeneracy of the confined states is related to the self-
similarity of quasicrystals, where local patterns repeat through
quasicrystals due to Conway’s theorem [72]. Accordingly, if
a localized wave function appears in a small part of a given
quasicrystal, it also appears in the repeated regions, leading
to massively degenerate confined states. On the other hand, in
the Penrose tiling, confined states always appear at the center
of energy bands regardless of the presence of π -flux, and their
number remains constant despite modifications to their wave
function induced by the π -flux model. This is related to the
local violation of bipartite neutrality in the Penrose tiling [90].
We investigate the confined states by developing a method
to obtain their localized wave function and analyzing their
fraction in different π -flux configurations. Furthermore, we
discover Dirac cones in the energy dispersion of a particular
π -flux configuration in Ammann-Beenker approximants. We
find nontrivial topological states in all of the π -flux config-
urations in both Penrose tiling and Amman-Beenker tiling
when we introduce staggered tile-diagonal hopping (STDH).
We confirm the emergence of topological states in the
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FIG. 1. (a) Ammann-Beenker tiling. The indicated area with green dashed edges refers to a symmetric domain of tiles called D1 that is used
in Table I. (b) An example of Ammann-Beenker tiling approximant (g = 1). The numbers inside circles show approximant sublattice indices.
Blue dots show the origin of a unit cell and blue arrows represent the basis vectors of the unit cell, �a1, �a2. (c) Energy levels (black points)
sorted from lowest to highest energies vs index of levels, 1 to Nt in the bottom horizontal axis and DOS (blue lines) for a zero-flux model
in an Ammann-Beenker approximant [Nt = 2×2×1393]. (d) Edges of the Ammann-Beenker tiling drawn by arrows starting from a vertex of
the set A. The colored arrows correspond to those in (e). (e) Phase An (= π/2, n = 1, . . . , 4) to construct quasicrystalline π -flux models. The
direction of arrows corresponds to R̂n (see the text).

π -flux models with STDH by calculating the Bott index and
edge modes. Therefore, this model can be a proposal for the
generalization of the Haldane model to aperiodic systems
in realizing nontrivial topological states without a uniform
magnetic field.

The structure of this paper is as follows. In Sec. II, we focus
on the Ammann-Beenker tiling, while in Sec. III, we explore
the Penrose tiling. Finally, our findings are summarized and
discussed in Sec. IV.

II. AMMANN-BEENKER π-FLUX MODEL

Structure. Ammann-Beenker tiling consists of two dif-
ferent tiles [see Fig. 1(a)] [91]. We regard vertices of the
tiles as positions where electrons can hop through the edges
of tiles. This is known as the vertex model [15,92]. This
model can be studied by using Ammann-Beenker approxi-
mants, or equivalently supercell [see Fig. 1(b)] [93–95], where
periodic boundary conditions are employed at the edges of
the supercell. Approximants are standard tools to investigate
topological phases in quasicrystals [43]. The size of qua-
sicrystal approximants can be increased by increasing the
approximant generation g. By definition, an approximant su-
percell contains full information of a given quasicrystal when
g → ∞. Intuitively, approximant is a defective quasicrystal,
where in some tiles matching rule of the given tiling is broken
down. However, the number of these defects decreases in
comparison to the number of all tiles by increasing approxi-
mant generation [93]. In order to reduce boundary effects and
to perform Bott index calculations, we use approximants with
g = 4, which gives Nt = 1393 total vertices.

The vertex model for the Ammann-Beenker tiling has bi-
partite properties. This means that we can decompose vertices
of the Ammann-Beenker tiling into two sets, A and B, without
any edges connecting the same set [96]. As a result, start-
ing from a given vertex, we cannot make a loop with an
odd number of edges. However, our method (see Ref. [95])
to generate the approximant of the Ammann-Beenker tiling
violates bipartite properties at the boundaries [e.g., a 1© →
2© → 4© → 1© path in Fig. 1(b)]. Note that to calculate the

Bott index we need to have a correct periodic boundary con-
dition (which respects the π -flux model that defines shortly),

which is violated if we use a single cell of approximant of
Ammann-Beenker tiling. Nonetheless, we can restore bipar-
tite properties by constructing a new approximant made from
2×2 non-bipartite approximants. In the following, we will use
this new approximant to study the Ammann-Beenker tiling.

General Hamiltonian. Hamiltonian for electrons in
Ammann-Beenker tiling with arbitrary flux distribution reads

H =
∑

〈i, j〉
teiAi j |i〉〈 j|, (1)

where t and Ai j = −Aji are hopping amplitude and Peierls
phase, respectively. 〈i, j〉 indicates all edges of the Ammann-
Beenker tiling [45] and Ai j gives a complex phase for the
hopping. The total flux penetrating each face or tile is given by
the total phases that an electron can accumulate along edges,
i.e.,

φi, j,k,l = Ai j + Ajk + Akl + Ali, (2)

where i, , j, k, and l represent vertices on a given tile and
are arranged in an anticlockwise way such as i → j → k →
l → i.

Zero-flux case. Let us first review the zero-flux limit,
where we set Ai j = 0 in Eq. (1). In Fig. 1(c), we show the
energy levels and density of states (DOS) of the zero-flux
Ammann-Beenker approximant with Nt = 2×2×1393. Both
energy levels and DOS are symmetric with respect to the
energy E = 0, reflecting bipartite nature. A prominent peak
exists in DOS at E = 0, which corresponds to the presence
of confined states [74]. In the Ammann-Beenker tiling, the
fraction of confined states p (the number of them divided
by Nt ) is given by p = pE=0 = 1/2τ 2

s ≈ 0.086 [74], where
τs = 1 + √

2 is the silver ratio. Since the confined states in
the Ammann-Beenker tiling are fragile, they generally dis-
perse upon introducing other terms into the Hamiltonian [74].
Furthermore, the confined states are mixed with other states.
This may be related to the fact that increasing the system size
generates a new confined state with larger extension [74].

Quasicrystalline π -flux model. Following the π -flux model
on a square lattice, which introduces π flux systematically
[61] (see Appendix A), we assume the same phase Ai j for
edges with the same orientation, where the edges start from
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FIG. 2. [(a1),(b1),(c1)] Different π -flux configurations named AB.conf1–3 for the Ammann-Beenker tiling, where red, blue, and white
regions indicate tiles with −π , +π , and zero flux, respectively. Arrows indicate the presence of nonzero phases on the edge of tiles. Energy
levels and DOS for (a2) AB.conf1, (b2) AB.conf2, and (c2) AB.conf3. [(a3),(b3),(c3)] Same as (a2), (b2), and (c2) but STDH with td = 0.3t
is used. The energy levels as a function of STDH td for (a4) AB.conf1, (b4) AB.conf2, and (c4) AB.conf3. [(a5),(b5),(c5)] Same as (a4), (b4),
and (c4) but NSTDH is used. Edge modes at a given energy E in the case of STDH td = 0.3t for (a6) AB.conf1, (b6) AB.conf2, and (c6)
AB.conf3, where the red (blue) region indicates a larger (smaller) probability of an edge-mode wave function.

a vertex of the set A. However, for the edges starting from
a vertex of set B, we use the same phase but with the
opposite sign to keep the Hermiticity of the Hamiltonian.
Therefore, it is useful to define phase An for the edges start-
ing from a vertex of the set A with a directional vector
R̂n = ±( cos(2πn/8), sin(2πn/8)), where n = 1, . . . , 4. The
quasicrystalline π -flux model is defined by setting some (but
not all) of An to ±π/2 and others to zeros. Note that as fluxes
{φi, j,k,l} are defined modules to 2π , setting all An to ±π/2
results in a zero-flux model.

