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Establishing the fundamental relation between the homotopy invariants and the band topology of Hamiltonians
has played a critical role in the recent development of topological phase research. In this work, we establish the
homotopy invariant and the related band topology of three-dimensional (3D) real-valued Hamiltonians with
two occupied and two unoccupied bands. Such a real Hamiltonian generally appears in PT -symmetric spinless
fermion systems where P and T indicate the inversion and time-reversal symmetries, respectively, and (PT )2 =
1 due to the spinless condition. We show that the 3D band topology of the system is characterized by two
independent Hopf invariants when the lower-dimensional band topology is trivial. Thus, the corresponding 3D
band insulator with nonzero Hopf invariants can be called a real Hopf insulator (RHI). In sharp contrast to all the
other topological insulators discovered up to now, the topological invariants of RHI can be defined only when
the fixed number of both the occupied and unoccupied states are simultaneously considered. Thus, the RHI
belongs to the category of delicate topological insulators proposed recently. We show that finite-size systems
with slab geometry support surface states with nonzero Chern numbers in a PT -symmetric manner independent
of the Fermi level position, and establish the bulk-boundary correspondence. We also discuss the bulk-boundary
correspondence of rotation-symmetric RHIs using the reverting Thouless pump.
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I. INTRODUCTION

Establishing the relation between mathematical homotopy
invariants and physical properties of topological insulators
is the most critical step in the study of topological phases.
Although possible topological invariants have been system-
atically categorized [1–10], there are only few topological
invariants whose integral form is explicitly known. One repre-
sentative example is the two-dimensional (2D) Chern number
C whose integral form is given by

C = 1

2π

∫
BZ

d2k TrF(k), (1)

where F = ∇ × A + [Ax, Ay] is a non-Abelian Berry cur-
vature of the occupied states, [Ai]nm = i〈un|∂ki um〉 is a
non-Abelian Berry connection for the Bloch states |un〉, and
BZ denotes the Brillouin zone (BZ). A Chern insulator with
nonzero C breaks time-reversal T symmetry, and carries chi-
ral edge modes as long as the energy gap remains finite [11].
Since the topological property is unaffected by adding trivial
bands below the Fermi energy EF , the Chern insulator belongs
to the category of stable topological insulators [3,4].

Interestingly, by superposing two Chern insulators with
opposite Chern numbers, a new type of topological insu-
lators can be generated when additional symmetries are
supplemented. For example, in 2D spinless fermion systems
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with the combined PT symmetry where P indicates the
inversion symmetry, such a superposition can give a Euler
insulator when the number of the occupied bands is two
[12–16] or a Stiefel-Whitney insulator when more than two
bands are occupied [17–22]. For a given Euler insulator
with two occupied bands, its integer Z-valued Euler invariant
e can be computed by integrating the off-diagonal compo-
nent of the 2×2 Berry curvature matrix in the occupied
subspace,

e = 1

2π

∫
BZ

d2k[F(k)]12, (2)

where [F]12 = ∇ × [A]12. A Euler insulator can support
in-gap corner states in the presence of additional mirror sym-
metry and chiral symmetry [12]. As the Wannier obstruction
of a Euler insulator can be relieved by adding additional
trivial bands below EF , it belongs to the category of fragile
topological insulators [23–28].

In the case of three-dimensional (3D) systems, one repre-
sentative topological invariant whose integral form is known
is the Hopf invariant, and the relevant topological insulator,
called the Hopf insulator, was first proposed by Moore-Ran-
Wen (MRW) [29]. The Hopf insulator is a two-band insulator
with one occupied band and one unoccupied band, character-
ized by the integer Z-valued Hopf invariant χ defined as

χ = − 1

4π2

∫
BZ

d3k A · F, (3)

where A and F are the Abelian Berry connection and the Berry
curvature of the occupied state, respectively [29]. Unlike the
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Chern insulator or the Euler insulator, the Hopf insulator with
nonzero Hopf number can be trivialized by adding trivial
bands either above or below the Fermi energy EF . Namely, it
belongs to the category of delicate topological insulators [30],
which is distinct from fragile topological insulators [23–28]
that can be trivialized by adding trivial bands below the Fermi
level, or stable topological insulators (TIs) with robust band
topology. Generally, a Hopf insulator does not have nontrivial
in-gap states at the boundary without additional symmetries
[31,32]. However, it always has surface states with nonzero
Chern number that is equal to the Hopf invariant of the bulk
[33,34]. There have been various intriguing recent develop-
ments aiming at understanding the delicate band topology
and the bulk-boundary correspondence of the Hopf insulator,
taking into account additional symmetries [30,35,36].

In this work, we study the band topology of 3D PT -
symmetric spinless fermion systems with two occupied bands
and two unoccupied bands. Due to the spinless condition,
we can set PT = K after a suitable gauge choice, so that
Hamiltonian becomes real valued. The low-dimensional band
topology of such a Hamiltonian is characterized by π Berry
phase on 1D and Z-valued Euler class on 2D. When those
low-dimensional invariants are trivial, we show that the bulk
topology can be characterized by two integer invariants, each
of which is equivalent to the Hopf invariant of a complex two-
band system defined below. The corresponding topological
insulator with nonzero Hopf invariants can be called a real
Hopf insulator (RHI) because the PT symmetry imposes the
reality of the Hamiltonian and the bulk wave function. Thus,
a RHI can be considered as a superposition of two conven-
tional Hopf insulators in a PT -symmetric manner, similar to
the case of a Euler insulator constructed by superposing two
Chern insulators preserving the PT symmetry.

In particular, we derive the integral form of the RHI
invariants, thus providing an additional rare example of
the topological invariants with explicit integral form. Inter-
estingly, we find that the Berry curvature and the Berry
connection of both the occupied and unoccupied bands are
simultaneously required to define the RHI invariant, directly
manifesting the delicate band topology of RHIs. This is in
sharp contrast to all the other known topological invariants,
including those in Eqs. (1)–(3) that depend only on the occu-
pied states. In the case of RHIs, any combination of the Berry
curvature or Berry connection of the occupied bands cannot
give quantized topological invariants. Both the occupied and
unoccupied states are equally important to characterize the
RHI.

We also establish the bulk-boundary correspondence of
RHIs. Especially, we show that RHIs generally support sur-
face Chern bands in a PT -symmetric manner. Although the
bulk wave function has trivial Chern class due to the PT sym-
metry, the surface of a finite slab of RHI can support Chern
bands since PT symmetry is absent on individual sides of
the surface. In the presence of additional rotational symmetry,
the band topology of RHI can be described by using the idea
of reverting Thouless pump (RTP), also known as returning
Thouless pump [30]. Especially, we illustrate the physical
meaning of two Hopf invariants of RHIs in the context of
RTP and discuss the role of multicellularity on the crossing
between neighboring Wannier sheets.

II. ORGANIZATION OF THE PAPER

A. Grassmannian parametrization using quaternions:
Secs. III and IV

In Sec. III, we reformulate the conventional two-band
Hopf insulator in terms of quaternions. Using quaternion for-
malism, the correspondence between Hopf map and Hopf
insulator is clearly stated. This is in anticipation of a simi-
lar construction for real Hopf insulator, which is the theme
of Sec. IV. There, the classifying space for spinless PT -
symmetric four-band insulators is discussed. Augmenting the
conventional classifying space with “modified” classifying
spaces, we provide a general construction for such insula-
tors in 3D. The upshot is that the classifying space for 4×4
real Hamiltonian can be parametrized using a pair of unit
quaternions, which enables analyzing the relevant insulators
by associating a pair of Hopf maps.

B. Definition of real Hopf insulator: Sec. V

We define the real Hopf Insulator (RHI) as a subset of
the aforementioned class of insulators and explicitly com-
pute the bulk topological invariants. The resulting invariant
distinguishes 3D RHI from 2D four-band Euler insulator,
which is classified by the same Grassmannian as RHI. While
each of the two Euler invariants can be defined using con-
duction or valence band only, the 3D RHI invariant does
not allow such representation. This is the main result of the
section [Eq. (126)]:

χz + χw = − 1

8π2

∫
BZ

ac ∧ Euc + av ∧ Euv,

χz − χw = − 1

8π2

∫
BZ

ac ∧ Euv + av ∧ Euc.

Equation (126) is in stark contrast to the corresponding for-
mulas for the case of Euler insulators [Eq. (D41)]

νv = 1

2π

∫
T2

Euv, νc = 1

2π

∫
T2

Euc,

and the two-band 3D Hopf insulator [Eq. (22)]

χ = − 1

4π2

∫
BZ

d3k F · A,

whose topological invariant can be defined in terms of either
valence or conduction band only.

C. Physical properties: Secs. VI and VII

As a result of nontrivial 3D RHI invariants, Sec. VI reveals
the bulk-boundary correspondence of RHI arising in the slab
geometry. In continuation of the theme that valence and con-
duction bands of RHI are on equal footing, the bulk-boundary
correspondence relates bulk invariants to the sum of surface
Chern numbers of both bands [Eq. (149)]. Finally, Sec. VII
provides an interpretation of the RHI invariants in terms of
reverting Thouless pump (RTP) which was previously used
to describe the physical significance of conventional Hopf
invariant. It turns out that, when there is an appropriate ro-
tation symmetry, the two real Hopf invariants contain the
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information of RTP behavior of both conduction and valence
bands, as expected [Eqs. (186), (187), (212), (213)].

III. QUATERNION FORMULATION OF HOPF INSULATOR

A. Review of the Hopf insulator

Let us first briefly review the formulation of the Hopf insu-
lator proposed by Moore-Ran-Wen (MRW) in Ref. [29]. The
Hopf insulator indicates a magnetic topological insulator in
three dimensions with one occupied band and one unoccupied
band whose band topology is characterized by a nonzero Hopf
invariant. In momentum k space, such a band insulator can be
described by a 2×2 matrix Hamiltonian H (k) which has one
positive and one negative eigenvalue for any k assuming that
the Fermi energy EF is zero. By deforming all the positive
eigenvalues to +1 and all the negative eigenvalues to −1,
H (k) can be written as

H (k) = W (k)σzW
†(k), (4)

where σx,y,z are Pauli matrices for two bands, and W (k) ∈
U(2), the vector space of unitary 2×2 matrices. As the overall
phase change within either the occupied subspace or the unoc-
cupied subspace does not affect the σz part of the Hamiltonian,
for any k, H (k) is a point on the manifold U(2)/[U(1) ×
U(1)] that is isomorphic to a 2-sphere S2, i.e.,

H (k) ∈ U(2)

U(1) × U(1)
= S2. (5)

So a two-band insulator in three dimensions is described by
the mapping from the 3D Brillouin zone torus T3 to S2.
When the Chern number of the system is zero, different
classes of topological two-band insulators correspond to dif-
ferent classes of the mapping from S2 to S2 characterized by
the integer Hopf index valued in the third homotopy group
π3[S2] = Z.

The Hopf map can be described as follows. We first
consider z(k) ∈ S3 defined as z(k)� = (z↑(k), z↓(k))� ∈ C2

where two complex numbers z↑, z↓ ∈ C can be written as
z↑ = a + bi, z↓ = c + di with real numbers a, b, c, d , which
satisfy |z↑|2 + |z↓|2 = a2 + b2 + c2 + d2 = 1. Then a map p :
S3 −→ S2 can be defined by

p : z(k) ∈ S3 −→ z†(k)σz(k) ∈ S2, (6)

where

z†(k)σz(k) ≡ v(k) = [v1(k), v2(k), v3(k)], (7)

satisfying
∑

i=1,2,3[vi(k)]2 = 1.
In the real coordinate system (a, b, c, d ), the Hopf map p

is given by

p : S3 ⊆ R4 −→ S2 ⊆ R3,

(a, b, c, d ) �→ (v1, v2, v3), (8)

v1 = 2(ac + bd ),

v2 = 2(ad − bc),

v3 = a2 + b2 − c2 − d2, (9)

in which a2 + b2 + c2 + d2 = 1.

The Hopf map projects a circle embedded in S3 onto a
single point, thus mapping onto the lower-dimensional sphere
S2. This is often rephrased by saying that the Hopf map p is a
fibration over S2 with fiber S1,

S1 ↪→ S3 p−→ S2, (10)

where the hook arrow from S1 in Eq. (10) specifies that the
preimage of every point in S2 by p has the shape of a circle.
The circular fibers of Hopf map will be precisely described in
Sec. IV B.

In general, the maps from S3 to S2 are classified (up to
homotopy) by an integer invariant called Hopf index. One
can conceive of this index as an analog of winding numbers,
although the former is defined between spheres with different
dimensions while the latter for spaces with the same dimen-
sion. In particular, the Hopf map given by Eq. (8) has Hopf
index h[p] = 1 and serves as a representative in the class
h = 1. There are versions of Hopf maps representing those
classes with different values of h.

Given a version of Hopf map p, the Hamiltonian H (k) =
(p ◦ q)(k) is the composition of p and a deformation mapping

q : BZ = T3 −→ S2 (11)

that shrinks the surface of the BZ into a point, which is
possible since the Chern number of the system vanishes. This
implies the BZ can effectively be regarded as a 3-sphere to
which the Hopf map can be applied. A prominent example of
such deformation map appears in the Moore-Ran-Wen model
H (k) = p ◦ qt,h

MRW with adjustable parameters t, h, where

qt,h
MRW : T3 −→ S2 ⊂ R4,

⎛
⎝kx

ky

kz

⎞
⎠ �→ 1

Nk

⎛
⎜⎜⎜⎝

sin kx

t sin ky

sin kz

h + ∑
i=x,y,z

cos ki

⎞
⎟⎟⎟⎠. (12)

Here Nk is a normalization factor.
Since q maps between two spaces of same dimension, it is

classified by the usual winding number [37]

w3[q] = 1

12π2

∫
T3

d3k εabcdεi jkqa∂iqb∂ jqc∂kqd . (13)

For instance, w3[qt,h
MRW] = 1 for t = 1, h = ± 3

2 [29,37]. The
Z-valued Hopf invariant classifying the Hopf insulator is
given by the product of the Hopf index h[p] and the winding
number w3[q]:

χ = h[p] · w3[q]. (14)

Since every integer n can be realized as the winding number
of an appropriate deformation map, e.g., by substituting kz →
nkz to the Moore-Ran-Wen model with w3 = 1, without loss
of generality one can fix a version of Hopf fibration having
index 1 and call it “the” Hopf fibration. Then Eq. (14) reduces
to

χ = w3[q], (15)

which corresponds to the models with the fixed Hopf fibration
map. These exhaust all homotopy classes of the Hopf insu-
lator. In the remaining part of this paper, we will take this
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route and fix the Hopf fibration structure as in either Eq. (8)
or Eq. (42). [These two choices are equivalent; see below
Eq. (42).] The integer in Eq. (15) will be referred to as the
Hopf invariant. The corresponding Hamiltonian for the Hopf
insulator is

HC = −[z†(k)σz(k)] · σ ≡ −v(k) · σ. (16)

The Moore-Ran-Wen model of Hopf insulator refers to the
family of Hamiltonians in two parameters (t, h):

Ht,h
C,MRW = −[z†

t,h(k)σzt,h(k)] · σ,

zt,h(k) = 1

Nk

(
sin kx + it sin ky

sin kz + i
[
h + ∑

i=x,y,z cos ki
]). (17)

The normalization factor Nk is such that |z(k)| = 1. As a
special case, (t, h) = (1,± 3

2 ) realizes the class χ = 1.
The topological property of the Hopf insulator can be

described by using F = (F 1, F 2, F 3) and A = (A1, A2, A3)
which are defined as

F a = εabcv · ∂

∂kb
v × ∂

∂kc
v, (18)

satisfying the magnetostatic equations

∇k × A = F, (19)

∇k · A = 0. (20)

In fact, in terms of z(k) = (z↑(k), z↓(k)), A can be explic-
itly written as

A = i(z∗
↑, z∗

↓)∇(z↑, z↓)�, (21)

which is nothing but the familiar Berry connection. Finally,
the integer-valued Hopf index is given by

χ = − 1

4π2

∫
BZ

d3k F · A. (22)

B. Quaternion formulation of the Hopf insulator

The Hopf insulator can also be formulated in terms of the
quaternion as described below.

1. Quaternions

The quaternion algebra H is the four-dimensional real vec-
tor space with basis vectors {1, i, j, k},

H = {a + bi + cj + dk : a, b, c, d ∈ R}, (23)

equipped with the multiplication rules

i2 = j2 = k2 = ijk = −1. (24)

We regard the complex vector space C as the subset

C = {a + bi + cj + dk : c = d = 0} ⊂ H. (25)

H has the conjugation operation

z = a + bi + cj + dk

�→ z = a − bi − cj − dk, (26)

which extends the complex conjugation defined on C, and the
norm function

|z|2 = zz = a2 + b2 + c2 + d2. (27)

These operations satisfy the equations

zw = w · z, (28)

|z| = |z|, (29)

|zw| = |z| · |w|, (30)

where z,w ∈ H. The order of z,w in Eq. (28) is important
since the quaternion multiplication is not commutative.

H has an obvious isomorphism to R4:

|·〉 : H −→ R4,

q = p0 + p1i + p2j + p3k �→ |q〉 ≡ (p0, p1, p2, p3)�.

(31)

Under the identification in Eq. (31), we can model S3 as the
set of unit quaternions:

S3 = {q ∈ H : |q|2 = 1} ⊆ H.

Also, the Euclidean inner product of two vectors |p〉 =
(p0, p1, p2, p3)� and |q〉 = (q0, q1, q2, q3)�,

〈p|q〉 =
3∑

i=0

piqi, (32)

can be expressed using quaternions as

〈p|q〉 = Re[pq] = Re[pq], (33)

using the projection onto the real part

Re : H −→ R,

a + bi + cj + dk �→ a. (34)

Re also satisfies the following useful relation:

Re[wqw] = |w|2Re[q]. (35)

There is another identification of vector spaces

H −→ C2, a + bi + cj + dk �→ (a + bi, c + di)�. (36)

Since

a + bi + cj + dk = a + bi + (c + di)j, (37)

we can interchangeably use a complex vector (α, β )� ∈ C2

in place of α + βj ∈ H and vice versa. To avoid confusion,
we denote the quaternion conjugate by (·) and the complex
conjugate by (·)∗ in the following.

2. Quaternion form of the Hopf map

The Hopf map can be compactly formulated in terms of the
quaternion as pointed out in Ref. [38]. Under the identification
R4 ≈ H of real 4-vectors and quaternions, the sphere S3 in
R4 can also be seen as the unit quaternions. For any z ∈ S3,
observe that

ziz ∈ {ai + bj + ck ∈ H : a2 + b2 + c2 = 1}
= {purely imaginary unit quaternions}
= S2. (38)
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This can be checked applying Eqs. (28)–(30):

ziz = z(−i)z = −ziz, (39)

which implies ziz is purely imaginary, and

|ziz| = |z| · |i| · |z| = |z|2 = 1, (40)

indicating that it has unit length. The last equality in Eq. (40)
follows from z ∈ S3.

Now the Hopf map in Eq. (8) can be alternatively defined
as

p : S3 ⊆ H −→ S2 ⊆ H,

z �→ ziz. (41)

Indeed, using the real coordinates z = a + bi + cj + dk, we
can check

ziz = (a − bi − cj − dk) · i · (a + bi + cj + dk)

= (a2 + b2 − c2 − d2) i

+ 2(−ad + bc) j

+ 2(ac + bd ) k, (42)

in agreement (up to a rotation) with Eq. (8). Since Hopf
index of a map f : S3 → S2 is invariant under continuous
deformation of f such as rotation, Eq. (42) can be taken as
a Hopf map with index unity.

3. Quaternion form of the Hopf insulator

Using the quaternion z = a + bi + cj + dk ≡ z↑ + z↓j ∈
H, the Hamiltonian for the Hopf insulator can be written as

HQ = Re[ziz · σQ] = −u1σx − u2σy − u3σz, (43)

where σQ = σxi + σyj + σzk, and

ziz = u1i + u2j + u3k, (44)

in which

u1 = a2 + b2 − c2 − d2 = v3,

u2 = 2(bc − ad ) = −v2, (45)

u3 = 2(ac + bd ) = v1.

Using a unitary matrix

U = 1√
2

(
1 1
1 −1

)
, (46)

it is straightforward to show that

U −1HQU = Re[ziz · U −1σQU ] = −v1σx − v2σy − v3σz,

(47)

which is nothing but the Hopf insulator Hamiltonian HC in
Eq. (16).

By defining

a = Re[ −i · z∇z ], f = ∇ × a, (48)

one can show that Eq. (22) is equivalent to

χ = − 1

4π2

∫
BZ

d3k f · a. (49)

Moreover, we find the relation between A for HC and a for
HQ such that

A = −a∇b + b∇a − c∇d + d∇c = a. (50)

IV. PT -SYMMETRIC FOUR-BAND INSULATORS
IN THREE DIMENSIONS

In this work, we study the topological properties of the
four-band real Hamiltonian H2,2

R (k) with two occupied and
two unoccupied bands in PT -symmetric spinless fermion
systems in three dimensions. In the absence of spin-orbit
coupling, the combined symmetry PT can be represented by
PT = K where K denotes the complex-conjugation operator.
As PT is local in k space, the PT invariance of the k-space
Hamiltonian H2,2

R (k) imposes the reality condition on H2,2
R (k)

given by

(PT )H2,2
R (k)(PT )−1 = [

H2,2
R (k)

]∗ = H2,2
R (k). (51)

The Hamiltonian, being both Hermitian and real, allows a
diagonalization with a real orthogonal basis. To be precise,
the spectral theorem for real symmetric matrices states that

H = H† and H∗ = H

⇒ H = O · diag(E1, E2, . . . , En) · O�, (52)

where n is the dimension. Hence, the wave function corre-
sponding to PT = K can be chosen to be real. Therefore, the
PT -symmetric spinless fermion systems are an ideal avenue
to study the band topology of real wave functions [12,17,18].

