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The Casimir-Polder interaction between the Jahn-Teller X3 molecule with the linear E ⊗ e problem and a
gyrotropic medium is considered. Due to the interaction, the molecule plane is reoriented perpendicularly to the
interface surface to lift degeneracy of circular motion of molecule nuclei. A direct consequence of the broken
rotational symmetry is the appearance of the orbital magnetic moment and accumulation of the topological Berry
phase.
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I. INTRODUCTION

The Casimir-Polder effect is a well-known phenomenon in
physics that describes an attraction between a neutral atom
and a surface due to quantum fluctuations [1,2]. Recently, it
has been shown that the existence of degeneracy of low-lying
atomic energy levels plays an important role in this effect and
may results in the appearance of the Casimir torque acting
on the atom [3]. At the same time, the dynamical Jahn-Teller
(JT) effect, which is manifested as instability of molecular
configurations in electronically degenerate states, has a long
history of investigations as well [4]. However, these two areas
of research have remained largely separate, despite the poten-
tial for cross-disciplinary insights.

The primary goal of this paper is to bridge the gap be-
tween these two fields by exploring the rotational symmetry
breaking mechanism suggested by Silveirinha [3]. The use of
JT molecules appears to be an appropriate way to verify this
proposition. Specifically, we suggest using the Jahn-Teller X3

molecules, belonging to the point group symmetry C3v , which
presents the well-known linear E ⊗ e problem [5]. When the
molecule is brought close to a surface of the gyrotropic media,
it experiences attraction to the surface due to the Casimir-
Polder force. Special features of the rotovibrational spectrum
of the JT molecule and broken time-reversal symmetry in the
gyrotropic medium make it possible to realize in practice the
model of rotational symmetry breaking in a Kramers two-
level system. According to this analysis, two Kramers pairs
of ground and excited states of an atom are coupled together
by electric dipole transitions in such a way that atomic electric
polarizability may be generically nonreciprocal. Being placed
nearby a nonreciprocal substrate the atom is subjected to
Casimir torque, which may reorient the atom plane of po-
larization. As a result, the ground-state Kramers degeneracy
is lifted and the new stable state has a broken rotational
(time-reversal) symmetry, which leads to the appearance of
a nonzero orbital magnetic dipole moment.

Note that the above scenario becomes relevant only for
dipolar-unstable polyatomic systems, i.e., for systems for
which the JT-active symmetrized displacements of e type
produce a dipole moment. In this regard, breaking of the
high-symmetry configuration in the simplest linear molecules,
triatomics, may be described by two bending normal displace-
ments Qx and Qy, which form a twofold degenerate pair.
However, there is no JT effect in their twofold degenerate
states �, �, �, ..., nor is there symmetry breaking induced
by the Renner-Teller effect in these states [6,7]. The only
source of symmetry-breaking bending in linear molecules
is the pseudo-JT effect [8,9], but this case requires sepa-
rate consideration. It remains, therefore, that suitable objects
for implementation of the mechanism can be either trigonal
molecular systems X3 or square-planar molecular systems
ML4 (see Table 2.2 in Ref. [4]). In the first case, the alkali
trimers Li3, Na3, and K3 could be good candidates. These
molecules are stable and possess an electronic ground-state E
term in the regular triangular configuration [10]. In addition,
the choice is of interest, because guiding of ultracold alkali
monoatoms has been exploited in surface-mounted structures
(atom chips) [11,12].

To make quantitative estimates from our treatment that
might be observed, we use data on Li3, which has been the
subject of many previous studies [13–15]. The floppy cluster
Li3 forms the D3h equilateral triangle, which undergoes a
JT distortion to C2v symmetry [16]. The distortion produces
three equivalent potential energy minima separated by small
barriers so that the molecule becomes fluxional due to pseu-
dorotation between the different minima. This effect was first
verified in ESR measurements of 18Li3 and 21Li3 trapped in
cold argon matrices [17].

