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Dirac fermions on wires confined to the graphene Möbius strip
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We investigate the effects of the curved geometry on a massless relativistic electron constrained to a graphene
strip with a Möbius strip shape. The anisotropic and parity violating geometry of the Möbius band produces a
geometric potential that inherits these features. By considering wires along the strip width and the strip length,
we find exact solutions for the Dirac equation and the effects of the geometric potential on the electron were
explored. In both cases, the geometric potential yields to a geometric phase on the wave function. Along the
strip width, the density of states depends on the direction chosen for the wire, a consequence of the lack of axial
symmetry. Moreover, the breaking of the parity symmetry enables the electronic states to be concentrated on the
inner or on the outer portion of the strip. For wires along the strip length, the nontrivial topology influences the
eigenfunctions by modifying their periodicity. It turns out that the ground state has a period of 4π whereas the
first excited state is a 2π periodic function. Moreover, we found that the energy levels are half-integer multiples
of the energy of the ground state.
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I. INTRODUCTION

Since its discover, graphene has startled researchers due to
its outstanding electronic, mechanical, and thermal properties
[1,2]. This single-layer sheet of carbon exhibits high carrier
mobility (vanishing effective electron mass) [3] and thus, the
electron is described as a massless chiral Dirac fermion on
a flat surface [4]. As a result, graphene offers a bridge be-
tween condensed matter physics and quantum field theory in
two dimensions [5]. Indeed, graphene produces well-known
relativistic effects, such as Zitterbewegung [6] and the Klein
paradox [7]. More recently, relativistic effects were found
in Weyl semimetals [8], Majorana fermions [9], Bogoliubov
particles [10], and kagome crystals [11].

By bending the two-dimensional sheet or considering the
strain effects on the membrane, graphene also becomes a
table-top laboratory for curved-spaces phenomena [12,13].
In fact, the curved geometry or the strain tensor modify
the effective Hamiltonian leading to a position-dependent
Fermi velocity [14]. Moreover, the coupling between the
Dirac fermion and the curved geometry/strain provides
pseudogauge fields whose effects depend on the particu-
lar geometry/strain [15–18]. Despite being two-dimensional,
graphene naturally displays ripples [19,20] and corrugations
[21]. These deformations of the surface significantly modify
the electronic and thermal graphene properties [22]. The ef-
fects of the curved geometry on the electronic properties, the
so-called curvatronics, has been explored in different geome-
tries, such as the cone [23], helicoid strip [24,25], catenoid
bridge [26,27], and torus [28].

Another noteworthy effect produced by the curved geom-
etry is the so-called geometric phase [29]. The edge states
[30] or the presence of defects, such as disclinations [31],

produce geometric phases modifying the electronic prop-
erties. On conical graphene surfaces, a constant geometric
gauge field yields to a geometric phase depending on the
conical deficit angle [32]. Furthermore, the out-of-plane de-
formations of the graphene layer also lead to modifications on
the optical conductivity due to Aharonov-Bohm type interfer-
ence [33].

Besides the curved geometry, nontrivial topology also
plays a central role on the electronic features of the low-
dimensional system [34]. For instance, performing a π twist
on one end of a graphene ribbon and connecting one end to
the other, we obtain a graphene Möbius strip [35,36]. This
graphene membrane behaves as a topological insulator with
stable edge states [37]. Moreover, the half twist modifies the
rotational invariance of the fields and particles constrained to
move along the Möbius band [38]. Several investigations on
the formation [39], stability [40], charge transfer [41], mag-
netic properties [42], and quantum spin-Hall effect [43,44]
of the graphene Möbius strip were performed. These prop-
erties are rather different from those obtained from the usual
cylindrical graphene rings [45]. Indeed, the curvature of the
Möbius strip modifies the energy spectrum of nonrelativistic
electrons, whose isotropic and parity symmetries are broken
[46]. For relativistic electrons, the influence of a flat Möbius
strip was investigated by assuming nontrivial boundary condi-
tions [47].