A. Classifying space

To examine the topological property of H2,2
R (k), one can

deform all the positive eigenvalues to +1 and all the negative
eigenvalues to −1 assuming the Fermi energy at 0 (EF = 0).
The resulting flattened Hamiltonian H

2,2
R (k) can generally be

written as

H
2,2
R (k) = R

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠R�, (53)

where R ∈ O(4), the space of real orthogonal 4×4 matrices.
As the energy levels are fixed, the Hamiltonian is completely
determined by the projection operator onto the occupied sub-
space

P : BZ = T3 −→ Gr(2, 4), (54)

where the classifying space, or Grassmannian, Gr(2, 4) is the
set of two-dimensional subspaces of R4. The unoccupied sub-
space is automatically determined as the complement of P(k).
Since O(2) rotation within the occupied (unoccupied) band
subspace generated by the first (last) two columns of R does
not affect the projector in Eq. (54), Gr(2, 4) ≈ O(4)/[O(2) ×
O(2)]. These two spaces can be used interchangeably. In the
rest of this paper, we completely identify these spaces. That
is, we identify the projector P with the equivalence class of
the matrix R.

Replacing the orthogonal groups in the above consid-
eration with special orthogonal groups, one obtains the
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“oriented” Grassmannian

Gr+(2, 4) = SO(4)/[SO(2) × SO(2)]. (55)

Equation (55) can be geometrically interpreted as the projec-
tors onto the occupied subspace, provided we distinguish the
two projectors of the same subspace with different order of
the occupied states. Once the occupied states are ordered, we
can fix the order of unoccupied states so that the matrix R has
determinant 1. Hence, appears SO(4) in Eq. (55). Note that
the oriented projector is invariant under the SO(2) rotation of
the occupied (unoccupied) band subspace.

In fact, Gr+(2, 4) is a covering space of Gr(2, 4) with the
covering map

q : Gr+(2, 4) −→ Gr(2, 4),

[A]+ �→ [A], (56)

which maps the oriented subspace represented by A ∈ SO(4)
to the subspace represented by A ∈ O(4). The plus sign in the
superscript indicates that the equivalence class is taken in the
oriented Grassmannian. The map in Eq. (56) is “two to one” in
the sense that the preimage q−1([A]) of a point [A] ∈ Gr(2, 4)
is always a two-point set {[A]+, [A′]+}. Here A′ ∈ SO(4) is a
special orthogonal matrix whose first two columns span the
same subspace as that of A but are oriented in the opposite
order. Although there are infinitely many different choices for
such A′, we shall canonically define A′ as the matrix obtained
from A by multiplying −1 to the second and fourth columns.
That is,

A′ = (a1 − a2 a3 − a4), (57)

where a j is the jth column vector of A.
As will be shown in the next subsection, Gr+(2, 4) is

homeomorphic to S2 × S2 with trivial fundamental group,
thus being the universal cover of Gr(2, 4). Having a two-
to-one universal cover, a standard theorem of topology
guarantees that Gr(2, 4) has a noncontractible loop, unique
up to homotopy, which becomes null homotopic when multi-
plied by itself: π1[Gr(2, 4)] = Z2. Since we will rely on the
relatively simple space Gr+(2, 4) ≈ S2 × S2 when classify-
ing the topological phases of real four-band insulators, it is
worth noting the relation between the noncontractible loop of
Gr(2, 4) and the cover Gr+(2, 4) (see Fig. 1). For any point
[A] ∈ Gr(2, 4), there is a continuous path

γ + : [0, 1] −→ Gr+(2, 4) (58)

in Gr+(2, 4) connecting the two points in its preim-
age q−1([A]) = {[A]+, [A′]+}. Then its projection γ = q ◦
γ + onto Gr(2, 4) represents the nonzero element [γ ] ∈
π1[Gr(2, 4)].

In fact, interpreting the domain of the map in Eq. (58)
as one-dimensional Brillouin zone BZ = [0, 1], γ = q ◦ γ +
can be viewed as a 1D Hamiltonian with π Berry phase
(see Appendix D 1). Thus, using the oriented Grassmannian
Gr+(2, 4), whose fundamental group is trivial, instead of
Gr(2, 4), amounts to restricting one’s focus to those Hamil-
tonians with trivial Berry phases along every direction in the
BZ. Later, we will further narrow down to those systems with
trivial Euler numbers on every surface in the BZ, as stated
in the Introduction. This will be done by replacing Gr+(2, 4)

FIG. 1. The structure of a “two-to-one” universal cover. To each
point in the base space, denoted by x = [A] = [A′], correspond ex-
actly two points y1 = [A]+ and y2 = [A′]+ in the covering space.
Every continuous path that connects these two points projects onto
a noncontractible loop in the base space, and the homotopy class of
the projected loop does not depend on the original path.

by another space that has identical homotopy groups with
Gr+(2, 4) except that it has trivial second homotopy group.
These points will be elucidated in Sec. V A.

In the viewpoint of homotopy groups, the difference be-
tween the base space and the covering space is all contained in
the fundamental group: the homotopy groups of higher dimen-
sion coincide. In particular, π2[Gr(2, 4)] = π2[Gr+(2, 4)] =
π2[S2 × S2] = Z ⊕ Z and π3[Gr(2, 4)] = π3[Gr+(2, 4)] =
π3[S2 × S2] = Z ⊕ Z. This fact will be crucial in the homo-
topy classification of 3D PT -symmetric four-band insulators
as shown below. It is worth noting that this homotopy-
theoretic consideration also enabled the classification of
four-band Euler insulator, as presented in [13].

B. Modified classifying space and real Hopf invariant

As shown above, the classifying space Gr(2, 4) is usually
constructed as the quotient space O(4)/O(2) × O(2) and in-
terpreted as the set of projectors onto the occupied subspace.
Although this construction applies to every noninteracting
insulator with finite numbers of occupied and unoccupied
bands, it is hard to understand geometrically how two in-
teger invariants of π2,3[Gr(2, 4)] arise and how to compute
them.

To improve on this, we used the double cover as a “modi-
fied” classifying space Gr+(2, 4) and found πn>1[Gr(2, 4)] =
πn>1[S2 × S2]. In the rest of this section, we will further
this strategy and construct another “classifying space” S3 ×
S3 enveloping both Gr(2, 4) and Gr+(2, 4). The promised
isomorphism Gr+(2, 4) ≈ S2 × S2 will be established en
route.

What we will observe is that the projector P can be de-
termined from a pair of unit quaternions. This suggests the
possibility of employing the set of pairs of unit quaternions
to express arbitrary four-band PT -symmetric Hamiltonian. In
turn, the set of unit quaternions can also be seen as the sphere
S3 inside R4 under the identification R4 ≈ H of real 4-vectors
and quaternions. Thus, using S3 × S3 as the enveloping clas-
sifying space, one can examine the relation between the Hopf
insulator and the general 3D four-band Hamiltonians with
spinless PT symmetry at half-filling. The latter, which will
be shown to be the PT -symmetric superposition of two Hopf
insulators and its generalizations, will be examined in the
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framework of homotopy theory. When the lower-dimensional
contribution to the homotopy (“weak topological invariants”)
is trivial, it will be called the real Hopf insulator (RHI).

To be precise, S3 × S3 forms a Serre fibration [39] over
the Grassmannian and can be seen as the composition of two
familiar fibrations

S3 × S3 p2−→ Gr+(2, 4)
p1−→ Gr(2, 4). (59)

The first map is the product of two copies of Hopf fibration,
which is commonly used to construct Hopf insulators, while
the second is the 2-1 covering space over the Grassmannian.

Being a Serre fibration, Eq. (59) enjoys the homotopy
lifting property with respect to the three-dimensional cube I3:
For each continuous map f : I3 −→ Gr(2, 4), there exists its
(not necessarily unique) lifts such as

f + : I3 −→ Gr+(2, 4),

f̃ : I3 −→ S3 × S3, (60)

where the continuous maps f , f +, f̃ satisfy p2 ◦ f̃ = f + and
p1 ◦ f + = f .

This lifting property is crucial for using the modified clas-
sifying spaces. One might try to lift the projector of a flattened
Hamiltonian

P : BZ = T3 −→ Gr(2, 4) (61)

up along the fibration, however, one cannot define such maps
on BZ since the fibration in Eq. (59) does not have the lifting
property with respect to the 3-torus. To bypass this difficulty,
we interpret the projector as a map on the cube with periodic
boundary conditions:

f : I3 −→ Gr(2, 4),

k �→ P(k), (62)

for which the fibration admits lifting. The lifted maps f +, f̃
are then maps on the cube with certain boundary conditions
as will be described [see Eq. (92)].

To reach the aforementioned goal, we begin with the fol-
lowing homomorphism of groups:

g : S3 × S3 −→ SO(4),

(z,w) �→ Rz,w, (63)

where SO(N ) is the group of the N × N special orthogonal
matrices. For a fixed pair of unit quaternions z,w ∈ S3, the
4×4 matrix Rz,w is defined by

Rz,w|x〉 = |zxw〉 (x ∈ H). (64)

We will use without proof the fact that g is surjective, i.e.,
every R ∈ SO(4) arises as R = Rz,w for some z,w ∈ S3, and
that

kerg = {±(1, 1)} ≈ Z2. (65)

It follows that by factoring out the kernel, we get the group
isomorphism

g : S3 × S3/{±(1, 1)} −→ SO(4),

[(z,w)] �→ Rz,w. (66)

Before proceeding, we shall describe the matrix Rz,w by di-
rectly computing its column vectors. Observe that for any 4×4

matrix R, the four columns of R are precisely the images of the
elementary basis vectors

R

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, R

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠, R

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, R

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. (67)

Accordingly, the column vectors of Rz,w are

|zw〉, |ziw〉, |zjw〉, |zkw〉. (68)

Now we want to pass to the classifying space by factoring
the right-hand side of Eq. (66) by the SO(2) × SO(2) action.
We can transfer this action using the isomorphism (66) and
factor the left-hand side of Eq. (66) by this induced action. The
resulting space, being isomorphic to SO(4)/SO(2) × SO(2),
provides an alternative description to the oriented Grassman-
nian.

To see things more vividly, here we write explicitly how
SO(2) acts on the occupied (unoccupied) space. Acting(

cos θ1 − sin θ1

sin θ1 cos θ1

)
⊕

(
cos θ2 − sin θ2

sin θ2 cos θ2

)
∈ SO(2) × SO(2) (69)

to a matrix R ∈ SO(4), R moves to a new special orthogonal
matrix whose column vectors are

R

⎛
⎜⎜⎝

cos θ1

sin θ1

0
0

⎞
⎟⎟⎠, R

⎛
⎜⎜⎝

− sin θ1

cos θ1

0
0

⎞
⎟⎟⎠, R

⎛
⎜⎜⎝

0
0

cos θ2

sin θ2

⎞
⎟⎟⎠, R

⎛
⎜⎜⎝

0
0

− sin θ2

cos θ2

⎞
⎟⎟⎠.

(70)

Now let us assume R = Rz,w. Then the vectors in Eq. (70) can
be recast as

cos θ1 |zw〉 + sin θ1 |ziw〉 = |zeiθ1w〉,
− sin θ1 |zw〉 + cos θ1 |ziw〉 = |zeiθ1 iw〉,
cos θ2 |zjw〉 + sin θ2 |zkw〉 = |zeiθ2 jw〉,

− sin θ2 |zjw〉 + cos θ2 |zkw〉 = |zeiθ2 kw〉. (71)

The form of vectors in Eq. (71) indicates that the action could
be understood as changing the quaternions z,w ∈ S3 instead
of rotating the columns of Rz,w. From now on, let us identify
the SO(2) × SO(2) matrix in Eq. (69) with a pair of complex
numbers (eiθ1 , eiθ2 ) ∈ S1 × S1. We define a new action

(S3 × S3) × (S1 × S1) −→ (S3 × S3),

((z,w), (eiφ1 , eiφ2 )) �→ (eiφ1 z, eiφ2w). (72)

Notice that Eq. (72) maps (−z,−w) to (−eiφ1 z,−eiφ2w), that
is, it moves a pair of elements congruent under the Z2 action
to another congruent pair. Hence, it induces an action on the
quotient space S3 × S3/{±(1, 1)}:(

S3 × S3

{±(1, 1)}
)

× (S1 × S1) −→
(

S3 × S3

{±(1, 1)}
)

,

([(z,w)], (eiφ1 , eiφ2 )) �→ [(eiφ1 z, eiφ2w)]. (73)

Direct computation shows that acting (eiθ1 , eiθ2 ) on Rz,w cor-
responds, via the isomorphism (66), to acting (eiφ1 , eiφ2 ) on
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[(z,w)] if θ1,2, φ1,2 are related by

θ1(φ1, φ2) = φ2 − φ1,

θ2(φ1, φ2) = −(φ1 + φ2). (74)

Since any pair (θ1, θ2) can be expressed as the difference and
sum of a pair (φ1, φ2), the orbit of Eq. (73) is isomorphic to
the orbit of Eq. (69).

It implies that after modding out the S1 × S1 actions on
both sides of Eq. (66), it induces an isomorphism between
orbit spaces:

g+ :
S3 × S3

S1 × S1
−→ SO(4)

SO(2) × SO(2)
,

[(z,w)] �→ [Rz,w]. (75)

In Eq. (75), we do not write ((S3 × S3)/{±(1, 1)})/(S1 × S1)
since the orbits of the S1 × S1 action always contain that of
the {±(1, 1)} action. To be precise, given (z,w) ∈ S3 × S3,

{±(z,w)} ⊂ {(eiφ1 z, eiφ2w) : φ1, φ2 ∈ R}. (76)

It follows that

((S3 × S3)/{±(1, 1)})/(S1 × S1) = (S3 × S3)/(S1 × S1).

(77)

Since each multiplicand of S1 × S1 acts independently [see
Eq. (72)] on the respective component of S3 × S3, the domain
of the isomorphism (75) can also be written as the product of
two independent orbit spaces:

g+ :
S3

S1
× S3

S1
−→ SO(4)

SO(2) × SO(2)
,

([z], [w]) �→ [Rz,w]. (78)

In Eq. (78), S3/S1 is the orbit space of the S1 action

S3 × S1 −→ S3,

(z, eiθ ) �→ eiθ z. (79)

Now, let us show that the orbit space S3/S1 can be iden-
tified with the sphere S2 precisely as in the Hopf fibration
sequence in Eq. (10) by using the alternative form of the
Hopf map p : z �→ ziz in Eq. (41). In Eq. (75), we formed the
quotient space S3/S1 by factoring the orbits of the S1 action
on S3 given by

eiθ z = eiθ z. (80)

It is easy to see that

eiθ z · i · eiθ z = z e−iθ ieiθ︸ ︷︷ ︸
=i

z = ziz, (81)

i.e., eiθ z ∈ p−1(ziz). Conversely, suppose w ∈ p−1(ziz), i.e.,
ziz = wiw for some z,w ∈ S3. We want to show zw = eiθ for
some θ since then w = e−iθ z and w belongs to the orbit of z
under the action (80). Note that

ziz = wiw (82)

⇒ z(ziz)z = z(wiw)z (83)

⇒ i = (zw)i(wz) (84)

⇒ i(zw) = (zw)i. (85)

Since zw has unit length and commutes with i, it must be of
the form

zw = a + bi (a2 + b2 = 1), (86)

i.e., zw = eiθ ∈ S1 for some θ ∈ R:

p−1(ziz) = {eiθ z : θ ∈ R} ≈ S1. (87)

In conclusion, we can represent the equivalence class [z] in
Eq. (78) by using ziz. This establishes an isomorphism be-
tween S2 × S2 and the oriented classifying space given by

g+ : S2 × S2 −→ SO(4)

SO(2) × SO(2)
,

(ziz,wiw) �→ [Rz,w]. (88)

V. REAL HOPF INSULATOR

The conclusion we have obtained so far is twofold. First,
we have established the isomorphism

S2 × S2 ≈−→ Gr+(2, 4), (89)

which enables us to classify the band topology of any 4 × 4
real Hamiltonian H2,2

R (k) with two occupied and two unoc-
cupied bands by π3(S2 × S2) = Z ⊕ Z indices. Second, we
have shown that each S2 factor in Eq. (89) can be regarded as
the base space of the Hopf fibration in Eq. (10). This indicates
the topological classes of H2,2

R (k) can be classified by two
integer Hopf invariants (χz, χw ). The topological insulator
described by H2,2

R (k) carrying nontrivial Hopf invariant pairs
can be called a real Hopf insulator (RHI).

A. Definition and construction of real Hopf insulator

What have been shown so far is that for any flattened
Hamiltonian H

2,2
R (k), there are two lifts of the projector f +

and f̃ that map into the modified classifying spaces. From now
on, we denote the lifted projectors by

P+ : I3 −→ Gr+(2, 4),

P̃ : I3 −→ S3 × S3, (90)

and call them “oriented” and “enveloping” projectors, respec-
tively. The underlines in P+, P̃ signify that the domain of
projectors changed from torus to cube, while the symbols
P+, P̃ are reserved for when the domain remains to be a torus;
see Eqs. (94) and (98).

Let us comment on the boundary conditions of the pro-
jectors. Since the genuine projector P(k) is a function on T3

(equivalently, a periodic function on I3), the lifted projectors
must satisfy certain boundary conditions. In view of the fi-
bration structure between genuine and modified classifying
spaces,

S3 × S3 p2−→ S2 × S2 p1−→ Gr(2, 4),

(z,w) �→ (ziz,wiw) �→ [Rz,w], (91)

the boundary condition for P̃ = (z(k),w(k)) ≡ (z,w)(k) can
be determined as follows. Since the (unoriented) classify-
ing space is Gr(2, 4) = Gr+(2, 4)/Z2 ≈ S2 × S2/{±(1, 1)},
(z,w)(k) can be any (S3 × S3)-valued functions on I3 subject
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to the boundary condition

(ziz,wiw)(k) = ±(ziz,wiw)(k + 2πe j )

(e j is the unit vector along k j axis, j = 1, 2, 3), (92)

The plus (minus) sign in Eq. (92) corresponds to the con-
tractible (noncontractible) loop along k j in π1[Gr(2, 4)]. It is
easy to see that the periodic boundary condition

(ziz,wiw)(k) = (ziz,wiw)(k + 2πe j )

(e j are unit vectors , j = 1, 2, 3). (93)

is equivalent to saying that the oriented projector can be writ-
ten as a function on the torus,

P+ : T3 −→ S2 × S2,

k �→ (ziz,wiw)(k), (94)

instead of just a function on I3. It is explained in Appendix B
that this is possible if and only if the Berry phases along three
axes all vanish:∫

T1
TrA(k)dk j = 0 mod 2π ( j = 1, 2, 3). (95)

On the other hand, the antiperiodic boundary condition [minus
sign in Eq. (92)] along any direction k j is equivalent to the
nontrivial Berry phase∫

T1
TrA(k)dk j = π mod 2π. (96)

We focus our attention to those Hamiltonians with periodic
oriented projectors, i.e., all loops along the three independent
directions in BZ = T3 being contractible in the classifying
space Gr(2, 4); In this case, Eq. (93) implies

z(k1, k2, 2π ) = eiθ3(k1,k2 )z(k1, k2, 0),

w(k1, k2, 2π ) = eiφ3(k1,k2 )w(k1, k2, 0),

for some θ3, φ3 : I2 → R,

similarly for cyclic permutations of 1, 2, 3. (97)

The functions θ j, φ j ( j = 1, 2, 3) can be set to constant zero,
that is, the enveloping projector can be set (up to homotopy)
as a periodic function

P̃ : T3 −→ S3 × S3,

k �→ (z,w)(k) (98)

if and only if the Euler class associated to the occupied (unoc-
cupied) bands vanishes on all three faces (see Appendixes B
and also D 2):∫

T2
Euv (k)dk1dk2 =

∫
T2

Euc(k)dk1dk2 = 0,

as well as for cyclic permutations of 1, 2, 3. (99)

Equivalently, Euler number vanishes if and only if the real-
valued wave function can be defined analytically over the
whole BZ. The Euler form Euv,c(k), which can be defined
for PT -symmetric insulators in spatial dimension two, will
be defined in Eqs. (122) and (123).

It is easy to observe that the condition in Eq. (99) implies
Eq. (95) since triviality on faces guarantees that on edges.

This is consistent with the fact that the Euler invariant is well
defined when the Berry phase is vanishing.

We define the real Hopf insulators (RHIs) to be the class
of four-band spinless PT -symmetric Hamiltonians at half-
filling, with additional constraint in Eq. (99). A RHI can be
specified (up to homotopy) by either one of the two ways:
One (the level of genuine classifying space) is by the pe-
riodic R4-valued real wave functions {|uv

1(k)〉, |uv
2(k)〉} and

{|uc
1(k)〉, |uc

2(k)〉} on BZ = T3 that span the occupied and
unoccupied subspaces, respectively; the other (the level of
enveloping classifying space) is by two unit quaternion-valued
periodic functions z(k),w(k) on BZ = T3. In the second case,
using the notation in Eq. (31), the wave functions are deter-
mined by ∣∣uv

1

〉 = |zjw〉, ∣∣uv
2

〉 = |zkw〉 (100)

for the occupied bands, and∣∣uc
1

〉 = |zw〉, ∣∣uc
2

〉 = |ziw〉 (101)

for the unoccupied bands. In both ways of defining RHI,
analyticity of the wave functions guarantees the triviality con-
dition in Eq. (99).

A concrete model of RHI with two integer invariants
(χz, χw ) can be constructed as follows. First, we can choose
z(k),w(k) as the unit quaternions corresponding to the oc-
cupied states of the conventional Hopf insulator, described
by the Moore-Ran-Wen model in Eq. (17), with the Hopf
indices χz, χw, respectively. We then assign {|zjw〉, |zkw〉} as
the occupied eigenstates of H

2,2
R (k) with the energy eigen-

value −1 while {|zw〉, |ziw〉} as the unoccupied states with the
eigenvalue +1. The occupied (unoccupied) space is invariant
under the action

(z,w) �→ (eiθ1 z, eiθ2w), (102)

which can be understood from Eq. (71). Then the matrix form
of the flattened RHI Hamiltonian is given by

H
2,2
R (k) = Rz,w

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠R�

z,w, (103)

where Rz,w is defined in Eq. (64). A more general unflat-

tened Hamiltonian H2,2
R (k) can be obtained from H

2,2
R (k) by

allowing the momentum-dependent variation of the energy
eigenvalues while keeping the finite-energy gap between the
occupied and unoccupied bands.