Given the rotovibrational spectrum of the JT E ⊗ e prob-
lem, we found that the dynamic polarizability, α̂(ω), is
described by a second-rank tensor with nonzero antisymmet-
ric part. This calculation is based on the assumption that at
low temperatures, polarizability of the X3 molecule in the
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ground degenerate E state is limited only to transitions be-
tween the lowest rotational states, which occur due to nuclear
displacements. Next, a vacuum fluctuation-induced Casimir-
Polder energy of a coupling between the JT X3 molecule and
a surface of the gyrotropic medium is defined with the aid of
the calculated α̂(ω). This interaction energy turns out to be
attractive. At this point, it should be briefly mentioned that
there were studies in which the Casimir-Polder interaction
between a chiral molecule and a surface of the chiral medium
was treated in detail [18,19]. It was shown that this interaction
can be either attractive or repulsive, depending on the chiral-
ity of the molecule and the medium. This chirality-selective
behavior could be a valuable tool for enantiomer separation.
In our case of nonchiral molecules, however, even more im-
portant is the fact that the Casimir-Polder energy depends on
an orientation of the molecule plane relative to the interface
surface. A possible consequence of this interaction is the
emergence not only of a Casimir force but also of a Casimir
torque [20]. A similar situation arises in Casimir interaction
of two birefringent plates [21,22], corrugated metallic plates
[23], and topological Weyl semimetals [24]. In particular, we
note Ref. [25], where reorientation of a carbon dioxide CO2

linear molecule close to graphene membranes was analyzed.
Apart from the molecule dynamical polarizability, a calcu-

lation of the Casimir-Polder energy requires knowledge of the
scattered dyadic (tensor) Green function of the surrounding
electromagnetic field. Here we use the formalism developed
in Refs. [3,26], in which the gyrotropic half-space is modeled
by magnetized plasma and the scattered dyadic Green func-
tion is determined by electromagnetic waves on the surface
of the material in the presence of an external in-plane mag-
netic field. It should be emphasized that the main function of
the magnetic field is to break time-reversal symmetry inside
the medium that results in a broken rotational symmetry of
nuclear motion in the JT X3 molecule by means of Casimir-
Polder coupling.

When time-reversal symmetry is broken, the Kramers de-
generacy of the ground state is lifted that gives rise to a
nonzero orbital magnetic moment due to directed rotation of
the molecule nuclei. An interesting feature of the induced
orbital magnetic moment is that it depends entirely upon pa-
rameters of nuclear vibrations and the magnetic field inside
the gyrotropic substrate is only a trigger for its appearance.
However, this magnetic moment lies strictly in a direction
opposed to the field.

Remarkably, the Kramers degeneracy lifting produces a
nonzero Berry phase that has been pointed out in Ref. [27]
for JT molecules, though without specifying a way of the
degeneracy lifting. Thus, the Berry phase is tied with the
persistent nuclear current in a similar manner as breaking
of time-reversal symmetry in topological isolators or pho-
tonic topological insulators causes a nonzero accumulation
of the Berry phase over the whole Brillouin zone (Chern
number) and results in the topologically protected transport
edge modes [28,29].

The remainder of this paper is organized as follows. In
Sec. II, the rotovibrational spectrum of the classical JT E ⊗ e
problem is introduced. The calculation of dynamical polar-
izability based on this spectrum is carried out in Sec. III.
The derivation of the scattered dyadic Green function of the

electromagnetic field is given in Sec. IV. Here, the energy of
the Casimir-Polder interaction is discussed for two possible
orientations of the X3 molecule relative to the interface plane.
The orbital magnetic moment and the Berry phase associated
with nuclei motion are found in Sec. V. The paper is summa-
rized and concluded in Sec. VI.

II. JT SPECTRUM

The E ⊗ e problem is one of the simplest and most com-
mon JT problems, when a polyatomic molecular system in
a twofold orbitally degenerate E state interacts with doubly
degenerate vibrational e modes. This JT problem with linear
terms of vibronic interaction has the Mexican-hat-type adia-
batic potential energy surface (APES)

ε± = 1
2ω2

E

(
Q2

θ + Q2
ε

) ± |VE |
√

Q2
θ + Q2

ε (1)

described by Qθ and Qε coordinates with a conical intersec-
tion at Qθ = Qε = 0. Here, VE is the linear vibronic constant,
and ωE is the frequency of the e vibrations in the ground state.

The model Hamiltonian of the linear E ⊗ e Jahn-Teller
problem is

H = − h̄2

2

(
d2

dQ2
θ

+ d2

dQ2
ε

)
+ ω2

E

2

(
Q2

θ + Q2
ε

)
+ VE (Qθ σ̂x + Qε σ̂y) (2)

in the basis of current-carrying electronic states ψ1,2 = (ψθ ±
iψε )/

√
2; σ̂α are the Pauli matrices with α = 0, x, y, z.