In Fig. 1(d), we present the Ammann-Beenker tiling with
attached arrows that are defined based on An [see Fig. 1(e)].
We note that one can construct this arrow-attached tiling using
inflation rules (see Appendix B). Furthermore, it is worth
mentioning that the arrows with the same colors construct
structures similar to Ammann lines in the Ammann-Beenker
tiling [for example, see green arrows in Fig. 2(a1)] [66].

Confined states in Ammann-Beenker π -flux model. The
Ammann-Beenker tiling allows various π -flux configurations
due to possible choices of nonzero An. In the first column of
Fig. 2, we show three possible configurations of π flux in
the Ammann-Beenker tiles. In the following, we name the
three cases AB.conf1, AB.conf2, and AB.conf3, as shown
in Figs. 2(a1), 2(a2), and 2(a3), respectively. We note that
these configurations are unique and other configurations are
given by rotation and/or translation of the three configura-
tions. The AB.conf1 is obtained by choosing A4 = π/2 and
An 
=4 = 0; AB.conf2 is by A1 = A2 = π/2 and An 
=1,2 = 0;
and AB.conf3 is by A1 = A3 = π/2 and An 
=1,3 = 0. These
π -flux configurations lead to confined states with different
energies and fractions. We plot energy levels and DOS for
AB.conf1, AB.conf2, and AB.conf3, in Figs. 2(a2), 2(b2), and
2(c2), respectively. Confined states appear at E = ±√

2t for

AB.conf1, at E = 0 and ±2t for AB.conf2, and E = 0 and
±2

√
2t for AB.conf3.

We can confirm that confined states actually consist
of localized wave functions after some manipulations of
degenerate eigenfunctions numerically obtained by exact
diagonalization. Such eigenfunctions, i.e., wave functions,
usually give finite overlap at the same vertex. This means
that they are not localized wave functions. However, one
can construct localized wave functions by recombining the
degenerate wave functions. For this purpose, we define inverse
participant ratio (IPR) given by

∑
i |�i|4/

∑
i |�i|2, where

�i is the vertex component of a variational wave function
composed of linearly combined degenerate wave functions.
IPR gives a measure of the extension of a given wave function.
For instance, IPR for extended Bloch states in translation-
ally invariant systems is zero, while it gives 1 for atomic
wave functions [53,97]. Maximizing IPR, we can obtain lo-
calized wave functions corresponding to confined states (see
Appendix D). After confirming a localized wave function
for each confined state, we perform an analysis similar to
Ref. [74] to obtain the fraction p of the confined states.
We conjecture p for each configuration as p = pAB.conf1

E=±√
2t

=
τ−4

s ≈ 0.029, p = pAB.conf2
E=0 ≈ 0.061, p = pAB.conf2

E=±2t = 198 −
82τs ≈ 0.034, pAB.conf3

E=0 = 2675 − 1108τs ≈ 0.051, and p =
pAB.conf3

E=±2
√

2t
= τ−4

s ≈ 0.029 (see Table I, and Appendix F for
further analysis). The investigation of the fraction of con-
fined states involves analyzing their occurrence in smaller
structures and extrapolating their statistics to larger systems.
It is important to acknowledge that there is no guarantee of
the emergence of new confined states in larger system sizes,
which leads us to employ the term “conjecture”. In particular,
for the E = 0 confine states on AB.Conf2, we were unable
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TABLE I. The number of newly generated confined states Nnet
j

in the Dj region for the Ammann-Beenker tiling, where Dj defines a
cluster of tiles that appears after ( j − 1)th inflation of D1 indicated by
green in Fig. 1(a). Nnet

j is calculated for j = 1, . . . , 5 and presented
in each column for confined states with energy E in a given flux
configuration. For j > 5, we use speculated Nnet

j expected from the
calculated Nnet

j for j = 1, . . . , 5 (see Ref. [74] and Appendix F for
further analysis). The ? mark means that it is difficult to speculate the
number. The last column represents the fraction of confined states
defined by p = ∑

j p jNnet
j , where pj = 2τ−(2 j+3)

s is the fraction for
the Dj region. The fraction of confined states p for AB.conf2 and
E = 0, is calculated numerically for a Ammann-Beenker tiling with
Nt ≈ 2×104 vertices.

Nnet
1 Nnet

2 Nnet
3 Nnet

4 Nnet
5 Nnet

i p

zero flux
E = 0

2 6 12 20 30 i(i + 1) 1/2τ 2
s

AB.conf1
E = ±√

2t
1 1 1 1 1 1 1/τ 4

s

AB.conf2
E = 0

1 4 15 68 347 ? ≈0.061

AB.conf2
E = 0, td 
= 0

1 2 3 4 5 i 1/2τ 3
s

AB.conf2
E = ±2t

1 2 2 2 2 2 198−82τs

AB.conf3
E = 0

1 5 7 7 7 7 2675−1108τs

AB.conf3
E = ±2

√
2t

1 1 1 1 1 1 1/τ 4
s

to find a suitable expression for precisely determining the
fraction of confined states.

Topological phase. It has been known that topological
states emerge in a periodic π -flux model on a square lat-
tice if STDH is set to be ±td for tiles with ±π fluxes
[61] (see Appendix A). We introduce the same STDH in
our Ammann-Beenker π -flux configurations. However, in our
Ammann-Beenker π -flux model, we obtain some tiles without
any flux and we assume no diagonal hopping for them. We
note that prior to considering the STDH, the fact that all fluxes
exhibit a π -flux distribution, indicates the presence of time-
reversal symmetry. This can be seen as follows: Consider, for
example, the distribution shown in Fig. 2(a1). By choosing
alternative hoppings, such as ±1 for the arrows along the
strips, the same π -flux distribution can be achieved, further
demonstrating the presence of time-reversal symmetry. How-
ever, with the introduction of the STDH, the tiles become half
and acquire a π/2-flux distribution, leading to the breaking of
time-reversal symmetry. We plot energy levels and DOS for
td = 0.3t in the third column of Fig. 2 for the three π -flux con-
figurations. In all cases except AB.conf2, introducing STDH
disperses the confined states for td = 0. We found that in
AB.conf2 actually STDH disperse approximately half of the
confine states for td = 0 and their fraction is approximately
given by p = pAB.conf2

E=0,td 
=0 = 1/2τ 3
s ≈ 0.035 (see Table I). Addi-

tionally, nonzero td develops new gaps in their energy-level
spectrum. We calculate the Bott index νBott [98–100] (see
Appendix C), which is equivalent to the Chern number used
in periodical structures, for all energy gaps with gap value of

1.1

1.4
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BZ
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FIG. 3. (a) Energy spectrum with OBC (red lines) and PBC (blue
lines) for AB.conf2 as a function of STDH td . (b) The distribution of
a wave function with energy E ≈ 1.1t with OBC for different td . In
(a) and (b) we use the same system as we considered in Fig. 2(b4).
[(d)–(f)] Band dispersion of a π -flux AB.conf2 model along high-
symmetry line for td = 0 (blue) and td = 0.1t (red) with different
approximant sizes. (d) g = 1, (e) g = 2, and (f) g = 3. In the inset
of (f) we plot Brillouin zone (BZ) and indicate �k� = 0, �kM = 1

2
�b1 +

1
2
�b2, and �kK = 1

2
�b1.

�E > 0.04t . We find that some energy gaps have a nonzero
topological invariant |νBott| = 1 as indicated by red dots in
the third column of Fig. 2. We also confirm the existence of
edge modes for these nontrivial gaps under the open boundary
condition, which are presented in the last column of Fig. 2.
In the fourth column of Fig. 2, we show energy levels as a
function of td . The green and red dots in these figures show
trivial νBott = 0 and topological |νBott| = 1 gaps, respectively,
evaluated by the Bott index. In all configurations, a sufficient
amount of td induces topological states by opening new topo-
logical gaps.