The Moore-Ran-Wen RHI, defined in Eq. (103), is espe-
cially useful when constructing RHI models with additional
symmetries. For instance, Appendix L 2 describes the models
having the inversion (P) and time-reversal (T ) symmetries
separately.

At this point, let us clarify that two-band Hopf insulator
and four-band RHI have relations stronger than merely shar-
ing a mathematical construction using the Hopf map. In fact,
a PT -symmetric superposition of a pair of Hopf insulators
realizes a subset of RHIs. To be precise, let us consider the
RHI with (χz, χw ) = (0, n) for integer n. Setting z ≡ 1, the
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corresponding Hamiltonian reads as

H
2,2
R (k) =

⎛
⎜⎜⎝

u1 0 u3 −u2

0 u1 u2 u3

u3 u2 −u1 0
−u2 u3 0 −u1

⎞
⎟⎟⎠, (104)

where (u1, u2, u3)(k) is determined by

u1i + u2j + u3k = (wiw)(k). (105)

Under a basis change,

UH
2,2
R (k)U † =

(
H∗

C O
O HC

)
, (106)

HC =
(

u1 u3 + iu2

u3 − iu2 −u1

)
, (107)

where HC is the Hamiltonian of a Hopf insulator asso-
ciated to the function (z†σz)(k) = [v1(k), v2(k), v3(k)] =
[u3(k),−u2(k), u1(k)] [compare Eqs. (7) and (45)], H∗

C its
complex conjugate, and O the zero matrix. The relevant uni-
tary transformation is given by

U =

⎛
⎜⎜⎝

c −c∗ 0 0
0 0 c −c∗
c c∗ 0 0
0 0 c c∗

⎞
⎟⎟⎠, c = −1

2
+ 1

2
i. (108)

It turns out that H∗
C is also a Hamiltonian of a Hopf insulator

with the same Hopf invariant χ as HC .
Hence, every RHI with the first invariant trivial χz = 0 is

the PT -symmetric superposition of two independent copies
of Hopf insulator. As one turns on the interaction between
the two, without breaking PT , nontrivial terms appear in the
off-diagonal entries in Eq. (106). The energy gap should be
closed during the process, passing to another homotopy class
(χz, χw ) = (m, n) of RHI.

B. Bulk invariants of RHI

Let us explain how one can compute the two integer topo-
logical invariants of H2,2

R (k) related to the third homotopy
group

π3[Gr(2, 4)] = π3[S2 × S2] = Z ⊕ Z. (109)

Here we assume that the 1D and 2D topological invariants
of H2,2

R (k), that is, the Berry phase and the Euler invariant,
respectively, are trivial because the two Hopf invariants are
well defined only under such a condition. The influence of the
1D and 2D invariants is further discussed in Appendix D.

For a given flattened Hamiltonian H
2,2
R (k), one can find a

map

T3 −→ S3 × S3,

k �→ (z,w)(k). (110)

The two integer invariants are the degree of the maps

z(k),w(k) : T3 −→ S3. (111)

These degrees can be quantified by the following manner:
First, we define the connection 1-forms on the BZ

az = Re[−i · z dz], aw = Re[−i · w dw], (112)

where d is the differential operator defined by

df = ∂ f

∂kx
dkx + ∂ f

∂ky
dky + ∂ f

∂kz
dkz. (113)

Differentiating az and aw, we get

fz = daz, fw = daw. (114)

Then the integers in π3[Gr(2, 4)] = Z ⊕ Z are computed in
the same way as the Hopf invariant:

(χz, χw ) =
( −1

4π2

∫
BZ

az ∧ fz,
−1

4π2

∫
BZ

aw ∧ fw

)
∈ Z ⊕ Z.

(115)

In the following two subsections, we provide alternative def-
initions, equivalent to the one above, of RHI invariants using
the eigenstates of the Hamiltonian, instead of the abstract
functions z, w.

C. RHI invariants of unflattened Hamiltonian

To develop methods to compute the 3D invariants of a
general unflattened Hamiltonian H2,2

R (k), one needs the rela-
tion between ziz,wiw and the occupied and unoccupied wave
functions. For example, one can see from Eq. (100) that

uv
2uv

1 = ziz,

−uv
1uv

2 = wiw. (116)

Then, by combining two orthogonal occupied eigenstates
uv

1(k) and uv
2(k), we can define two functions

vz : T3 −→ S2,

k �→ vz(k) = uv
2(k)uv

1(k), (117)

vw : T3 −→ S2,

k �→ vw(k) = −uv
1(k)uv

2(k). (118)

Then by applying the procedures described in Eqs. (18)–(22)
to vz(k) and vw(k), one can determine the corresponding con-
nection and curvature tensors, from which the bulk invariants
of RHI can be computed. The resulting integer invariants
(χz, χw ) are independent of the choice of orthogonal basis
uv

1(k) and uv
2(k). In Appendix A, we prove the invariance of

(χz, χw ) under the rotation

uv
1 �→ cos θ uv

1 − sin θ uv
2,

uv
2 �→ sin θ uv

1 + cos θ uv
2 (119)

and the reflection

uv
1 �→ uv

2,

uv
2 �→ uv

1. (120)

Similar relations can also be found by using the unoccupied
wave functions such as

uc
2uc

1 = ziz,

uc
1uc

2 = wiw. (121)
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D. RHI invariants in terms of Euler connections

More importantly, we can define the bulk invariants from
the conduction (valence) band Euler connections. This will
reveal a characteristic feature of RHI: The integral formula for
the bulk invariants necessarily includes the Euler connections
of both conduction and valence bands,

ac = 〈
uc

2

∣∣d∣∣uc
1

〉
, av = 〈

uv
2

∣∣d∣∣uv
1

〉
, (122)

and the corresponding curvatures

Euc = dac, Euv = dav. (123)

In Eq. (122), the wave functions |u〉v,c
1,2 are set to be real

vectors, which is enabled by the PT symmetry. For such
a real basis, the 2×2 connection matrix for the occupied
(unoccupied) subspace av,c

i j ≡ 〈uv,c
j |d|uv,c

i 〉 becomes real an-
tisymmetric. Hence, the connection matrix is determined by
its off-diagonal component av,c

12 = av,c, which is the definition
of Euler connection [12,18].

Using Eqs. (100) and (101), we can compute Eq. (122) in
terms of z,w:

ac = 〈ziw|d|zw〉
= Re[w(−i)z(dz · w + zdw)]

= Re[−i · zdz + w(−i)dw]

= Re[−i · zdz + i · w dw]

= az − aw, (124)

where the first equality is the definition. In the second and
third equalities, we use Eqs. (33) and (35), respectively. The
fourth again follows from Eq. (33). Analogously, we have

av = az + aw. (125)

Now it directly follows that

− 1

8π2

∫
BZ

ac ∧ Euc + av ∧ Euv = χz + χw,

− 1

8π2

∫
BZ

ac ∧ Euv + av ∧ Euc = χz − χw (126)

or, equivalently,

− 1

16π2

∫
BZ

(ac + av ) ∧ (Euc + Euv ) = χz,

− 1

16π2

∫
BZ

(ac − av ) ∧ (Euc − Euv ) = χw. (127)

It is worth noting that the 3D bulk invariants (χz, χw) of RHI
are defined in terms of both occupied and unoccupied bands.
One may try to find other invariants, similar to above ones,
using only the Euler connection and curvature of occupied
bands. However, as shown in Appendix E, any attempt to
build such new invariants ends up with an expression which
is either gauge noninvariant or nonquantized. This is in sharp
contrast with all the other topological invariants including the
Chern number, Euler number, Hopf invariant, which can be
computed by using only the occupied subspace.

This fact has a consequence on the bulk-boundary corre-
spondence of RHI. Analogous to the other integral formulas
such as Berry phase in 1D and Chern class in 2D, which
contain physical information of the boundary charge and edge

current, the integral formulas for the RHI bulk invariants al-
low interpretation as the Berry curvature polarization, which
would leave a mark on the boundary of a finite-size sample.
More precisely, we will show later that the first equation of
Eq. (126) is directly proportional to the surface Chern number
[40] of the total bands, including both occupied and unoccu-
pied bands. This fact is intimately connected to the appearance
of the connection and curvature of both the occupied and
unoccupied states in the definition of quantized topological
invariants, which is a direct manifestation of the delicate na-
ture of the RHI band topology.

As the final remark for this section, we discuss the apparent
contradiction between Eq. (116) and the uniqueness statement
of Eq. (127). The fact that Eq. (116) provides a way to ex-
press χz, say, in terms of occupied states only may render
the uniqueness of Eq. (127) invalid. However, the definition
of χz from Eq. (116) requires one to solve the magnetostatic
equations in Eqs. (19) and (20), whose solution cannot be
expressed in terms of occupied state Euler connection. In fact,
the solution is

az = ac + av

2
. (128)

This inevitably enforces the use of both occupied and unoc-
cupied bands when computing the bulk invariants of RHI in
terms of Euler connection.

VI. BULK-BOUNDARY CORRESPONDENCE

A. Review on the bulk-boundary correspondence
of the Hopf insulator

Let us first review the bulk-boundary correspondence of the
Hopf insulator which has nontrivial surface Chern numbers at
the boundary [33]. Generally, the surface state of a topological
insulator is described by using its occupied states only. On the
other hand, in the Hopf insulator, the unoccupied states as well
as the occupied states are equally important to understand its
surface states as discussed below.

More specifically, let us consider a slab geometry of a Hopf
insulator with Nz layers stacked in the z direction while keep-
ing the periodic boundary condition in the x and y directions
with the corresponding momentum denoted by κ = (κx, κy).
When the system is periodic along all three directions, the
Wannier states of the occupied and unoccupied bands are well
defined because there is a finite bulk energy gap Eg,bulk and
the Chern number of the system is zero. On the other hand, in
a slab geometry, possible band crossings between the surface
occupied and unoccupied bands can cause some difficulty in
defining the corresponding Wannier states. However, in the
case of two-band Hopf insulator, it was shown that the band
crossing between surface states can be removed by applying
appropriate surface perturbations [33,41].

For an eigenstate |uslab〉 of the slab Hamiltonian, one
can define the expectation value of the z coordinate as
〈uslab|Zslab|uslab〉 where Zslab is the z-directional position op-
erator. In general, there is a unitary transformation U ∈ U(Nz )
for the occupied states {|uv

n,slab〉 : n = 1, . . . , Nz} such that the
transformed occupied states |ũv

n,slab〉 = ∑
m Unm|uv

m,slab〉 are
localized in the z direction. The transformed occupied state
|ũv

n,slab〉 and its z-directional position zv
n,slab is equivalent to
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the eigenstate and the eigenvalue of PslabZslabPslab where Pslab

is the projection operator onto the occupied states {|uv
n,slab〉}

[42]. Similarly, using the projection operator Qslab onto the
unoccupied states, one can define the z-directionally localized
unoccupied states |ũc

n,slab〉 and their z positions zc
n,slab as the

eigenstates and eigenvalues of QslabZslabQslab. Without loss
of generality, the indices of |ũv

n,slab〉 and zv
n,slab (respectively

|ũc
n,slab〉 and zc

n,slab) can be chosen as zv
1,slab � · · · � zv

Nz,slab

(respectively zc
1,slab � · · · � zc

Nz,slab). By plotting {zv(c)
n,slab : n =

1, . . . , Nz} as a function of κ, we obtain the Wannier sheets
stacked along the z direction. Note that zv(c)

1,slab corresponds

to the bottom sheet and zv(c)
Nz,slab corresponds to the top sheet.

Also, |ũv
n,slab〉, |ũc

n,slab〉 are called by the slab hybrid Wannier
functions (HWF) of the occupied and unoccupied states [40].

Let us first consider the occupied states. Suppose that,
for some n0, zv

n0,slab is decoupled from adjacent Wannier
sheets, i.e., zv

n0−1,slab(κ) < zv
n0,slab(κ) < zv

n0+1,slab(κ) for all κ ∈
rBZ where rBZ indicates the reduced Brillouin zone for in-
plane momenta κ. In this case, the Chern number of |ũv

n0,slab〉
can be computed by integrating the Abelian Berry curvature

i
2π

(〈∂κx ũ
v
n0,slab|∂κy ũ

v
n0,slab〉 − 〈∂κy ũ

v
n0,slab|∂κx ũ

v
n0,slab〉) of the slab

HWF |ũv
n0,slab〉 over the rBZ. One can also define the Chern

number Cn1,n2 for a group of adjacent Wannier sheets {zv
n,slab :

n1 � n � n2} given by

Cv
n1,n2

= 1

2π

∫
rBZ

dκ TrF , (129)

where Tr is a trace over {|ũv
n,slab〉 : n1 � n � n2} and F is the

corresponding non-Abelian Berry curvature [33]. We note that
Cn1,n2 is well defined regardless of possible crossing among
{zv

n,slab : n1 � n � n2} as long as zv
n1−1,slab(κ) < zv

n1,slab(κ) and
zv

n2,slab(κ) < zv
n2+1,slab(κ) for all κ ∈ rBZ. Similarly, one can

define the Chern number Cc
n1,n2

for the unoccupied states by
using {|ũc

n,slab〉 : n1 � n � n2}.
Now we define the bottom surface Chern number Cv

bottom of
the occupied states as

Cv
bottom = Cv

1,nbulk
, (130)

where nbulk is a sufficiently large integer such that |ũv
nbulk,slab〉

is bulklike. Namely, we assume that |ũv
nbulk,slab〉 is similar to the

bulk HWF |wv
l (kx, ky)〉 obtained from the bulk state |uv (k)〉

by taking the Fourier transformation in the z direction as

∣∣wv
l (kx, ky)

〉 = c

2π

∫
dkze

ikz (z−lc)|uv (k)〉, (131)

where l is an integer, c is the lattice constant along the z
direction, and k = (kx, ky, kz ) is a 3D momentum [43].

It is known that there is a unitary transformation U ∈
U(1) for the occupied state |uv〉 such that the bulk HWF
|w̃v

l 〉 obtained from the unitary-transformed occupied states
are localized in the z direction [42]. Then the bulklike state
|ũv

nbulk,slab〉 should have the following properties similar to
those of |w̃v

l 〉. First, the distance in the z direction be-
tween adjacent Wannier sheets should be c, i.e., |zv

nbulk+1,slab −
zv

nbulk ,slab| � c. This follows from the fact that in the case of
|w̃v

l 〉, its translational invariance along the z direction∣∣w̃v
l (z + c)

〉 = ∣∣w̃v
l−1(z)

〉
(132)

gives

zv
l = zv

l−1 + c, (133)

where zv
l is the Wannier center of |w̃v

l 〉 in the z direction.
Therefore, the adjacent Wannier sheets are always apart from
each other by the distance c.

Second, the Chern number of each Wannier sheet should
be zero. This comes from the fact that the Chern number of an
arbitrary 2D submanifold of the 3D Brillouin zone is zero for
the Hopf insulator [29,43]. From these two properties of the
bulklike states, we can deduce that the bottom surface Chern
number Cv

bottom of the occupied states in Eq. (130) is invariant
with respect to the choice of nbulk: when nbulk is changed,
Cv

bottom will also be changed as much as the Chern number of
the added or subtracted bulklike states, which is equal to zero.
Therefore, Cv

bottom does not vary under the change of nbulk.
We can also define the top surface Chern number Cv

top of
the occupied states as

Cv
top = Cv

nbulk,Nz
. (134)

Similarly, the top and bottom surface Chern numbers
Cc

top, Cc
bottom of the unoccupied states can be defined as those

of the occupied states. Then we define the bottom surface
Chern number Cbottom as

Cbottom = Cv
bottom + Cc

bottom. (135)

Likewise, the top surface Chern number Ctop is given by Cv
top +

Cc
top.

The surface Chern numbers of the Hopf insulator can be
related to its Hopf invariant through the surface theorem for
the Chern-Simons 3-form θ3 [40], which is defined as

θv
3 = − 1

4π

∫
BZ

dk εi jkTr

[
Ai∂ jAk − 2

3
iAiA jAk

]
, (136)

where εi jk is the Levi-Civita symbol and Ai is the non-Abelian
Berry connection of the occupied bulk states with components
[Ai]nm = i〈un|∂i|um〉, and the trace is over the occupied states.
Note that, for the Hopf insulator with a Hopf invariant χ , we
have θv

3 = πχ .
θv

3 can be related to the quantity θv
slab defined for the slab

geometry of the same Hamiltonian. For a slab composed of Nz

layers stacked in the z direction, θv
slab is given by

θv
slab = 1

Nz

∫
rBZ

dκ Tr
[
Zv

slab�
v
xy,slab

]
, (137)

where Zv
slab and �v

xy,slab are the z-directional position operator
and the non-Abelian Berry curvature of the occupied states of
the slab Hamiltonian, and the trace is over the occupied states
of the slab Hamiltonian. Restricting to the gauge where HWFs
are maximally localized along the z direction, it can be shown
that [40]

θv
slab → θv

3 − 2πCv
top as Nz → ∞, (138)

where Cv
top is defined in the same way as Eq. (134). This

theorem holds when the total Chern number of the occupied
subspace of the entire slab is trivial, which is the case for
Hopf insulator. Note that although specific gauge condition
was imposed to prove Eq. (138), it remains true in any other
gauge since the Chern-Simons 3-form is gauge independent
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when there is only one occupied band. Note that the other two
terms in Eq. (138) are gauge independent regardless of the
number of bands. The situation will be complicated for the
case of real Hopf insulator with two occupied bands.

We have a similar equation for the unoccupied states:

θ c
slab → θ c

3 − 2πCc
top as Nz → ∞. (139)

Interestingly, we also find that

θv
slab + θ c

slab = 0, (140)

as shown in Appendix F. After adding Eqs. (138) and (139),
we obtain θv

3 + θ c
3 = 2π (Cv

top + Cc
top) = 2πCtop. For a Hopf

insulator with the Hopf invariant χ , it was shown that θv
3 and

θ c
3 are the same and equal to πχ [44,45], therefore, we obtain

χ = Ctop = −Cbottom, (141)

where Ctop + Cbottom = 0 since not only the total Chern num-
ber of the conduction band and the valence band of the slab
but also the total Chern number of the bulk region are zero.

B. Bulk-boundary correspondence of real Hopf insulators

Similar to the Hopf insulator, topologically protected sur-
face Chern number can also exist in the real Hopf insulator.
Let us consider a real Hopf insulator slab with Nz layers
stacked in the z direction. As in the case of the Hopf insulator,
an energy gap between the surface occupied and unoccupied
states is needed to define the surface Chern numbers of the
occupied and unoccupied states. When there are band cross-
ings between surface occupied and unoccupied bands, one can
open a gap by adding suitable perturbations preserving PT
symmetry. We note that although gapless nodes can be sym-
metry protected in 2D PT -symmetric systems, as it relates
the top and bottom surfaces in the case of a slab, gapless
nodes can always be removed by applying PT -symmetric
perturbations.

When the energy gap is open, we can define a projec-
tion operator on the occupied states Pslab and the unoccupied
states Qslab in the rBZ. And the eigenstates and eigenvalues of
PslabZslabPslab are slab HWFs |ũv

n,slab〉 and their Wannier sheets
zv

n,slab. Since there are two occupied states in the bulk unit
cell of the real Hopf insulator, the index n can be from 1
to 2Nz. For the unoccupied states, we can define slab HWFs
|ũc

n,slab〉 and their Wannier sheets zc
n,slab similarly. Without loss

of generality, the order of the index n is chosen to satisfy
zv

1,slab � · · · � zv
2Nz,slab and zc

1,slab � · · · � zc
2Nz,slab.

To define the surface Chern number of the RHI, one needs
to be more careful than the case of the Hopf insulator because
of the possible band crossings between adjacent Wannier
sheets. For example, the surface Chern number in Eq. (130)
is well defined when nbulk is an index belonging to the bulk
region. This is because, in the Hopf insulator, the Wannier
sheets zv

nbulk,slab in the bulk region are not touching with their
adjacent Wannier sheets and have Chern number 0. In the case
of the RHI, as there are two occupied states per unit cell,
Eq. (133) might not be satisfied, especially for the adjacent
Wannier sheets belonging to the same unit cell. However, as
long as adjacent Wannier sheets belonging to different unit
cells do not touch each other, we can define the Chern number
of the two Wannier sheets in one unit cell, which is zero

because the Chern number of the RHI on any 2D submanifold
is trivial.

Then let us divide the Wannier sheets {zv
n,slab : n =

1, . . . , 2Nz} into three regions: the bottom surface region, the
bulk region, and the top surface region. The states with indices
1 � n � nbottom and ntop � n � 2Nz belong to the bottom sur-
face region and top surface region, respectively. And the other
states belong to the bulk region. Note that nbottom < ntop and
top surface region is automatically determined after setting the
bottom surface region due to the PT symmetry. Since there
are integer numbers of unit cells in the bulk region, nbottom

should be set not to cut the interior of a unit cell in the bulk
region. If we change nbottom obeying this condition, Wannier
sheets are added to or subtracted from the bottom surface
region in units of unit cells. Then we define the bottom surface
Chern number Cv

bottom of the occupied states by

Cv
bottom = Cv

1,nbottom
, (142)

where Cv
1,nbottom

is given by Eq. (129). We can confirm that
Cv

bottom is well defined since the Chern number of a unit cell is
zero. Also, if we define the top surface Chern number Cv

top of
the occupied states by

Cv
top = Cv

ntop,2Nz
, (143)

Cv
top is well defined.