By introducing the cylindrical coordinates Qθ =
ρ cos ϕ, Qε = ρ sin ϕ, the Hamiltonian (2) can be recast
in the equivalent form

H = − h̄2

2

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2

]
σ̂0

+ ω2
Eρ2

2
σ̂0 + VEρ

(
0 e−iϕ

eiϕ 0

)
. (3)

Eigenstates of this Hamiltonian may be sought in the form
� = �/

√
ρ; then, the Hamiltonian H̃ for �(ρ, ϕ) may be

written as

H̃ =
[
− h̄2

2

d2

dρ2
− h̄2

8ρ2
+ h̄2L2

z

2ρ2

]
σ̂0

+ ω2
Eρ2

2
σ̂0 + VEρ

(
0 e−iϕ

eiϕ 0

)
, (4)

where the rotational angular momentum operator L̂z = −i ∂
∂ϕ

is defined.
Applying the unitary transformation, H̃′ = Ŝ†H̃Ŝ, with

Ŝ = 1√
2

(
e−i ϕ

2 e−i ϕ

2

ei ϕ

2 −ei ϕ

2

)
, (5)

yields the Hamiltonian in the basis of the APES eigenstates

H̃′ =
[
− h̄2

2

d2

dρ2
− h̄2

8ρ2
+ ω2

Eρ2

2

]
σ̂0

+ h̄2

2ρ2

(
L̂z − 1

2
σ̂x

)2

+ VEρσ̂z. (6)
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FIG. 1. Adiabatic potential energy surfaces E± of the Jahn-Teller
E ⊗ e problem. The trough of the lower sheet E− has a minimum at
ρ−

0 resulting from a balance of elastic and JT forces.

The total angular momentum operator, Ĵz = L̂z + 1
2 σ̂z, con-

sisting of the rotation angular momentum operator L̂z and
the electronic angular momentum operator σ̂z/2, commutes
with the Hamiltonian (4) and all states may be marked by the
half-integer quantum numbers j = ± 1

2 ,± 3
2 , . . . [30].

Using the unitary transformation (5) it is straightforward to
show that Ĵ ′

z = Ŝ†ĴzŜ = L̂z; then the eigenstate �(ρ, ϕ) of (6)
may be factorized into two terms

�(ρ, ϕ) = 1√
2π

ei jϕχ (ρ), (7)

where a motion along the adiabatic potential trough is de-
scribed by the ϕ coordinate of free rotations, while the radial
motion along ρ is characterized by the function χ (ρ). The
latter is governed by the Hamiltonian

H̃χ =
[
− h̄2

2

d2

dρ2
+ h̄2 j2

2ρ2
+ ω2

Eρ2

2

]
σ̂0 − h̄2 j

2ρ2
σ̂x + VEρσ̂z.

(8)
In the adiabatic approximation the term with σ̂x, which

mixes the APES sheets, can be neglected, and, as an eventual
result, the original Schrödinger equation with the Hamiltonian
(3) is transformed into a pair of uncoupled nonlinear equa-
tions for the nuclear radial wave function χ (ρ)

[
− h̄2

2

d2

dρ2
+ h̄2 j2

2ρ2
+ ω2

Eρ2

2
± |VE |ρ

]
χ (ρ) = E±χ (ρ). (9)

Here the sign +/− serves to distinguish the upper/lower
branches of the adiabatic potential. The left-hand side include
both the elastic, Jahn-Teller, and centrifugal energies. As has
been shown by Slonczewski, on the lower branch of the AP
the Jahn-Teller force competes with elastic forces to reach
equilibrium (elastically stabilized motion). In contrast, on the
upper AP branch, the centrifugal force is vital to establish the
equilibrium position, but elastic forces are not (centrifugally
stabilized motion) [31] (see Fig. 1).

Solutions of Eqs. (9) can be expressed in terms of har-
monic oscillator wave functions χn(ρ − ρ±

0 ) (n = 0, 1, 2, . . .)

centered at

ρ+
0 ≈

(
h̄2 j2

|VE |

) 1
3

⎡
⎣1 − ω2

E

3|VE |

(
h̄2 j2

|VE |

) 1
3

⎤
⎦ (10)

for the upper AP branch, and at

ρ−
0 ≈ |VE |

ω2
E

[
1 + h̄2 j2ω2

E

|VE |4
]

(11)

for the lower one.
Thus, the general solution of the initial Hamiltonian (3) is

found to be

�±
n j (r, ρ, ϕ) = ψ±(r, ϕ)χn

(
ρ − ρ±

0

) ei jϕ

√
2πρ

, (12)

where the adiabatic electronic eigenstates are

ψ±(r, ϕ) = 1√
2

[
e−i ϕ

2 ψ1(r) ± ei ϕ

2 ψ2(r)
]
.

