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Pure dephasing induced single-photon parametric down-conversion in a strongly coupled
plasmon-exciton system
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We propose highly efficient photon pair generation via down-conversion in a polaritonic cyclic three-level
system formed via coupling an exciton and a localized plasmon polariton. Pure dephasing of the exciton enables
optical transitions from the upper to lower polariton state via symmetry breaking and thus opens a pathway
for the cascaded emission of two photons. The strength of this down-conversion pathway is determined by the
coupling strength between exciton and plasmon polariton and the exciton dephasing rate. In the case of strong
up to ultrastrong coupling and strong dephasing, this results in a nanoscopic χ (2)-system capable of few-photon
down-conversion. A semiconductor quantum dot embedded in a gap plasmon, which supports strong coupling
between plasmon and exciton, in combination with fast pure dephasing in the quantum dot exciton, allows one
to reach conversion efficiencies down to the single-photon limit under experimentally achievable parameters at
ambient conditions.
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I. INTRODUCTION

Photon conversion via nonlinear optical processes is a
cornerstone in photonics. In addition to the generation of
coherent light at tunable wavelengths [1,2], it is key to
generating nonclassical states of light [3,4] required for tech-
nologies such as high-precision interference measurements
via squeezed light [5] or quantum encryption via entangled
states [6]. Furthermore, nonlinear processes enable matter-
mediated photon-photon interactions essential for optical
information processing. Such nonlinearities provide ways to
split and merge optical information channels or apply compu-
tational operations via optical switches. The use of nonlinear
processes in optical crystals is a standard procedure for photon
conversion [7]. Phase-matching engineering and field concen-
tration in photonic waveguides allow compensating for their
low nonlinear coefficients, thus increasing conversion effi-
ciencies. These approaches work in the regime of many pump
photons [8,9] with down-conversion efficiencies of on average
one down-converted photon pair from ≈ 2.5 × 105 to 4 × 106

incoming photons considered to be high [10]. For applications
in highly integrated optical circuits, such conversion efficien-
cies lead to high losses, which are detrimental to energy
efficiency and make heat management necessary. Thus, op-
tical nonlinearities occurring in the regime of a single or a few
pump photons are of the utmost importance [11]. Schemes us-
ing single photons and single atoms in a cavity kept at ultralow
temperatures reach the regime of single-photon nonlinearities
[12]. Recently, room-temperature single-photon nonlinearity
was demonstrated in an organic polymer coupled to a di-
electric microcavity employing stimulated Bose condensation
from excited excitons into a coherent polariton ground state

[13]. Because of the size of the microcavity, this scheme still
relies on a pumped exciton reservoir with several hundred
excitons to achieve strong enough coupling between the cavity
and the polymer.

Here we show that ultrastrong coupling (USC) of a single
two-level system (TLS), i.e., a semiconductor quantum dot
(QD) exciton, to a plasmon polariton, which acts as resonator,
in combination with efficient pure dephasing of the TLS, real-
izes a cyclic three-level system. A cyclic three-level system is
the simplest quantum system to represent a χ (2) material, and
it can, in principle, it can achive down-conversion efficiency
of unity [14–16]. The proposed scheme opens up ways to
both reduce the size of a nonlinear optical device and achieve
single-photon nonlinearities without major pumping losses at
ambient conditions. Here, we focus on a down-conversion
process, efficiently converting an incident photon into a pho-
ton pair, both for degenerate and nondegenerate cases.

The manuscript is structured as follows: In Sec. II, the po-
laritonic Hamiltonian used for the subsequent considerations
is introduced, as well as both the Lindblad master equation
and the Redfield equation for the hybridized systems used
to calculate the time evolutions. The section closes with an
intuitive explanation of how the combination of TLS pure
dephasing and strong coupling between the TLS and the plas-
mon polariton results in a cyclic three-level system, enabling
efficient down-conversion of photons. In Sec. III, examples
for physical realizations of strongly coupled exciton-plasmon
systems are proposed, and we suggest a corresponding model
system based on a semiconductor quantum-dot exciton cou-
pled to a gap plasmon mode, with experimentally determined
values reported in the literature as parameters for our sim-
ulations. We present the simulation results for degenerate
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FIG. 1. Schematic representation of the polariton Hamiltonian.
(a) Externally driven (blue shading) plasmonic mode coupled to an
excitonic TLS is shown as separated subsystems. Both subsystems
are embedded in bath systems (red background shading), which are
responsible for dissipation of both subsystems. (b) The equivalent
eigenstate basis representation as a polariton, with ground state (GS),
lower polariton state (LP), and upper polariton state (UP). Higher-
lying states are represented by horizontal black dashed lines. The
blue arrows indicate the dipole allowed transitions (without pure
dephasing).

down-conversion calculated via Lindblad and Redfield theo-
ries, as well an analysis of a heralded single-photon scheme
calculated with Lindblad theory, which relies on nondegener-
ate down-conversion. The section closes with an estimation of
the total device photon pair generation efficiency. The conclu-
sion in Sec. IV summarizes the results and provides an outlook
about possible applications of the proposed scheme.

II. THEORY

In this section, we first introduce the polaritonic
Hamiltonian, which results from hybridization of the plasmon
mode and the exciton, and its eigenbasis. Next, we briefly
consider the Lindblad formalism that we use to handle the
system-bath interaction. In particular, since we deal with a
system of strongly interacting subsystems, the impact of this
hybridization on external driving, output observables, and
coupling to dissipative environments must be carefully con-
sidered. In this context, the effect of pure dephasing of the
exciton on the hybridized system is presented. It is shown
that this pure dephasing of a subsystem enables the otherwise
forbidden transition between the upper and lower polariton
state. While the Lindblad formalism is widely used due to
its phenomenological nature and computational efficiency, we
will also refer here to the Redfield formalism, which involves
a more realistic physical model for the system-bath interac-
tion and the pure dephasing of the system caused by it. By
matching the results of both methods, we can justify the use of
the phenomenological Lindblad approach and ensure that the
pure dephasing effect necessary for the highly efficient down-
conversion scheme proposed herein is not an artifact of the
approximations made in the Lindblad approach. The section
ends with an intuitive explanation of how pure dephasing of
a subsystem in a hybrid system realizes a cyclic three-level
system and thus enables efficient down-conversion.