In this work we study the effects of the graphene Möbius
strip curved geometry on effective massless relativistic elec-
trons. Unlike some previous works that used a discrete
tight-binding approach [37,39,40], we employed a contin-
uum analysis wherein an effective massless Dirac fermion
is constrained to a curved surface. Since the Dirac equa-
tion on a curved surface does not couple with the curvature
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[48,49], the effects of the curved geometry stem from the
spinorial connection which acts as a pseudomagnetic potential
induced by the curved geometry [50]. As a result, a geometric
phase determines the density of states for wires along the
Möbius strip width. The breaking of the parity and isotropy
symmetries yields to states localized on the inner or outer
portion of the strip depending on the angle chosen for the
wire. For wires along the strip length (angular direction),
the geometric phase has an Aharonov-Bohm like effect, not
modifying the density of states for a single electron. Nev-
ertheless, the ground state wave function has a period of
4π , whereas the first excited state is a 2π periodic function,
due to the strip twist. Furthermore, the nontrivial topol-
ogy also leads to an energy spectrum given as half-integer
multiples of the ground state energy. These results agree
with the modified boundary conditions analysis performed in
Refs. [46,47].

This work is organized as follows. In Sec. II we briefly
review the main definitions and properties of the Möbius
strip geometry, such as the metric, curvatures, and connec-
tion. In Sec. III, we obtain the effective Hamiltonian for the
massless Dirac particle on the surface and derive the ex-
pression for the geometric potential which depends on the
geometric connection. In Sec. IV we obtain the exact so-
lutions for the electron on wires along the width and the
length of the strip. The energy levels and the effects of the
nontrivial topology on the states and spectrum is discussed.
Finally, additional comments and perspectives are outlined in
Sec. V.

II. MÖBIUS STRIP AND ITS PROPERTIES

In this section we present the coordinate system to describe
the graphene Möbius strip and study its main geometric fea-
tures, such as the Gaussian and the mean curvatures and the
connection 1-forms.

The graphene Möbius strip is a surface constructed by
joining the two ends of a graphene ribbon after twisting one
end by a π rotation, as shown in Fig. 1 [35]. This surface can
be described by the following coordinate system [35,46],

r(u, θ ) =
(

a + u cos
θ

2

)
cos θ î +

(
a + u cos

θ

2

)
sin θ ĵ

+ u sin
θ

2
k̂

=
(

a + u cos
θ

2

)
r̂ + u sin

θ

2
k̂, (1)

where 2L is the strip width, −L � u � L is a coordinate along
the width, and 0 � θ � 2π is the angular coordinate. The
coordinate u is the distance between the center of the strip and
its end point, as shown in Fig. 1. Furthermore, the parameter
a is the radius of the central circle and the radial unit vector
is r̂ = cos θ î + sin θ ĵ. A remarkable feature of the Möbius
strip is its non-orientability. Indeed, performing a 2π rotation
on the outer edge of the strip (u = L), the outer edge becomes
the inner edge (u = −L). Throughout the work, we use L = 1.

FIG. 1. Coordinates and base vectors on the Möbius strip.

The tangent vectors, defined as ei = ∂r
∂xi , have the form

eu = ∂r
∂u

= cos
θ

2
r̂ + sin

θ

2
k̂, (2)

eθ = ∂r
∂θ

=
(

a + u cos
θ

2

)
θ̂ − u

2
sin

θ

2
r̂ + u

2
cos

θ

2
k̂. (3)

From the tangent vectors, we can define the Möbius strip
metric gi j as

gi j = ei · e j =
(

1 0
0 β2(u, θ )

)
, (4)

where the angular metric factor β is given by [46]

β(u, θ ) =
√

u2

4
+

[
a2 + u cos

(
θ

2

)]2

. (5)

In Fig. 2 we plot the angular metric function β(u, θ ) for some
values of the inner radius a with L fixed to L = 1. In Fig. 2(a)
we choose a such that L/a = 0.375, i.e., a = 2.66, for which
nanorings were obtained. As we increase the ratio L/a, as
for L/a = 1 in Fig. 2(b) and for L/a = 1.89 in Fig. 2(c),
the Möbius strip becomes more compact. The ratio L/a =
1.89 is a critical value for a Möbius strip due to mechanical
properties [39].

Thus, the 2 + 1 infinitesimal line element has the form

ds2 = −dt2 + du2 + β2(u, θ )dθ2. (6)

It is worthwhile to mention that the metric tensor for a cylin-
der (nanotubes) has the form shown in Eq. (6) with β = a,
whereas for the conical surface (graphitic cone), β = αu,
where α is the so-called angular deficit [23]. Other graphene-
based surfaces, such as the helicoid [24], catenoid [26,27], and
torus [28], can also be described by the metric in Eq. (6).