We note that STDH is essential in the establishment of
topological states. For instance, in the fifth column of Fig. 2,
we calculate the Bott index in the presence of nonstaggered
tile-diagonal hopping (NSTDH), i.e., +td for all tiles with ±π

flux. Since the value of the Bott index is zero, none of the tiny
gaps have a nontrivial topological state.

Dirac cone. As shown in Fig. 2(b4), nonzero STDH in
AB.conf2 can induce energy gaps with nontrivial topological
Bott index. Note that in this case, increasing STDH adiabat-
ically (without gap closing) connects the trivial energy gap
(with vBott = 0) located around E ≈ ±1.1t with a topological
gap (with vBott 
= 0) [see Fig. 2(b4)]. In Fig. 3(a), we com-
pare the resulting energy spectrum using periodic boundary
conditions (PBC) and open boundary conditions (OBC) and
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FIG. 4. Penrose π -flux model. (a) Energy spectrum (black
points) and DOS (blue lines) for approximant of Penrose tiling with-
out flux with g = 8 [Nt = 9349]. (b) Penrose tiling where arrows are
attached. (c) An for the Penrose tiling. [(d1),(e1),(f1)] Possible Pen-
rose π -flux models. [(d2),(e2),(f2)] Corresponding energy spectra as
a function of STDH td , where red (green) dots indicate topologically
nontrivial (trivial) gaps.

find states inside the gap under PBC irrespective of STDH.
We plot wave function distribution for different STDH in
Fig. 3(b) and observe that edge modes become visible with
increasing td , leading to clear edge mode in Fig. 2(b6). Note
that the bulk-boundary correspondence of the topological
phases is obtained by considering different twisted boundary
conditions. To see this, we examine how energy disper-
sion (corresponding to different twisted boundary conditions)
around E ≈ ±1.1t behaves when we take an approximant of
AB.conf2 as a unit cell of translationally invariant system with
the basis vectors, �a1 and �a2, given in Fig. 1(b2). We apply
the Fourier transformation by |i〉 = 1/Nt

∑
�k exp(i�ri · �k)|�k〉 on

Eq. (1), which gives momentum-dependent Hamiltonian H (�k)
written by an Nt×Nt matrix. The energy dispersion is obtained
by diagonalizing H (�k), where we denote it by ελ={1,...,Nt }(�k).
In Fig. 3, we plot ελ(k) with blue (red) color at td = 0 (td =
0.1t) along high-symmetry lines for different approximant
size. In Fig. 3(a), we find several twofold degenerate Dirac
cones with a liner dispersion at �kM = 1

2
�b1 + 1

2
�b2, where �b1

and �b2 are reciprocal vectors. The Dirac cones that are located
at E ≈ ±1.1t become gapped after introducing STDH. This
is in accordance with our previous result of the emergence
of topological gaps in Fig. 2(b4). Increasing system size in-
duces more bands, and therefore, the velocity of these Dirac
cones decreases due to the band repulsion from other states.
Interestingly, the Dirac cones do not repeat with increas-
ing the approximant size, indicating no band folding of the
cones.

Note that both the energy gap and system size should be
large enough for the calculation of the Bott index [98,99].
However, as we found in the previous paragraph, increasing
system size decreases the energy gap at td = 0. This means

that the calculation of the Bott index at td = 0 is inapplicable
to any size of the Ammann-Beenker structure.

III. PENROSE π-FLUX MODEL

The Penrose tiling without π -flux shows zero-energy con-
fined states [72] [see Fig. 4(a)], originating from a local
imbalance of bipartite neutrality within a given cluster [90].
The confined states are separated by a gap and its fraction
is given by p = pE=0 = −50τg + 81 ≈ 0.098 [15,72], where
τg = (1 + √

5)/2 is the golden ratio. The imbalance of bi-
partite neutrality in neighboring clusters alternates between
two bipartite sets and is separated by forbidden ladders. As
confined states originate from local bipartite imbalance fluc-
tuations, random flux cannot alter the energy and fraction of
the original confined states despite significant modification of
their wave functions [90]. We extend our π -flux approach to
the Penrose tiling by defining An [see An=1,...,5 in Fig. 4(c)
and their attachment on the edge of the Penrose tiling in
Fig. 4(b)]. We confirm that the number of the confined states
is unchanged (see Appendix E) for any of three possible π -
flux configurations [see Figs. 4(d1), 4(e1), and 4(f1)]. Note
that similar to Ammann-Beenker tiling, these configurations
are the only possible configuration and others are given by
rotation or/and translation of the three configurations. Ad-
ditionally, we find that introducing sufficient STDH in the
Penrose π -flux model gives rise to nontrivial topological
states [see Figs. 4(d2), 4(e2), and 4(f2)].

IV. SUMMARY AND DISCUSSION

In summary, we have extended the two-dimensional π -
flux model on a square lattice to quasicrystalline bipartite
tilings and made a proposal for an aperiodic Haldane model by
introducing staggered tile-diagonal hopping. We have found
that the π -flux model leads to a new massively degenerate
confined state in the Ammann-Beenker tiling, while con-
fined states in the Penrose tiling remain the same as the
vertex model without flux. Additionally, we have discovered
massless Dirac cones in a specific π -flux configuration in
the Ammann-Beenker approximant. Our results on the qua-
sicrystalline π -flux model warrant further exploration through
innovative techniques such as topological circuits [59,101],
photonics [102]. For instance, Lv et al. [59] have realized
a π -flux distribution in a modified version of the Ammann-
Beenker quasicrystal, where each vertex contains four sites.
This setup can be easily extended to our Ammann-Beenker
and Penrose π -flux models.
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FIG. 5. The π -flux model in the square lattice. Two tiles of (a) π

flux, and π flux with (b) staggered tile diagonal hopping (STDH),
and (c) nonstaggered tile diagonal hopping (NSTDH). The two green
symbols inside the tiles indicate positive and negative π [π/2] flux in
(a) [(b) and (c)]. In (c), red and blue diagonal links indicate hopping
with opposite signs regarding each other. (d) The π -flux model in
the square lattice, where �a1, �a2 show basis vectors. The energy dis-
persion for (e) td = 0, (f) STDH with td = 0.1t , and (g) NSTDH with
td = 0.1t along high-symmetry lines.

APPENDIX A: π-FLUX MODEL ON SQUARE LATTICE

The π -flux model in the square lattice reads

H = t
∑

〈i j〉
eiAi j |i〉〈 j|, (A1)

where t is the electron hopping. |i〉〈 j| represents hopping
operator between site i and j, and 〈i j〉 is the nearest-neighbor
links of the square lattice, or equivalently edges of the square
lattice, and Ai j = −Aji is the phase of hopping. The total flux
penetrating each face or tile of the square lattice is given by
the total phases that accumulate around edges, i.e.,

φ ≡ φi, j,k,l = Ai j + Aj,k + Ak,l + Al,i. (A2)

where i, j, k, and l represent vertices on a given tile and
are arranged in an anticlockwise way such as i → j → k →
l → i. The square lattice has bipartite properties. This means
that we can divide its vertices into two sets, A and B, with-
out any edges connecting the same set. In such a bipartite
Hamiltonian, energy eigenvalues come in pair ±E , leading to
a symmetric spectrum. We can obtain a π -flux distribution,
by assigning Ai, j = π/2 (Aj,i = −π/2), if i ( j) belongs to A
(B) set and �ri − �r j is parallel to either horizontal or vertical
axis, where �ri is the position vector of site i. In Fig. 5(d) we
show a π -flux model in the square lattice, where arrows along
the vertical direction represent Ai, j = π/2 belonging to the A
set and broken horizontal lines connecting two sites represent
Ai, j = 0. Figure 5(a) represents two tiles in the π -flux model.