A. Polariton in the ultrastrong coupling regime

The cavity quantum electrodynamics (cQED) Hamiltonian
of a polariton resulting from the hybridization of a plas-
monic mode and an excitonic TLS, as sketched in Fig. 1(a),

reads [17]

Hsys = �m b†b︸ ︷︷ ︸
Hm

+�e σ+σ−︸ ︷︷ ︸
He

+ g (b† + b)(σ+ + σ−)︸ ︷︷ ︸
Hint

+ g2

�e
(b† + b)

2

︸ ︷︷ ︸
Hdia

(1)

where Hm and He are the plasmon and TLS Hamiltonians,
respectively. b (b†) is the bosonic annihilation (creation) op-
erator for the plasmonic mode, σ− (σ+) is the TLS lowering
(raising) operator, and �m and �e are the boson mode and
TLS level spacings, respectively. The coupling of plasmon
and TLS with coupling strength g is described by the full
dipole coupling Hamiltonian Hint and the energy contribution
from the diamagnetic term Hdia, where the latter accounts
for eigenenergy shifts which do not, however, affect the ac-
tual mechanism proposed here. Inclusion of counter-rotating
and diamagnetic terms is necessary in the ultrastrong cou-
pling regime, i.e., when η = 2g/(�m + �e ) � 1 is not valid,
since they significantly modify the energy spectrum [17]. The
coupled system can be described in the diagonalized eigen-
basis {GS, LP, UP, . . .}, which assumes in the Bloch-Siegert
regime, i.e., η = 0.1 and δ = |�m − �e| > 0, the analytical
expressions for the lowest three states relevant here [18]:

|GS〉 = cos
(ϕ2

2

)
(|1,+〉 + λ

√−1|0,−〉)

+ sin
(ϕ2

2

)
(|2,−〉 − λ

√
n + 1|3,+〉)

|LP〉 = sin
(ϕ2

2

)
(|1,+〉 + λ

√−1|0,−〉)

− cos
(ϕ2

2

)
(|2,−〉 − λ

√
n + 1|3,+〉)

|UP〉 = cos
(ϕ3

2

)(|2,+〉 + λ
√−1|1,−〉)

+ sin
(ϕ2

2

)
(|3,−〉 − λ

√
n + 1|4,+〉) (2)

with tan(ϕn) = 2gn
√

n/δn, δn = δ + 2nωBS, gn = √
ng −

n
3
2 g ωBS/(�m + �e ), λ = g/(�m + �e ), ωBS = λ2, and the

product basis |n,±〉, where n represents the photon number
(also known as Fock) state and + (–) denotes the excited
(ground) state of the exciton.

B. Lindblad master equation for hybridized systems

The temporal evolution of the system’s density matrix ρsys

driven by an external classical light field, taking into account
spontaneous dissipative transitions and pure dephasing in the
framework of the Lindblad formalism [19], is described by the
Liouville–von Neumann equation given by

ρ̇sys = −i

h̄
[Hsys + Hdr, ρsys] + 1

h̄

∑
i

�i L(oi )[ρsys] (3)

with Hsys denoting the system Hamiltonian, Hdr modeling
external driving, and the Lindblad terms L(oi ) ρ = oi ρ o†

i −
(1/2)(ρ o†

i oi + o†
i oi ρ ), where oi is the jump operator for

the ith system-bath interaction channel and �i is the cor-
responding coupling energy. In the case of an uncoupled
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boson and exciton, we consider three system-bath interaction
channels., i ∈ {m, e, ϕ}. These are dissipation of the boson
mode (i = m) with strength �m and jump operator om = b,
exciton dissipation (i = e) with strength �e and jump op-
erator oe = σ− [both in Fig. 2(a), red arrows], and exciton
pure dephasing (i = ϕ) with jump operator oϕ = σ+σ− and
rate �ϕ [purple dashed shading in Fig. 2(a)]. For simplicity,
pure dephasing of the boson mode, which for a plasmon
could arise from electron-phonon interaction [20] or chemical
damping [21], is neglected.

We consider that the plasmonic mode belongs to an effi-
cient nanoantenna with a dominating coupling to the driving
field and negligible direct driving of the TLS. For weak cou-
pling g, such external driving is mediated by the bosonic
field operator b† + b. However, at high coupling strength the
plasmon and exciton hybridize and the driving term must
be adapted, since the uncoupled driving field operator would
directly act on exciton states due to the hybridization. Hdr is
then given by [22]

Hdr = κ f (t )(X †
b + Xb), (4)

with Xb = ∑
k, j>k 〈 j|b† + b|k〉| j〉〈k| in the polariton eigenba-

sis j, k ∈ {GS, LP, UP, . . .}. f (t ) is a normalized real function
reflecting the time-dependent driving, and κ is the effective
coupling energy determined by the boson mode dipole mo-
ment and the maximum driving field. The same argument as
for driving also holds for photon emission, and the emission
spectrum S(ω) is then obtained as the real part of the Fourier
transform of the adapted field correlator, i.e. [23],

S(ω) = �
′
m/h̄

∫ −∞

−∞

∫ −∞

−∞
Re

{〈
X †

b (t ) Xb(t +τ )
〉
exp(iωτ )

}
dt dτ

(5)

where �
′
m = rm�m and rm is the ratio between radiative loss

(�
′
m) and total loss (�m) of the boson mode [24]. As for the

case of the driving field, photon emission, i.e., the output field,
is assumed to occur exclusively via the boson mode. Related
quantities that require spectral selectivity, such as photon pair
yields, heralding efficiency, etc., are calculated via transition-
specific output observables (see Appendix A).

Treating bath interaction channels separately for each con-
stituent also works only if the subsystems do not interact too
strongly, i.e., η � 1. To obtain physically correct results, such
as relaxation into the physical equilibrium state, in the strong
and ultrastrong coupling regime modifications are again nec-
essary due to hybridization of the subsystems. In this case, the
full field and dipole coupling to the bath has to be considered
for the dissipative jump operators for the subsystems, i.e.,
om = b† + b and oe = σ+ + σ−, since these Hermitian oper-
ators reflect the full physical coupling of the subsystems to
their respective environments. Further, the jump operators of
the coupled system o jk = | j〉〈k| are expressed in the polariton
eigenbasis, and the transition strengths � jk are given by [25]

� jk =
∑

i

�i(� jk )|〈 j|oi|k〉|2 (6)

for each k → j transition, where k � j holds for transition
energies much larger than the thermal energy of the bath.