The anisotropy of the Möbius strip breaks some surfaces
symmetries, such as the parity symmetry, as we can see by
β(−u,−θ ) �= β(u, θ ). However, a sort of modified Möbius
parity symmetry holds, where

β(−u, 2π − θ ) = β(u, θ ). (7)

This modified parity symmetry stems from the twist per-
formed on the strip. In Fig. 2, we plotted the angular metric
component β for a = 1 and −1 � u � 1, where the Möbius
parity symmetry in Eq. (7) is shown.

115436-2



DIRAC FERMIONS ON WIRES CONFINED TO THE … PHYSICAL REVIEW B 108, 115436 (2023)

FIG. 2. Angular metric function β(u, θ ) for L = 1, with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c), which encodes the geometrical
properties of the Möbius graphene strip. The function shows a twisted parity symmetry.

The Möbius strip curvatures also exhibit the twisted parity
symmetry in Eq. (7). Indeed, the expressions for the mean
curvature M and the Gaussian curvature K are given by [46]

M = 2
[
2(a2 + u2) + 4au cos θ

2 + u2 cos θ
]

sin θ
2[

4a2 + 3u2 + 2u
(
4a cos θ

2 + u cos θ
)] 3

2

(8)

and

K = − 1

β2
∂2

u β

= − 4a2

[4a2 + u2 + 8au cos(θ/2) + 4u2 cos2(θ/2)]2
. (9)

The behavior of the Gaussian and the mean curvatures are
shown in Figs. 3 and 4, respectively. We adopt the same values
for the ratio L/a as done for the β function, i.e., L/a = 0.375
(a), L/a = 1 (b), and L/a = 1.89 (c). Note that the curvature
profiles depend on the ratio L/a. Unlike the cylindrical nanor-
ings, where the Gaussian curvature vanishes and the mean
curvature is constant, the distribution of the curvatures on the
Möbius strip depends on the position u, θ and the ratio L/a.

As we will see in the next section, the massless relativistic
electron couples with the surface connection instead of
the curvature. Accordingly, in order to define the fermion
dynamics on the surface, we have to adopt the so-called
vielbein formalism [13]. Indeed, consider a set of matrices ea

μ

such that [23]

gμν = ea
μeb

νηab. (10)

In (2 + 1) dimensions, the matrices ea
μ are SO(1, 2) invariant

and they are called dreinbeins. Using the dreinbeins we
can define a local moving co-frame as ea = ea

μdxμ. For the

Möbius metric in Eq. (6), the moving co-frame has the form

e0 = dt,

e1 = cos θdu − β sin θdθ,

e2 = sin θdu + β cos θdθ. (11)

The presence of the trigonometric functions in Eq. (11)
reveals the local rotational invariance on the surface. Using
the torsion-free condition, dea + ωa

b ∧ eb = 0, the only
nonvanishing connection 1-form ωa

b = 
a
bμdxμ is given by

ω1
2 = −(∂uβ − 1)dθ. (12)

Note that for a conical graphitic surface, β = αu, and then,
ω1

2 = −(α − 1)dθ [23].

III. FERMIONS COUPLED TO THE MÖBIUS STRIP

Once we have reviewed the main geometric features of the
graphene Möbius strip, in this section we describe how the
effective massless electron couples to the graphene Möbius
strip. We study the electron properties in the continuum
limit, where the electron dynamics is governed by a Dirac
equation defined on the curved graphene strip [13]. The
curved geometry induces a pseudomagnetic-potential vector

μ, known as the spinorial connection. Then, we explore some
features and effects of the spinorial connection, such as the
geometric potential.

We employ the intrinsic coupling of the electron to the
curved surface, wherein the massless Dirac equation on the
surface is given by [13]

ih̄γ μDμψ = 0. (13)
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FIG. 3. Gaussian curvature on the Möbius strip, with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c), showing how the curvature is
intrinsically distributed over the surface.

In Eq. (13), the gamma matrices on the surface γ μ are defined
as

γ μ = eμ
a γ a, (14)

where ea
μ are the dreinbeins. The spinorial covariant derivative

Dμ is defined as

Dμ = ∂μ − 
μ, (15)

FIG. 4. Mean curvature on the Möbius strip with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c), showing how the curvature is
extrinsically distributed over the surface.
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FIG. 5. Spinorial connection on the graphene Möbius strip with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c).

where the spinorial connection 
μ is defined as


μ = 1
4ωab

μ γaγb. (16)

Since the curved covariant derivative in Eq. (15) is similar
to the minimal coupling between an electron and a mag-
netic vector Aμ, the spinorial connection can be interpreted
as a pseudomagnetic-potential vector induced by the curved
geometry. In the spinorial connection in Eq. (16), ωab

μ are
the connection 1-form and γa are the flat Dirac matrices. In
this work we use the following representation of the Dirac
matrices γ 0 = −iσ3, γ 1 = −σ2, and γ 2 = σ1 [27].