We can obtain the same π -flux distribution if we assign
Ai, j = π/2(0) along horizontal (vertical) directions. The en-
ergy dispersion of the π -flux model is given by diagonalizing
the Fourier-transformed Hamiltonian

H (k) = 2t cos(kx )σx + 2t cos(ky)σy. (A3)

Figure 5(e) shows the resulting energy dispersion with two
gapless Dirac cones.

The Dirac cones of the square π -flux model can be gapped
out by introducing staggered tile diagonal hopping (STDH)

H ′ = td
∑

〈〈i j〉〉 f

eiAi j η f |i〉〈 j|, (A4)

where 〈〈i j〉〉 f represents a pair of diagonal vertices of the faces
indicated by f and η f = 1(−1) if the corresponding face has
π (−π ) flux [see Fig. 5(b)]. The Fourier transformation of H ′
gives

H ′(k) = 2td sin kx sin kyσz. (A5)

As shown in Fig. 5(f), the gap of the Dirac cones opens up by
introducing STDH. We can confirm the topological state for
td 
= 0, by calculating the Chern number, which gives nonzero
and quantized values. Furthermore, due to the bulk-boundary
correspondence, the system hosts chiral edge modes in the
open boundary condition.

Note that introducing nonstaggered tile diagonal hop-
ping (NSTDH) [see Fig. 5(c)] does not open up the gap
[see Fig. 5(g)] as the underlying system still has space-time
symmetry.

APPENDIX B: INFLATION RULE TO OBTAIN
ARROW-ATTACHED AMMANN-BEENKER

AND PENROSE TILINGS

In Figs. 6(a) and 6(c), we present arrow-attached Ammann-
Beenker and Penrose tilings, where four and five distinct
arrows exist, respectively. Note that connecting arrows, we
obtain a strip of arrows whose adjacent arrows have opposite
directions. These strips are along a certain direction, which is
known as the Ammann bar in quasicrystal structures.

Note that one can obtain an inflation rule to generate
these arrow-attached quasicrystals. In the inflation rule, each
tile is substituted by several combinations of given qua-
sicrystal tiles in a way that quasicrystalline tiling holds after
inflation/deflation. Therefore, by rescaling new quasicrys-
talline tiling to have the same tiling as before, one can obtain a
quasicrystal with a larger number of tiles. To obtain the infla-
tion rule of arrow-attached quasicrystals, we need to know the
original and inflated tiles. In Figs. 6(b) and 6(d), we show all
distinct tiles and their inflated ones for the Ammann-Beenker
and Penrose tilings, respectively.

APPENDIX C: BOTT INDEX

To determine the topological characteristic of the qua-
sicrystalline π -flux model, we use the Bott index. This index
is a real space topological invariant and has been used for
systems without time-reversal symmetry. This index for a
given energy ε f is defined by

B(ε f ) = 1

2π
[tr log(X †

ε f
Y †

ε f
Xε f Yε f )], (C1)

where  is the imaginary part, tr is the matrix trace, log is the
matrix log, Xε f = Pε f XPε f + Qε f , and Yε f = Pε f Y Pε f + Qε f .
The projection operators Pε f , Qε f are given by

Pε f =
∑

ε<ε f

|ε〉〈ε|, Qε f =
∑

ε>ε f

|ε〉〈ε|, (C2)

where ε and |ε〉 are the eigenenergy and eigenstates of the
given Hamiltonian, respectively. The modified position matrix
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FIG. 6. (a) Arrow-attached Ammann-Beenker and (c) arrow-attached Penrose tilings. (b) Inflation rule for the Ammann-Beenker tiling and
(d) that for the Penrose tiling.

is defined by

X = diag[e2π ix1/Lx , e2π ix2/Lx , . . . , e2π ixN /Lx ],

Y = diag[e2π iy1/Ly , e2π iy2/Ly , . . . , e2π iyN /Ly ], (C3)

where diag indicates diagonal matrix, (xi, yi ) is the coordi-
nates of vertices, and Lx (Ly) is the length along x (y) direction.
Note that for the calculation of the Bott index, we have to
obtain ε and |ε〉 with the periodic boundary condition, where
we need to use a large approximant. Furthermore, the Bott
index is not reliable when a given energy gap is small. First,
we calculate the Bott index for the gap with �E > 0.04t
and then check the existence of edge modes for the open
boundary condition. To obtain a large approximant with the
open boundary condition, we remove interapproximant links
in periodic approximants.

APPENDIX D: FINDING LOCAL CONFINED STATES

In this section, we explain our strategy to find well-
localized confined states. Consider general Hamiltonian H.
We can obtain eigenstate |λ〉 with eigenenergy ελ by numeri-
cally diagonalizing H,

H|λ〉 = ελ|λ〉. (D1)

The obtained eigenstates are not necessarily well localized
and generally have spatial overlap among the wave functions.
To obtain well-localized confined states, we first identify all
eigenstates that are hugely degenerate with the same en-
ergy value. Note that to suppress the effects of boundary
conditions, we need to introduce disorder potential for the
boundary vertices. Searching localized wave functions, we
need to choose a small portion of the system. In this region, we
can construct new eigenstates from the degenerate eigenstates,
|λα〉 = ∑

φαi|i〉, where α = 1, . . . , Nc indicates the Nc-fold
degenerate states and i represents indices of site, orbital, spin,
etc. For this propose, we maximize inverse participation ra-

tio (IPR) for |ψ〉 ≡ ∑
ψα|λα〉 = ∑

i

∑
α ψαφαi|i〉, which is

defined as

IPR =
∑

i |
∑

α ψαφαi|4∑
i |

∑
α ψαφαi|2 . (D2)

It is known that if IPR is equal to one (zero), |ψ〉 is local-
ized (extended). We numerically optimize |ψ〉 to achieve the
largest IPR. Therefore, we can obtain a confined state denoted
by |ψ1〉. Subtracting |ψ1〉 from a set of |λα〉, we can find a
next confined state |ψ〉2 from Nc − 1 remaining set of inde-
pendent eigenstates by maximizing IPR. We can finally find
Nc well-localized confined states in this region by continuing
this procedure. By redoing the calculation for other parts of
the system, we can obtain all distinct confined states. Note that
the optimization cost increases rapidly with increasing Nc.

APPENDIX E: THE FRACTION OF CONFINED
STATES IN PENROSE TILING

1. The fraction of confined states

Koga and Tsunetsugu [72] have calculated the fraction of
confined states in Penrose tiling by considering the cluster
structures systematically. In Penrose tiling, the confined states
have finite amplitudes in specific regions named clusters in
Ref. [72]. There are several sizes of clusters (see Fig. 7), where
we label the ith smallest cluster as cluster-i. The clusters
are surrounded by stripe regions named forbidden ladders
in Ref. [15]. Koga and Tsunetsugu [72] have calculated the
generation dependence of the number of confined states in
each cluster. The confined states in each cluster have finite
amplitudes either in the A sublattice or B sublattice only.
Here, following Ref. [72], M and D sites refer to the sites of a
sublattice with finite and zero amplitudes, respectively. It has
been shown that the number of confined states in each cluster
coincides with the difference between the number of M and D
sites in the cluster [72]. In other words, the confined states in
Penrose tiling are related to the imbalance between A and B
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set Bset A forbidden ladder
FIG. 7. Penrose tiling, where the bipartite index of vertices is

given by red and blue dots. The green lines show the forbidden ladder
and separate regions with different bipartite imbalances.

sublattices [90]. This systematic approach reveals the fraction
of confined states in the nonzero-flux model on Penrose tiling.