FIG. 2. Effect of exciton pure dephasing in a polariton state. (a)
Level scheme including the possible transitions in the considered
open polariton system in the product basis (upper). Resonant driving
of the boson mode induces the LP to UP transition (blue arrow).
Pure dephasing (purple shading) of the TLS is nondissipative in
the uncoupled system. Below, a schematic of the density matrix in
the uncoupled product basis. (b) Level scheme including possible
transitions in the polariton eigenbasis. Resonant pump excites from
GS to UP. Contrary to the uncoupled case, pure dephasing is dis-
sipative in the polariton, causing LP to UP transitions. Dissipation
of exciton and plasmon enables the LP to GS transition, closing the
cycling three-level scheme. Below, a schematic of the density matrix
in the polariton eigenbasis. First, the pump prepares the system in
UP, an eigenstate of the polariton Hamiltonian. Next pure dephasing
performs a measurement of the exciton state projecting the polariton
into an eigenstate of oϕ , i.e., either |0, +〉 or |1, −〉 (here shown for
|0, +〉), yielding LP population. The horizontal gray arrows indicate
basis transforms between product state basis (a) and eigenstate basis
(b) and vice versa.
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Here the fact that �i(� jk ) is a function of the energy spacing
� jk = Ek − Ej between the relevant states is explicitly noted.
In the proposed scheme, the relevant transitions between the
polariton states are close to the level spacings of the uncoupled
exciton and plasmon mode.

In the Lindblad treatment, it is implicitly assumed that
the exciton pure dephasing couples to an excitation with a
white noise spectrum, which is not the case for realistic sce-
narios in which, for example, pure dephasing is mediated by
phonons. Thus, we investigate in Sec. II C the impact of a
structured bath spectrum that provides small excitation ener-
gies using Redfield theory, where the exciton pure dephasing
occurs via a strongly detuned coupling to low-energy phonon
modes. This alternative modeling of the system-bath interac-
tion will demonstrate that for the chosen excitonic systems,
interactions with the environment can indeed be appropriately
described by the Lindblad formalism, i.e., as a Markovian
process, and resulting in stochastic, projective measurements
of the open polariton system. For pure dephasing of exci-
tons in QDs, this assumption does not hold in general and
memory effects might significantly alter the system dynamics.
However, in self-assembled semiconductor QDs, the pure de-
phasing process is in general non-Markovian due to retarded
backaction of phonons scattered by the exciton [26]. There-
fore, we restrict our considerations to specific kinds of QDs,
such as colloidal QDs embedded in a suitable chemical, like
ligands, or a mechanical environment, and thus we avoid con-
sidering non-Markovian quantum dynamics. This assumption
does not imply that the proposed mechanism is absent for a
non-Markovian dephasing mechanism, it is merely made to
simplify the theoretical framework.

C. Redfield equation

The Lindblad master equation is an established frame-
work to model the time evolution of open quantum systems,
especially the treatment of system-bath interaction via phe-
nomenological rate constants and jump operators. However,
the Lindblad formalism implicitly assumes a flat spectrum of
the bath correlations, i.e., the bath is randomly oscillating at
all frequencies with the same amplitude, or in other words
the noise power spectrum has a white spectrum. Since the
phonon bath is responsible for the exciton pure dephasing
process in actual physical realizations of our scheme pro-
posed herein, the white noise environment assumed in the
Lindblad formalism poses a conceptual problem. In princi-
ple, environmental noise resonant to the UP to LP transition
could induce deexcitation instead of the proposed pure de-
phasing induced mechanism. To unambiguously identify the
pure dephasing induced mechanism, it is thus essential to
demonstrate that the cyclic three-level system responsible for
efficient down-conversion occurs also for a more realistic
system-environment interaction, which accounts for a realistic
noise spectrum of a phonon bath.

To model a realistic phonon bath noise power spectrum,
we employ here the Redfield theory approach [27]. Thus,
calculations in Redfield theory are also presented in this
manuscript, loosening the flat bath assumption, while keeping
the remaining assumptions of the Lindblad formalism, i.e.,
the Born-Markov approximation. For the modeling we rely

on the Redfield solver implemented in QuTiP, with the re-
spective constraints on system-bath coupling operators [28].
It works with the density operator time evolution differential
equation

ρ̇i j (t ) = −i
E (t )i j

h̄
ρi j (t ) +

∑
k,l

R(t )i jklρkl (t ), (7)

with {i, j, k, l} indicating the whole system Hamiltonian
eigenstates including the driving term, which are therefore
time-dependent, E (t )i j = E (t )i−E (t ) j is the energy differ-
ence between the eigenstates, ρi j are the density operator
elements, and Ri jkl are the elements of the Redfield tensor.
It is given by

Ri jkl = −1

2

∑
α

{
δi j

∑
n Aα

inAα
nkJα (Ekn) − Aα

ikAα
lkJα (Eki )

+δik
∑

n Aα
lnAα

n jJα (Eln) − Aα
ikAα

l jJα

(
El j

)
}

.

(8)

δi j is the Kronecker delta, and Jα (E ) is the noise-power spec-
trum of the environment labeled by α, coupled to the system
by the Hermitian operator Aα [28]. The time dependency of
R and the matrix elements of Aα are dropped to simplify the
notation.

Plasmon mode and exciton resonance energies, as well as
their coupling strength, are chosen identical to those used in
the Lindblad calculations. Note that the system simulated by
Redfield theory differs from the system simulated with the
Lindblad master equation in two respects. First, the Redfield
equation itself accounts for hybridization of the system, in-
cluding the driving field, and second, the interaction with the
phonon bath is modeled fundamentally differently. Hence a
direct quantitative match cannot be the goal of the different
models, and the comparison given here is first of all qualita-
tive and serves to demonstrate that the proposed scheme for
efficient down-conversion holds also under the assumption of
a physically more realistic model for the phonon bath. Details
of the calculations are given in Appendix C.

The phonon noise-power spectrum is taken to be of the
standard form Jϕ (ω) ∼ ω3exp(−ω2

ω2
c
) [29], with a cutoff fre-

quency ωc, coupling to the exciton via Aϕ = σ+ σ−. The bath
of electromagnetic excitations leading to radiative damping
of exciton and plasmon mode is represented with flat spec-
tra, which vanish for negative energies, representing the EM
vacuum. The spectral intensity is adapted to yield the same
dissipation rates for both isolated subsystems as in the Lind-
blad simulations. The coupling with the bath is mediated by
the Hermitian operators Am = b† + b and Ae = σ+ + σ− for
plasmon mode and exciton, respectively. These system-bath
coupling operators are the same as for the Lindblad ap-
proach before correcting for the hybridization effect [Eq. (6)].
Note that in the Redfield approach, the hybridization effects
are accounted for by propagating the density matrix in the
combined eigenbasis of the unitary system Hamiltonian and
the Hermitian system-bath coupling operators, including the
time-dependent driving term. Still, as noted above, the model-
ing stays within the Markovian approximation, and memory
effects in the phonon bath are neglected. However, since
we also obtain the claimed emergence of a dephasing in-
duced cyclic three-level system in a simplified quantum model
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(Appendix D), which accounts for a coherent backaction of a
phonon mode onto the polariton states, we assume that a non-
Markovian bath will modify the efficiency of the proposed
mechanism but not the dephasing induced down-conversion
process itself.