From Eq. (12), since ω1
2 = −(∂uβ − 1)dθ , the only non-

vanishing component of the spinorial connection is given by


θ = − i

2
(∂uβ − 1)σ3. (17)

Thus, the pseudomagnetic potential has only one component
along the angular direction. Incidentally, the corresponding
pseudomagnetic field should point into the normal direction
and it should be proportional to the Gaussian curvature [13].

The behavior of the spinorial connection along the
graphene Möbius strip is shown in Fig. 5. We adopt the same
values for the ratio L/a as done before, i.e., L/a = 0.375
(a), L/a = 1 (b), and L/a = 1.89 (c). Note that the spinorial
connection profile is rather different from the Gaussian and
mean curvatures. Indeed, the connection is greater for inner
points (u < 0) than for outer points (u > 0) of the strip. For
the sake of comparison, the spinorial connection for a cone is
constant 
θ = − i

2 (α − 1)σ3 [23] and it vanishes for single-
layer graphene, where α = 1.

Hamiltonian

Let us consider a stationary electronic state, i.e.,

ψ (r, t ) = e
iEt
h̄ ϕ(r). (18)

Thus, the Dirac equation (13) reads

Hϕ = Eϕ, (19)

where H is the stationary Hamiltonian of the relativistic elec-
tron at the graphene Möbius strip of the form

H = −ih̄vF

[
σ 1

(
∂u − 1

2

(∂uβ − 1)

β

)
+ σ 2

β
∂θ

]
. (20)

Using the Hermiticity relations of Dirac matrices, (γ i )† =
γ 0γ iγ 0, it is possible to show that the Hamiltonian in Eq. (20)
is indeed Hermitian. In matrix notation, the Dirac equation in
terms of the spinors is

− i

(
0 ∂u − i

β
∂θ − (∂uβ−1)

2β

∂u + i
β
∂θ − (∂uβ−1)

2β
0

)(
ϕ1

ϕ2

)

= k

(
ϕ1

ϕ2

)
, (21)

where ϕ1,2(r) = ϕ1,2(u, θ ) and k = E
h̄vF

is the wave-vector
norm (momentum).

It is worthwhile to mention that in the Hamiltonian Eq. (21)
there is a geometric potential Ug of the form

Ug = −1

2
σ 1 (∂uβ − 1)

β
. (22)

The geometric potential Ug has a natural dimension of L−1

and it stems from the coupling between the fermion and the
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FIG. 6. Geometric potential Ug on the Möbius strip with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c).

spinorial connection. Note that for a conical surface, Ug ≈
(α−1)

u [23], and thus, the geometric potential vanishes for a flat
single-layer graphene sheet. We plotted the geometric poten-
tial for L = 1 in Fig. 6, where L/a = 0.375 (a), L/a = 1 (b),
and L/a = 1.89 (c). The geometric potential has regions with
positive and negative values near each other. Moreover, the
potential exhibits a sort of Möbius modified parity symmetry
of the form (u, θ ) → (−u, 2π − θ ).

Another noteworthy feature of the Hamiltonian in Eq. (21)
is that it is no longer possible to write the wave function
as ϕ(u, θ ) = ei�θφ(u), as done for other surfaces such as the
cone [23], helicoid [24], catenoid [26,27], and torus [28]. The
reason for that stems from the lack of axial symmetry of the
Möbius strip, which leads to a nonconservation of the angular
momentum along the z axis [46]. As a result, no centrifu-
gal term of the form l

β
arises naturally in the Hamiltonian

Eq. (21).

IV. DIRAC FERMION ON WIRES

In the last section we described how the electron dynamics
is modified by the curved geometry of the graphene Möbius
strip. In this section we explore the electronic properties of
the Dirac fermion constrained to wires along the graphene
Möbius strip. By doing so, the fermion dynamics is dependent
not only on the wire curvature but on the geometric potential
Ug as well.

A. Wires along the width

Let us start with a wire directed along the strip width. In
order to do it, we consider a given angle θ = θ0 and vary the
Hamiltonian in Eq. (21) only along the u direction. Since the

Hamiltonian is highly dependent on the angular coordinate
θ , we investigate how the electron properties change as we
consider different directions on the strip.