Note that the surface Chern number is not well defined
when bulklike Wannier sheets in different unit cells are touch-
ing each other. We observed this phenomenon in several RHI
models and explain why these models have such property in
the context of multicellularity of delicate states in Appendix J.
The Wannier sheets of the unoccupied states can also be
divided into the bottom surface region, the bulk region, and
the top surface region, and the corresponding surface Chern
numbers Cc

bottom and Cc
top can also be defined as in Eqs. (142)

and (143), respectively, using localized unoccupied states.
Applying the surface theorem for the Chern-Simons 3-

form [40], we can get Eq. (138) for the occupied states and
Eq. (139) for the unoccupied states. The definitions of θ3 and
θslab are given by Eqs. (136) and (137), respectively. After
adding Eqs. (138) and (139), we can get

θv
3 + θ c

3 = 2πCtop = −2πCbottom, (144)

where θv
slab + θ c

slab = 0, which is proved in Appendix F, Ctop =
Cv

top + Cc
top and Cbottom = Cv

bottom + Cc
bottom. We used Ctop =

−Cbottom in the second line, which is due to the PT symmetry.
To find a relation between θv

3 + θ c
3 and the real Hopf in-

variants χz and χw, let us express θv
3 and θ c

3 using the Euler
connections and the Euler forms of the occupied and unoccu-
pied states, which are in Eqs. (122) and (123), respectively.
The non-Abelian Berry connection Av of the occupied states
is given by

Av =
(

0 −i
〈
uv

2

∣∣∇∣∣uv
1

〉
i
〈
uv

2

∣∣∇∣∣uv
1

〉
0

)
= avσy, (145)

where |uv
1,2〉 are the occupied states, av = 〈uv

2|∇|uv
1〉, and σy

is the Pauli matrix. Note that the diagonal components of Av

are zero since |uv
1,2〉 are real valued. Substituting Av into the
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TABLE I. Possible surface Chern numbers of the Hopf insulator
and the real Hopf insulator. n1, n2, and m are arbitrary integers and
Cv

total means the total Chern number of the occupied states.

definition of θv
3 in Eq. (136), we can get

θv
3 = − 1

2π

∫
BZ

dk av · ∇ × av

= − 1

2π

∫
BZ

av ∧ Euv, (146)

where we used the definition of av and Euv in the second line,
which are in Eqs. (122) and (123). Similarly, one can easily
show that θ c

3 is given by

θ c
3 = − 1

2π

∫
BZ

ac ∧ Euc. (147)

Adding Eqs. (146) and (147), we find that

θv
3 + θ c

3 = − 1

2π

∫
BZ

(av ∧ Euv + ac ∧ Euc)

= 4π (χz + χw ), (148)

where we used the first equation of Eq. (126) in the second
line. Using Eqs. (144) and (148), we find that

Cbottom = −2(χz + χw ) = −Ctop, (149)

where we use Ctop + Cbottom = 0.
The only caveat here is that we made two separate gauge

choices in the proof of Eq. (149). Namely, we used the real
gauge to compute θv

3 , θ c
3 while maximally localized HWF

gauge is required to employ the surface theorem of Chern-
Simons 3-form. However, there is no actual harm since in the
case of RHI, Chern-Simons 3-form in the real gauge takes the
same value in both gauges (see Appendix G).

Let us compare the surface Chern numbers of a Hopf
insulator with χ and a real Hopf insulator with (χz, χw ) that
satisfy χ = 2(χz + χw ) = 2N . According to Eqs. (141) and
(149), both the Hopf insulator and the real Hopf insulator
have topologically protected surface Chern number Ctop =
2N . However, the Chern number distribution between the
occupied and unoccupied states is quite different as shown
below.

Let us separately consider the surface Chern numbers of
the occupied states and the unoccupied states. Cv

top and Cc
top

can exchange their values by closing the energy gap between
the occupied and unoccupied states in the top surface region.
This is the same for the bottom region. We write possible
surface Chern numbers of the Hopf insulator with χ = 2N in
the first row of Table I. Here, n1 (respectively n2) is an integer
that can be changed by closing the energy gap between the oc-
cupied and unoccupied states in the top (respectively bottom)
region. Note that Cv

top + Cv
bottom is not necessarily zero for the

Hopf insulator. However, in the case of the real Hopf insulator,

PT symmetry constraints Cv
top = −Cv

bottom. This difference
affects the total Chern numbers of their occupied states, Cv

total.
Since the Chern numbers of the bulk states are zero for both
Hopf insulator and real Hopf insulator, Cv

total of both cases
are Cv

top + Cv
bottom, which are written in the last column of

Table I. Therefore, the occupied states of the Hopf insulator
slab can have nontrivial Chern number but those of the real
Hopf insulator slab always have trivial Chern number.

At this point, let us recall that the bulk-boundary corre-
spondence of conventional Hopf insulator also relates the total
surface Chern number, including both occupied and unoc-
cupied states, to the bulk invariant, as a result of delicate
topology. However, in this case, the bulk invariant can be
computed only using the occupied state. In contrast, RHI
illustrates the feature of delicate topology in a more decisive
way: The bulk invariant has integral formula that unavoidably
contains both occupied and unoccupied bands. Furthermore, if
one tries to construct another integral formula written solely
in terms of occupied (unoccupied) bands, such as∫

BZ
ac ∧ Euc or

∫
BZ

av ∧ Euv, (150)

one is bound to get gauge noninvariant or nonquantized results
(see Appendix E). Hence, RHI provides a clear evidence that
the bulk-boundary correspondence of occupied and unoccu-
pied bands as a whole is a signature of delicate topology.
We note that the bulk invariant of Hopf insulator can also
be defined as a property of the total bands including both
occupied and unoccupied bands. However, due to the intrinsic
particle-hole symmetry, Hopf insulator partially eluded the
above observation regarding the nature of delicate TI. In fact,
particle-hole symmetry makes possible the integral formula
for bulk invariant only containing the occupied band.

Before turning to the numerical results, we point out an
implication of Eq. (149) on the time-reversal (T ) and space-
inversion (P) symmetries of RHI. Since Berry curvature is
odd under T transformation, T symmetry requires vanishing
surface Chern number, hence χz + χw = 0. It turns out that
every homotopy class (χz, χw ) = (m,−m) (m ∈ Z) of RHI
contains at least one model equipped with both T and P sym-
metries (note that all RHIs have the combined PT symmetry,
but individual symmetries P and T are not warranted in
general) and such an example is given by the Moore-Ran-Wen
RHIs. To be specific, converting the MRW model in Eq. (12)
into the quaternion form as in Sec. III B 3 yields appropri-
ate z(k) such that χz = m. Then w(k) is defined by putting
kz → −kz into z(k). The resulting flattened RHI Hamiltonian
H

2,2
R [see Eq. (103)] realizes the desired symmetries for every

m ∈ Z. A detailed derivation appears in Appendix L 2.

C. Model calculation of bulk-boundary correspondence

Let us confirm Eq. (149) using the tight-binding mod-
els with the real Hopf invariants (χz, χw ) = (±1, 0),
(±2, 0), (0,±1), (0,±2), respectively.

In Sec. V A, we show that, for given two quaternions z,w,
the eigenstates of RHI with invariants (χz, χw ) are given by
normalized states |z̄w〉, |z̄iw〉, |z̄jw〉, |z̄kw〉, which are column
vectors of the matrix Rz,w defined in Eq. (64). Then we can
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define a real-valued Hamiltonian H
2,2
R (k) as in Eq. (53):

H
2,2
R (k) = Rz,w

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠R�

z,w. (151)

We can easily show that H
2,2
R (k) has eigenstates |z̄w〉, |z̄iw〉,

|z̄jw〉, |z̄kw〉. Also, the energy of |z̄w〉, |z̄iw〉 (|z̄jw〉, |z̄kw〉) is
|z||w| (−|z||w|). Therefore, for given quaternions z(k),w(k)
which have nontrivial Hopf invariants, we can make a RHI
model with invariants (χz, χw ) by using Eq. (151).

For example, two quaternions z,w of a real Hopf insulator
model with (χz, χw ) = (1, 0) are given by [38]

z = sin kx + i sin ky + j sin kz + k

⎛
⎝ ∑

i=x,y,z

cos ki − 3

2

⎞
⎠,

w = 1. (152)

We study a slab Hamiltonian of this model with 16 lay-
ers stacked in the z direction. To calculate Wannier sheets
zv

n,slab, zc
n,slab of the occupied and unoccupied states, it is im-

portant to make an energy gap between the surface occupied
and unoccupied states of the slab Hamiltonian, which are
achieved by adding a small PT -symmetric perturbation

Hpert =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ (153)

to the top and bottom layers.
To check the surface Chern number, we divide the slab

into the surface regions and the bulk region. The bulk region
is divided into bulk unit layers which nearly satisfy the z-
directional translation symmetry. We illustrate the Wannier
sheets of the occupied and unoccupied states near the bottom
surface in Figs. 2(a) and 2(d). The Wilson loop spectra of
the bottom surface region are shown in Figs. 2(b) and 2(e),
from which the bottom surface Chern numbers are given by
Cbottom = Cv

bottom + Cc
bottom = −2 consistent with Eq. (149).

Note that Cv(c)
top = −Cv(c)

bottom due to the PT symmetry. Also,
we calculate the Wilson loop spectra of all the bulk unit layers
and find that the relevant Chern numbers are all zero. Note that
the bulk Hamiltonian made by the quaternions in Eq. (152)
has a C4z symmetry which is given by Eqs. (169) and (170).
Although the C4z symmetry is broken near the surface due
the the surface perturbation, Eq. (153), we can expect that
the bulk states have the C4z symmetry, which can be checked
from Fig. 2. From Figs. 2(b), 2(c), 2(e), and 2(g), we can
find that Wannier sheets and the Wilson loop spectra of the
bulk unit cell satisfy C2z symmetry, which comes from the
C4z symmetry of the bulk Hamiltonian. Also, since the bulk
states have C4z symmetry, the Wannier sheets and the Wilson
loop spectra along −Y -�-Y line are the same as those along
−X -�-X line, which are illustrated in Figs. 2(b), 2(c), 2(e),
and 2(g).

FIG. 2. Wannier sheets and their Wilson loop spectra of the real
Hopf insulator slab with (χz, χw ) = (1, 0) described in Eq. (152).
(a) Brillouin zone of the slab Hamiltonian. (b), (c) Cross sec-
tions of valence (conduction) band Wannier sheets, along kx axis, of
a surface-deformed slab Hamiltonian near the bottom surface. The
blue dashed lines indicate the Wannier sheets inside bottom surface
region while the black solid lines are those in bulk region. The red
dotted lines divide the slab into unit layers whose length is set to be
1. (d), (e) Wilson loop spectra of the valence band Wannier sheets
(d) inside the bottom surface region, (e) inside a single bulk layer.
WCCy stands for the Wannier charge center in spatial y direction. (f),
(g) Wilson loop spectra of the conduction band Wannier sheets (f)
inside the bottom surface region, (g) inside a single bulk layer.

To make a real Hopf insulator model with invariant (2,0),
we use two quaternions z, w given by [38]

z = sin kx − i sin ky + j sin kz + k

⎛
⎝ ∑

i=x,y,z

cos ki − 1

2

⎞
⎠,

w = 1. (154)

For the corresponding slab Hamiltonian with 16 layers, we
add

H ′
pert =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ (155)

to open the gap between the occupied and unoccupied states.
The relevant Wannier sheets for the occupied states near
the bottom surface and the unoccupied states are shown in
Figs. 3(a) and 3(d), respectively. We choose the lowest three
sheets as a surface region, the blue dashed lines in Figs. 3(a)
and 3(d). The Wilson loop spectra near the bottom surface
region for the occupied states and the unoccupied states are
illustrated in Figs. 3(b) and 3(e), respectively. We find that
Cbottom = Cv

bottom + Cc
bottom = −4, which satisfies Eq. (149).

We have also confirmed that the Chern number of each bulk
unit layer is zero. Note that the bulk Hamiltonian made by
the quaternions in Eq. (154) also has the C4z symmetry [see
Eqs. (169) and (170)]. Similar to the previous case, the slab
Hamiltonian near the surface does not have the C4z symmetry
due to the surface perturbation, Eq. (155), but the bulk unit cell
has the C4z symmetry [see Figs. 3(b), 3(c), 3(e), and 3(g)].

It is worth noting that we have chosen odd numbers of
the surface Wannier sheets in Figs. 2(a), 2(d), and 3(a), 3(d)
to avoid the crossing between adjacent Wannier sheets in
neighboring unit cells. For validity of the surface theorem,
the boundary of the surface and bulk regions must be put in
a way that it does not intersect any of the Wannier sheets.
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FIG. 3. Wannier sheets and their Wilson loop spectra of the real
Hopf insulator slab with (χz, χw ) = (2, 0) described in Eq. (154).
(a) Brillouin zone of the slab Hamiltonian. (b), (c) Cross sec-
tions of valence (conduction) band Wannier sheets, along kx axis, of
a surface-deformed slab Hamiltonian near the bottom surface. The
blue dashed lines indicate the Wannier sheets inside bottom surface
region while the black solid lines are those in bulk region. The red
dotted lines divide the slab into unit layers whose length is set to be
1. (d), (e) Wilson loop spectra of the valence band Wannier sheets
(d) inside the bottom surface region, (e) inside a single bulk layer.
WCCy stands for the Wannier charge center in spatial y direction. (f),
(g) Wilson loop spectra of the conduction band Wannier sheets (f)
inside the bottom surface region, (g) inside a single bulk layer.

Otherwise, the Wannier sheet would be partially included in
the surface region so that the surface region is ill defined.
To avoid the intersections, one regards the (kx, ky) planes
anchored at the integer points z = N along the z axis as
virtual unit-cell boundaries. After perturbing the Hamiltonian
slightly, the Wannier sheets near the top (bottom) region shift
away from the top (bottom) virtual unit cell so that the top
(bottom) virtual unit cell can play the role of top (bottom)
surface region. The rest of the unit cells are then regarded as
the bulk region.

We can get a RHI model with invariants (χz, χw ) =
(−1, 0) by applying a simple transformation ky → −ky to
Eq. (152) [38]. This transformation can be regarded as a
y-directional mirror symmetry transformation, which inverts
the sign of the surface Chern number. In accordance with this,
one can confirm that the bottom surface Chern number of this
model is Cbottom = 2, being consistent with Eq. (149).

Similarly, we can get a RHI model with invariants
(χz, χw ) = (−2, 0) by applying the transformation ky → −ky

to Eq. (154) [38]. By the same reasoning as above, Cbottom = 4
for this model, which satisfies Eq. (149).

We can also get RHI models with invariants (χz, χw ) =
(0,±1), (0,±2) by applying a simple transformation to
Eqs. (152) and (154). Given two quaternion-valued func-
tions z(k),w(k) on BZ, let us define two RHI Hamiltonians
H

2,2
R , H

2,2
R′ by using Eq. (151), where R = Rz,w, R′ = Rw,z.

They have opposite pairs of RHI invariants (χz, χw ) and
(χw, χz ), respectively. However, we find that

H
2,2
R = OH

2,2
R′ O� (156)

for an orthogonal matrix O = diag(−1, 1, 1, 1). The same
is true for the slab Hamiltonians H

2,2,Nz

R,slab and H
2,2,Nz

R′,slab, made

by stacking Nz layers of H
2,2
R and H

2,2
R′ in the z direction:

There is an orthogonal transformation Oslab ∈ O(4Nz ) such
that H

2,2,Nz

R,slab = OslabH
2,2,Nz

R′,slabO�
slab. Since the surface Chern num-

ber defined in Eq. (130) is invariant under the transformation
by Oslab, the surface Chern numbers of H

2,2,Nz

R,slab and H
2,2,Nz

R′,slab are
identical. Then it is straightforward to show that Eq. (149)
applies to both Hamiltonians with the same value of χz + χw.
Since we already verified the bulk-boundary correspondence
of the RHI models with (χz, χw ) = (±1, 0), (±2, 0), by ap-
plying the orthogonal transformation O in Eq. (156) to these
models, we can show that Eq. (149) is also satisfied for RHI
models with invariants (χz, χw ) = (0,±1), (0,±2).

For other examples of real Hopf insulators with arbitrary
(χz, χw ), we observed that the well definedness of the surface
Chern number is not guaranteed due to the crossings between
Wannier sheets, which are robust against small perturbations.
In certain models featuring C4z symmetry, such crossings can
be shown to be unavoidable (see Appendix J) and originate
from the multicellular nature of delicate topological insula-
tors, which will be remarked at the end of the next section.

VII. REVERTING THOULESS PUMP
IN ROTATIONAL-SYMMETRIC RHI

A. Review of the reverting Thouless pump in Hopf insulator

In a class of Hopf insulator with additional n-fold rotational
symmetry about the z axis Cnz, together with certain symmetry
conditions, the rotation eigenvalues of the occupied (unoccu-
pied) states behave coherently, resulting in the Hopf-reverting
Thouless pump (RTP) relation where the Hopf invariant χ

controls the z-directional polarization of the occupied (un-
occupied) state wave functions at Cnz-invariant momenta.
There are numerous sufficient conditions for this to happen.
Without digging into the general theory of RTP [30,47], we
illustrate the Hopf-RTP phenomenon with a chosen class of
C4z-symmetric Hopf insulator. We will return to the problem
of symmetry conditions for RTP to arise in the next subsection
where we turn to RTP in real Hopf insulator.

In this section, �, M, X, Y denote the C2z-invariant lines in
the 3D BZ. Namely,

� = {(0, 0, kz ) : kz ∈ [0, 2π ]},
M = {(π, π, kz ) : kz ∈ [0, 2π ]},
X = {(π, 0, kz ) : kz ∈ [0, 2π ]},
Y = {(0, π, kz ) : kz ∈ [0, 2π ]}.

Defining the z polarization

pz(kx, ky) = 1

2π

∫ 2π

0
dkzTr[Az(kx, ky, kz )], (157)

where Az,mn = i〈um|∂kz |un〉 is the z component of the non-
Abelian Berry connection and the trace is over the occupied
subspace [46], we will find

pz(�1) ≡ pz(�2) mod 1 (158)

between two C4z-invariant momenta {�1,�2} = {�, M}. Sup-
pose pz(M) − pz(�) = 1, say. While one sweeps the entire BZ
starting from �, passing M, and returning again to �, one will
observe an increase of pz(kx, ky) by 1 followed by a decrease
by the same amount. This is the rationale behind the name
“reverting Thouless pump.” Note that the RTP behavior is
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consistent with the vanishing Chern class of Hopf insulator
since the total change in polarization is zero.

The Moore-Ran-Wen Hopf insulator, defined in Eq. (17),
instantly provides an example of Hopf-RTP physics. The
(t, h) = (1, 3

2 ) model (χ = 1) obeys C4z symmetry given by

RC4z H
1,3/2
C,MRW(k)R−1

C4z
= H1,3/2

C,MRW(C4zk), (159)

RC4z =
(

i 0
0 1

)
. (160)

Equivalently (we drop the cumbersome subscripts of z1,3/2)

RC4z (z
†σz)(k)R−1

C4z
= (z†σz)(C4zk), (161)

e−iπ/4(ziz)(k)eiπ/4 = (ziz)(C4zk). (162)

In Eq. (161), z is a complex vector in C2. Equation (162) is a
rewriting of Eq. (161) in terms of unit quaternion z ∈ S3 ⊂ H
employing the unitary transformation in Eq. (47). It will be
useful in the next subsection.

Since the valence (conduction) band of Hopf insulator has
rank 1, the occupied (unoccupied) subspace is spanned in
real space by a C4z-symmetric exponentially localized Wan-
nier functions (WFs) [48]. These WFs control the rotation
eigenvalues of the occupied (unoccupied) states at invariant
momenta as follows. The symmetric WFs W v,c(r) are charac-
terized by the properties

ψv,c
k (r) = 1√

N

∑
R

eik·RW v,c
R (r),

W v,c
C−1

4z R

(
C−1

4z r
) = λv,cW v,c

R (r), (163)

(λv, λc) = (i, 1) or (1, i),

where ψv,c
k is the Bloch wave function and N is the number

of unit cells of the Bravais lattice whose points are the posi-
tion vectors R. Without loss of generality, suppose (λv, λc) =
(i, 1). Operating the C4z rotation to the first line of Eq. (163),

ψv,c
C−1

4z k

(
C−1

4z r
) = 1√

N

∑
R

eik·RW v,c
C−1

4z R

(
C−1

4z r
)

= 1√
N

∑
R

eik·Rλv,cW v,c
R (r)

= λv,cψv,c
k (r). (164)

Since there are two orbitals for a primitive unit cell of Hopf
insulator, ψv

k is represented by a two-component vector |k〉 ∈
C2 whose components correspond to the coefficients relevant
to the orbital basis. Also, |k〉 serves as the occupied eigenstate
of the Bloch Hamiltonian H (k). Then Eqs. (159) and (160)
imply that |k〉 is multiplied by the matrix RC4z when passing
from C−1

4z k to k. Together with Eq. (164), this consideration
leads to the result

RC4z |k〉 = λv
∣∣C−1

4z k
〉
. (165)

Substituting the invariant momentum � into k, we find that
the rotation eigenvalue of the occupied state is identically λv

on all �. Hence, the occupied (unoccupied) Bloch state on
� is the eigenvector of RC4z associated to the eigenvalue λv

(λc). To guarantee the uniqueness of such an eigenvector, it

is important to take different rotation eigenvalues between the
conduction and valence bands as in Eq. (160). This is known
as the mutually exclusive condition to define the RTP [30,47].

H1,3/2
C,MRW also enjoys C2z symmetry with

RC2z = (
RC4z

)2 =
(−1 0

0 1

)
. (166)

Repeating the previous discussion now for RC2z , we get a
stronger result: |�〉 is the same for all C2z-invariant momenta
� = �, M, X, Y. There, the polarization pz(�) has the same
value modulo 1. That is, the Hopf insulator with rotational
symmetry (159) harbors a rich set of RTP between the invari-
ant momenta � = �, M, X, Y.