D. Polaritonic cyclic three-level system via pure dephasing

Without pure dephasing of the TLS, the UP relaxes
directly back into the GS only via the emission of a
single fluorescence photon [Fig. 2(a)]. The cascaded emis-
sion of a photon pair is impossible since the transition
matrix element for UP to LP vanishes, i.e., in Eq. (5)
〈LP|om|UP〉 = 〈LP|oe|UP〉 = 0. In contrast, with pure de-
phasing, 〈LP|oϕ|UP〉 �= 0 contributes to �LP,UP, i.e., UP →
LP transitions and the emission of photons with energy
�LP,UP = �UP − �LP become allowed [Fig. 2(b)]. When ex-
clusively exciting UP, these transitions feed the LP population,
and the emission of a second photon with energy �LP,GS =
�LP − �GS (〈GS|b† + b|LP〉 �= 0, 〈GS|σ+ + σ−|LP〉 �= 0) is
a consequence of the initial UP → LP transition, yielding
correlated photon pairs. This process closes the three-step
transition cycle of absorbing one photon and emitting two
down-converted photons [Fig. 2(a), left] serving as a ba-
sis for our proposed scheme of single-photon parametric
down-conversion. The detuning between plasmon and exciton
and the coupling strength g allow adjusting of the transition
energies and thus enables choosing either degenerate or non-
degenerate down-conversion. The strength of the UP → LP
transition is determined by �LP,UP = �ϕ|〈LP|oϕ|UP〉|2 and
depends on both the pure dephasing strength �ϕ of the TLS
and the coupling strength g. For �LP,UP > �GS,UP, relaxation
under emission of two cascaded photons becomes dominant,
and high down-conversion efficiencies are possible.

The finding that a pure dephasing mechanism opens new
relaxation pathways for coupled systems can be rationalized
based on the quantum trajectory formulation of system-bath
interactions [19] [Fig. 2(b)]: The system is initially in the
|GS〉, which—neglecting virtual photons—is approximated
by the product state |m, e〉 = |0,−〉 (0 indicating no plasmon
excitation and − denoting the TLS ground state). The pump
excitation induces a GS → UP transition via 〈UP|Hdr|GS〉 �=
0. Resonant driving provides selectivity of the pump process,
which is best understood in the polariton eigenbasis. In con-
trast, the pure dephasing mechanism acting on a subsystem is
best conceived in the product state basis, where |UP〉 is a co-
herent superposition of |0,+〉 and |1,−〉. The pure dephasing
jump operator oϕ projects this superposition state either onto
|0,+〉 or |1,−〉, i.e., an eigenstate of oϕ . However, both of
these states are superposition states of |UP〉 and |LP〉 in the
polariton eigenbasis. Hence, pure dephasing of a subsystem
generates LP population and induces dissipation in the hy-
bridized system causing emission of the first down-converted
photon (Fig. 2). In conclusion, the UP → LP transition is
the result of the projective measurement performed by the
dephasing environment of the exciton. This mechanism is
qualitatively different from the phonon-assisted transitions
described elsewhere [30,31].

To check that the UP → LP transition relaxes via emission
of a photon, and not into the phonon bath, we deployed a toy

model with an explicitly modeled down-conversion resonant
mode of the electromagnetic vacuum dipole-coupled to the
polariton (b† + b), which is indeed populated. In addition, we
modeled the phonon bath in Lindblad theory by coupling the
exciton via oϕ to a single bosonic mode with an excitation
energy in the meV range, i.e., far off-resonant to the exciton
energy. In the time evolution of the expanded system, this
phonon mode is populated. Destruction of a phonon or mea-
surement of no phonon projects an also explicitly modeled
EM mode resonant to the energy of the UP → LP transition
into a state with significant probability for generating an in-
stantaneous photon pair (see Appendix D).

III. SINGLE-PHOTON DOWN-CONVERSION
IN A PLASMON – QUANTUM DOT POLARITON

A. Strong coupling between a quantum dot and a plasmon mode

The cyclic three-level down-conversion scheme discussed
above (Sec. II D) is universal and can be realized for any
kind of coupled quantum system with at least one constituent
subject to pure dephasing. High coupling strength favors
photon pair emission, and thus reaching the strong coupling
(SC) limit or, ultimately, even the ultrastrong coupling regime
(USC) is the second key ingredient for our proposed scheme.
USC has been achieved in a variety of systems, such as in cir-
cuits of superconducting qubits [32], intersubband polaritons
[33], Landau polaritons [34], plasmonic modes and organic
molecules [35], optomechanical systems [36], and plasmonic
resonances coupled to a Fabry-Pérot mode [37]. It is also
possible to enhance the coupling strength by its square-root
scaling when multiple emitters or modes are coupled together
[38,39]. Note that also for such a multiemitter system, the
scheme proposed herein works in the same way when the
relevant subset of states can be approximated as TLS coupled
to the plasmon mode. In addition to this many-emitter ap-
proach, strong spatial confinement of electromagnetic modes
in plasmonic nanoresonators also allows for strong coupling
even with single quantum emitters [40,41]. The latter two
experimental demonstrations open a promising route towards
the implementation of the scheme proposed herein, and as
discussed in the following, the placement of a suitable col-
loidal semiconductor quantum dot in a gap plasmon represents
a model system in which an efficient single-photon down-
conversion process, as was discussed theoretically in Sec. II D,
can be implemented.

Focusing on the goal to realize down-conversion func-
tionality in the visible-infrared range in nanoscale devices,
we explore the above-proposed scheme for a semiconduc-
tor QD exciton coupled to a tip-enhanced gap plasmon
[40,41]. Nanostar nanoparticles on a metal mirror substrate
with dielectric spacing layer provide ultra-small-mode vol-
umes down to Vm = 1.05 × 10−7λ3

m (λm = hc/�m ), and a
high dissipation strength of �m = 75 meV, i.e., strong ra-
diative damping. To account for nonradiative losses of the
plasmon, we set rm = 0.5 [24], indicating that half of the
energy is dissipated into internal Ohmic losses of the metal
nanostructure. A semiconductor QD is used as TLS because
its properties are widely tunable, e.g., by altering geometry
or material doping. The used optical driving of the system is
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optimized to inject, as close as possible, only a single photon.
This avoids excitation of higher-lying energy states, and it
both reduces the computational expenses by limiting the rank
of the density matrix, and justifies the TLS approximation,
i.e., that the excitation of biexciton states, which require the
absorption of two photons, plays a negligible role.