Along the u direction, we use β = β(u, θ0) and ∂uβ =
∂β(u,θ )

∂u |θ=θ0
. The Dirac equation Eq. (21) yields(

∂u − (1 − ∂uβ )

2β

)(
∂u − (1 − ∂uβ )

2β

)
ϕi = −k2ϕi, (23)

where i can take on values 1 or 2. This equation, valid for both
components of the spinor, can be rewritten as

∂2
u ϕi −

(
(1 − ∂uβ )

β

)
∂uϕi

+
[(

(1 − ∂uβ )

2β

)2

− ∂u

(
(1 − ∂uβ )

2β

)
+ k2

]
ϕi = 0,

(24)

where the components of the spinor are decoupled and they
satisfy the same Eq. (24).

Equation (24) can be further simplified by considering the
change on the wave function

ϕi(u) = e− 1
2

∫ (1−∂uβ )
β

du
χi(u), (25)

where the new wave function χi(u) satisfies

−d2χi(u)

du2
= k2χi(u). (26)

Accordingly, the exact wave function along the wire for (u, θ0)
is given by

ϕi(u, θ0) =
√

β(u, θ0)e(− 1
2

∫
1
β

du)[A cos(ku) + B sin(ku)].
(27)
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FIG. 7. Density of states along the width for θ0 fixed. It shows the effect of the geometric phase concentrating the wave function at the
outer region of the strip, leading to the formation of edge states.

Since the factor in the brackets is the solution for a free
particle constrained inside the range −L � u � L, the effect
of the Möbius geometry on the electron constrained to a wire
along the width is encoded in the geometric phase

�φ = e− 1
2

∫ (1−∂uβ )
β

du
. (28)

It is worthwhile to mention that this geometric phase stems
from the geometric potential Ug in Eq. (22) which depends on
the connection rather than on the surface curvature. In a cylin-
drical surface (nanotubes), ∂uβ = 0 and the geometric phase
is constant. On the other hand, for a flat plane (single-layer
graphene), β2 = u2 and thus, the geometric phase vanishes
identically.

Imposing the boundary conditions

ϕi(u = L, θ0) = ϕi(u = −L, θ0) = 0, (29)

one obtains

A = 0 and sin(kL) = 0, (30)

for which the allowed energy spectrum is given by

En = n
π

L
h̄vF . (31)

Note that the energy spectrum increases as the strip width L
decreases. Moreover, the energy levels grow linearly with n
and h̄vF , as expected from the Dirac equation. In Ref. [46],
the authors found the energy spectrum for a nonrelativistic
electron in the Möbius band is proportional to n2, an expected
result stemming from the Schrödinger equation. In addition,
the energy levels found in Eq. (31) are similar to the spectrum
in a cylindrical ring. Indeed, since the geometric potential
effects are encoded into the phase, the spectrum is the same

for a flat surface. For a ring with the same width as the one
studied in Ref. [51], i.e., for 2L = 150 nm, a typical electron
with Fermi velocity vF = c/300 has a ground state energy of
about E0 ≈ 2.75×10−2 eV.

Therefore, the wave function along the wire is given by

ϕ1(u, θ0) = C
√

β(u, θ0)e(− 1
2

∫
1
β

du) sin

(
nπu

L

)
. (32)

The effect of the geometric phase on the electron is
shown in the Fig. 7, where we plotted the probability den-
sity ϕ(u, θ0)ϕ̄(u, θ0) for the four first energy levels. It is
worthwhile to mention that the region where the fermion is
localized on the wire depends on which angle θ0 the wire is
on the strip. Indeed, for θ0 = π

2 , the wave function is concen-
trated at the outer region of the strip, whereas for θ0 = 3π

2 ,
the fermion is more localized at the inner region. Thus, the
angle θ0 can be understood as a parameter to tune the region
where the electron is more concentrated. Moreover, note that
the probability density does not possesses parity symmetry for
θ0 = {0, π/2, 3π/2}.

Another noteworthy feature shown in Fig. 7 is that
the geometric phase tends to a damping of the amplitude of
the Dirac fermion. In fact, by comparing the graphics of the
wave function and the geometric potential, we can see that
the fermion is more concentrated in the regions where the
potential is less strong.