To find polarizability of the JT X3 molecule valid for low
temperatures we need low-lying vibronic states only. In our
further treatment we assume that the JT stabilization energy
EJT = V 2

E /2ω2
E is large enough; i.e., the depth of the AP

well at the point ρ−
0 is greater than the kinetic energy of the

circular motion along the trough and transitions between the
lower and upper sheets of the APES may be ignored. As a
result, the vibronic energy states are limited to the so-called
rotovibrational spectrum

En, j = h̄ωE

(
n + 1

2

)
+ h̄2 j2

2ρ−
0

2 − EJT , (13)

where the quantum numbers j and n specify rotational and
radial motions of nuclei, respectively.

Thus, in the regime of strong linear vibronic coupling,
the vibrational motion of the nuclei splits the adiabatic po-
tential states into levels lying comparatively close together,
h̄ωE � EJT . These levels, in turn, exhibit a fine splitting into
a series of doublet levels of rotational motion with the energy
distance h̄2ω2

E (2| j| + 1)/4EJT ; i.e., a conventional hierarchy
of vibrational spectra in molecules is maintained [4,32].

III. POLARIZABILITY

A calculation of the Casimir-Polder interaction (van der
Waals potential) between a molecule with the quantum vac-
uum comprises the calculation of the dynamic polarizability
of the molecule, which is a measure of its response to an
electric field oscillating at a frequency ω.

At zero temperature the polarizability of the X3 molecule
in the ground degenerate E state is limited only to transi-
tions between the lowest rotational states with n = 0 and
m = ± 1

2 ,± 3
2 . The electric dipole interaction with the nuclei

does not lead to purely rotational transitions since its matrix
elements are nonzero only when �n = ±1. However, this
restriction is removed when the vibronic interaction is taken
into account. As a consequence, the purely rotational electric
dipole transitions with n = 0 become possible due to the nu-
clear dipole moment.
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In the molecular framework the latter can be expressed as

Dn(Q) = ZE Qxex + ZE Qyey. (14)

Here, ZE is the effective charge of the polar vibrational e mode
that produces the dipole moment; e is the polarization vector
of the radiation field.

For the trigonal system with the D3h symmetry of the X3

molecule, the appropriate symmetrized atomic displacements
in terms of Cartesian coordinates read

Qθ = Qx = 1√
3

(x1 + x2 + x3), (15)

Qε = Qy = 1√
3

(y1 + y2 + y3). (16)

Since the low-lying part of the vibronic spectrum corre-
sponds to the circular states �−

0± 1
2

and �−
0± 3

2

defined in (12),

it is convenient to recast (14) into the equivalent form

Dn(Q) = ZE Q+e− + ZE Q−e+ (17)

by introducing the circular basis of the electromagnetic
field polarization e± = (ex ± iey)/

√
2. These radiation circu-

lar components are coupled with the nuclei displacements

Q± = 1√
2

(Qθ ± iQε ) = ρ√
2

e±iϕ,

which describe clockwise or counterclockwise motion along
the circular trough of equal-energy minima on the lower sheet
of the APES.

To find appropriate nuclear dipole transitions, the radial
vibrations are decomposed as ρ = ρ−

0 + r, where ρ−
0 is the

radius of the circle at the bottom of the trough (11), and so

Q± = 1√
2
ρ−

0 e±iϕ + 1√
2

re±iϕ.

(Below, we will omit the upper minus sign in ρ0 being re-
stricted to the lower APES sheet.) Apparently, the first term
gives rise to transitions with �n = 0, while the second is
related to the change �n = ±1. Therefore, the relevant dipole
transitions at low temperatures in the regime of strong linear
vibronic coupling are [33]

〈�−
0± 1

2
|Q±|�−

0∓ 1
2
〉 = 〈�−

0± 3
2
|Q±|�−

0± 1
2
〉 ≈ |VE |√

2ω2
E

.

To find the dynamic polarizability we calculate the expec-
tation value of the nuclear dipole moment operator using the
first-order perturbed wave function for the initial ground state

|�0〉 = c1�
−
0, 1

2
+ c2�

−
0,− 1

2
(18)

with |c1|2 + |c2|2 = 1. This approach (for example, see
Ref. [34]) leads to the result for the dynamic polarizability

α̂ =
⎛
⎝ αxx αxy 0

−αxy αxx 0
0 0 0

⎞
⎠ (19)

with the tensor components

αxx = Z2
Eρ2

0

4h̄

ω0

ω2
0 − ω2

(20)

and

αxy = i
Z2

Eρ2
0

4h̄
(|c1|2 − |c2|2)

ω

ω2
0 − ω2

. (21)

To obtain an estimate for the frequency of the transition
between the neighboring Kramers levels

ω0 = 1

h̄

(
E± 3

2
− E± 1

2

)
= h̄

ρ2
0

≈ ωE

(
h̄ωE

2EJT

)
,

we use the values for the dimensionless JT stabiliza-
tion energy EJT /h̄ωE = 2.53 and the frequency of the
E -type vibrations, ωE = 250 cm−1, in the molecule Li3 [10].
This immediately yields ω0 ≈ 49.41 cm−1 (or, equivalently,
1.481 THz) and EJT = 632.5 cm−1.