As noted above, ultrafast dephasing for the TLS is desir-
able, and we assume the strongest pure dephasing strength
reported in the literature of �ϕ = 94 meV [42] between the
exciton ground state and the excited state of PbSe QDs as the
upper limit in the Lindblad simulation. For the Redfield sim-
ulations, a phonon bath spectrum with parameters for InGaAs
QDs at a temperature of 295 K is used [43] (see Appendix
C). We chose a high transition dipole moment d = 140 D,
calculated with Fermi’s golden rule [23] from a dissipation
strength of �e = 0.66 meV [44]. These parameters yield,
based on the plasmonic field strength E and the TLS dipole
moment d , the maximal coupling strength gmax = d|E| =
d
√

�m/(2ε0Vm ) > 0.5 �m. We limit the following examples
to cases of g < 0.3 �m to account for, e.g., nonperfect po-
sitioning. For all simulations, a transform-limited Gaussian
excitation pulse with an intensity full width at half-maximum
duration of 20 fs is used.

B. Degenerate down-conversion

The first example is the efficient generation of photon pairs
with equal signal and idler photon energy �s = �i = 1.55 eV
(λs(i) = 800 nm) from a �p = 3.1 eV (λp = 400 nm) pump
photon. Depending on �ϕ , pulsed excitation injects a mean
total of 〈Nin〉(�ϕ = 0 meV) = 0.97 to 〈Nin〉(�ϕ = 94 meV) =
0.77 photons into the polariton (see Appendix B). As seen in
Fig. 3(a), for low and moderate pure dephasing of the TLS,
the direct pump photon fluorescence dominates. For stronger
pure dephasing, the photon pair emission starts to dominate
the emission spectrum S(�). As shown in Fig. 3(b), for pure
dephasing strengths �ϕ > 40 meV the photon pair yield per
injected photon, defined as the number of photon pairs per
pump photon, is Ypair > 0.5. Losses are due to nonradiating
deexcitations, UP → GS fluorescence, and, to a minor extent,
spurious emission processes from excited states above UP
(see Appendix C). The yield as a function of the dephasing
strength exhibits a saturation behavior [solid line in Fig. 3(c)].
This is a direct consequence of the competing loss rates of the
UP population. Because of the linear rise of Ypair for weaker
pure dephasing, even moderate pure dephasing yields already
rather high down-conversion efficiencies before the saturation
regime, limited by nonradiative losses, sets in.

The above-mentioned results are obtained using the
Lindblad formalism, which assumes a white noise spectrum of
the bath. Since the pure dephasing mechanism in QDs relies
on the interaction of the TLS with phonons, the actual bath
spectrum deviates strongly from a white spectrum. In particu-
lar, fluctuations in the bath correlation function oscillating at
the UP → LP transition frequency might induce resonant dis-
sipative transitions in the system and thus mimic the proposed
down-conversion mechanism. To exclude such an artifact re-
sulting from the basic assumptions of a flat spectrum in the
Lindblad formalism, we employ in an example case Redfield
theory, and we demonstrate that the efficient down-conversion

FIG. 3. Dephasing induced degenerate down-conversion in
an ultrastrong coupled plasmon–quantum dot exciton hybrid.
(a) Emission spectra of the degenerate configuration for varying QD
pure dephasing strength �ϕ , calculated with the Lindblad method.
Spectra are normalized to the maximum of the series. (b) Calculated
photon pair yield per injected photon (dots) with sigmoid fit (solid
line). The plasmon resonance and exciton energy are �m = 1.6 eV
(λm = 775 nm) and �e = 2.9 eV (λe = 430 nm), respectively. The
relative coupling strength is η = 0.233 and the effective driving
coupling is κ = 260 meV. (c) Emission spectrum of the degenerate
configuration calculated via the Redfield method (normalized to the
maximum). Note that the lower pump linewidth is due to the low
weight of the structured phonon bath at this energy (for parameters
see Appendix C; the Lindblad result for γϕ = 95 meV is shown as a
red shaded curve).

proposed herein is reproduced in this case as well. Note that in
Redfield theory, the system hybridization is treated differently.
In particular, the driving field-induced effects on the system,
i.e., the ac Stark shifts, are explicitly included. Consequently,
the system parameters used in the Lindblad approach cannot
be directly adopted for the Redfield case, and in addition the
field strength should be kept small enough to exclude any
impact due to ac Stark effects. The excitation pulse f (t ) [in
Eq. (4)] is taken to be transform-limited with an intensity full
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width at half-maximum (FWHM) of 20 fs and the maximum
field strength is somewhat reduced compared to Lindblad
calculations, resulting in an effective system-driving coupling
κ = 160 meV and yielding on average 〈Nin〉 = 0.12 of ab-
sorbed photons. All other simulation parameters are chosen
so that the system dynamics match as closely as possible the
case for �ϕ = 94meV. As shown in Fig. 3(c), the emission
spectrum matches closely the spectrum obtained based on
the Lindblad formalism and as photon pair yield per injected
photon Ypair ≈ 0.45 is obtained.

In the Redfield calculations, the UP → GS transition
linewidth is much less broadened compared to the linewidth
obtained in the Lindblad formalism. This is attributed to the
much lower fluctuation amplitudes at high transition energies
that are present in the Redfield approach and the thus much
smaller linewidth broadening. However, again the UP → LP
transition responsible for the cascaded two-photon emission
is enabled by highly off-resonant coupling of this transition
to phonon modes (cf. Appendix D), which leads to the ef-
ficient pure dephasing induced dissipation via this transition.
Hence, the phonon-bath-induced probing of the polariton state
via a projective measurement of the excited TLS state has
the same impact within Redfield theory and in the Lindblad
formalism. The reported down-conversion mechanism is thus
not an artifact of the white noise spectrum assumed in the
Lindblad formalism but is clearly reproduced using Redfield
theory, which models the phonon bath more realistically. In
the following, we will thus employ the much simpler Lindblad
formalism.