In Fig. 8, we plot the density of states on the Möbius
strip for n = 1. We vary the ratio a/L for L/a = 0.375 (a),
L/a = 1 (b) and L/a = 1.89, where we can see the formation
of edge states. The presence of robust edge states has already
been pointed out in Ref. [37], where the topological insulator
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FIG. 8. Density of states along the Möbius surface for n = 1 with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c). The electron is more
concentrated around the edges of the strip.

behavior of the Möbius strip was investigated. Moreover, note
that the ground state (n = 1) in Fig. 8 exhibits only one ring
state whereas the excited state for (n = 4) in Fig. 9 shows
more ring states.

B. Wire along the strip length

Let us now consider the Dirac fermion constrained in
a wire for a fixed u = u0. For this case, we have no mo-
mentum along u, so that ∂uψ = 0. Also, β = β(u0, θ ) and

FIG. 9. Density of states along the Möbius surface for n = 4 with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c). Note the formation
of more rings near the edges of the strip.
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∂uβ = ∂β(u,θ )
∂u |u=u0 . Thus, by applying the Hamiltonian (20) to

the wave function ψ , we obtain

Hψ = −ih̄vF

[
−1

2

(∂uβ − 1)

β
σ 1 + σ 2

β
∂θ

]
ψ. (33)

By making the change in the wave function

ψ (θ, u0) = e
μxμ

ψ0 = e− i
2

(∂uβ−1)
β

σ 3

ψ0(θ, u0), (34)

we can simplify Eq. (33) to

Hψ0 = −ih̄vF
σ 2

β
∂θψ0. (35)

Thus, the Dirac equation Hψ0 = Eψ0 for the spinor ψ0 whose
components are of form

ψ0 =
(

�1(θ )
�2(θ )

)
(36)

yields to to the system

−i

(
0 − i

β
∂θ

i
β
∂θ 0

)(
�1

�2

)
= k

(
�1

�2

)
, (37)

where k = E
h̄vF

. By decoupling the system in Eq. (37) leads
us to a differential equations valid for both components of the
spinor given by

− 1

β

d

dθ

(
1

β

d�i

dθ

)
= k2�i(θ ). (38)

Equation (38) can be further simplified by considering the
change of coordinate

v(θ ) =
∫ θ

0
β(u0, θ

′)dθ ′, (39)

where dv = β(u0, θ )dθ is the infinitesimal arclength. Ac-
cordingly, the decoupled Dirac equation (38) reads

d2�i(v)

dv2
+ k2�i(v) = 0, (40)

whose exact solutions for the components of the spinor ψ

along the strip length are given by

ϕ1(θ ) = eiW (θ )

[
A cos

(
k
∫ θ

0
β(u0, θ

′)dθ ′
)

+ B sin

(
k
∫ θ

0
β(u0, θ

′)dθ ′
)]

,

ϕ2(θ ) = e−iW (θ )

[
C cos

(
k
∫ θ

0
β(u0, θ

′)dθ ′
)

+ D sin

(
k
∫ θ

0
β(u0, θ

′)dθ ′
)]

, (41)

where the geometric phase W (θ ) along the angular wire is
given by

W (θ ) = −1

2

(∂uβ − 1)

β
. (42)

It is worthwhile to mention that, despite that the geometric
phase eiW (θ ) modifies the wave function, the probability dis-
tribution ϕϕ̄ is independent of W . This is key feature of the

FIG. 10. Geometric phase along the θ direction for u0 = 0, ±1
showing its 4π periodic behavior.

geometric phases [23], and a similar property is also shared
with the Aharonov-Bohm phase [51].

Another noteworthy result is related to the period of the
wave function. Indeed, by Eq. (41) the period strongly de-
pends on the metric function β(u0, θ ). Thus, let us now
investigate the effects of the geometry of the angular wires
on the electronic states.

1. Central ring

At the center of the strip, i.e., for u = 0, the wire forms a
closed ring. The angular metric factor β takes the form

β(u0 = 0, θ ) = a, (43)

and thus, the metric on this ring is independent of θ . As a
result, the geometric phase has the form

W (θ ) = 1

2

[
1 − cos

(
θ

2

)]
, (44)

and the first spinor component wave function is given by

ϕ1(θ ) = ei 1
2 [1−cos( θ

2 )][A cos kaθ + B sin kaθ ]. (45)

The second spinor component wave function can be obtained
from Eq. (45) by making W → −W . Interestingly, although
the wire for u = 0 forms a circular ring, the Möbius strip still
induces an anisotropic geometric phase. This result shows the
difference between an usual ring and one constrained on the
Möbius surface.