Interestingly, the polarizations pz(�, M, X, Y) are con-
strained by a relation, which is determined by the topological
invariant χ . Since the occupied subspace is constant on all
C2z-invariant momenta, so are the coefficients (ziz)(k) of σ in
the Hamiltonian, as a function from BZ into S2. We can denote
the constant image of (ziz)(k) at an invariant momentum � as
im(�). Then the Whitehead formula [49] implies

χ =
∫

�

F · d� =
∫

∂�

A · dl

= ±[pz(�) + pz(M) − pz(X) − pz(Y)]

= ±(�pX� + �pYM), (167)

where �pAB = pz(B) − pz(A) and � is any surface embed-
ded in BZ whose boundary ∂� = (ziz)−1[im(�)] is precisely
the preimage of im(�). The sign ± in Eq. (167) depends on the
rotation eigenvalue of valence (conduction) band [i.e., either
(λv, λc) = (i, 1) or (1, i)] and can be determined using the
method of Appendix K. In general, the preimage ∂� of the
Hamiltonian may contain arbitrary closed curves, arranged
in a C4z-symmetric fashion, in addition to the C2z-invariant
lines �, M, X, Y. These additional components contribute a
multiple of 4 to the second integral in Eq. (167) (for detailed
derivation, consult Refs. [30,47]). Hence, a precise statement
of the Hopf-RTP relation should be

χ ≡
∫

�

F · d� =
∫

∂�

A · dl mod 4,

χ ≡ �pX� + �pYM mod 4, (168)

∂� = �± ∪ M± ∪ X∓ ∪ Y∓.

The superscript “+ (−)” in the final line of Eq. (168) indicates
that the corresponding component is oriented in the +k̂z (−k̂z)
direction. In Eqs. (167) and (168), it is part of the claim that
the sign of polarizations (orientation of ∂�) is either one of
the two possibilities, corresponding to the upper and lower
sets of superscripts in the last line of (168). It is a consequence
of the following observation: Among the four components �,
X, M, Y of ∂�, the number of components oriented in +k̂z

direction equals the number of those oriented in the opposite
way −k̂z due to the trivial Chern number on any subtori in the
BZ [30]. Furthermore, C4z symmetry enforces the orientations
of X and Y to be identical. These two constraints precisely
lead to the two orientations on ∂� (equivalently, on �) speci-
fied in Eq. (168).

While RTP is a name for a general 3D insulator whose
polarization difference is quantized between at least two
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lines in the BZ, the Hopf-RTP relation further constrains
the quanta in terms of the bulk Hopf invariant. Were it
not for the Hopf-RTP relation, in the model discussed here,
{�pX�,�pYM} = {�pX�,�pXM} would be a complete set
of independent polarization differences since �pYM = �pXM

due to C4z symmetry. However, the bulk topology constrains
them as in Eq. (167).

B. Reverting Thouless pump in the real Hopf insulator

A PT -symmetric analog of Hopf-RTP relation arises in
rotational-symmetric models. As in two-band Hopf insulator,
the rotational symmetry should satisfy certain symmetry con-
ditions for this to happen. We illustrate this again with an
example, which can be investigated with ease thanks to the
discussion in the previous section.

We investigate the RHI Hamiltonian with C4z symmetry

RC4z H
2,2
R (k)R−1

C4z
= H2,2

R (C4zk), (169)

RC4z =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠, (170)

where RC4z has eigenvalues ±i (1) on the occupied (unoccu-
pied) band. The models satisfying Eqs. (169) and (170) are
easily realized using the Moore-Ran-Wen models (see Ap-
pendix L 1), however, we do not specify a model here in order
to demonstrate that the existence of RTP is determined by the
symmetry operator (170) regardless of the functional form of
the Hamiltonian. To avoid conveying a false impression that
Eqs. (169) and (170) were chosen in an ad hoc way, we point
out that there is an abundant supply of RTP-inducing symme-
try conditions resulting from simple spectral assumptions on
band structure (see Appendix I and Ref. [47]). Our purpose
here is to exemplify how RTP arises from one such symmetry
representation.

In the quaternion notation, the C4z operator in Eq. (170)
transforms an eigenstate |u〉 by

RC4z |u〉 = |e−iπ/4ueiπ/4〉, (171)

where u = u1 + u2i + u3j + u4k when |u〉 = (u1, u2, u3, u4)�.
According to Eq. (169), the unoccupied subspace at two

points k, RC4z k are connected by RC4z : For some function val-
ued in the orthogonal group U (k) ∈ O(2),

RC4z |zw〉(k) = |e−iπ/4zweiπ/4〉(k)

= (U11|zw〉 + U12|ziw〉)(C4zk), (172)

RC4z |ziw〉(k) = |e−iπ/4ziweiπ/4〉(k)

= (U21|zw〉 + U22|ziw〉)(C4zk). (173)

Reading Eqs. (172) and (173) in quaternions instead of 4-
vectors, we get

(e−iπ/4zweiπ/4)(k) = (U11zw + U12ziw)(C4zk), (174)

(e−iπ/4ziweiπ/4)(k) = (U21zw + U22ziw)(C4zk). (175)

These equations give us transformation rules of ziz,wiw by
C4z, the 3-vectors that are two entries of the oriented projector.
Namely,

(e−iπ/4zizeiπ/4)(k) = (ziz · det U )(C4zk)

= (ziz)(C4zk), (176)

(e−iπ/4wiweiπ/4)(k) = (wiw · det U )(C4zk)

= (wiw)(C4zk). (177)

Equation (176) can be obtained by taking Eq. (175) and
multiplying by the conjugate of Eq. (174) from the right.
Equation (177) follows similarly if the multiplication is taken
from the left. Finally, the value of det U can be determined by
evaluating both equations at a C4z-invariant momentum; to do
this, observe that

e−iπ/4(a1i + a2j + a3k)eiπ/4 = a1i − a3j + a2k. (178)

Suppose � = C4z� and (ziz)(�) = a1i + a2j + a3k. Since
det U = ±1 and the left-hand side of Eq. (176) is a SO(3)
rotation of 3-vectors along the x axis by −π/2, det U = 1 is
necessary.

Interpreting (ziz)(k) as the Hopf insulator Hamiltonian
[see Eq. (43)]

Hz
Q = Re[ziz · σQ], (179)

Eq. (176) implies the Hamiltonian Hz
Q has the same sym-

metry as H1,3/2
C,MRW discussed in the previous subsection [see

Eq. (162)]. This establishes via Whitehead formula

χz ≡
∫

�

fz · d� =
∫

∂�

az · dl mod 4,

∂� = �± ∪ M± ∪ X∓ ∪ Y∓. (180)

Analogously, Eq. (177) produces

χw ≡
∫

�

fw · d� =
∫

∂�

aw · dl mod 4,

∂� = �± ∪ M± ∪ X∓ ∪ Y∓. (181)

The functions az, fz, aw, fw are the vector forms of Eqs. (112)
and (114).

Before proceeding, a few comments on the orientation of
∂� are in order. As noted in the previous subsection, the
orientation of ∂� is either one of the two possibilities as spec-
ified in Eqs. (180) and (181). For two-band Hopf insulator,
the correct orientation among the two should be identified by
actual computation. However, for the case of four-band real
Hopf insulator, there exists a transformation on the enveloping
projector P̃(k) = (z,w)(k) that leaves the Hamiltonian H2,2

R
invariant but reverses the sign (orientation) of fz, fw, and ∂� at
the same time. To see this, note that two different enveloping
projectors

P̃1(k) = (z,w)(k), P̃2(k) = (jz, jw)(k) (182)

define exactly the same RHI Hamiltonian H2,2
R because they

induce the same (genuine) projector P1(k) = P2(k) (see Ap-
pendix D). However, the associated pair of Hopf insulator
Hamiltonians Hz

Q = ziz, Hw
Q = wiw have sign a change under

the transformation (z,w) → (jz, jw). This interchanges the
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occupied and unoccupied states of Hz,w
Q , resulting in the total

flip of sign of the occupied state Berry curvature fz,w and
also the orientation of � and ∂� = �± ∪ M± ∪ X∓ ∪ Y∓ (see
Appendix K). In consequence, the integral∫

�

fz,w · d� (183)

is well defined as the overall sign is invariant. From now on,
we fix the orientation of ∂� as ∂� = �+ ∪ M+ ∪ X− ∪ Y−,
assuming that an appropriate enveloping projector is chosen
in order to produce such orientation.

Finally, it is part of the claim in Eqs. (180) and (181)
that the same orientation of ∂� applies to both equations,
even though one may flip the sign in both equations passing
to different enveloping projector. This can be confirmed by
simple calculations: The symmetry representation in Eq. (170)
implies that the unoccupied states |uc

1〉 = |zw〉, |uc
2〉 = |ziw〉,

having rotation eigenvalue 1, have the form

uc
1 = a0 + a1i, uc

2 = b0 + b1i (ai, bi ∈ R). (184)

Since the quaternions of this form commute with each other,
we have

Hz
Q = ziz = uc

2uc
1 = uc

1uc
2 = wiw = Hw

Q . (185)

Hence, the associated Hopf Hamiltonians Hz,w
Q have the same

occupied state (and Berry curvature), leading to the same
orientation on ∂�.

Now we turn to the physical consequences of Eqs. (180)
and (181), especially on the Wilson loop spectra of RHIs.
Using the relation between valence (conduction) band Euler
class and the curvature vectors fz,w, we arrive at

χz + χw ≡
∫

�

Euv · d� mod 4

= �pv
X� + �pv

YM mod 4, (186)

χz − χw ≡
∫

�

Euc · d� mod 4

= �pc
X� + �pc

YM mod 4, (187)

where ∂� = �+ ∪ M+ ∪ X− ∪ Y−.

In Eqs. (186) and (187), Euv, Euc is the vector notation for the
Euler forms defined in Eqs. (122) and (123). Their relationship
to az, aw can be found using Eqs. (124) and (125). They can
be regarded as the Berry curvatures of the complex-valued
state vectors |uv,c

+ 〉 = 1√
2
(|uv,c

1 〉 + i|uv,c
2 〉) (see Appendix H).

Passing to the boundary ∂� with the help of Stokes theorem,
Eqs. (186) and (187) are polarization differences between
C2z-invariant lines, where polarizations are calculated using
|uv,c

+ 〉. As the formulas only refer to the polarization pumping
between different invariant lines and do not constrain the
polarization at other points, and as the shape of � is not
specified except for its boundary, Eqs. (186) and (187) are
not a statement for specific path in the Brillouin zone; they
describe the reverting Thouless pump between two fixed end
points, completely independent of the path in-between.

These polarization differences leave a mark on the hybrid
Wannier functions (HWFs) which are Wannier representations
in one chosen direction and Bloch type in the other [43]. The

result conforms to the multicellular obstruction of delicate
topology, which is reported in the next subsection.

We point out that the form of the Whitehead formula (186)
and (187), obtained by assuming C4z rotation symmetry rep-
resented by Eq. (170), may alter if the Hamiltonian H2,2

R (k)
has a different symmetry condition. In fact, there are similar
but different C4z representations that satisfy the uniaxial and
iso-orbital conditions [30], which are explained in Appendix I
as a sufficient condition for RTP.

For instance, the rotation matrix may be given by

RC4z =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠, (188)

whose set of eigenvalues is {−1,−1,±i}. After a sign change
RC4z → −RC4z which does not change the physics,

RC4z → R′
C4z

=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠, (189)

we have equations very close to Eqs. (171) and (176) and
(177):

RC4z |u〉 = |eiπ/4ue−iπ/4〉, (190)

(eiπ/4zize−iπ/4)(k) = (ziz)(C4zk), (191)

(eiπ/4wiwe−iπ/4)(k) = (wiw)(C4zk). (192)

This again leads to Eqs. (180) and (181), the only difference
compared to the previous case being in the orientation of ∂�

determined by the rotation eigenvalues of Hz,w
Q . Furthermore,

the orientation of ∂� remains to be the same for Hz
Q and Hw

Q ,
due to the same reasoning below Eqs. (180) and (181).

Essentially, there is one remaining possibility that leads to
RTP realtions analogous to Eqs. (180) and (181):

RC4z =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠, (193)

which requires a bit more considerations. Now, Eq. (171)
should be changed into

RC4z |u〉 = |e−iπ/4ueiπ/4〉, (194)

where the extra quaternion conjugation reverts the sign of the
determinant. However, this leads to a substantial change in
Eqs. (176) and (177):

−(e−iπ/4wiweiπ/4)(k) = (ziz · det U )(C4zk), (195)

−(e−iπ/4zizeiπ/4)(k) = (wiw · det U )(C4zk). (196)

That is, they are no longer a symmetry condition on Hz,w
Q but

a constraint that interrelates Hz
Q, Hw

Q together. In such a case,
Eqs. (195) and (196) imply

(e−iπ/2zizeiπ/2)(k) = (ziz)(C2zk), (197)

(e−iπ/2wiweiπ/2)(k) = (wiw)(C2zk), (198)
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which is a C2z, rather than C4z, symmetry condition on Hz,w
Q .

Thus, although C4z-symmetric RHI with det RC4z = −1 might
support RTP, its analysis cannot be reduced to a pair of C4z-
symmetric Hopf insulators and requires more complicated
analysis (in this case, analysis on the C2z-symmetric Hopf
insulators). Under the additional assumption of iso-orbital
condition on both Hz

Q and Hw
Q [48], one obtains Eqs. (180)

and (181) again, but now the equations hold modulo 2 instead
of 4.

C. Model calculation of the reverting Thouless pump

We numerically confirm the RTP relations of two RHI
tight-binding models both having (χz, χw ) = (1, 1). The first
model HR,1(k) is given by Eq. (151), but with unnormalized
quaternions (hence unflattened Hamiltonian) z = z0 + z1i +
z2j + z3k and w = w0 + w1i + w2j + w3k where [38]

z0 = sin kx, z1 = sin ky, z2 = sin kz,

z3 = cos kx + cos ky + cos kz − 3
2 ,

w0 = sin kx,w1 = sin ky,w2 = sin kz,

w3 = cos kx + cos ky + cos kz + 3
2 . (199)

The associated Hopf insulators are defined by

Hz
C,1(k) = −(z†σz)(k) · σ,

Hw
C,1(k) = −(w†σw)(k) · σ. (200)

These Hamiltonians have C4z symmetry represented in the real
gauge as in the previous subsection, which we rewrite here:

RR,1HR,1(k)RR,1
−1 = HR,1(C4zk), (201)

RC,1Hz
C,1(k)RC,1

−1 = Hz
C,1(C4zk), (202)

RC,1Hw
C,1(k)RC,1

−1 = Hw
C,1(C4zk), (203)

RR,1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠, RC,1 =

(
i 0
0 1

)
. (204)

Similarly, the second model HR,2(k) with associated Hopf
insulators Hz

C,2(k), Hw
C,2(k) is given by

z0 = sin kx, z1 = sin ky, z2 = sin kz,

z3 = cos kx + cos ky + cos kz − 3
2 ,

w0 = sin kx,w1 = − sin ky,w2 = − sin kz,

w3 = cos kx + cos ky + cos kz + 3
2 . (205)

Its C4z symmetry has a slightly different representation:

RR,2HR,2(k)RR,2
−1 = HR,2(C4zk), (206)

Rz
C,2Hz

C,2(k)Rz
C,2

−1 = Hz
C,2(C4zk), (207)

Rw
C,2Hw

C,2(k)Rw
C,2

−1 = Hw
C,2(C4zk), (208)

RR,2 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, Rz

C,2 =
(

i 0
0 1

)
,

Rw
C,2 =

(−i 0
0 1

)
, (209)

where the set of the C4z eigenvalues of the occupied states at
C4z-invariant lines are {1, 1}.

The important difference between two Hamiltonians
HR,1(k) and HR,2(k) is the C4z eigenvalues of the occu-
pied states at C4z-invariant momenta. Let us denote the C4z

eigenvalues of the occupied (respectively unoccupied) states
at the C4z-invariant momentum �4 by Locc

4 (�4) [respec-
tively Lunocc

4 (�4)]. Then in the case of HR,1(k), Locc
4 (�4) and

Lunocc
4 (�4) are given by

Locc
4 (�4) = {+i,−i}, Lunocc

4 (�4) = {1, 1}, (210)

regardless of the choice of �4. On the other hand, Locc
4 (�4)

and Lunocc
4 (�4) of HR,2(k) are given by

Locc
4 (�4) = {1, 1}, Lunocc

4 (�4) = {+i,−i}, (211)

regardless of the choice of �4. Comparing Eqs. (210) and
(211), one could expect that the role of occupied and unoc-
cupied bands in the RTP relation will be reversed.

Indeed, such difference results in a modification of the
Whitehead formula: Adapting the method in Appendix K, one
gets an extra minus sign in Eq. (181). The upshot is that while
the first model (199) follows Eqs. (186) and (187), the second
satisfies slightly different formulas

χz + χw ≡
∫

�

Euc · d� mod 4, (212)

χz − χw ≡
∫

�

Euv · d� mod 4. (213)

Note that the place of valence and conduction bands switched.
For both models, the corresponding “real Hopf-RTP” re-

lations can be observed in the Wilson loop spectra of states
|uv

1〉 + i|uv
2〉 and |uc

1〉 + i|uc
2〉 along the surfaces �X� and �YM

embedded in BZ, where �AB is a surface whose boundary
is ∂�AB = B+ ∪ A−. This is because their Berry connection
(Berry curvature) coincides with the Euler connection (Euler
form) of the real wave functions |uv,c

1,2〉 (see Appendix H).
From Figs. 4(a) and 4(b), we can read off the Euler number of
the valence band on � = �X� ∪ �YM, or the Chern number
of |uv

1〉 + i|uv
2〉 on �, which is 1 + 1 = 2. From Figs. 4(c)

and 4(d), the Euler number of the conduction band on � (the
Chern number of |uc

1〉 + i|uc
2〉) is 1 + (−1) = 0. This confirms

the Whitehead formulas in Eqs. (186) and (187). On the other
hand, the data in Figs. 4(e)–4(h) indicate that the second
model (205) satisfies the other set of Whitehead formulas
(212) and (213).

In Sec. VI, the bulk-boundary correspondence of RHI
related χz + χw to the surface Chern number of a finite
slab [Eq. (149)]. However, the bulk-boundary correspondence
alone did not reveal the physical significance of the other bulk
invariant χz − χw. Intriguingly, both χz + χw and χz − χw

take part in the RTP physics regulating the Wannier charge
centers. For example, two RHIs with different set of invariants
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FIG. 4. Comparing the flow of the Wannier charge centers
(WCCs) between rotation-invariant momenta for two RHI (1,1)
models with different C4z symmetry. (a), (b) [(c), (d)] Wilson loop
spectra of |uv

1〉 + i|uv
2〉 (|uc

1〉 + i|uc
2〉) on �X� and �YM, respectively,

calculated using Eq. (199). WCCz stands for the Wannier charge
center in spatial z direction. The unit-cell length is set to be 1.
(e), (f) [(g), (h)] Wilson loop spectra of |uv

1〉 + i|uv
2〉 (|uc

1〉 + i|uc
2〉),

respectively, computed for another model in Eq. (205). Difference
with the above model manifests the change of real Hopf-RTP relation
from Eqs. (186) and (187) to (212) and (213).

(χz, χw ) = (1, 1) and (χz, χw ) = (2, 0) share the same value
of χz + χw = 2. As a result, two models look identical on the
surface. Nonetheless, they show different behavior regarding
the flow of Wannier charge centers between rotation invariant
momenta (see Fig. 5).

As a final remark, we point out that the (real) Hopf-RTP
relation is an incarnation of multicellularity, which was pro-
posed as the counterpart of Wannier obstruction for delicate
topological insulators [30]. Each of the equations (168), (186),
and (187), and (212) and (213) says if the bulk invariant in
the left-hand side is not zero mod 4, the Wannier center flow
corresponding to the right-hand side is nontrivial; as a result,
the Wannier center in the z direction makes contacts with at
least two unit cells.

VIII. CONCLUSION

In this paper, we have established the band topology of
a spinless PT -symmetric insulator in three dimensions with

FIG. 5. Comparing the flow of the Wannier charge centers be-
tween rotation-invariant momenta for RHI (1,1) and (2,0) models.
(a), (b) [(c), (d)] Wilson loop spectra of |uv

1〉 + i|uv
2〉 (|uc

1〉 + i|uc
2〉)

on �X� and �YM, respectively, calculated using Eq. (199) which
has (χz, χw ) = (1, 1). WCCz stands for the Wannier charge center
in spatial z direction. The unit-cell length is set to be 1. (e), (f) [(g),
(h)] Wilson loop spectra of |uv

1〉 + i|uv
2〉 (|uc

1〉 + i|uc
2〉), computed for

another model in Eq. (154) which has (χz, χw ) = (2, 0). Both models
follow the real-Hopf RTP relation (186) and (187).

FIG. 6. Various topological insulators appearing in PT -
symmetric spinless fermion systems. Topological invariants of 1D,
2D, and 3D are the Berry phase, the Euler class, and the real Hopf
invariants, respectively.

two occupied and two unoccupied bands, dubbed “real Hopf
insulator (RHI),” whose 1D and 2D (weak) topological invari-
ants are trivial by definition.

The discovery of 3D RHI is in continuation of the previous
studies on PT -symmetric topological insulators (TIs) in 1D
and 2D, and thus filling the last box in Fig. 6. Namely, together
with the 1D TI with obstructive atomic band topology charac-
terized by π -Berry phase and the 2D Euler TI with fragile
band topology characterized by an Euler invariant, the 3D
RHI with delicate band topology characterized by two Hopf
invariants completes the list of PT -symmetric TIs in spinless
real fermion systems.

With the use of “oriented” classifying space, which is
mathematically the double cover S2 × S2 of the original
classifying space Gr(2, 4), RHI can be defined using a pair
of Hopf maps and their associated shrinking maps. With
a fixed pair of unit index Hopf maps, one can enumer-
ate all topological classes of RHI by varying the pair of
shrinking maps (z,w) : BZ = T3 → S3 × S3. Named as the
“enveloping” classifying map, this pair plays a central role in
classifying RHIs and computing important physical quantities
thereof.