C. Nondegenerate down-conversion

To demonstrate a nondegenerate process, we show a con-
figuration that converts a pump photon at �p = 1.94 eV
(λp = 640 nm) into a signal photon at �s = 1.14 eV (λs =
1090 nm) and an idler photon at �i = 0.8 eV (λi = 1550 nm).
This is achieved by adjusting the detuning �e − �m and
the coupling strength g accordingly. The emission spectra
[Fig. 4(a)] again reveal increasing down-conversion efficiency
for increasing pure dephasing, i.e., the UP to GS fluores-
cence peak at �UP shrinks as the pure dephasing is cranked
up. For the given excitation, the average number of in-
jected photons decrease from 〈Nin〉(�ϕ = 0 meV) = 1.15 to
〈Nin〉(�ϕ = 94 meV) = 0.75. An injected photon results on
average in 0.57 signal photons and 0.34 idler photons for �ϕ =
94 meV. The loss mechanisms are the same as for the degener-
ate case. The signal-idler photon pair yield per injected photon
can again be approximated by a sigmoid function reaching
Ypair (�ϕ = 94 meV) = 0.61 [cf. Fig. 4(b)].

For such efficient down-conversion, the scheme becomes
interesting as a heralded single-photon source. For �ϕ =
94 meV, the detection of a signal photon heralds an idler
photon with 91% confidence, and the detection of an idler
photon gives 53% confidence for a signal photon [Fig. 4(b)].
The heralding capability of idler photons is rather independent
of the dephasing, reflecting the fact that full LP popula-
tion resulting from guaranteed idler emission inevitably leads
to a LP → GS transition, radiating with assumed ∼ 0.5
efficiency.

FIG. 4. Nondegenerate down-conversion process for application
in a nanoscale heralded single photon source. (a) Emission spectra
(normalized to the respective total emission) shown as a black solid
line for �ϕ = 94 meV, and a dashed line for �ϕ = 22 meV calcu-
lated using the density matrix propagation based on the Lindblad
formalism. (b) Pair yield per injected photon (circle), confidence that
a signal photon heralds an idler photon (right pointing triangle), and
probability that an idler photon heralds a signal photon (left pointing
triangle) as a function of the TLS pure dephasing strength �ϕ . The
nanostar gap-plasmon resonance is at �m = 1.4 eV (λm = 900 nm)
and coupled with a relative strength of η = 0.275 to a QD with
an exciton energy of �e = 1.62 eV (λe = 765 nm). The effective
driving coupling is κ = 120 meV.

D. Device output efficiency

The device output efficiency including coupling losses is
estimated by calculating the input coupling efficiency ε as
the ratio between the diffraction-limited spot size at the pump
wavelength and experimental values for the extinction cross
section of nanostars [45] with the respective resonance fre-
quencies, resulting in ε > 0.5 for both the degenerate and
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the nondegenerate case. We assume that the nanostar acts
as an antenna, directing all extinguished light into a single
mode with a sufficiently small mode volume. To account for
deviations from these ideal cases, ε = 0.1 is used to calculate
output efficiencies of one pair per 15 illuminating photons for
the degenerate case at �ϕ = 94 meV pure dephasing strength
in the Lindblad calculation and also for the Redfield calcu-
lation, and 24 for the nondegenerate case for �ϕ = 94 meV.
This amounts in both cases to an increase in efficiency by four
orders in magnitude in photon pair generation, compared to
the highest reported experimental values [10].

IV. CONCLUSIONS

Based on cQED calculations, we propose an efficient
single-photon down-conversion scheme, realizable with ex-
isting technology. In this scheme, the phonon bath of a QD
exciton provides pure dephasing for one constituent of a
coupled quantum system and thus induces the necessary sym-
metry breaking that enables a cascaded photon pair emission.
For ultrastrong coupling between a plasmonic nanoresonator
and a semiconductor QD subjected to strong pure dephasing,
the pair production becomes the dominating relaxation path-
way. This general scheme applies in any polaritonic system
in which the UP-LP transition rate, enabled by the interplay
of coupling and pure dephasing, is in the order of the UP-GS
transition rate. Beyond ultrafast down-conversion, this scheme
offers the means to decrease the impact of nonradiative losses
and admits further nonlinear functionalities such as χ (3) and
χ (2) photon up-conversion. Notably, the scheme works also
for resonators with rather high quality factors such as dielec-
tric microresonators [46] and small coupling g, as long as the
pure dephasing mechanism is strong enough.
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APPENDIX A: CALCULATION OF FREQUENCY
RESOLVED EMISSION PROPERTIES AND DERIVED

QUANTITIES

To determine the expectation values of the radiated field
resolved with respect to specific transitions, the individual
Lindblad jump operators as defined in the main manuscript,
i.e., the transition operators between the polariton eigenstates,
are used for the construction of the relevant observables. For
an individual transition, the output operator for the k to j
transition Ojk reads

Ojk = �
′
jk

h̄
| j〉 〈k|, (A1)

with the output coupling strength corrected for nonradiative
losses �′

jk = r jk� jk as defined in the main manuscript. For

the construction of an output field observable An for a particu-
lar detection channel n, a spectral filter is assumed, including
only transitions with transition energies within the specific
filter Fn. For simplicity, spectral overlap due to linewidths
is neglected for the presented nondegenerate example. In
general, the observables take the form

An =
∑

( j,k)∈Fn

Ojk . (A2)

The yield of uncorrelated photons for a detection channel
corresponding to a filter Fn is then given by

Pn = ∫〈A†
n(t )An(t )〉 dt . (A3)

The yield of correlated photon pairs is

G (2)
nm =

∑
(i, j)∈Cnm

∫ ∫〈A†
n(t )A†

m(t + τ )Am(t + τ )A(t )n〉 dt dτ

(A4)
with Cnm = {(i, j)|i, j ∈ {n, m}}.

The probability that photons in channel Fn herald the de-
tection of a photon in channel Fm is given by

H(2)
nm = G (2)

nm P−1
n , (A5)

where the factor P−1
n normalizes the coincidence to a proba-

bility of 1 to detect a photon in channel n.
Due to the linearity of the trace and the linear relation

between the radiative photon number operator for a specific
set of transitions in Fn and their energy expectation values
〈En〉, the latter is given by

〈En〉 =
∑

( j,k)∈Fn

(�k − � j )〈O†
jkO jk〉 (A6)

The total injected energy 〈Ein〉 is calculated by integrating
over the temporal evolution of the expectation values for all
dissipation channels. The pair yield per injected photon is
then

Ypair = G (2)
nm �pump/〈Ein〉 (A7)

with the pump photon energy �pump.