The normal coordinate ρ0 in mass-weighted length units
amounts to ρ0 = √

h̄/ω0 ≈ 2.668 × 10−20 g1/2 cm. By using
the molar mass of Li3 20.823 g/mol, i.e., the density mass
of the Li3 molecule being mn ≈ 3.457 × 10−23 g, we obtain
ρ0 ≈ 0.454 Å. The effective nuclear charge for the valence
2s electron in lithium is ZE ≈ 1.279|e| = 6.144 × 10−10 esu
(see, for example, Ref. [35]).

At last, a measure of absorption intensity is the dimension-
less oscillator length

f± 1
2 →± 3

2
= 2mnω0

3h̄

∑
α=x,y

∣∣∣∣
〈
±1

2

∣∣∣∣Qα

∣∣∣∣±3

2

〉∣∣∣∣
2

= mnω0ρ
2
0

3h̄
, (22)

which is approximately equal to 0.332.

IV. CASIMIR INTERACTION

The vacuum fluctuation-induced Casimir-Polder force act-
ing on an atom or molecule in a generic electromagnetic
environment depends on the interaction Casimir energy [36]

EC = − h̄

4π

∫ ∞

−∞
dξ Tr{α̂(iξ )(−iωĜ)ω=iξ }, (23)

which, apart from the found dynamic polarizability, is deter-
mined by the system Green function, Ĝ(r, r′, ω), evaluated
at imaginary frequencies ω = iξ and taken with identical
observation and source points, r = r′ = r0. (Here, r0 is a
position of the atom or molecule.) The explicit form of Ĝ
for a gyrotropic media half-space is discussed in detail in the
Appendix according to Ref. [26], and the final result is given
by Eq. (A16).

In this approach, the permittivity ε̂(ω) of the metal half-
space is modeled by the gyrotropic permittivity of a plasma in
the external static magnetic field B [26]. If the ac electric field
E(t ) = E0e−iωt is applied, the electrons start to oscillate with
the frequency ω, so that the velocity of the oscillation lags π/2
behind the oscillation of E(t ). Simultaneously, in the plane
perpendicular to B the electron motion presents superposition
of the circular motion at the cyclotron frequency ωc with an
oscillation at the frequency ω [37].

This model results in the following tensor form,

ε̂(ω) =
⎛
⎝ εt (ω) 0 iεg(ω)

0 εa(ω) 0
−iεg(ω) 0 εt (ω)

⎞
⎠, (24)

115429-4



ROTATIONAL SYMMETRY BREAKING OF NUCLEAR … PHYSICAL REVIEW B 108, 115429 (2023)

(a)

(b)

FIG. 2. Horizontal (a) and vertical (b) orientations of the
molecule plane relative to the interface surface.

where the components depend on the electron plasma fre-
quency ωp,

εt (ω) = 1 − ω2
p

ω2 − ω2
c

, εa(ω) = 1 − ω2
p

ω2
,

εg(ω) = ωcω
2
p

ω(ω2
c − ω2)

. (25)

A. Casimir-Polder coupling

A coupling between the Jahn-Teller X3 molecule and the
gyrotropic material half-space mediated by the photon field
is expected to depend on the orientation of the molecular
axes (x′, y′, z′) with respect to the interface coordinate axes
(x, y, z). Below, we focus on the two cases (i) when the molec-
ular plane is parallel to the interface plane and (ii) when these
planes are mutually perpendicular.

1. Horizontal orientation

The orientation of the molecular axes with respect to the
interface reference frame is determined by the rotation r =
R̂H r′ with the matrix [see Fig. 2(a)]

R̂H =
⎛
⎝ 0 −1 0

1 0 0
0 0 1

⎞
⎠.

The components of the polarization tensor in the two
frames are related by

α′
mn = αi jR

H
imRH

jn, (26)

where α′
i j are determined by Eqs. (19)–(21).