We apply the method of Ref. [72] to the π -flux model.
Here, we should note that clusters in the π -flux model are
the same as those in the zero-flux model. For example, let
us consider the configuration Pe.conf1 as a π -flux model
[see Fig. 4(d1) in the main text. Two clusters are shown in
Figs. 8(a) and 8(b). These are examples of cluster-1 with
different angles. Because the π -flux model is angle depen-
dent, the Hamiltonian for the two clusters can be different.
However, the fivefold rotational symmetry and mirror sym-
metry of the clusters assure that the Hamiltonian of the π -flux
model does not depend on their angles. Accordingly, Fig. 8(a)
coincides with Fig. 8(b) by a single mirror reflection about y
axis or the π rotation about z axis.

Calculating the generation dependence of the number of
confined states for Pe.conf1, we find that the number of con-
fined states for the π -flux model is the same as that of the
zero-flux model for each generation of the cluster. Also, the
number of confined states is the same for other configurations
such as Pe.conf2 and Pe.conf3 [see Figs. 4(e1) and 4(f1) in
the main text]. This suggests that the confined states in the

FIG. 8. Cluster-1 of Pe.conf1 for the π -flux model. The angle
of the cluster is different between (a) and (b). The arrows denote the
hopping with nonzero Peierls phase (see the main text for definition).

FIG. 9. Six types of confined states in the zero-flux model on
Penrose tiling. The number on each vertex represents the relative
components of the wave function.

π -flux model are also related to the sublattice imbalance of
the clusters.

2. The wave functions of confined states

Next, we consider the wave functions of confined states
on Penrose tiling. In the case of the zero-flux model, there
are only six types of the confined states [15,68,72], illustrated
in Figs. 9(a)–9(f). Each number on the vertices represents the
relative components of the wave function in each type. The red
(blue) color for the numbers implies a positive (negative) sign.
Note that the tiles of type-4 and type-5 include those of type-3
and type-2, respectively. Also, the tiles of type-6 include those
of type-1 and type-2. The number of confined states for each
type is summarized in Table II.

The confined states in the π -flux model cannot be classified
by the six types shown in Figs. 9(a)–9(f), although the fraction
of the confined states in the π -flux model is the same as that
of in the zero-flux model. Due to the lack of fivefold rotational
symmetry and mirror symmetry in the π -flux model, the angle
of the tiles is crucial for the type-3, 4, 5, and 6 in Fig. 9.
We indicate the angle of the tiles by using a rotational index
r ∈ 0, 1, 2, 3, 4. We define the tiles with r = 0 as illustrated in

TABLE II. The number of confined states in the zero-flux model
for each type in Penrose tiling.

Type 1 2 3 4 5 6

The number of confined states 1 1 1 2 2 3
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(a) Type-1 (b) Type-2 (c) Type-3

(d) Type-4 (e) Type-5 (f) Type-6

FIG. 10. Six types of the tiles with r = 0 on Penrose tiling.

Figs. 10. The tiles with r are obtained by rotating anticlock-
wise the r = 0 tiles by −2πr/10. For example, the type-3 tiles
of Pe.conf1 in the π -flux model are illustrated in Figs. 11(a)
and 11(b) for r = 0 and 3, respectively.

The number of confined states for a given type and r in
several configurations are listed in Table III. It is clearly seen
that the number of confined states for the tiles of type-2, 4,
5, and 6 in Pe.conf1-3 is the same as those of the zero-flux
case. We note that the absence of confine states for type-1 and
type-3 does not affect the fraction of the confined states on the
entire Penrose tiling, because the tiles of type-1 (type-3) are
included in those of type-6 (5 and 6).

Except for type-3, the number of the confined states in the
π -flux model does not depend on configurations and rotation
indexes. Because type-3 has mirror symmetry about the diag-
onal line of the central tile, the confined states exist only when
this mirror symmetry is unchanged even in the presence of π

flux. Such a symmetry condition is satisfied only for one value
of r in each configuration.

In Fig. 12, we show some examples of the confined states
for the given type of tiles and r in each configuration of the
π -flux model in Penrose tiling. Note that the confined states

(a) Type-3 of r = 0 (b) Type-3 of r = 3

FIG. 11. The type-3 tiles of Pe.conf1in the π -flux model. (a)
r = 0 and (b) r = 3. The arrows denote the hopping with nonzero
Peierls phase (see the main text for definition).

TABLE III. The number of confined states for given type and r
in the three configurations in the π -flux model and in zero-flux case.

(a) Pe.conf1 (b) Pe.conf2

r r

0 1 2 3 4 0 1 2 3 4
1 0 0 0 0 0 1 0 0 0 0 0
2 1 1 1 1 1 2 1 1 1 1 1

type 3 0 0 0 1 0 type 3 0 0 0 0 1
4 2 2 2 2 2 4 2 2 2 2 2
5 2 2 2 2 2 5 2 2 2 2 2
6 3 3 3 3 3 6 3 3 3 3 3

(c) Pe.conf3 (d) no flux
r r

0 1 2 3 4 0 1 2 3 4
1 0 0 0 0 0 1 1 1 1 1 1
2 1 1 1 1 1 2 1 1 1 1 1

type 3 0 1 0 0 0 type 3 1 1 1 1 1
4 2 2 2 2 2 4 2 2 2 2 2
5 2 2 2 2 2 5 2 2 2 2 2
6 3 3 3 3 3 6 3 3 3 3 3

for type-1 do not exist. The confined states for the type-6
are not shown in Fig. 12, since they are too complicated
to illustrate. There exist two confined states for type-4 and
type-5. The tiles in type-4 and 5 include those in type-3 and 2,
respectively. Accordingly, one of the confined states in type-4
and type-5 is those in type-3 [Figs. 12(b), 12(f), and 12(j)]
and type-2 [Figs. 12(a), 12(e), and 12(i)], respectively. We
select a linear combination of the confined states so that the
other confined states in type-4 and type-5 [Figs. 12(c), 12(g),
and 12(k) and Figs. 12(d), 12(h), and 12(l)] are orthogonal to
the confined states in type-3 and type-2. The green lines in
Figs. 12(a)–12(c), 12(d)–12(g), and 12(i)–12(l) represent the
axis of mirror symmetry in each configuration. The confined
states shown in Figs. 12(a)–12(c), 12(d)–12(g), and 12(i)–
12(k) have the odd mirror symmetry about the green lines,
while the confined state shown in Fig. 12(l) has the even
mirror symmetry about the green line. The π -flux models
illustrated in Figs. 12(d) and 12(h) have no mirror symmetry.

APPENDIX F: THE FRACTION OF CONFINED STATES
IN AMMANN-BEENKER TILING

Koga [74] has calculated the fraction of confined states in
Ammann-Beenker tiling by focusing on the domain structures
with locally eightfold rotational symmetry. Koga has consid-
ered the zero-flux model in Ammann-Beenker tiling, whose
fraction of confined states has been obtained analytically as
1/2τ 2

s . In this Appendix, we estimate the fraction of confined
states in the π -flux model by following the method utilized in
Ref. [74].

First, we briefly explain the method used in Ref. [74]. To
estimate the fraction of confined states, the number of con-
fined states is systematically counted focusing on the domain
structures D1, D2, D3, . . ., illustrated in Fig. 13. Here, Di+1 is
generated by applying inflation/deflation operation to Di for
any generation i ∈ N. For each domain, the boundary sites are
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FIG. 12. Some examples of the confined states in Pe.conf1 [(a)–(d)], Pe.conf2 [(e)–(h)], and Pe.conf3 [(i)–(l)] of the π -flux model on
Penrose tiling. The tiles are (a) type-2 with r = 1, (b) type-3 with r = 3, (c) type-4 with r = 3, (d) type-5 with r = 1, (e) type-2 with r = 0,
(f) type-3 with r = 4, (g) type-4 with r = 4, (h) type-5 with r = 0, (i) type-2 with r = 1, (j) type-3 with r = 3, (k) type-4 with r = 3, and (l)
type-5 of r = 1. Each number written on the vertices is the relative component of the wave functions for the confined states with zero energy.
The arrows denote the hopping with nonzero Peierls phase (see the main text for definition).

excluded. Consequently, the number of sites in D1, D2, and D3

are 17, 121, 753, respectively. There are sixteen D1 structures
in D3. Note that when Di and D j (i > j) structures share their
centers, only Di structure is counted as domain structures and
D j is not counted for the sake of preventing a double count.
Following this rule, the D1 structure around the center of D3

is not regarded as D1.