APPENDIX B: DEPHASING-DEPENDENT PHOTON
INJECTION

For all simulations, all parameters are fixed except for the
exciton pure dephasing strength �ϕ , which is systematically
varied to study its effect. In particular, the effective driving
coupling constant κ and driving pulse shape are not varied.
Accordingly, the total amount of injected energy varies with
�ϕ as shown in Fig. 5. This effect is attributed to the different
dissipation rates and coherences of systems with different �ϕ ,
while being identical in all other parameters. To estimate the
deviation from linearity of the injection efficiency, the number
of injected photons as a function of the dephasing strength is
fitted with a power law,

f (�ϕ ) = a + b(�ϕ )c (B1)

via the parameters a, b, and c. The fit parameters
are a = 9.7 × 10−1 ± 9 × 10−4, b = − 7.05 × 10−4 ±
7.6 × 10−5 meV−1, c = 1.25 ± 3 × 10−2 and a =
1.159 ± 2 × 10−3, b = − 7.4 × 10−3 ± 6 × 10−4 meV−1,
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FIG. 5. Injected photons as a function of the exciton pure dephas-
ing strength for the degenerate (crosses) and nondegenerate (circles)
examples presented in the main manuscript. The curves represent the
power-law fit.

c = 8.8 × 10−1 ± 2 × 10−2 for the degenerate and
nondegenerate example, respectively.

The variation of the photon injection as a function of
pure dephasing is significant but does not change the optical
driving-induced system excitation too much. As mentioned in
the main manuscript, this effect is taken into consideration
by giving the relative yields, normalized to the total amount
of injected energy, which varies with the strength of pure
dephasing.

APPENDIX C: REDFIELD THEORY SIMULATIONS

The assumption of a flat noise-power spectrum as applied
in the Lindblad master equation used for the calculations
given in the main manuscript is rather strong. Hence to
demonstrate that the down-conversion scheme described in
the main manuscript is also possible when the applied model
includes a physically motivated structured photon bath, the
same polariton system time evolution was propagated with the
expression for the time derivative given by Redfield theory,
including a structured phonon noise-power spectrum S(ω)
given by

J (ω) = C
ω3

4π2 Dm h̄v5

[
de exp

(
−

(
ωae

2v

)2)

− dh exp

(
−

(
ωah

2v

)2)]2

, (C1)

J+(ω) = J (ω)

(
1 + exp

(−cT
ω
T

)
1 − exp

(−cT
ω
T

)
)

,

J− = −J (ω)

(
exp

(−cT
ω
T

)
1 − exp

(−cT
ω
T

)
)

, (C2)

S(ω) =
{

J+ (ω) if ω � 0,

J−(ω) if ω < 0,
(C3)

with C being a scaling constant, Dm is the lattice mass density,
v is the speed of sound in the lattice, de and dh are the electron

FIG. 6. Phonon noise-power spectrum. Calculated based on
Eqs. (D1)–(D3) with � = h̄ω for parameters for GaAs quantum
dots : ah = 1.9 × 10−9 kg m−3, ae = 3.5 kg m−3, de = 7, dh =
−3.5, v = 5.11 × 103 m s−1, Dm = 5.37 × 103 kg m−3 at T =
295 K [47].

and hole ground-state localization lengths, respectively, cT is
the constant for the temperature dependence, and T is the tem-
perature. The resulting cutoff frequencies for electrons and
holes are ωe,a = ae

ν
= 2.69 THz and ωh,a = ah

ν
= 1.46 THz.

The numerical values are taken from [47] for GaAs quan-
tum dots, and the temperature used for the calculation is
T = 295 K (Fig. 6). The noise-power spectra for the electro-
magnetic vacuum as an environment for a quantum dot and a
plasmon mode is flat.

To maintain comparability of the Redfield calculations
to the reference Lindblad master equation propagation, the
strength of the external driving field is lowered compared
to the value for the simulations described (κ = 66 meV) in
the main manuscript, since the Redfield equation accounts for
hybridization of the polariton and the driving field, influencing
the eigenstates of the total system on which the environ-
ment acts. Weak driving minimizes the influence of this
effect resulting from the differences in Lindblad and Redfield
propagation.

As shown in Fig. 6, the phonon noise-power spectrum
has most of its weight in the range of a few tenths of meV.
The negative frequency peak is due to thermal pumping at
ambient temperature, i.e., anti-Stokes interactions between
the TLS and the phonon bath. The spectrum vanishes ex-
ponentially for higher values of ω because of the vanishing
occupation of higher phonon number states. The minimum in
the center reflects the diminishing phonon density of states
for the acoustic branch. According to the mismatch between
�m and the noise spectrum frequencies, the phonon modes
are coupled far off-resonance to the TLS representing the
exciton in the quantum dot. While this condition prohibits
real energy transfer from the TLS into the phonon bath, it
still probes the state of a two-level system. Hence it is the
transfer of quantum coherence from the TLS to the phonon
bath without real energy transfer that enables the otherwise
symmetry-forbidden transition from upper polariton state to
lower polariton state.

The correlated photon pair yield is calculated from G (2)

in the same way as for the Lindblad simulations, but with
a difference in the photon emission operators. Since for
Redfield theory the dissipation and dephasing rate are not
phenomenological parameters, they are not known a priori
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to use them for input-output theory. Instead, the dissipation
strength effectively resulting from the noise-power spectra
into the electromagnetic vacuum is read out from the slope
of population decays γ rf in the numerical simulations. To
account for nonradiative losses, the state overlap between the

participating eigenstates of the polariton and the respective
product states of plasmon mode and exciton is used to weight
the different dark loss ratios ηplas(exc) reducing the effective
number of photons emitted. The expressions for the emission
strengths are

�rf
LP,UP = γ rf

LP,UP

(
ηplas

∑
n

|〈UP|n, 0〉|2 + ηexc

∑
m

|〈UP|0, m〉|2
)

�rf
GS,LP = γ rf

GS,LP

(
ηplas

∑
n

|〈LP|n, 0〉|2 + ηexc

∑
m

|〈LP|0, m〉|2
)

(C4)

The resulting dissipation operators used to calculate G (2) are

Arf
LP,UP = �rf

LP,UP

h̄
|LP〉〈UP|, Arf

GS,LP = �rf
GS,LP

h̄
|GS〉〈LP|.