Some straightforward algebra leads to the expression

Tr{α̂(ω)[−iωĜEE (ω)]} = Z2
Eρ2

0

64ε0 h̄π2d3

ω0(
ω2

0 − ω2
)

×
∫ 2π

0
dθ

aθω
2
θ

ω2
θ − ω2

, (27)

in which the results (A12) and (A16) are accounted for. Here,
d is a distance of the molecule center of mass with respect
to the interface plane, and ωθ is the frequency of the surface
plasmon polaritons (SPPs) determined by Eq. (A8). The dis-
persion of these modes arises from the dependence of their
frequencies on the angle θ between the in-plane wave vector
direction of the propagating SPP modes and the direction of
the static magnetic field inside the gyrotropic medium. The
positive θ -dependent factor aθ is given by Eq. (A14). Note
specifically that the dyadic Green function Ĝ, incorporating,
in general, both electric and magnetic parts, is reduced to the
purely electric constituent ĜEE in the quasistatic approxima-
tion, which is relevant for small d (see Appendix).

Performing in Eq. (23) transition to integration over the
imaginary frequency axis, ω = iξ , one finds the Casimir-
Polder energy in the horizontal geometry

EH
C = ih̄

4π

∫ i∞

−i∞
dω Tr{α̂(ω)[−iωĜEE (ω)]}

= iZ2
Eρ2

0ω0

256ε0π3d3

∫ 2π

0
dθ aθω

2
θ

×
∫ i∞

−i∞
dω

1(
ω2

0 − ω2
) 1(

ω2
θ − ω2

)
= − Z2

Eρ2
0

256ε0π2d3

∫ 2π

0
dθ

aθωθ

ωθ + ω0
. (28)

In the above, the integral∫ i∞

−i∞
dω

1(
ω2

0 − ω2
) 1(

ω2
θ − ω2

) = iπ

ω0ωθ (ω0 + ωθ )
(29)

is exploited.
As the negative sign shows, EH

C describes attraction be-
tween the JT X3 molecule and the surface of the gyrotropic
media. The strength of the interaction is determined by the
factor Z2

Eρ2
0/(256ε0π

2d3), which is of order 2.42 × 10−11 eV
for the trimer Li3 at d = 100 nm. Note that the expression
for EH

C is ground-state independent; therefore twofold degen-
eracy of the ground state is not lifted and rotational symmetry
remains unbroken [3].

2. Vertical orientation

A detailed calculation of the Casimir-Polder energy for the
perpendicular relative orientation of the molecular and the
interface planes may be performed in the same vein.

The matrix

R̂V =
⎛
⎝−1 0 0

0 0 1
0 1 0

⎞
⎠

specifies the mapping between the components of r and r′, i.e.
r = R̂V r′ [see Fig. 2(b)].
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FIG. 3. Magnetic moment μ (blue arrow) created by the nuclei
clockwise rotation due to broken rotational symmetry is oppositely
aligned with the magnetic field B (red arrow) inside the gyrotropic
medium.

It is convenient to switch to the interface plane coordinate
frame to find

Tr{α̂(ω)[−iωĜEE (ω)]}

= Z2
Eρ2

0

64h̄ε0π2d3

ω0

ω2
0 − ω2

∫ 2π

0
dθ (1 + cos2 θ )

aθω
2
θ

ω2
θ − ω2

+ Z2
Eρ2

0

32h̄ε0π2d3
(|c1|2 − |c2|2)

ω2

ω2
0 − ω2

×
∫ 2π

0
dθ cos θ

aθωθ

ω2
θ − ω2

. (30)

Making use of the integral (29) along with∫ i∞

−i∞
dω

ω2(
ω2

0 − ω2
) 1(

ω2
θ − ω2

) = − iπ

ωθ + ω0

in integration of (30) over the imaginary frequencies leads
to the following result for the Casimir-Polder energy in the

FIG. 4. Geometry of the gyrotropic half-space. The surface plas-
mon polariton propagates within the xy plane along the direction of
the wave vector k|| given by the polar angle θ . A static magnetic field
inside the media is oriented along the y axis.

vertical geometry,

EV
C = − Z2

Eρ2
0

256ε0π2d3

∫ 2π

0
dθ (1 + cos2 θ )

aθωθ

ωθ + ω0

+ Z2
Eρ2

0

128ε0π2d3
(|c1|2 − |c2|2)

∫ 2π

0
dθ cos θ

aθωθ

ωθ + ω0
.