Enabled by the theory of oriented and enveloping clas-
sifying spaces, we identified two bulk invariants that are
functionals of the Euler connection of both occupied and
unoccupied bands [see Eqs. (126) and (127)]. Note that we
restricted our focus to the 3D topology of the PT -symmetric
four-band Hamiltonian while neglecting the 1D and 2D topol-
ogy, as done for two-band Hopf insulator. However, it is worth
noting that the extension of Hopf insulator allowing nontrivial
2D topology was investigated [29,50]. This family of Hopf-
Chern insulators in AZ symmetry class A demonstrates novel
topological properties such as the joint signature of 2D and
3D topology on the boundary. Thus, we anticipate that equally
intriguing features would emerge by allowing nontrivial low-
dimensional topology in class AI, which could be named
(real) Hopf-Euler insulator.

Together with the peculiar appearance of Euler connection
of both bands in topological invariants, the delicate character
of RHI reveals itself in the bulk-boundary correspondence
which involves the surface Chern number as defined in [33].
While the surface Chern number of either one of occupied and
unoccupied band is not topological, the total surface Chern
number is topologically stable and directly related to the bulk
RHI invariant [Eq. (149)].
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Being a PT -symmetric double of Hopf insulator in the
sense described in the main text, RHI inherits its physics of re-
verting Thouless pump (RTP) [30,35,47]. Two bulk invariants
of RHI rule how the polarization of occupied (unoccupied)
states jumps between high-symmetry lines, provided the sys-
tem enjoys rotational symmetry. The relevant PT -symmetric
version of Hopf-RTP relation [47] controls the spread of
the hybrid Wannier functions, demonstrating the multicellular
[30] nature of rotationally symmetric RHI.

This paper thus explores a different avenue of delicate
topological insulator, rediscovering and building upon the
previously reported characteristics of delicate topology. In
addition to its own interesting properties, RHI adds to our un-
derstanding an abundant set of examples of TIs it provides an
example of an inversion-symmetric delicate TI. RHI suggests
there is still a rich body of physics of delicate TIs that awaits
discovery.
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APPENDIX A: INVARIANCE OF RHI INVARIANTS
UNDER THE BASIS TRANSFORMATION

Here we give detailed proof for the invariance of RHI
invariants under the basis change when the invariant is com-
puted by using the occupied wave functions in (100). For
convenience, denote

uv
1 = A, uv

2 = B. (A1)

Under the rotation, vz transforms to

v′
z = (sin θ A + cos θ B)(cos θ A − sin θ B)

= sin θ cos θ (AA − BB)

+ cos2 θ BA − sin2 θ AB. (A2)

From orthonormality of A, B and Eq. (33), the following facts
follow:

AA = BB = 1, (A3)

Re[ BA ] = 0. (A4)

Equation (A4) implies that BA is purely imaginary, i.e.,

BA = −BA = −AB. (A5)

Hence,

v′
z = BA = vz. (A6)

Repeating the above computation for A = uv
2, B = −uv

1 re-
veals that vw is also invariant:

v′
w = vw. (A7)

Therefore, Fz,w, Az,w hence χz,w are all invariant under the
rotation (119).

We now turn to reflection. As in Eq. (A5),

v′
z = AB = −BA = −vz, (A8)

v′
w = −BA = AB = −vw. (A9)

Hence Fz,w, Az,w change their signs under the reflection.
However, Eq. (22) is invariant since it only contains the ex-
pression F · A.

APPENDIX B: BOUNDARY CONDITIONS
AND WEAK INVARIANTS

In this Appendix, we discuss the lifting problems raised in
Sec. IV B and its relation to the weak invariants. As usual,
every function appearing in this section is a continuous map
between connected CW complexes (cell complexes which sat-
isfy closed-finiteness and endowed with weak topology [39]).
One can avoid this technical nomenclature and regard all
spaces as connected manifolds such as spheres, tori, SO(n),
etc. The only purpose of referring to CW complexes here is to
conform to the standard texts in algebraic topology.

1. Lifting problem and fibration

Given a triple of topological spaces X,Y, Ỹ , a continuous
map f : X → Y , and a continuous surjection p : Ỹ → Y , the
lifting problem is to find another map f̃ : X → Ỹ such that
p ◦ f̃ = f (see Eq. (B1)]:

(B1)

In case such f̃ exists, we say f̃ is a lift of f , or f̃ covers f .
There are special surjective maps p : Ỹ → Y , called Serre

fibrations, for which the following type of lifting problems can
always be solved: Suppose X = A × I is a product of A with
the interval and the restriction f0 : A × {0} → Y of the map
ft : A × I → Y has a lift onto Ỹ . Then there exists a lift f̃t

that covers ft and extends f̃0. That is, the lifting problem for
(A × I,Y, Ỹ ) can be solved so that the resulting lift coincides
with the given restricted lift [see Eq. (B2)]. This property is
commonly referred to as the homotopy lifting property [39].

(B2)

Covering spaces and the Hopf fibration are typical examples
of Serre fibration. Arbitrary compositions and products of
Serre fibrations are again Serre fibrations. The latter statement
means that whenever pi : Ỹi → Yi (i = 1, 2) are Serre fibra-
tions, so is p1 × p2 : Ỹ1 × Ỹ2 → Y1 × Y2. For Serre fibration
in place of p, the lifting problem (B1) is always solvable for
X = In. Indeed, starting from the point 0 ∈ In and its arbitrary
lifting in p−1( f (0)), one can successively apply the homotopy
lifting property to get a lift on the entire In. Let us apply this
fact to the problems relevant to this paper.
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Given a general projector function

P : T3 → Gr(2, 4),

k �→ [Rz,w](k), (B3)

there is no guarantee that P should be lifted to an oriented
projector P+ : T3 → Gr+(2, 4). However, since the covering
map Gr+(2, 4) → Gr(2, 4) and the Hopf fibration S3 → S2

are Serre fibrations, the oriented and even enveloping projec-
tors can be defined as a function on I3 with the understanding
that the original map P is a periodic function on I3. There
are certain boundary conditions on these projectors, however,
since P is a periodic function on I3 (see Sec. V A). These
boundary conditions are more general than periodic boundary
conditions (PBC). In case they can be reduced to the PBC,
the lifted projectors can be defined on T3 so that the lifting
problem on X = T3 is solved without compromise. The defin-
ability of lifted projectors on T3 turns out to be related with
the Berry phase and the Euler class, which is the subject of
the next subsection.

2. Weak invariants as the obstruction to lifting

Now we prove the aforementioned claim that the oriented
projector can be defined on T3 if and only if the Berry phases
vanish (mod 2π ), and the enveloping projector can be defined
on T3 if and only if the Euler numbers vanish (see Sec. V A).
The “only if” part of the proposition is easy to show, which
goes as follows:

(B4)

Definability of lifted projectors is equivalent to the solvability
of the corresponding lifting problem, as depicted in the left
half of (B4). Suppose the lifting was achieved for P+. Since
π1[S2 × S2] = 0, the images of the edges in T3 by P+ are null
homotopic. Composing the homotopy with p1, we get a null
homotopy of the edge images by P. But an edge is contractible
in the classifying space Gr(2, 4) if and only if the Berry phase
is trivial. Next, suppose the lifting problem for the envelop-
ing classifying space was solved. Since π2[S3 × S3] = 0, the
images of the faces of T3 by P̃ are null homotopic. Compos-
ing with p2, we get a null homotopy of the face images in
Gr(2, 4). This guarantees the well definedness of the Euler
class because the triviality of face maps implies triviality of
edge maps, hence the vanishing Berry phases. Moreover, the
face maps are trivial if and only if the corresponding Euler
class vanishes. This completes the “only if” side of the proof.

The next step is the “if” part, for which the modified clas-
sifying BZ (= I3) is useful. Recall that the modified oriented
projector P+ can be defined on the cube I3, thanks to the ho-
motopy lifting property of Serre fibrations. Suppose the Berry
phases along three edges of BZ vanish, i.e., the edge images
are contractible loops in Gr(2, 4). This implies that P+ sends
each edge onto a closed loop in S2 × S2, or an element of

π1[S2 × S2], which is trivial. Collapsing these edges, the ho-
motopy classes of the face images of P+ can be regarded as the
images of 2-spheres. There are three pairs of opposite faces,
each pair projecting onto the same element in π2[Gr(2, 4)] by
p1. Since p1 induces the isomorphism p1∗ : π2[S2 × S2] →
π2[Gr(2, 4)], they were actually identical as an element in
π2[S2 × S2]. The upshot is that P+ can be continuously de-
formed so that the opposite faces of I3 have identical images;
after the deformation, P+ becomes a periodic function, thus
inducing the oriented projector P+ : T3 → S2 × S2.

Finally, we conclude by proving the “if” part for the en-
veloping projector. To this end, we need a supplementary fact
about the Hopf fibration: It is the pullback of the universal S1

bundle, ES1 → BS1, by a degree-1 map h : S2 → BS1, in the
sense that the induced homomorphism of cohomology

h∗ : H2(BS1, Z) −→ H2(S2, Z) (B5)

is an isomorphism:

(B6)

Suppose one is trying to solve the lifting problem depicted
in (B6). What one really needs is a section σ of the pullback
bundle f ∗S3 −→ X , so that the composition

f̃ : X
σ−→ f ∗S3 −→ S3 (B7)

gives the desired lift. The bundle f ∗S3 −→ X can also be
thought as the pullback of the universal bundle by h ◦ f and
it admits a section if and only if h ◦ f is null homotopic.
Moreover, by the property of classifying space BS1, this is
equivalent to saying that the cohomology map induced by
h ◦ f ,

f ∗ ◦ h∗ : H2(BS1, Z) −→ H2(S2, Z) −→ H2(X, Z), (B8)

is zero. Since h∗ is an isomorphism, it means f ∗ = 0. This
cohomological statement hints at the relevance to the Euler
class since characteristic classes represent elements in the de
Rham cohomology.

Now we are ready to handle the existence problem of
the RHI enveloping projector, which is nothing but a slight
modification of (B6):

(B9)

Since the universal bundle of S1 × S1 is given by the direct
product E (S1 × S1) = ES1 × ES1, one now has the diagram
(B9). Given the oriented projector on T3, the sufficient condi-
tion for finding its lift to the enveloping level is a section of
the leftmost bundle in (B9). The section is available if and
only if the bundle is trivial, i.e., the cohomology map induced
by (h × h) ◦ P+ is null homotopic. Since (h × h)∗ is an iso-
morphism, this is to say that the top arrow of the following
diagram vanishes. The bottom arrow also vanishes due to the
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commutativity of the diagram.

(B10)

Let us conclude by explaining the bottom arrow of (B10),
which we name the “Chern map.” Ch sends the generator
(1,0) [(0,1)] to the integral (on each face of BZ) of the
“curvature tensor” fz ( fw) associated to the z (w) compo-
nent of the oriented projector. This curvature tensor can
be computed by solving the magnetostatic equation as in
Sec. V C. Since BZ = T3 has three independent faces, this
produces a triplet of integers. Accordingly, Ch maps into Z3.
Finally, the element Ch(1,−1) [Ch(1, 1)] corresponds to the
unoccupied (occupied) band Euler class of three faces (see
Sec. V D). Therefore, the condition Ch = 0, being equivalent
to Ch(1,−1) = Ch(1, 1) = 0, means that the Euler classes of
both occupied and unoccupied bands all vanish on every face
of BZ.

APPENDIX C: FREE HOMOTOPY VS BASED HOMOTOPY

Suppose we have a classifying space Y , each point of
which represents an occupied subspace of electron states. Any
continuous map

f : BZ −→ Y (C1)

fixes the band structure of the system. As long as we are
interested in the topological classification of such systems,
any pair of maps f0, f1 of the form (C1) are considered equiv-
alent if they are homotopic (for generality, we replace BZ by
an arbitrary space X ): (def. free homotopy). There exists a
continuous interpolation

F : X × [0, 1] −→ Y,

F (−, 0) = f0, (C2)

F (−, 1) = f1.

Informally speaking, f0 can be continuously deformed into f1.
Equation (C2) is an equivalence relation whose equivalence
classes are called homotopy classes. Since each equivalence
class of band structures corresponds to a homotopy class of
Eq. (C1), it is important to compute the set of homotopy
classes of Eq. (C1). We denote the set as [X,Y ].

It turns out that for practical examples of X , [X,Y ] is re-
lated with the homotopy groups πn[Y ]. Homotopy groups are
also defined through homotopy relations but with a variation:
We choose a point from each space, x0 ∈ X and y0 ∈ Y , and
only consider the “based” maps

f : X −→ Y

bound to the condition f (x0) = y0. (C3)

Two maps of the form (C3) are homotopic in the based sense
if (def. based homotopy). There exists a continuous interpola-
tion

F : X × [0, 1] −→ Y,

F (−, 0) = f0,

F (−, 1) = f1,

bound to the condition

F (x0, t ) = y0, ∀ t ∈ [0, 1]. (C4)

Colloquially, if f0 can be continuously deformed into f1 while
obeying the condition x0 �→ y0 throughout the deformation
process. The set of based homotopy classes, which we will
denote by [X,Y ]•, does not depend on the choice of x0, y0.
The homotopy groups are precisely

πn[Y ] ≡ [Sn,Y ]•. (C5)

For the moment, we shall denote the free homotopy class of f
as [ f ] and its based homotopy class as [ f ]•.

Since Eq. (C2) allows richer set of interpolations than
Eq. (C4), [X,Y ] is generally “coarser” than [X,Y ]•: There
are two based maps f0, f1 that are distinct in the latter while
identical in the former, i.e., [ f0]• �= [ f1]• but [ f0] = [ f1]. This
difference can be measured by introducing a group action on
[X,Y ]•:

[X,Y ]• × π1[X ] −→ [X,Y ]•,

([ f ]•, [γ ]•) �→ [ f · γ ]•. (C6)

This operation is denoted as �γ in Ref. [13]. The definition
of the map f · γ : X → Y will be given in the following
paragraphs.

Let X be based at x0 and Y at y0. Then the loop γ : S1 → Y
can be interpreted as a free homotopy of the point map

∗ : {x0} −→ Y,

x0 �→ y0 (C7)

to itself. That is,

γ : {x0} × [0, 1] −→ Y

with γ (x0, 0) = γ (x0, 1) = y0 (C8)

continuously interpolates two identical point maps γ (−, 0) =
γ (−, 1) = ∗. Note that we defined γ on {x0} × [0, 1] instead
of S1 and imposed the periodic boundary condition.

Given a based map f : (X, x0) → (Y, y0) and a loop γ as
in Eq. (C8), γ specifies a free homotopy of the point map in
Eq. (C7). But (X, x0), being a CW pair, enjoys the homotopy
extension property: There is a free homotopy starting from f ,
which extends the free homotopy γ on {x0} onto whole X .

There exists a continuous map

F : X × [0, 1] −→ Y

such that

F (−, 0) = f , F (x0,−) = γ (x0,−). (C9)

To put it another way, F is a (base-point-free) deformation
of f that equals γ when restricted to the subset {x0} × [0, 1] ⊆
X × [0, 1]. We define f · γ ≡ F (−, 1) (see Fig. 7). Although
there are many choices of F , the based homotopy class [ f ·
γ ]• is independent of this choice. Furthermore, [ f · γ ]• only
depends on the based homotopy class of f , γ so that Eq. (C6)
is well defined. To sum up, [ f · γ ]• is defined by the recipe

Continuously deform f so that

the image of x0 moves along γ .
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FIG. 7. Loop γ acting on f .

Take f · γ to be the end result of the deformation.

Then [ f · γ ]• is uniquely determined. (C10)

Equation (C10) determines a group action: Since the identity
element e ∈ π1[Y ] is the constant loop,

[ f · e]• = [ f ]•. (C11)

Furthermore,

[( f · γ1) · γ2]• = [ f · (γ1γ2)]•. (C12)

The recipe (C10) can be extended to continuous paths whose
starting and ending points do not match (see Fig. 8). In this
case, f �→ f · γ is not a group action; the set [I,Y ] of contin-
uous paths is not a group. Even worse, f · γ does not have the
base-point condition x0 �→ y0 in general. However, f �→ f · γ

for nonloop γ is a useful concept for computing Eq. (C6) for
Y having a covering space q : Ỹ → Y (see Fig. 1). In such
cases, there exist the “lifts”

f + : X −→ Ỹ , γ + : [0, 1] −→ Ỹ (C13)

of f , γ such that q ◦ f + = f , q ◦ γ + = γ . γ + is a continuous
path, but generally not a loop. The homotopy lifting property
of covering space guarantees the following:

To find f · γ for a loop γ in Y ,

Lift f , γ to f +, γ +.

Find f + · γ + and project it down to Y .

Then the result [q ◦ ( f + · γ +)]• equals [ f · γ ]•. (C14)

For a graphical description, see Fig. 9.

FIG. 8. Path γ acting on f .

FIG. 9. Finding f · γ : Lift f to f +, push along γ +, and project
by q.

Now we state the main theorem of this section.
Theorem. Given two based maps f and g, [ f ] = [g] if and

only if [g]• = [ f · γ ]• for some γ .
Proof. The “if” part is straightforward. Since based homo-

topies are just special cases of free homotopy, [g]• = [ f · γ ]•
automatically implies [g] = [ f · γ ]. Moreover, since f · γ is
defined by a free homotopy from f , [ f · γ ] = [ f ]. Then
clearly [g] = [ f ]. To show the “only if” part, suppose [ f ] =
[g], i.e., there is a free homotopy F that interpolates from f
to g. Since F (x0, 0) = f (x0) = y0 = g(x0) = F (x0, 1), F re-
stricted to {x0} × [0, 1] defines a loop with the same basedness
condition x0 �→ y0. Call this loop γ . Then [g]• = [ f · γ ]• by
the definition of [ f · γ ]•. �

Now we can precisely describe how “coarser” than [X,Y ]•
is [X,Y ]. Consider the map

� : [X,Y ]• −→ [X,Y ],

[ f ]• �→ [ f ]. (C15)

Intuitively, as [ f ]• passes through the function �, it “forgets”
the basedness condition x0 �→ y0 and identifies itself with
another map g whenever f can be deformed into g along a free
homotopy, even if it is impossible through based homotopy.
The theorem says that the class �−1([ f ]) of base-homotopy
classes that project onto the free-homotopy class [ f ] is pre-
cisely the orbit of [ f ]• by the action (C6). Therefore, we
can think of the set [X,Y ] as the orbit space of Eq. (C6).
Symbolically,

[X,Y ]•/π1[Y ] ≈ [X,Y ]. (C16)

APPENDIX D: FREE HOMOTOPY AND CLASSIFICATION
OF 4×4 REAL HAMILTONIAN ON ONE, TWO,

AND THREE SPATIAL DIMENSIONS

Topological phases of RHI have a one-to-one correspon-
dence with the set of free homotopy classes of occupied space
projectors

P : BZ = T3 −→ Gr(2, 4),

k �→ [Rz,w](k), (D1)

called classifying maps, which assigns to each point k on
the momentum space the projection operator P(k) onto the
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occupied subspace at k. We denote the set of such homotopy
classes as [T3, Gr(2, 4)].

[T3, Gr(2, 4)] can be decomposed into different sectors
according to the weak invariants, which characterize the band
structure along 2D faces of the BZ. We express this fact as

[T3, Gr(2, 4)] =
⋃

νxy,νyz,νzx

[T3, Gr(2, 4)](νxy,νyz,νzx ), (D2)

where the weak invariant νxy ∈ [T2, Gr(2, 4)] is the free
homotopy class of a given classifying map restricted to
the (kx, ky ) surface in T3 (similar for νyz, νzx). Each subset
[T3, Gr(2, 4)](νxy,νyz,νzx ) consists of the homotopy classes of
continuous maps T3 (the bulk of BZ) to Gr(2, 4) whose re-
striction to each face T2 of T3 corresponds to νxy, νyz, νzx,
respectively.

The set of free homotopy classes of 2D Hamiltonians
[T2, Gr(2, 4)] can be decomposed further as

[T2, Gr(2, 4)] =
⋃
αx,αy

[T2, Gr(2, 4)](αx,αy ), (D3)

where αx ∈ [T1, Gr(2, 4)] is the homotopy class of νx,y re-
stricted to the loop along kx (similarly for ky).

Hence, there is a hierarchy of homotopy classes where the
lower-dimensional data (weak invariants) determine the clas-
sification result in one higher dimension. This paper explores
the relatively simple sector

[T3, Gr(2, 4)](0,0,0) = [S3, Gr(2, 4)], (D4)

where the superscript (0,0,0) means that the restrictions
to 2D reduced Brillouin zones (rBZ) νxy = νyz = νzx = 0 ∈
[T2, Gr(2, 4)](0,0) ⊂ [T2, Gr(2, 4)] are the trivial class. Note
that 2D (surface) classes being trivial requires every 1D (edge)
restriction to be the trivial element 0 ∈ [T1, Gr(2, 4)], hence
the superscript (0,0). We will see that triviality of surface and
edge maps is equivalent to vanishing Euler numbers and Berry
phases, respectively.

The next task is to compute the right-hand side of (D4)
and its low-dimensional counterparts, which are generally
different from the homotopy groups:

[S1, Gr(2, 4)]• = π1[Gr(2,4)],

[S2, Gr(2, 4)]• = π2[Gr(2,4)], (D5)

[S3, Gr(2, 4)]• = π3[Gr(2,4)].

This amounts to computing the π1[Gr(2, 4)] action on the
pointed homotopy groups [Sn, Gr(2, 4)]• (see Appendix C).
To this end, we consider the transformation

(z,w) −→ (z′,w′) = (jz, jw). (D6)

We will show that (D6) describes the π1[Gr(2, 4)] action on
RHI’s associated to the unit quaternion functions (z,w).