Even though the geometric phase W (θ ) is a 4π periodic
function, as shown in Fig. 10, the period of the wave function
is determined by the trigonometric function inside the brack-
ets. In fact, by considering the periodic boundary conditions

ϕ1(0, θ = 0) = ϕ1(0, θ = 2π ) = 0, (46)

the wave function has the form

ϕ1(θ ) = AeiW (θ ) sin(akθ ). (47)

Since eiW (θ ) lies at the unit circle in the complex plane, this
factor never vanishes. Thus, the wave function period is
determined by the sin kaθ function.
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FIG. 11. Density of states at the central ring (u = 0) for the initial
four energy levels. The wave function shows a free particle behavior,
since in this case the geometric phase does not affect the density
probability.

Using the boundary condition on the central ring in
Eq. (46), the momentum is given by

kn = n

2a
, (48)

and thus, the wave function has the form

ϕ1(θ ) = AeiW (θ ) sin

(
n
θ

2

)
, (49)

where n is a integer number. It is worthwhile to mention that
the ground state (n = 1) has a period of 4π , whereas the first
excited state (n = 2) is a 2π periodic function. For the nth
state, the period is Tn = 4π/n, and hence for n odd, the period
is a noninteger multiple of 4π . This feature results from the
Möbius strip geometry and similar results were found for a
nonrelativistic electron [46].

In Fig. 11 we plotted the probability density ψψ̄ for the
first electronic states. The figure shows that the ground state
(n = 1) is centered at θ = π , whereas the first excited state
(n = 2) has two peaks symmetrically displaced from θ = π .
As n increases, the number of peaks increases as well. Be-
sides, for odd n the probability density has a peak at θ = π ,
whereas for even n the probability vanishes at this point.

FIG. 12. Density of states at the edge wires (u = ±1) for the initial four energy levels.

Accordingly, the allowed energies En are given by

En = n

2

h̄vF

a
. (50)

Note that the energy decreases as the inner radius a increases,
as expected for a usual ring. Furthermore, it is important to
mention that the spectrum is the same for both components of
the spinor. However, the nontrivial topology leads to an energy
spectrum which is the half-integer multiple of the ground
state, shown in Eq. (50). A similar result for a nonrelativistic
electron was found in Ref. [46]. For a ring with the same inner
radius as the one studied in Ref. [51], i.e., for a = 200 nm, the
energy of the ground state is E0 ≈ 1.64×10−3 eV, which is
lower than the ground state energy for a wire along the width.
It is worthwhile to mention that the values a = 200 nm and
L = 75 nm lead to the ratio L/a = 0.375 and thus, they can
be used to form a stable Möbius strip [39].

2. Edge wires

For wires at the edge of the Möbius band, i.e., for u = ±1,
the wires do not form closed rings. The arclength variable v

for the outer edge is given by

v(θ )|u=1 =
∫ θ

0

[
1

4
+ [1 + cos(θ ′/2)]2

]1/2

dθ ′, (51)

whereas for the inner edge it has the form

v(θ )|u=−1 =
∫ θ

0

[
1

4
+ [1 − cos(θ ′/2)]2

]1/2

dθ ′, (52)

where we assume that −1 � u � 1. Since the β(±1, θ ) is
periodic with period 4π , then v(θ ) is also a 4π periodic
function. Therefore, the wave function has the form

ϕ1(θ ) = eiW (θ ){A cos [kv(θ )] + B sin [kv(θ )]}. (53)

Since v(0) = 0, using the boundary conditions, the wave func-
tion is given by

ϕ1(θ ) = AeiW (θ ) sin[knv(θ )], (54)

where kn satisfies the condition

kn

∫ 4π

0
β(u0, θ )dθ = nπ. (55)

We plot the probability densities in Fig. 12. Note that the
probability associated with the ground state is concentrated
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FIG. 13. Density of states along the Möbius strip for n = 1 with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c).

at θ = 2π for u = −1 and u = 1. Moreover, the first ex-
cited state has two peaks shifted from the point 2π . As n
increases, the number of peaks also increases. Besides, the
pattern of the wave functions for even n differs from those for
odd n.

Figure 13 shows how the density of states is distributed on
the Möbius strip for n = 1. Note that the ground state (upper
graphics) resembles the geometric potential profile shown in
Fig. 6. For n = 4, shown in Fig. 14, note that the density of
states is rather dependent on the ratio a/L.