(31)

It is clearly seen that the ground-state Kramers degeneracy
is lifted, |c1| = 0 and |c2| = 1, because of the energy gain
associated with the second term. Apart from this contribution,
the ground-state independent term turns out to be less than the
analogous result (28) for the horizontal orientation of the X3

molecule.
The initial doubly degenerate eigenfunctions are related to

two possible directions of nuclei rotations, i.e., in the clock-
wise or counterclockwise manner around their local axes. This
rotational symmetry will be broken by the quantum vacuum
fluctuations.

V. MAGNETIC MOMENT AND BERRY PHASE DUE TO
BROKEN ROTATIONAL SYMMETRY

A. Magnetic moment

A direct consequence of rotational symmetry breaking is
the appearance of a magnetic moment in the X3 molecule
which is intimately associated with nuclei motion. Below, the
issue is addressed in the semiclassical scheme proposed in
Ref. [3].

To start with, one constructs the effective Hamiltonian

Ĥeff =
∑

j

E j | j〉〈 j| (32)

defined in the restricted Hilbert space of the low-lying rota-
tional states with j = ± 1

2 ,± 3
2 and the appropriate eigenvalues

E± 1
2

= 0, E± 3
2

= h̄ω0.
The angular momentum due to nuclei circular motion is

L̂ = [Q̂ × P̂] = (Q̂xP̂y − Q̂yP̂x )ez, (33)

where all components are given in the molecular reference
frame.

Derivation of the nuclei momentum P relies on solving the
equation of motion

P̂α

mn
= dQ̂α

dt
= i

h̄
[Ĥeff, Q̂α], (α = x, y), (34)

where mn is the molecule mass.
Using the matrix representation for the circular coordinates

in the basis {| − 3
2 〉, | − 1

2 〉, | 1
2 〉, | 3

2 〉}

Q̂+ = ρ0√
2

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

Q̂− = ρ0√
2

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠, (35)
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it is easy to establish that

[Ĥeff, Q̂x] = i

2
h̄ω0ρ0 (σ̂z ⊗ σ̂y), (36)

[Ĥeff, Q̂y] = i

2
h̄ω0ρ0 (σ̂z ⊗ σ̂x ), (37)

where ⊗ stands for the direct product of the Pauli matrices σα

(α = x, y, z).
From Eq. (33) it is straightforward to show that

L̂z = −Inω0 (σ̂z ⊗ σ̂0), (38)

where In = 1
2 mnρ

2
0 is the moment of inertia of the JT X3

molecule.
Following the classical argument, a magnetic dipole mo-

ment generated by rotation of a charge ZE of mass mn in
an orbit of the radius ρ0 in the xy plane, μz = ZEω0ρ

2
0/2, is

proportional to the angular momentum Lz = mnω0ρ
2
0 through

the relation μz = γnLz, where the gyromagnetic ratio is intro-
duced, γn = ZE/2mn.

This immediately implies that the magnetic moment oper-
ator due to nuclei rotation is given by

μ̂z = −γnInω0 (σ̂z ⊗ σ̂0), (39)

whose expectation value for the ground state takes the form

〈�0|μ̂z|�0〉 = 1
4 ZEω0ρ

2
0 (|c1|2 − |c2|2). (40)

When there is the twofold degeneracy of the ground state,
|c1|2 = |c2|2 = 1/2, the magnetic moment is absent, but when
the Kramers degeneracy is lifted, |c1|2 = 0 and |c2|2 = 1,
the magnetic moment μz = −ZEω0ρ

2
0/4, which is of order

0.03μN in Li3 trimer, appears. (Here, μN = 5.051 × 10−27

A m2 is the nuclear magneton.) For comparison, the magnetic
moment of three equivalent I = 1 nuclei of 6Li isotopes,
which is detectable in the ESR experiment via the small hy-
perfine interaction [17], equals 3g0IμN ≈ 6.00846μN , where
g0 ≈ 2.00282. The sign minus means that the induced mag-
netic moment and the magnetic field inside the gyrotropic
media are oppositely directed; i.e., Lenz’s law is retained. The
effect can rightly be called diamagnetsim mediated by vacuum
fluctuations (Fig. 3).

It should be understood that there is no direct Zeeman inter-
action of the magnetic field B, which operates inside the metal
half-space, with electron and nuclear magnetic moments of
the molecule located in vacuum, where the magnetic field
is absent. Even though B determines the magnitude of the
Casimir-Polder coupling, it just triggers time-reversal symme-
try breaking inside the molecule when the field strength does
not matter. In addition, the direct Zeeman interaction could
not be able to govern spatial orientation of the molecule.