First, we observe that (D6) alters Rz,w to R′
z,w: Directly

computing how the columns of Rz,w transform, we see

|zw〉 −→ |zw〉, |ziw〉 −→ −|ziw〉,
|zjw〉 −→ |zjw〉, |zkw〉 −→ −|zkw〉. (D7)

The result is precisely the columns of R′
z,w. Furthermore,

(D6) can be interpolated continuously, i.e., it is a result of

homotopy

F̃ : S3 × S3 × [0, 1] −→ S3 × S3,

(z,w; t ) �→ (
ej π

2 t z, ej π
2 tw

)
. (D8)

We are now ready to describe f · γ for a RHI Hamiltonian f
and a nontrivial loop γ in Gr(2, 4) (see Appendix C).

Since the unique nontrivial loop [γ ]• ∈ π1[Gr(2, 4)] can
be lifted to a path γ + connecting Rz0,w0 to R′

z0,w0
for fixed

(z0,w0), f · γ can be obtained by lifting the Hamiltonian into
f + in Gr+(2, 4), applying the path action of γ +, and project-
ing f + · γ + back onto Gr(2, 4). This is due to the homotopy
lifting property of covering spaces.

1. Free homotopy computation in 1D

In the following sections, dependence on momentum vari-
ables k of an expression is denoted only once for each case,
for example, we write (z,w)(k) in place of (z(k),w(k)). Ap-
propriate use of parentheses will preclude ambiguity. Suppose
we are given a 1D enveloping projector (see Sec. V A),

P̃1D : I1 −→ S3 × S3,

k �→ (z,w)(k), (D9)

satisfying the boundary condition (92) but not necessarily
Eq. (93). It can alternatively be described by the map

P1D : T1 −→ Gr(2, 4),

k �→ [Rz,w(k)] (D10)

or the lifted map

P+
1D : I1 −→ Gr+(2, 4) ≈ S2 × S2,

k �→ [Rz,w(k)]+ ↔ (ziz, wiw)(k) (D11)

subject to the boundary condition

[Rz,w(2π )]+ = [Rz,w(0)′ ]+

↔
(ziz, wiw)(2π ) = −(ziz, wiw)(0). (D12)

The set of topological equivalence classes of 1D systems is

[T1, Gr(2, 4)] = [S1, Gr(2, 4)] (D13)

which we will compute employing the relation (C16). We
already know

[S1, Gr(2, 4)]• = π1[Gr(2, 4)] = {[e]•, [γ ]•} ≈ Z2 (D14)

and

[S1, Gr(2, 4)] = [S1, Gr(2, 4)]•/π1[Gr(2, 4)], (D15)

where e (γ ) is the contractible (noncontractible) loop in
Gr(2, 4). Note that ([γ ]•)−1 = [γ ]•. Our goal here is to un-
derstand how π1[Gr(2, 4)] acts on itself.

It suffices to take one such projector in the homotopy class
and deform it according to (D8). As will be shown through
Eqs. (D22)–(D25), we can take

P̃1D : I1 −→ S3 × S3,

k �→ (
ej k

4 , ej k
4
)

(D16)
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as an initial projector function. The result of homotopy is

P̃1D · γ̃ : I1 −→ S3 × S3,

k �→ (
jej k

4 , jej k
4
)
. (D17)

Now P̃1D · γ̃ satisfies the same boundary condition (D24) as
P̃1D. This indicates [P̃1D · γ̃ ]• = [P̃1D]•. Projecting the result-
ing map γ̃ down to Gr(2, 4), we get [P1D · γ ]• = [P1D]•. That
is, the noncontractible loop acts trivially on 1D models.

The homotopy class of 1D model can also be determined
by computing the Berry phase. To this end, one takes a con-
tinuous, complex gauge for occupied states as follows:

|u1〉 = u1 · |zjw〉 + u2 · |zkw〉, (D18)

|u2〉 = u3 · |zjw〉 + u4 · |zkw〉, (D19)

where (
u1(k) u2(k)
u3(k) u4(k)

)
∈ U (2). (D20)

Then one computes∫ 2π

0
dk TrA =

∫ 2π

0
dk

2∑
j=1

〈u j |i∇|u j〉

=
{

0 mod 2π (trivial),
π mod 2π (nontrivial). (D21)

We will illustrate one example of a nontrivial 1D model.
Define

z(k) = w(k) = ej k
4 (D22)

so that Rz,w satisfies the boundary condition

Rz,w(2π ) = Rz,w(0)′. (D23)

For the definition of matrix operation R → R′, see Eq. (57).
Indeed, from

z(2π ) = jz(0), w(2π ) = jw(0), (D24)

it follows that

(zw)(2π ) = (zw)(0), (ziw)(2π ) = −(ziw)(0),

(zjw)(2π ) = (zjw)(0), (zkw)(2π ) = −(zkw)(0). (D25)

In fact,

(zw)(k) = 1, (ziw)(k) = iej(k/2),

(zjw)(k) = j, (zkw)(k) = kej(k/2). (D26)

Hence, the loop k �→ [Rz,w] is noncontractible; it lifts to the
curve k �→ [Rz,w]+ which connects [Rz,w(0)]+ to [Rz,w(0)′]+.
This can also be seen in the space S2 × S2: The lifted classi-
fying map

I1 −→ S2 × S2,

k �→ (ziz,wiw)(k) (D27)

satisfies

(ziz,wiw)(2π ) = −(ziz,wiw)(0), (D28)

the boundary condition of Eq. (D12).

Using Eq. (D26), we form continuous occupied eigenstates

|u1〉 = 1√
2

[1 · |zjw〉 + ei(k/2) · |zkw〉],

|u2〉 = 1√
2

[1 · |zjw〉 − ei(k/2) · |zkw〉]. (D29)

Direct computation shows that the Berry phase is π (mod 2π )
for this model. Furthermore, the action of the noncontractible
loop given by (D6) amounts to interchanging |u1〉 and |u2〉,
hence leaving the trace in (D21) unchanged. This again con-
firms that the π1 action on the 1D model is trivial.

2. Free homotopy computation in 2D

Henceforth, we assume the boundary condition (93) so that
all Berry phases vanish. In this case, each face map belongs to
the sector with trivial edges in Eq. (D3), namely,

[I2, Gr(2, 4)](0,0) = [S2, Gr(2, 4)]

= [S2, Gr(2, 4)]•/π1[Gr(2, 4)], (D30)

which we will now compute. As suggested in the Berry phase
calculation in the previous section, one can associate a topo-
logical invariant to each homotopy class in [S2, Gr(2, 4)]• and
investigate how it transforms under (D6). First, we observe

[S2, Gr(2, 4)]• = π2[Gr(2, 4)] = π2[Gr+(2, 4)]

= π2[S2 × S2] ≈ Z ⊕ Z. (D31)

Here each of the two Z components contains the homotopy
classes of the map k �→ (ziz)(k) [(wiw)(k)]. However, these
integers can be directly computed from z (w) ∈ S3 instead of
ziz (wiw), which reveals the relation between these integer
invariants and Euler class.

Given a 2D model with the enveloping projector

P̃2D : I2 −→ S3 × S3,

k �→ (z,w)(k), (D32)

we extract two differential forms as in Sec. V B:

az = Re[−i · z dz], aw = Re[−i · w dw], (D33)

fz = daz, fw = daw. (D34)

Then the integers in π2[Gr(2, 4)] = Z ⊕ Z are the first Chern
class

νz = 1

2π

∫
I2

fz, νw = 1

2π

∫
I2

fw. (D35)

Now we will see how π1[Gr(2, 4)] acts on these numbers. The
result of homotopy in Eq. (D8) acted on the function (D32) is
represented by the (z,w) function

P̃2D · γ̃ : I2 −→ S3 × S3,

k �→ (jz, jw)(k). (D36)

It can be shown that the transformation

z(k) → jz(k) (D37)
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flips the sign of az:

a′
z = Re[−i · z′ dz′]

= Re[−i · jz dz(−j)]

= −Re[j(−i · z dz)(−j)]

= −Re[−i · z dz] [use Eq. (35)]

= −az. (D38)

Therefore, the invariants corresponding to P̃2D · γ̃ are
(−m,−n), the orbit space of (m, n) being {±(m, n)}. As a
result,

[I2, Gr(2, 4)](0,0) ≈ Z ⊕ Z/{±(1, 1)}. (D39)

A (3D) real Hopf insulator, which is the main subject of
this paper, is characterized by a 3D enveloping projector

P̃3D · γ̃ : I3 −→ S3 × S3,

k �→ (z,w)(k) (D40)

with Euler classes νz, νw = 0 on every 2D face of the 3D BZ.
This vanishing of Euler numbers can be expressed in terms
of the Euler classes of the occupied (unoccupied) eigenstates,
which are physically more relevant than abstract quantities
νz, νw. Namely,

νv = 1

2π

∫
T2

Euv, νc = 1

2π

∫
T2

Euc, (D41)

where the Euler forms Euv,c are constructed from the real-
valued eigenstates uv,c

1 , uv,c
2 of the respective band following

the recipe

av,c = 〈
uv,c

2

∣∣d∣∣uv,c
1

〉
, Euv,c = dav,c. (D42)

A simple computation (see Sec. V D) shows that

av = az + aw, ac = az − aw, (D43)

which in turn implies

Euv = fz + fw, Euc = fz − fw, (D44)

hence the equality

νv = νz + νw, νc = νz − νw. (D45)

We can now state that the vanishing of νz, νw is equivalent to
the vanishing of physical Euler classes νv, νc.

3. Free homotopy computation in 3D

A (3D) RHI, being trivial when restricted to every 2D
section of BZ, is represented by the homotopy classes in

[I3, Gr(2, 4)](0,0,0) = [S3, Gr(2, 4)]

= [S3, Gr(2, 4)]•/π1[Gr(2, 4)]

= π3[Gr(2, 4)]/π1[Gr(2, 4)]. (D46)

The machinery to compute this has already been prepared.
The third homotopy group of the (honest) classifying space
is

π3[Gr(2, 4)] ≈ Z ⊕ Z, (D47)

where the two integer invariants in the right-hand side are
given by

(χz, χw ) =
( −1

4π2

∫
BZ

az ∧ fz,
−1

4π2

∫
BZ

aw ∧ fw

)
. (D48)

From the previous section we know that the transformation
(z,w) → (jz, jw) flips the sign of (az, aw ) and ( fz, fw ). As a
result, this transformation has no effects on 3D invariants and
the π1[Gr(2, 4)] action on these invariants is trivial. Therefore,

[I3, Gr(2, 4)](0,0,0) = π3[Gr(2, 4)] ≈ Z ⊕ Z. (D49)

APPENDIX E: UNIQUENESS OF THE INTEGRAL
FORMULAS FOR BULK RHI INVARIANTS

In this Appendix, we prove that the expression of 3D real
Hopf invariants in terms of Euler connection and curvature,
Eq. (126), is unique in a precise sense: there are no other func-
tionals of Berry connection that produce real Hopf invariants.
There is a related question of whether the functional could be
chosen to contain only the valence part of the connection. We
will resolve this problem first in the real gauge and then in the
general complex gauge; see below Eq. (E13).

For convenience, we will use the notation

x0 = 1, x1 = i, x2 = j, x3 = k. (E1)

In the SO(4) gauge, which means that the eigenstates of the
Hamiltonian are arranged in a SO(4) matrix, the non-Abelian
Berry connection of RHI is given by

Aαβ = 〈zxβw|d|zxαw〉
= Re[xαxβ zdz] + Re[xαxβ wdw]

= A1
αβ dkx + A2

αβ dky + A3
αβ dkz

× (α, β = 0, 1, 2, 3). (E2)

Since Aβα = −Aαβ , there are 6 × 3 = 18 independent compo-
nents in this gauge, namely,

Ai
01, Ai

02, Ai
03, Ai

12, Ai
23, Ai

31 (i = 1, 2, 3). (E3)

The Berry curvature is given by

Fαβ = dAαβ. (E4)

We expect that the topological invariants of RHI can be ex-
pressed as the form

χ [p] =
∫

BZ
p(Aαβ, Fαβ ), (E5)

where p is a polynomial of Aαβ, Fαβ ’s (α, β = 1, i, j, k). For
dimensional reason, p only consists of the following two types
of terms:

Aμν ∧ Fρσ , (E6)

Aμν ∧ Aρσ ∧ Aτλ, (E7)

where each of μ, ν, ρ, σ, τ, λ individually runs over {1, i, j, k}
while i, j, k are dummy indices. Gauge invariance of the in-
variant in Eq. (E5) strongly restricts the form of p. There are
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two independent gauge transformations,

(z,w) → (eiθ1 z, eiθ1w), (E8)

(z,w) → (eiθ2 z, e−iθ2w). (E9)

By Eq. (E8), Aαβ transforms as

A01

A02

A03

A23

A31

A12

−→

A01

cos 2θA02 − sin 2θA03

sin 2θA02 + cos 2θA03

A23 − 2dθ

cos 2θA31 − sin 2θA12

sin 2θA31 + cos 2θA12,

(E10)

while Eq. (E9) acts on Aαβ as

A01

A02

A03

A23

A31

A12

−→

A01 − 2dθ

cos 2θA02 − sin 2θA12

sin 2θA31 + cos 2θA03

A23

cos 2θA31 − sin 2θA03

sin 2θA02 + cos 2θA12.

(E11)

It turns out that there are no polynomials that are themselves
gauge invariant. To see this, observe that the first transforma-
tion, along with the dimensional analysis, only permits the
following invariant polynomials:

A01 ∧ A02 ∧ A03, A01 ∧ A31 ∧ A12,

A02 ∧ F03, A31 ∧ F12, F02 ∧ A03, F31 ∧ A12,

A02 ∧ F31 + A03 ∧ F12, F02 ∧ A31 + F03 ∧ A12,

A02 ∧ F12 − A03 ∧ F31, F02 ∧ A12 − F03 ∧ A31. (E12)

Nonetheless, none of these terms are invariant under the sec-
ond transformation.

The other possibility is that the polynomial p(Aαβ, Fαβ )
itself is not gauge invariant while the integral in Eq. (E5) is.
Such polynomials are

A01 ∧ F01, A23 ∧ F23, A01 ∧ F23, A23 ∧ F01. (E13)

However, it is easy to see that (e.g., by testing for numerical
models with tunable parameters) the integrals∫

BZ
A01 ∧ F01,

∫
BZ

A23 ∧ F23,∫
BZ

A01 ∧ F23,

∫
BZ

A23 ∧ F01 (E14)

have nonquantized values. As we have seen in Eq. (126), only
the linear combinations of them∫

BZ
A01 ∧ F01 + A23 ∧ F23,∫

BZ
A01 ∧ F23 + A23 ∧ F01 (E15)

are quantized and serve as the bulk invariants of RHI. Hence,
we conclude that there are no polynomials in the real gauge,
except those in Eq. (E15), that produce topological invariants
of RHI by Eq. (E5).

The above discussion also sheds light on the question of
whether the RHI invariants can be expressed by the means of

Eq. (E5), only using the valence part of the Berry connection
(curvature), if the real gauge assumption is lifted. Namely,
the RHI invariants cannot be computed by using the valence
(conduction) band Berry connection and curvature only even
if complex wave functions are allowed. If it was possible, the
relevant polynomial pC (C standing for complex gauge) would
possibly contain only the polynomials of the form

Ai j ∧ Akl ∧ Amn, Ai j ∧ Fkl (i, j = 2, 3), (E16)

where the indices running over {2, 3} indicate that the
polynomials depend on the valence band eigenstates only.
Consideration for the conduction band case only requires
switching the values of i, j to 0,1. Note that the diagonal
entries Aii of the Berry connection do not vanish since we are
working in the general gauge.

However, if we happen to compute the RHI invariant

χ [pC] =
∫

BZ
pC (Ai j, Fi j : i, j = 2, 3) (E17)

in the real gauge, where Ai j + Aji = 0, all terms containing at
least one of the diagonal elements Aii would contribute noth-
ing to the integral. Therefore, in this gauge, only A23 ∧ F23

survives among Eq. (E16). (A23 ∧ A23 ∧ A23 is identically zero
in any gauge and hence excluded.) However, slightly perturb-
ing the Hamiltonian while sticking to the real gauge, one will
see that the integral of A23 ∧ F23 takes value in a continuum
rather than integer multiples of a fixed number. This is not a
desired property of pC .

In conclusion, one is bound to use both conduction and
valence band Berry connection (curvature) at the same time to
compute RHI invariants.

APPENDIX F: PROOF OF EQ. (140)

In Ref. [40] a quantity θv
0 is defined for an insulator with

the open boundary condition in x, y, z,

θv
0 = −8π2Im Tr[PxPyPz], (F1)

where P is the projection operator onto the occupied states
and the trace is over not only the occupied states but also the
unoccupied states. Suppose that there are N unit cells in the
x, y directions and Nz unit cells in the z direction. When there
are lots of unit cells in the x, y directions, the geometry of this
insulator can be regarded as a slab geometry. Under this limit,
we can compare θv

slab in Eq. (137) with θv
0 . In Ref. [40], it is

shown that

θv
0

N2Acell
→ Nzc θv

slab for N → ∞, (F2)

where Acell is the area of the unit cell in the xy plane. Equa-
tion (F2) is satisfied when the Chern number of the occupied
states of the entire slab is trivial; this is satisfied for the
Hopf insulator. For the unoccupied states, θ c

0 can be defined
similarly as Eq. (F1), and θ c

0 , θ c
slab satisfy Eq. (F2) after

replacing occupied states by unoccupied states. If we show
that θv

0 + θ c
0 = 0, then Eq. (140) is straightforward. After sub-

stituting Q = 1 − P in θ c
0 , θv

0 + θ c
0 is given by

θv
0 + θ c

0 = −8π2Im Tr(xyz − Pxyz − xPyz

− xyPz + PxPyz + PxyPz + xPyPz). (F3)
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Obviously, Im Tr[xyz] = 0 since xyz is a Hermitian operator.
Tr[Pxyz] is given by

Tr[Pxyz] =
∑
n∈occ

〈ψn|xyz|ψn〉, (F4)

where |ψn〉 is an eigenstate and n is an index for the occupied
eigenstates. Since Im[〈ψn|xyz|ψn〉] = 0 for all n ∈ occ, the
second term in Eq. (F3) is zero. Also, Tr[xPyz] = Tr[Pyzx]
and Tr[xyPz] = Tr[Pzxy]. Therefore, the third and fourth
terms in Eq. (F3) are zero. Tr[PxPyz] is given by

Tr[PxPyz] =
∑

n,m∈occ

〈ψn|x|ψm〉〈ψm|yz|ψn〉. (F5)

The complex-conjugated Tr[PxPyz] is given by

Tr[PxPyz]∗ =
∑

n,m∈occ

〈ψm|x|ψn〉〈ψn|yz|ψm〉

= Tr[PxPyz]. (F6)

Therefore, ImTr[PxPyz] = 0. Note that Tr[PxyPz] =
Tr[PzPxy] and Tr[xPyPz] = Tr[PyPzx]. Therefore,
Im Tr[PxyPz] = Im Tr[xPyPz] = 0 due to the same reason.

APPENDIX G: BASIS FOR THE MAXIMALLY
LOCALIZED HYBRID WANNIER FUNCTION

OF THE REAL HOPF INSULATOR

Let us define the hybrid Wannier function first. Here we
focus on the valence band; extension to the conduction band
is straightforward. In Eq. (131), we defined the bulk HWF in
the case of one occupied band. The extension to the two-band
case is straightforward: replacing the occupied state |uv〉 in
the right-hand side of Eq. (131) by the real wave functions
|uv

n〉, n = 1, 2, of RHI, we have∣∣wv
ln(kx, ky)

〉 = c

2π

∫
dkze

ikz (z−lc)
∣∣uv

n(k)
〉
, (G1)

where l ∈ Z is the layer index of the HWF. Note that Wan-
nier transformation is carried out in the z direction. Different
choice of basis |u′v

n〉 = ∑
m Umn|uv

m〉, U ∈ U (2) leads to dif-
ferent set of HWFs. By adjusting the matrix function U (k) ∈
U (2), one can minimize the spread of the HWFs along the z
direction [42]. The HWFs so obtained are called maximally
localized. It is known that the corresponding basis states
|u′v

n〉 = ∑
m Umn|uv

m〉 are precisely the eigenvectors of the pro-
jected position operator P(kx, ky)ẑP(kx, ky), where P(kx, ky) is
the projection operator onto the occupied states with the the
momentum (kx, ky) [42]. Equivalently, they are the eigenstates
of the Wilson loop operator [51]

W (kx, ky) = exp

[
−

∫ 2π

0
dkzAz(kx, ky, kz )

]
, (G2)

where Az is the z component of non-Abelian Berry connection
and exp is the path-ordered exponential. By inspection, it
suffices to diagonalize A to get maximally localized HWFs.
In the case of RHI, this is achieved by the “Chern basis” (see
Appendix H)

∣∣u′v
n

〉 =
2∑

m=1

Umn

∣∣uv
m

〉
, U = 1√

2

(
1 1
i −i

)
, (G3)

where |uv
1,2〉 are the real-valued occupied eigenstates. Fur-

thermore, simple computation shows that the Chern-Simons
3-form is invariant under the transition from the real basis to
the Chern basis. Therefore, the use of real gauge in computing
θv

3 in Sec. VI B is legitimate.

APPENDIX H: INTERPRETATION OF EULER
CONNECTION AS THE BERRY CONNECTION

OF THE CHERN-BASIS WAVE FUNCTIONS

Here we describe the method of Chern basis as a conve-
nient way to interpret the Euler connection of a pair of real
wave functions as the Berry connection of a complex wave
function, which is used several times in this paper.