FIG. 13. Ammann-Beenker tiling. The red, blue, and green
shaded areas are D1, D2, and D3, respectively. The sites on the
boundary that are indicated by blue dashed lines are not included
in the domains. For example, the red, blue, and green dots at the
boundary of D1, D2, and D3 are excluded.

The net number of confined states in Di is defined as

Nnet
i = N tot

i −
i−1∑

j=1

Ni, jN
net
j , (F1)

where N tot
i is the total number of confined states in Di and Ni, j

is the number of D j in Di. Note that Nnet
i is the contribution

of Di to N tot
j (i < j). As a consequence, we can break down

N tot
j into the contributions from each domain i(� j), which

enables us to count the number of confined states systemati-
cally.

Since Ni, j satisfies Ni, j = Ni−1, j−1, Eq. (F1) can be rewrit-
ten as

Nnet
i = N tot

i −
i−1∑

j=1

Ni− j+1,1Nnet
j . (F2)

We can numerically obtain N tot
i by diagonalizing the zero-flux

Hamiltonian. Also, Koga [74] has obtained Ni,1 analytically
for i ∈ N. Consequently, we can calculate Nnet

i from (F2).
Table IV lists Ni1, N tot

i , and Nnet
i for each generation i (1 �

i � 7). For instance, in the original Ammann-Beenker tiling
Nnet

i = i(i + 1) (see Table IV). The fraction of confined states
is obtained by

p =
∑

i

piN
net
i , (F3)

where pi is the fraction of Di. Since Koga [74] has obtained
pi analytically as pi = 2τ−(2i+3)

s , we can obtain p analytically
when the analytical assumption of Nnet

i is provided. In the case
of the zero-flux model, p results in 1/2τ 2

s . We apply Koga’s
method to our π -flux models. In the following, we consider
each configuration separately.
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TABLE IV. Ni1, N tot
i , and Nnet

i for 1 � i � 7 in the zero-flux
model of Ammann-Beenker tiling.

i Ni1 N tot
i Nnet

i

1 1 2 2
2 0 6 6
3 16 44 12
4 104 324 20
5 632 2110 30
6 3768 12938 42
7 22152 77112 56

Note that since in the π -flux models, fluxes penetrating
tiles are either ±π or zero, the system has time-reversal
symmetry T H∗ − HT = 0. On the other hand, due to the
bipartite properties of the structure, the system has chiral
symmetry CH + HC = 0. The product of time-reversal and
chiral operators gives a particle-hole operator P = CT , where
PH∗ + HP = 0. By applying particle-hole (chiral) operation
on a wave function with energy E , one can see � → P�∗
(� → C�) and E → −E . Therefore, in the following, we
consider the confined states whose energy is greater than or
equal to 0.

1. AB.conf1 with E = √
2

For the AB.conf1 in the π -flux model [see Fig. 2(a1) in the
main text] with E = √

2, Ni1, N tot
i , and Nnet

i for 1 � i � 5 are
listed in Table V. As is clearly shown in Table V, Nnet

i = 1 for
any generation i. As a consequence, the fraction of confined
states calculated from Eq. (F3) is p = τ−4

s , which coincides
with pF = τ−4

s , where pα is the fraction of α vertex with
α = A, B, C, D, E, and F whose coordination number is 3,
4, 5, 6, 7, and 8, respectively [91].

By definition, Di always includes Di−1 structure, where
Di and Di−1 share their centers. Note that we ignore the
Di−1 structure when we count the number of Di−1 in Di.
Accordingly, the set of confined states in Di always includes
that of in Di−1. As a result, the number of confined states
in Di is greater than or equal to that of in Di−1, namely,
Nnet

i − Nnet
i−1 � 0. The number of confined states that do exist

in Di and do not exist in Di−1 is Nnet
i − Nnet

i−1. In Table V,
Nnet

i − Nnet
i−1 = 0 for any i ∈ N. This implies that all of the

confined states in Di for 2 � i are the confined states in D1.
After all, the fact that Nnet

i = 1 for any i implies the presence
of only one type of confined state localized inside D1, which
justifies p = pF.

TABLE V. Ni1, N tot
i , and Nnet

i for 1 � i � 5 in AB.conf1 of the
π -flux model on Ammann-Beenker tiling for E = √

2.

i N tot
i Nnet

i

1 1 1
2 1 1
3 17 1
4 121 1
5 753 1

TABLE VI. A character table for the dihedral group D2, where
E is the identity operator and C2(α) is the rotation operator of π

around α(= x, y, z) axis. Here, the unit vectors for x and y axes are
ex = (1, 0) and ey = (0, 1), respectively. The unit vector for z axis
ez is defined so that ex, ey, and ez form the right-handed coordinate
system. The arrows denote the hopping with nonzero Peierls phase
(see the main text for definition).

E C2(z) C2(y) C2(x)

A +1 +1 +1 +1
B1 +1 +1 –1 –1
B2 +1 –1 +1 –1
B3 +1 –1 +1 –1

We consider the confined state in D1. The choice of con-
fined states is not unique because a linear combination of
confined states is also the eigenstates with the same eigenen-
ergy. Koga [74] selected confined states so that they are
described by the one-dimensional representation of the dihe-
dral group D8. In the case of the π -flux model of AB.conf1,
all of the confined states are described by the irreducible rep-
resentation of the dihedral group D2. A character table for the
dihedral group D2 is shown in Table VI. We use Table VI to
classify the confined states in AB.conf1 of the π -flux model.

The confined state in D1 is schematically shown in Fig. 14.
We denote �c,E

k as the confined state of configuration c in
the π -flux model with energy E , where k ∈ N is the index

of confined states. The �1,
√

2
1 is a confined state because it

is a locally distributed eigenstate regardless of the outside

structure of D1. According to the Table VI, �1,
√

2
1 is described

by the irreducible representation B1. We note that �1,
√

2
1 has

amplitudes in both sublattices A and B. As Koga mentioned
[74], the confined states in the zero-flux model in Ammann-
Beenker tiling have amplitudes only in one of the sublattices
A and B. This noteworthy feature of Ammann-Beenker tiling
is confirmed in AB.conf1 of the π -flux model.