FIG. 14. Density of states along the Möbius strip for n = 4 with L/a = 0.375 (a), L/a = 1 (b), and L/a = 1.89 (c).
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V. DISCUSSION AND PERSPECTIVES

In this work we found exact solutions for an electron
constrained to wires along a graphene Möbius strip. Such a
surface can be formed by performing a twist on one graphene
ribbon end and connecting it to the another end. By consid-
ering the electron effectively described as a massless Dirac
fermion, the Möbius strip curved geometry provides a ge-
ometric potential depending on the geometric connection
instead of the curvature. The geometry of the wires depends
not only on the wire metric but on the Möbius geometry and
symmetries, as well.

For wires along the strip width, i.e., for a given θ0, the
effects of the curved geometry are encoded into a geometric
phase which steams from the geometric potential. As a re-
sult, exact solutions for the Dirac equation were found which
shows the formation of edge states. As we increase the energy,
additional edge states forming rings appear. Moreover, the
electronic probability density is highly dependent on the di-
rection θ0 chosen for the wire. In fact, for some θ0 the electron
is more concentrated near the inner edge, whereas for other
values of θ0 the wave function is localized toward the outer
edge of the band. This behavior agrees with the lack of parity
symmetry of the Möbius band, i.e., β(−u, θ0) �= β(u, θ0).

On the other hand, the wires along the strip length have
a rather different geometry from those along the width. For
u = 0, the wire forms a ring of radius a, whereas for u = ±L
(strip edges) the wire is open in the interval 0 � θ � 2π . Due
to the Möbius strip geometry, the wires for u0 �= 0 are actually
close if we consider the period 4π . Accordingly, we expect
the wave function to be a periodic function of period 4π . It
turns out that, for the central ring at u = 0, the ground state is
a 4π periodic function whose probability density is localized
around θ = π . For n odd, the wave function has a period that
is a noninteger multiple of 2π . Similarly, the energy levels are
half-integer multiples of the quantum h̄vF /a. These noninte-
ger features of both the electronic states and the spectrum are
the result of the nontrivial geometry of the Möbius band. For a
ring with the same inner radius as the cylindrical ring studied
in Ref. [51], i.e., for a = 200 nm, the energy of the ground
state is E0 ≈ 1.64×10−3 eV. Since the ratio L/a = 0.375 is
smaller than the critical ratio, the nontrivial topology of the
Möbius strip could be used to generate a geometric Aharonov-
Bohm effect due to pseudomagnetic field.

For the wires along the edges of the Möbius strip, the
ground states n = 1 exhibit a localized probability density
around θ = 2π . Once again, the break of the parity symmetry

yields to a different profile between the ground state at the
inner edge (u0 = −L) and at the outer edge (u0 = L). The
electronic states for the outer edge are more concentrated than
those at the inner edge.

A remarkable result we found is the role played by the ge-
ometric phase on the electronic states. For the wires along the
width, the Dirac equation can be simplified by considering a
geometric phase depending on the geometric potential. It turns
out that the energy levels and the period of the electronic states
are determined as if the strip were flat. A similar result was
found numerically by Ref. [46], though the authors considered
a nonrelativistic electron. On the other hand, the geometric
phase provides a damping of the wave function, which leads
to the parity-breaking profile discussed above. Along the an-
gular direction, the geometric phase is given by the geometric
(spinor) connection. Likewise, for the well-known Aharonov-
Bohm phase, the geometric phase does not alter the density of
states for a single electron. Hence, the period of the electronic
states and the energy levels are determined by the angular
metric function along the wire, i.e., β(u0, θ ). This shows that
the electronic properties on wires along the Möbius strip are
different from those in the usual circular wires, for the wires
inherit the anisotropic Möbius geometry.

This work suggests as a perspective the investigation of
the effects of the geometric phase on the interference pat-
tern between electrons. Indeed, Aharanov-Bohm effects on
graphene-gated cylindrical nanorings of width L = 75 nm and
inner radius a = 200 nm (L/a = 0.375) were investigated
[51]. By considering a Möbius ring with the same size, sim-
ilar effects could be observed due to the geometric phase.
Moreover, the inclusion of external fields might lead to an
additional parameter to control the density of states. In ad-
dition, the interaction of the confined electron to the external
electric or magnetic fields should leave a peculiar signature
which could be used to characterize the material. In fact,
as proposed in Ref. [13] transmission electron microscopy
(TEM) or scanning tunneling microscopy (STM) can be used
to probe the morphology and relate it to the density of states.
For the Möbius graphene strip, these microscopic techniques
could be used to determine the ratio L/a of the samples.
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