Given a two-band real wave function,

|u1(k)〉, |u2(k)〉, (H1)

one often computes the Euler connection a = 〈u2|d|u1〉 and
other quantities derived from it. For example, Eqs. (186) and
(187) relate Eu = da with the bulk invariants of RHI. It is in
turn interpreted in Sec. VII C as the Wilson loop spectral flow

p+(kx, ky) = 1

2π

∫ 2π

0
〈u2|∂kz |u1〉dkz mod 1,

p−(kx, ky) = −1

2π

∫ 2π

0
〈u2|∂kz |u1〉dkz mod 1, (H2)

as a function along a curve in the (kx, ky) plane. But passing
to the complex gauge defined by the “Chern basis”

|ψ+(k)〉 = 1√
2

(|u1(k)〉 + i|u2(k)〉),

|ψ−(k)〉 = 1√
2

(|u1(k)〉 − i|u2(k)〉), (H3)

it is easy to see that the Berry connection of the complex wave
function is given by

i〈ψ±|d|ψ±〉 = ±〈u2|d|u1〉. (H4)

When the reality of wave functions in Eq. (H1) arises from
an antiunitary symmetry I realized by the complex conju-
gation K, the complex wave functions in Eq. (H3) are an
I-symmetric pair, hence conveniently exposing the symmetry
of the given problem. In our case, I = PT .

We also point out that the surface Chern number described
in Sec. VI, which takes the opposite sign at the top and bottom
surfaces of a slab, is another manifestation of Chern basis. If
|ψ+〉 in Eq. (H3) describes the surface state localized at the
top surface, |ψ−〉 corresponds to the bottom side of the slab.
They necessarily carry opposite Chern numbers due to PT
symmetry.

APPENDIX I: SUFFICIENT CONDITIONS FOR
RTP-INDUCING C4z SYMMETRY IN EQ. (170)

In this Appendix, we illustrate how the C4z-symmetry con-
dition pertinent to reverting Thouless pump (RTP) discussed
in Sec. VII arises from other physical constraints. The con-
ditions to be discussed jointly form a sufficient condition for
RTP to arise in RHI. Note that this is an adaptation of the
previous discussion for Hopf insulator [30].
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First, we need the uniaxial condition which states that
all of the orbitals that make up the tight-binding basis are
aligned along a single C4z rotation invariant axis. This condi-
tion makes the tight-binding Hamiltonian at the C4z invariant
line in the Brillouin zone commute with the C4z-symmetric
operator. For RHI, there are four tight-binding basis orbitals
|R, n〉 (n = 1, . . . , 4) at each unit cell at R in the real space.
Let us denote the C4z rotation eigenvalue of each |R, n〉 as
e2π iLn/4. Here Ln is the angular momentum of |R, n〉 and
integer valued with 1 � Ln � 4. To get the tight-binding basis
|k, n〉 in the momentum space, we perform the transformation
|R, n〉,

|k, n〉 = 1√
N

∑
R

e−ik·(R+xn )|R, n〉, (I1)

where N is the number of unit cells and xn is the sublattice
position of |R, n〉 in the unit cell. Then the tight-binding
Hamiltonian H (k) under the basis |k, n〉 satisfies the C4z-
symmetric relation

RC4z H (k)R−1
C4z

= H (C4zk), (I2)

where C4z(kx, ky, kz ) = (−ky, kx, kz ), and R4z is the C4z-
symmetry representation for H (k), where its components are
given by [

RC4z

]
nm = e2π iLn/4δnm. (I3)

Any C4z invariant momentum �4 in the Brillouin zone sat-
isfies C4z�4 = �4 + G�4 where G�4 is a reciprocal lattice
vector. Whenever G�4 �= 0 this gives a phase difference be-
tween the tight-binding basis at two points k = �4 and
k = C4z�4,

|C4z�4, n〉 = e−iG�4 ·xn |�4, n〉, (I4)

which varies for different n. The uniaxial condition prevents
such phase incoherence: In this case, xn does not depend on n
and the transformation matrix between the tight-binding basis
in Eq. (I4) is a constant multiple of identity matrix. As a re-
sult, H (�4) = H (C4z�4). In conclusion, when C4z-symmetric
RHI satisfies the uniaxial condition,[

RC4z , H (�4)
] = 0. (I5)

Second, it requires a particular set of rotation eigenval-
ues for RTP to emerge. It was a crucial assumption in
Sec. VII A that the valence and conduction states of two-
band Hopf insulator take distinct rotation eigenvalues as in
(λv, λc) = (i, 1) so that the valence (conduction) state at in-
variant momenta is completely characterized by its angular
momentum. For four-band RHI Hamiltonian H2,2

R to harbor
RTP, this must be true for the associated Hopf insulators
Hz

C, Hw
C . Together with the last condition to be discussed be-

low, the rotation eigenvalue {1, 1, i,−i} exactly satisfies this
requirement.

To state the last condition, it is useful to introduce the
following notation: Denote the set of C4z eigenvalues of the
occupied (unoccupied) states at a C4z invariant momentum
k = �4 as Locc

4 (�4) [Lunocc
4 (�4)]. Due to the PT symmetry,

there are two possibilities on Locc
4 (�4) and Lunocc

4 (�4):

Locc
4 (�4) = {1, 1}, Lunocc

4 (�4) = {i,−i}, (I6)

Locc
4 (�4) = {i,−i}, Lunocc

4 (�4) = {1, 1}. (I7)

Now one can define the iso-orbital condition

Locc
4 (�4) = Locc

4 (�′
4) (I8)

for every pair of rotation invariant momenta �4 �= �′
4. Due

to the iso-orbital condition, it is meaningful to denote Locc
4

and Lunocc
4 without specifying the momentum. We can deduce

that Locc
4 will be {1, 1} or {i,−i} and we can find that the RHI

model in Eq. (199) has Locc
4 = {i,−i} and that in Eq. (205) has

Lunocc
4 = {1, 1}.

APPENDIX J: WANNIER SHEET CROSSINGS OF RHI
WITH APPROXIMATE ROTATIONAL SYMMETRY

We demonstrate that those RHIs with “large polarization
differences” necessarily have crossing points, robust against
small perturbations, interconnecting the bulk Wannier sheets
of adjacent unit cells. To be precise, the robust Wannier cross-
ings are unavoidable as soon |�pAB| � 2 for either occupied
or unoccupied band and for any pair of points A, B on the
2D rBZ. As a result, the Wannier sheets cannot be detached
and packaged into completely decoupled groups, resulting in
a breakdown of the surface theorem (see Sec. VI).

In this Appendix, we illustrate this principle with the C4z-
symmetric RHI in Eq. (J1). The model describes a family
of RHIs with small C4z breaking perturbation, free of gap
closing while |λ1|, |λ2| <

√
3

2 . In the limit λ1 = λ2 = 0, the
model reduces to the model in Eq. (199) and recovers C4z

symmetry. However, the point remains valid for the other
rotation-symmetric models, inasmuch as Sec. VII provides a
general scheme applicable to any kind of rotation symmetry:

z0 = sin kx, z1 = sin ky + λ1, z2 = sin kz,

z3 = cos kx + cos ky + cos kz − 3
2 ,

w0 = sin kx + λ2, w1 = sin ky, w2 = sin kz,

w3 = cos kx + cos ky + cos kz + 3
2 , (J1)

When C4z symmetry is present, one can find many C4z-
symmetric RHIs that harbor |�pAB| � 2. As will be seen, this
enforces a series of crossing points interconnecting the bulk
Wannier sheets. This phenomenon is often observed when
χz, χw are both nonzero; a case of (χz, χw ) = (1, 1) is illus-
trated in Fig. 10.

In the following, let us suppose without loss of generality
that |pc

�M| = m � 2. This implies that the bulk Wannier sheets
constructed from the Chern-basis state |uc

1〉 + i|uc
2〉 (see Ap-

pendix H) range across at least two unit cells. Figure 10(a)
depicts such a Wannier sheet.

Under the condition |pc
�M| = m � 2, we can choose a con-

tinuous path γ in the (kx, ky) plane in the BZ that begins at
�, ends at M, and otherwise never passes through any one of
�, M, X, Y.

Along such γ , the Wannier centers traverse m times the
unit-cell length. Different Wannier sheets must intersect each
other due to the large value of m � 2 [Fig. 10(b)]. These

125101-31



LIM, KIM, AND YANG PHYSICAL REVIEW B 108, 125101 (2023)

FIG. 10. Wannier sheet crossing of a real Hopf insulator model in
Eq. (J1) with (χz, χw ) = (1, 1). (a) One of the bulk Wannier sheets of
|uc

1〉 + i|uc
2〉 of Eq. (199), which is the λ1 = λ2 = 0 limit of Eq. (J1).

In the (kx, ky ) plane, the green dotted line connects � and M without
passing through the C2z-invariant momenta along the way, thus being
a path γ as described in the main text. Along γ , the Wannier center
travels two unit layers (red solid line). (b) Cross section of the
Wannier sheet in (a) along the �M line. The red solid line is the
cross section of the Wannier sheet in (a) and the blue solid line is
its PT -symmetric partner. The red (blue) dashed lines are given by
the parallel translation of the red (blue) solid line and depict Wannier
sheets of adjacent unit cells. (c) One of the bulk Wannier sheets of
|uc

1〉 + i|uc
2〉 of Eq. (J1) with λ1 = λ2 = 0.7. (d) Cross section of the

Wannier sheets in (c) and their partners along �M.

crossing points between conduction band Wannier sheets can
be operationally divided into two groups of integer-spaced
points. Setting the positions of the crossing points to be the
union of integers and half-integers, we name the group of
crossing points sitting on the integers as the even crossings,
while those sitting on the half odd integers will be called
odd. In Fig. 10(b), the odd crossings arise as the touching
points between two Wannier sheets from adjacent unit cells.
On the other hand, the even crossings are made between the
PT -symmetric pairs of Wannier sheets inside a single unit
cell. Since the Wannier sheets do not merely osculate but com-
pletely pass over each other on both groups of crossing points,
these points do not disappear after perturbing the Hamiltonian
unless the perturbation severely destroys the Wannier sheet
configuration [Figs. 10(c) and 10(d)]. The spacing between
the crossing points remains smaller than a unit-cell length,
preventing the PT pairs of Wannier sheets from being decou-
pled from the other pairs and lying in a single unit cell. This
nullifies the scheme of the surface theorem to define surface
Chern numbers.

APPENDIX K: DIRECTIONS OF THE BERRY CURVATURE
OF THE C4z-SYMMETRIC HOPF INSULATOR ALONG

THE C4z INVARIANT LINES

To apply the Whitehead formula [49] to a surface �, we
need to specify the orientation on every component of ∂�.
The three rules completely determine the orientations ∂�

[30]:
First, due to the trivial first Chern class, the number of lines

with +k̂z direction and that of −k̂z direction are the same.

Second, due to the rotational symmetry, the line passing
through a momentum k has the same orientation with that
passing through Cnzk.

Finally, the direction of any line component γ coincides
with the sign of the z component of the Berry curvature
Fz = −2 Im 〈∂kx ψ

v|∂kyψ
v〉. Note that the last rule is a master

principle that determines the orientation for an arbitrary line
component. The first two rules serve to minimize the labor.

Let us consider a 2 × 2 Bloch Hamiltonian with C4z sym-
metry, where the C4z transformation rule is given by

RC4z H (k)R−1
C4z

= H (C4zk), RC4z =
(

i 0
0 1

)
, (K1)

where C4zk = (−ky, kx, kz ). For any invariant momentum
� = C4z� = (�x,�y,�z ), the Hamiltonian can be expanded
as

H (� + κ) = ax(κ)σx + ay(κ)σy + az(κ)σz, (K2)

ax(κ) = A0(�) + Ax(�)κx + Ay(�)κy,

ay(κ) = B0(�) + Bx(�)κx + By(�)κy, (K3)

az(κ) = C0(�) + Cx(�)κx + Cy(�)κy

for small κ = (κx, κy). The term proportional to the identity
matrix is ignored because it does not affect the eigenstates.
The constraint (K1) implies

A0 = B0 = Cx = Cy = 0, Bx = −Ay, By = Ax. (K4)

Then H (k) near � is given by

H (k) = C0σz + (Axκx + Ayκy)σx + (−Ayκx + Axκy)σy.

(K5)

The z-directional Berry curvature can now be computed:

Fz = −2 Im
〈
∂κx ψ

v
∣∣∂κyψ

v
〉

= −2 Im
〈ψv|∂κx H |ψc〉〈ψc|∂κy H |ψv〉

(Ec − Ev )2
, (K6)

where |ψv〉 (|ψc〉) is the occupied (unoccupied) state with
energy Ev (Ec).

To determine the orientation of the invariant line anchored
at �, Eq. (K6) is evaluated on �. Along the C4z-invariant line,
H (k) ≡ C0σ3. Since H (k) is insulating, C0 �= 0. The answer
depends on the sign of C0. First, let C0 > 0. In this case,
|ψv〉 = (0, 1)�, |ψc〉 = (1, 0)�, and

Fz = 1

2|C0|2
(
A2

x + A2
y

)
> 0. (K7)

That is, the orientation of the � line is upward.
Now suppose the opposite C0 < 0. In this case, |ψv〉 =

(1, 0)� and |ψc〉 = (0, 1)�, which leads to

Fz = − 1

2|C0|2
(
A2

x + A2
y

)
< 0. (K8)

The corresponding orientation is downward.
Using the fact that ψv, ψv are always the eigenvectors of

RC4z , one can deduce the orientation from the corresponding
eigenvalues (angular momenta), even without the functional
form of the Hamiltonian. For the present case, where Eq. (K1)
is known, the angular momentum lv,c is determined (modulo
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4) by the relation RC4z |ψv,c〉 = exp(2π ilv,c/4). Then, previous
analysis yields

�l = lv − lc ≡ −1 mod 4 ⇒ upward orientation,

�l = lv − lc ≡ 1 mod 4 ⇒ downward orientation. (K9)

APPENDIX L: SYMMETRIES OF MOORE-RAN-WEN RHI

The real Hopf insulators we discussed so far have PT
symmetry by construction (i.e., they have real Hamiltonians).
Each homotopy class of RHIs can be realized using two
Moore-Ran-Wen models for Hopf insulator, and such RHI
models have additional symmetries.

The fact that a general Hamiltonian H has a symmetry S
with its operator representation RS can be stated as

RSH (k)R−1
S = H (Sk). (L1)

Without changing the homotopy class of the Hamiltonian, the
energy spectrum can be flattened so that the restriction of the
Hamiltonian onto the occupied subspace is a constant multiple
of the occupied state projector,

H (k) = 1 − 2
∑

n∈occ

|ψn(k)〉〈ψn(k)| = 1 − 2Pocc(k). (L2)

The conduction (valence) energy level is fixed at constant +1
(−1), placing the Fermi level at EF = 0. Then (L1) can be
recast as

RSPocc(k)R−1
S = Pocc(Sk). (L3)

Equation (L3) states that |ψ (k)〉 is an occupied (unoccupied)
state with momentum k if and only if RS|ψ (k)〉 is an occupied
(unoccupied) state with momentum Sk; in other words,

RS|ψα (k)〉 = U α
β (k)|ψβ (Sk)〉, (L4)

where ψα=1,...,N run over all (independent) occupied eigen-
states and U (k) is a 2×2 unitary matrix. For the symmetries
not involving time reversal, RS is just an orthogonal matrix
whereas for those involving time reversal, RS = O · K for
some O ∈ O(4) and the complex conjugation K.

In the remaining part of this Appendix, we fix

z = z0 + z1i + z2j + z3k, (L5)

w = w0 + w1i + w2j + w3k, (L6)

where

1z0 = sin kx, z1 = sin ky, z2 = sin[mkz],

z3 = cos kx + cos ky + cos[mkz] − 3
2 ,

w0 = sin kx, w1 = sin ky, w2 = sin[nkz],

w3 = cos kx + cos ky + cos[nkz] − 3
2 ,

m, n ∈ Z, (L7)

so that

χz = m, χw = n. (L8)

The resulting Hamiltonian Hm,n has the conduction band
spanned by

zw = (z0w0 + z1w1 + z2w2 + z3w3)

+ (z0w1 − z1w0 − z2w3 + z3w2)i

+ (z0w2 + z1w3 − z2w0 − z3w1)j

+ (z0w3 − z1w2 + z2w1 − z3w0)k,

ziw = (−z0w1 + z1w0 − z2w3 + z3w2)

+ (z0w0 + z1w1 − z2w2 − z3w3)i

+ (z0w3 + z1w2 + z2w1 + z3w0)j

+ (z0w2 + z1w3 + z2w0 + z3w1)k. (L9)

1. C4z symmetry of Moore-Ran-Wen RHI

For S = C4z symmetry, the crystal momentum k transforms
as

S(kx, ky, kz ) = (−ky, kx, kz ). (L10)

First we observe how S acts on the unoccupied eigenstates.
Substituting (L10) to Eq. (L7), we get

z(Sk) = ei π
4 z(k)ei π

4 , w(Sk) = ei π
4 w(k)ei π

4 .

Colloquially, the coefficients of 1, i in z,w rotates by π/2
while the coefficients of j, k stay fixed. This in turn implies
that the quaternions corresponding to unoccupied states sat-
isfy

(zw)(Sk) = e−i π
4 z(k)e−i π

4 ei π
4 w(k)ei π

4

= e−i π
4 (zw)(k)ei π

4 , (L11)

(ziw)(Sk) = e−i π
4 z(k)e−i π

4 ei π
4 w(k)ei π

4

= e−i π
4 (ziw)(k)ei π

4 . (L12)

In terms of eigenstates |ψ1
occ〉 = |zjw〉, |ψ2

occ〉 = |zkw〉, this
means

RS|ψα (k)〉 = U α
β |ψβ (Sk)〉 (L13)

with

RS =

⎛
⎜⎜⎝

1 0
0 1

0 1
−1 0

⎞
⎟⎟⎠, U =

(
0 1

−1 0

)
, (L14)

so that Eq. (L4) is fulfilled.

2. P symmetry under the condition χw = −χz

We will see that S = P symmetry for any nontrivial RHI
with PT symmetry (thus having both P and T ) is allowed
only when

χw = −χz (L15)

and must be represented by a matrix RS with negative deter-
minant

det RS = −1, S = P, (L16)

while the matrix representation with positive determinant
forces the trivial RHI χz = χw = 0. Before proving this fact,
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we shall observe how P is embodied in the MRW-RHI Hamil-
tonian Hm,−m. Note that in this case

(w0,w1,w2,w3)(k) = (z0, z1,−z2, z3)(k). (L17)

Direct computation yields

zw = (
z2

0 + z2
1 − z2

2 + z2
3

) − 2z2z3i − 2z0z2j + 2z1z2k,

ziw = −2z2z3 + (
z2

0 + z2
1 + z2

2 − z2
3

)
i + 2z0z3j + 2z1z3k.

(L18)

Again, we take the unoccupied states |ψ1〉 = |zw〉, |ψ2〉 =
|ziw〉. Noting zi(Sk) = ηizi(k) with η3 = 1, η0,1,2 = −1, we
get

|ψ1(Sk)〉 = RS|ψ1(k)〉,
|ψ2(Sk)〉 = −RS|ψ2(k)〉, (L19)

where

RS =

⎛
⎜⎜⎝

1
−1

1
1

⎞
⎟⎟⎠, U =

(
1 0
0 −1

)
(L20)

fulfills Eq. (L4).
By the discussion in the previous subsection, C2z (even

C4z) symmetry is still present in Hm,−m. Hence, Hm,−m has the
symmetries

P, T ,C4z, Mz (L21)

separately.
Now we prove the claim stated at the beginning of this

subsection. Since S = P does not involve time reversal, it is
represented by a unitary operator. In our context,

RS ∈ O(4). (L22)

To begin with, we assume

det RS = 1, i.e., RS ∈ SO(4), (L23)

to arrive at the conclusion χz = χw = 0. Recall that surjec-
tivity of Eq. (63) implies that there exist α, β ∈ S3 ⊂ H such
that

RSx = αxβ, ∀ x ∈ R4 = H. (L24)

Using RS , we can compute χz,w in two different ways; first, we
can apply the procedure equations (18)–(22) to the functions
(117) and (118). Alternatively, we can apply the same process
to

RS uv
1(Sk) and RS uv

2(Sk), (L25)

which is just another basis of the occupied space at k. The two
results must coincide.

Temporarily using the notation

x = uv
1(Sk), y = uv

2(Sk), (L26)

we shall keep track of how the functions (117) and (118)
change as we pass from uv

1,2(k) to Eq. (L25). For simplicity,
we will only discuss Eq. (117) and arrive at the conclu-
sion χz = −χz. The same reasoning about Eq. (118) leads to
χw = −χw:

vz(k) → v′
z(k) = αyβ · αxβ = αyβ · βxα = α · yx · α

= α · vz(Sk) · α = α · vz(Sk) · α. (L27)

Since x �→ αxα is a rotation of

R3 = {x0 + x1i + x2j + x3k ∈ H : x0 = 0}, (L28)

and Eq. (18) is invariant under the rotation of v,

F′
z(k) = (

F ′1
z , F ′2

z , F ′3
z

)
(kx, ky, kz )

= (
F 1

z , F 2
z , F 3

z

)
(−kx,−ky,−kz )

= Fz(Sk). (L29)

If A = Az(k) solves the magnetostatic equations (19) and (20)
for F = Fz(k), then

A′
z(k) = (

A′1
z , A′2

z , A′3)(kx, ky, kz )

= ( − A1
z ,−A2

z ,−A3
z

)
(−kx,−ky,−kz )

= −Az(Sk) (L30)

solves the primed equations

∇ × A′
z = F′

z, (L31)

∇ · A′
z = 0. (L32)

Therefore,

χz = − 1

4π2

∫
BZ

d3k(F′
z · A′

z )(k)

= − 1

4π2

∫
BZ

d3k(−Fz · Az )(Sk)

= − 1

4π2

∫
BZ

d3k(−Fz · Az )(k)

= −χz. (L33)

Next, we tackle the case

det RS = −1, i.e., RS ∈ O(4)\SO(4). (L34)

Any such operation RS acting on R4 = H is the composition
of the inversion

x �→ x (L35)

and a rotation

x �→ αxβ. (L36)

Hence, Eq. (L27) is modified to

vz(k) → v′
z(k) = αyβ · αxβ = αyβ · βxα = α · yx · α

= α · (−xy) · α = α · vw(Sk) · α

= α · vw(Sk) · α. (L37)

Repeating the previous discussion, we arrive at

χz = −χw. (L38)
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