We discuss how the confined states in D1 appear in Di for

2 � i. The confined state in D2 is �1,
√

2
1 since D2 includes the

FIG. 14. The confined state in D1 for AB.conf1 of the π -flux
model with E = √

2 on Ammann-Beenker tiling. The number rep-
resents the wave function’s component of the confined state on each
vertex. The arrows denote the hopping with nonzero Peierls phase
(see the main text for definition).
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FIG. 15. (a) Schematically drawn Hamiltonian of π -flux model
for i = 3 Ammann-Beenker tiling. The hopping value from vertex
i to j is 1, ı, and −ı black lines connecting i and j, green arrows
from i to j, and green arrows from j to i, respectively. (b) The area
is represented by the red rectangle in (a). The yellow-shaded regions
are D1 structures.

structure of D1 around its center. There are 17 confined states
in D3 since D3 includes sixteen D1 and a single D1 structure
around its center. Figure 15(a) illustrates the Hamiltonian of
π -flux model for generation i = 3, and the red rectangular
region is magnified in Fig. 15(b). There are two yellow shaded
D1 structures in Fig. 15(b). When the central vertex of D3 is
A sublattice, the centers of left and right yellow-shaded D1

structures are A and B sublattices, respectively. Inside these
two yellow-shaded regions, the orientations of the arrows are
dependent on whether its central vertex is A sublattice or B
sublattice. By definition, the flip of the orientation of arrows
corresponds to taking the complex conjugate of the Hamilto-
nian. The eigenstates of the complex-conjugated Hamiltonian
are the complex conjugates of the eigenstates of the orig-
inal Hamiltonian. Accordingly, the confined state localized
around the right yellow-shaded D1 structures in Fig. 15(b) is

(�1,
√

2
1 )∗. In general, the confined states configuration c with

energy E in a Di structure included in D j (i < j) are {�c,E
k }k

and {(�c,E
k )∗}k when the center of Di is on A and B sublattices,

respectively.
In the zero-flux model on Ammann-Beenker tiling, there

is a way to choose a linear combination of confined states

FIG. 16. τ 2i
s (black line) and Nnet

i (blue circles) as a function of
generation i. Nnet

i is fitted by aτ bi
s shown by the red line.

FIG. 17. The generation i dependence of p(i). p(i) is plotted by
blue circles, while the fitted result using c(1 − τ di

s ) is shown by the
red line.

so that their weights are +1 or −1, at least for the smaller
generations 1 � i � 3 [74]. Although the weights are always
real in the zero-flux model, those in the confined states of the
π -flux model can be complex. Correspondingly, we consider
if there is a choice of the linear combination of confined states
where the weights of confined states are one of +1, −1, ı, and

−ı. Obviously, the components of �1,
√

2
1 are not in the form

of +1, −1, ı, and −ı.
The fraction of confined states in the π -flux model with

energy E is the same as that with energy −E . For example, the

confined state of AB.conf1 with energy E = −√
2 is �̃1,

√
2

1 ,
and the corresponding fraction of confined states p is the same
as that of energy E = √

2.

2. AB.conf2 with E = 0

Next, we consider AB.conf2 [see Fig. 2(b1) in the main
text] with E = 0. For 1 � i � 5, Ni1, N tot

i , and Nnet
i are shown

in Table VII. In this case, it is impossible to guess the general
expression of the sequence of Nnet

i reasonably. In the case of
the zero-flux model, Nnet

i ∝ i2. On the other hand, Nnet
i in the

π -flux model grows faster than quadratic growth according to
Table VII.

The sum in Eq. (F3) should converge because p � 1 by
definition. Because pi ∝ τ−2i

s , the sum in Eq. (F3) does not
converge if the growth speed of Nnet

i is faster than τ 2i
s .

1

- 1

1

- 1

x

y

FIG. 18. The confined state in D1 for AB.conf2 in the π -flux
model on Ammann-Beenker tiling with E = 0. Each number on the
vertices represents the relative wave function’s components of the
confined state at each vertex.
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TABLE VII. Ni1, N tot
i , and Nnet

i for 1 � i � 5 in AB.conf2 of the
π -flux model on Ammann-Beenker tiling for E = 0.

i N tot
i Nnet

i

1 1 1
2 4 4
3 31 15
4 236 68
5 1635 347

TABLE VIII. Ni1, N tot
i , and Nnet

i for 1 � i � 5 for AB.conf2 in
the π -flux model on Ammann-Beenker tiling with E = 2.

i N tot
i Nnet

i

1 1 1
2 2 2
3 18 2
4 138 2
5 874 2

TABLE IX. Ni1, N tot
i , and Nnet

i for 1 � i � 5 for AB.conf3 in the
π -flux model on Ammann-Beenker tiling with E = 0.

i N tot
i Nnet

i

1 1 1
2 5 5
3 23 7
4 191 7
5 1271 7

TABLE X. A character table for the dihedral group D4, where
E is an identity operator, C4(z) is a rotation operator of π/2 about
z axis, C2(z) is a rotation operator of π about z axis, C′

2 and C′′
2

are umklappung operators, namely, C′
2 and C′′

2 are rotation operators
of π about x axis and the axis whose unit vector is (ex + ey )/

√
2,

respectively. Here, the unit vectors for x and y axes are ex = (1, 0)
and ey = (0, 1), respectively. The unit vector for z axis, namely ez,
is defined so that ex, ey, and ez form the right-handed coordinate
system.

E 2C4(z) C2(z) 2C′
2 2C′′

2

A1 +1 +1 +1 +1 +1
A2 +1 +1 –1 –1 –1
B1 +1 –1 +1 +1 –1
B2 +1 –1 +1 –1 +1
E +2 0 –2 0 0

TABLE XI. Ni1, N tot
i , and Nnet

i for 1 � i � 5 in AB.conf3 of π -
flux model on Ammann-Beenker tiling with E = 2

√
2.

i N tot
i Nnet

i

1 1 1
2 1 1
3 17 1
4 121 1
5 753 1

FIG. 19. The confined state in D2 for the π -flux model of
AB.conf2 with E = 0 on Ammann-Beenker tiling. Each number on
the vertices represents the amplitude of the confined state at each site.
The arrows denote the hopping with nonzero Peierls phase (see the
main text for definition).

Accordingly, when we fit Nnet
i as aτ bi

s , b should be less than 2.
We compare Nnet

i with τ 2i
s in Fig. 16. By fitting Nnet

i as aτ bi
s , we

obtain the fitting parameters a ∼ 1.058×10−1 and b ∼ 1.837,
where b is less than 2.

For numerically obtaining the extrapolation value of p in
Eq. (F3), we define p(i) as

p(i) =
i∑

j=1

p jN
net
j . (F4)

In the zero-flux model, we numerically check that p(i) con-
verges faster than the fraction of ith generation in the limit
of i → ∞. By fitting p(i) as c(1 − τ di

s ), we obtain c ∼
8.096×10−2 and d ∼ 3.966×10−1. As shown in Fig. 17, p(i)
converges to c ∼ 8.096×10−2.

Next, we consider the confined state in D1. Similar
to AB.conf1, the confined states of AB.conf2 should be

x

y

FIG. 20. Two confined states, �2,2
1 and �2,2

2 , for AB.conf2 in the
π -flux model on Ammann-Beenker tiling with E = 2. Each number
on the vertices represents the wave function’s components of the
confined state at each vertex. The arrows denote the hopping with
nonzero Peierls phase (see the main text for definition).
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TABLE XII. A summary of the properties of confined states of the zero-flux model and the π -flux model on Ammann-Beenker tiling.
“Conf.” shows the configuration, “Dihedral group” shows the dihedral group by which the confined states are described, E shows the
energy of confined states, “A or B only?” shows if the amplitudes of the confined states are only on one of the sublattices A or B,
“±1, ±ı1 only?” shows if there is a way to choose confined states so that they are one of +1, −1, ı, and −ı only, p is the converged
value of the fraction of confined states calculated by Eq. (F3) except for the AB.conf2 with E = 0. Y and N correspond to yes and no,
respectively.

Conf. 0 1 2 3

Dihedral group D8 D2 D2 D4

E 0
√

2 0 2 0 2
√

2
A or B only? Y N Y N Y N
±1, ±ı only? Y N N N Y N

p 1/2τ 2 pF ?
pF

+(pF − pF1 )

pF

+4(pF − pF1 )
+2(pF − pF1 − pF2 )

pF

described by the irreducible representation of the dihe-
dral group D2. Here, the unit vectors for x and y axes
are ex = ( cos (−π/8), sin (−π/8)) and ey = ( cos (3π/8),
sin (3π/8)), respectively. The unit vector for z axis, namely
ez, is defined so that ex, ey, and ez form the right-handed coor-
dinate system. The confined state �2,0

1 is schematically shown
in Fig. 18, which belongs to the irreducible representation B1.