(C5)

For the chosen driving scheme and noise-power spectrum of
the phononic environment in the Redfield calculation, the nor-
malized correlated photon-pair yield is Y rf

pair = 0.38, compared
to Ypair = 0.31 with the Lindblad master equation method.

APPENDIX D: IN-DEPTH DISCUSSION OF PHOTON
DOWN-CONVERSION BY PHONON MEASUREMENT

To further illustrate how pure dephasing of the exciton can
induce degenerate down-conversion resulting in the emission
of a photon pair into a far-field mode coupled to the plasmon
mode, we model the phonon bath, electromagnetic bath, and
the interactions explicitly using a simplified Hamiltonian in
which quantum coupling to the bath modes is reduced for
each bath to a single mode. Pure dephasing of the exciton
results from an interaction between exciton and phonon bath
and thus is related to annihilation and creation of phonons. Ex-
plicit propagation of a suitably designed model system allows
demonstrating that such a process indeed breaks symmetry
and induces UP to LP transitions. To allow a straightforward
propagation in time, both the phonon bath and the electro-
magnetic far-fields are represented by single bosonic modes
with the corresponding energies of the quanta. This expanded
model allows us to illustrate the UP state preparation by a
measurement protocol, which is realized by the pure dephas-
ing process. However, note that the down-conversion process
shown in this appendix for single bath modes is the same
for a continuum of such bath modes. The nonlinearity of
quantum state measurements is exploited, for example, within
the Knill-Laflamme-Milburn (KLM) protocol suggested for
quantum computing in circuits with only linear operations
besides measurements [48].

In the following, the extended model Hamiltonian [26]

Hext = Hsys + �phona†a + γϕσϕ (a† + a)

+ �photc
†c + γm(b† + b)(c† + c) (D1)

is considered, with Hsys, γϕ , γm, and σϕ as defined in the
main manuscript, as well as model parameters as used for the
degenerate down-conversion Lindblad simulation (Sec. III B).

a(†), b(†), and c(†) are the bosonic annihilation (creation)
operators of phonon, plasmon, and output photon modes,
respectively. �phon = 25 meV is the phonon energy, and
�phot = 1.55 eV is the electromagnetic far-field mode energy,
resonant to the down-converted photon energy and coupled to
the plasmon mode. The system is coupled to the respective
baths via the Lindblad operators γm(rm − 1)L(c) for depop-
ulation of the output mode, γmrmL(b) for Ohmic losses of
the plasmon, γϕnthermL(a†) for thermal pump by the bath of
the phonon mode, and γϕ (ntherm + 1)L(a) for its depopulation
[19]. Ohmic losses and radiation from the TLS are neglected
here for simplicity. The thermal phonon population is taken to

be Bose-Einstein distributed, ntherm = (exp( �phon

kBT ) − 1)
−1 ≈

0.9 at kBT = 25 meV. In contrast to the models without
explicitly modeled bath modes (Secs. III B and III C), here
the coherence of the TLS is lost by probing the phonon
mode. This mode is coupled via σϕ (a† + a) to the TLS. The
dephasing is now induced via detection of a phonon instead
of applying σϕ directly on the TLS, as it would result after
tracing out the phonon mode. Note that the phonon mode is
strongly off-resonant to the TLS or UP to LP transition. As
shown below, this still enables an efficient UP to LP transition
by phonon measurements. State measurement by dispersive
coupled auxiliary systems is, e.g., an established method in
circuit QED [49].

The system is initialized in the state ρ0 with the polariton
in the UP state and the rest of the system in the thermal
equilibrium state ρtherm. Hence ρ0 can be expressed as

ρ0 = |UP〉〈UP| ⊗ trpol{ρtherm}, (D2)

with the second term on the right side representing the thermal
state for which the polariton degrees of freedom are traced out.

To illustrate the process of state preparation by an individ-
ual projective measurement induced by the system interaction
with the phonon bath mode, the effect of a phonon detection
followed by the detection of a first down-converted photon at
random times is calculated. Following such a single trajec-
tory of a single quantum system reveals already the proposed
mechanism of pure dephasing induced down-conversion. Ac-
cordingly, at a time t1 the density matrix is transformed to

ρ(t1) → aρ(t1)a†

tr{aρ(t1)a†} , (D3)
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FIG. 7. Single quantum trajectory for state preparation by mea-
surement of one phonon. Measurement of a phonon (black vertical
line) results in a significant down-converted photon population in the
output mode (orange). The right-hand lines represent the respective
expectation values after the definite phonon measurement.

i.e., the system state after detection of a phonon, after left-side
application of the phonon annihilator and right-side applica-
tion of its Hermite conjugate on the density operator of the
total system at time t = t1.

Figure 7 summarizes the expectation values for phonons
〈σ+σ−〉 (gray line), photons in the output mode 〈c†c〉 (orange),
lower polariton state population pLP = 〈|LP〉〈LP|〉 (green),
and upper polariton state population pUP = 〈|UP〉〈UP|〉 (blue)
for an individual quantum trajectory. The initialization of the

system with the polariton in the UP state and the output mode
and the phonon bath in their thermal equilibrium states is
a nonequilibrium state and starts to relax. Both dissipation
of the plasmon mode into the far-field, which is not reso-
nant to the down-converted photon energy, and Ohmic losses
depopulate the UP state. In this process, the UP population
decreases and the phonon number increases, since the exited
polariton and thus TLS generates phonons. This relaxation
of the UP state population continues until the phonon mea-
surement occurs at t1 = 65 fs. As expressed in Eq. (D3),
the quantum state changes abruptly as a phonon is actually
detected in the single-phonon mode that is explicitly mod-
eled in the extended Hamiltonian Hext. In this abrupt change,
various things happen: First of all, and most interestingly in
the context of the present work, the UP population drops
to almost zero. This directly reflects the process, which en-
ables the cyclic three-level scheme as discussed in Sec. II D,
but now without relying on an approximate treatment of the
TLS dephasing mechanism. In parallel to the reduction of
the UP, both the LP population and the output mode photon
occupation number expectation value exhibit an abrupt rise,
i.e., a photon is indeed emitted as the UP to LP transition
occurs. In addition, the phonon expectation value rises by
about a factor 2. This reflects the thermal phonon bunching
in the almost thermal state of the bosonic phonon mode,
i.e., upon the detection of a first phonon there is a signifi-
cantly higher probability to detect a second correlated phonon.
Summarizing, this individual quantum trajectory of the ex-
tended Hamiltonian shows that the emergence of a cyclic
three-level system indeed originates from the projective mea-
surement that is phonon-induced by the pure dephasing of the
TLS.
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