The confined states in D2 are shown in Fig. 19. The con-

fined states �1,
√

2
2 , �1,

√
2

3 , and �1,
√

2
4 belong to the irreducible

representations B1, B1, and A, respectively. Although �1,
√

2
1 ,

�1,
√

2
2 , and �1,

√
2

3 belong to the same irreducible represen-
tations B1, we have checked that these states are orthogonal
each other.

We note that {�2,0
k }k has amplitudes only in one of the

sublattices A or B, similar to the zero-flux model. The com-
ponents of �1,

√
2

k for k = 1, 3, and 4 are one of +1, −1, ı, and
−ı. But if we assume a nonzero coefficient of linear combina-

FIG. 21. Seven confined states, {�3,0
k }k (1 � k � 7), for

AB.conf3 in the π -flux model on Ammann-Beenker tiling with
E = 0. Utilizing the even or odd mirror symmetry of confined states,
one-fourth of the entire tiling of �3,0

6 and �3,0
7 are shown. Each

number on the vertices represents the amplitude of the confined state
at each vertex. The arrows denote the hopping with nonzero Peierls
phase (see the main text for definition).

tion for �1,
√

2
2 , there is no choice of the linear combination of

confined states whose components of confined states are one
of +1, −1, ı, and −ı.

3. AB.conf2 with E = 2

For the AB.conf2 with E = 2, Ni1, N tot
i , and Nnet

i for 1 �
i � 5 are listed in Table VIII. It is possible to assume that the
sequence of Nnet

i is given by Nnet
1 = 1 and Nnet

i = 2(2 � i).
This sequence of Nnet

i implies that all of the confined states
in Di for 3 � i are the confined states in D2, while there
is a single confined state in D2 that does not exist in D1.
We define the confined state in D1 as �2,2

1 and the confined
states in Di(2 � i) as �2,2

1 and �2,2
2 . From Eq. (F3), the frac-

tion of confined states results in p = τ−4
s + (τ−4

s − 2τ−5
s ) =

pF + (pF − pF1 ) ∼ 3.449×10−2. The component pF in p is
originated from �2,2

1 that exists in all the domains Di(1 � i).
On the other hand, the component (pF − pF1 ) in p is originated
from �2,2

2 that exists in Di(2 � i). Because �2,2
2 does not exist

in D1, pF1 is subtracted from p.
In Fig. 20, �2,2

1 and �2,2
2 are schematically illustrated. The

irreducible representation of �2,2
1 and �2,2

2 are A and B1. Note
that �2,2

1 and �2,2
2 have amplitudes in both sublattices A and

B. The components of �2,2
1 (�2,2

2 ) are (not) in the form of +1,
−1, ı, and −ı.

2 1

1

1

1

x
y

FIG. 22. The confined state �3,2
√

2
1 for AB.conf3 in the π -flux

model on Ammann-Beenker tiling with E = 2
√

2. Each number on
the vertices represents the amplitude of the confined state at each
vertex. The arrows denote the hopping with nonzero Peierls phase
(see the main text for definition).
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FIG. 23. The generation i dependence of p(i) for the π -flux
model on Ammann-Beenker tiling. “Conf.c, E = e” corresponds to
the configuration c with energy e, where configuration 0 is the zero-
flux model. The converged value of limi→∞ p(i), which is obtained
by calculating p in Eq.(F3) except for the AB.conf2 with E = 0,
is plotted at i = ∞. The converged value of limi→∞ p(i) for the
AB.conf2 with E = 0 is obtained by the fitting in Fig. 17.

4. AB.conf3 with E = 0

For the AB.conf3 [see Fig. 2(c1) in the main text] with
E = 0, Ni1, N tot

i , and Nnet
i for 1 � i � 5 are listed in Table IX.

Judging from Nnet
i , we speculate Nnet

i = 7 more than i = 5.
We define the confined state in D1 as �3,0

1 , the confined
states in D2 as {�3,0

k }k (1 � k � 5), and the confined states
in D3 as {�3,0

k }k (1 � k � 7). The fraction of confined
states is obtained as p = τ−4

s + 4(τ−4
s − 2τ−5

s ) + 2(τ−4
s −

2τ−5
s − 2τ−7

s ) = pF + 4(pF − pF1 ) + 2(pF − pF1 − pF2 ) ∼
5.137×10−2. The component pF in p is the contribution of
�3,0

1 that exists in all the domains Di(1 � i). The component
4(pF − pF1 ) in p is the contribution of four confined states that
exist in Di(2 � i), namely, �3,0

2 , �3,0
3 , �3,0

4 , and �3,0
5 . Also,

the component 2(pF − pF1 − pF2 ) in p is the contribution of
two confined states that exist in Di(3 � i), namely, �3,0

6 and
�3,0

7 . Because both �3,0
6 and �3,0

7 do exist neither in D1 nor
D1, 2pF1 and 2pF2 are subtracted from p.

The confined states in AB.conf3 belong to the irreducible
representation of the dihedral group D4. Table X is a character
table for the dihedral group D4.

In Fig. 21, {�3,0
k }k (1 � k � 7) are schematically shown.

The irreducible representations of �3,0
k for k = 1, 2, 3, 4, 5, 6,

and 7 are A2, B1, B2, B1, B2, A2, and A2, respectively.
Note that {�3,0

k }k (1 � k � 7) have amplitudes in one of
the sublattices A or B only, similar to the zero-flux model
on Ammann-Beenker tiling. There is a way to choose the
linear combination of confined states so that their wave func-
tion’s components are one of +1, −1, ı, and −ı. In detail,
�3,0

1 , (�3,0
2 + ı�3,0

3 )/2, (�3,0
2 − ı�3,0

3 )/2, (�3,0
4 + �3,0

5 )/2,
(�3,0

4 − ı�3,0
5 )/2, �3,0

6 , and �3,0
7 are in the form of +1, −1, ı,

and −ı. It is interesting that since �3,0
1 ∈ Z satisfies (�3,0

1 )∗ =
�3,0

1 , �3,0
1 is a confined state regardless of the sublattice type

of the central vertex in D1.

5. AB.conf3 with E = 2
√

2

For the AB.conf3 with E = 2
√

2, Ni1, N tot
i , and Nnet

i for
1 � i � 5 are listed in Table XI. Similar to AB.con1 with
E = √

2 Nnet
i should be 1 for 1 � i. Accordingly, the fraction

of confined states results in p = τ−4
s = pF ∼ 2.944×10−2.

There is a single type of the confined state �3,2
√

2
1 that is

localized around the central vertex of D1.
The confined state �3,2

√
2

1 is schematically shown in
Fig. 22. Its irreducible representation is A1. Note that �3,2

√
2

1
has amplitudes in both sublattices A and B. Obviously, the

components of �3,2
√

2
1 are not in the form of +1, −1, ı,

and −ı.

6. Summary for all the configurations

We summarize the generation i dependence of p(i) for
the π -flux model in Fig. 23, where Conf.0 corresponds to
the zero-flux model. We plot p = limi→∞ p(i) at i = ∞. It
is found that p for any configuration in the π -flux model is
smaller than that of the zero-flux model. The behavior of con-
vergence in p(i) is almost the same for all the configurations
and p(5) ∼ p, except for AB.conf2 with E = 0.

Table XII summarizes the properties of confined states
of the zero-flux model and the π -flux model on Ammann-
Beenker tiling. The amplitudes of the confined states for
zero (nonzero) energy are (not) on one of the sublattices
A or B. Whether the energy of the confined states is zero
or not is irrelevant to whether or not there is a way to
choose confined states so that they are one of +1, −1, ı, and
−ı only.
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