Finally, we consider what happens when the JT X3

molecule is positioned near a reciprocal substrate, e.g., a stan-
dard metal surface, whose interaction tensor is given by [3]

−iωĜEE (ω) = 1

32πd3

ε(ω) − 1

ε(ω) + 1

⎛
⎝ 1 0 0

0 1 0
0 0 2

⎞
⎠. (41)

Here,

ε(ω) − 1

ε(ω) + 1
= ω2

sp

ω2
sp − ω2

, (42)

where ωsp = ωp/
√

2 is the surface plasmon resonance.
Starting with the horizontal orientation of the molecule

plane and making subsequent rotation by an angle θ around
the reference x axis with the help of the matrix

R̂x =
⎛
⎝1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠, (43)

the Casimir-Polder energy can be evaluated similarly to (28).
The result is

EC = − 1

64πd3

(
ZEρ0

2

)2
ωsp

ω2
sp − ω2

(
1 + 1

2
sin2 θ

)
, (44)

which coincides with Eq. (27) in Ref. [3], if only chiral (cir-
cularly polarized) transitions count.

Clearly, the orientation of the molecule plane perpendicular
to the substrate (θ = π/2) becomes energetically favourable.
However, the new equilibrium position does not lift the
ground-state degeneracy, and, consequently, there is no mag-
netic moment induced by a broken time-reversal symmetry.

B. Berry phase

In order to gain insight into how the broken rotational
symmetry is related with a molecular geometric phase, it is
necessary to examine the Berry phase for a rotational loop
in nuclear configuration space, where ϕ varies over nonzero
multipliers of 2π .

The Berry connection associated with the rotational mo-
tions of nuclei of the E ⊗ e JT problem, when radial
displacements are ignored, is determined by

Aϕ = i〈�0(r, ρ, ϕ)|∇ϕ�0(r, ρ, ϕ)〉.
Here, the vibrational ground state (18) is involved.

A direct calculation leads to the result

Aϕ = 1

2ρ0
(|c2|2 − |c1|2).

The Berry phase γ is then determined as the circulation
of A along the closed path C around the z axis of the nuclei
coordinate space [38]

γ =
∮
C

A · dQ =
∫ 2π

0
Aϕρ0dϕ = π (|c2|2 − |c1|2).

Thus, the emergence of the nontrivial molecular geometric
phase π due to the lifted Kramers degeneracy (|c2|2 = 1 and
|c1|2 = 0) is another concomitant effect of the broken rota-
tional symmetry.

VI. CONCLUSIONS

As a summary, this paper investigates peculiarities of
the Casimir-Polder interaction between the Jahn-Teller X3

molecule with the linear E ⊗ e problem and the interface of a
gyrotropic medium. Our results demonstrate that the vertical
orientation of the molecule plane with respect to the interface
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surface is more energetically favorable than the corresponding
horizontal orientation. This effect becomes possible due to
the rotational symmetry breaking mechanism provided by the
Casimir-Polder coupling, which lifts degeneracy of circular
motion of the JT molecule nuclei. Moreover, we demonstrate
that a direct consequence of the rotational symmetry break-
ing is the appearance of the orbital magnetic moment and
accumulation of the topological Berry phase. Remarkably,
directions of the induced magnetic moment and the magnetic
field inside the gyrotropic medium are oppositely aligned. It
makes it possible to achieve collective orientational coherence
of a cloud of such molecules placed close to the gyrotropic
medium. We believe that this property can be potentially used
to design a spin filter device on the base of the Jahn-Teller
molecules.

Furthermore, we anticipate that obvious correlation be-
tween a nuclei motion, magnetic polarization, and Berry phase
accumulation may contribute to our understanding of chiral-
induced spin selectivity (CISS) [39]. In this regard, the work
[40] should be noted, where dynamically generated spin polar-
ization in chiral molecules interfaced with a metallic surface
was reported. Specifically, it was argued that the CISS is
an excited state phenomenon which appears in the transient
regime immediately after coupling of a chiral molecule with
a metallic surface. In the presence of electron-vibration in-
teraction these transient spin fluctuations become stable and
develop into finite spin polarization in the stationary limit.
Nuclear vibrations of the molecule facilitates angular mo-
mentum transfer between states which form the ground state
to maintain the nonvanishing spin polarization. A close idea
was put forward in Ref. [41], where the authors contend that
CISS may arises when nuclear motion becomes entangled
with spin-dependent electronic dynamics. Particularly, they
hypothesized that nonadiabatic dynamics in the presence of
degenerate electronic state will produce a nonzero Berry cur-
vature which can be transformed into an effective magnetic
field. The latter may be crucial as far as creating chiral-
induced spin separation.

At last, Ref. [42] should be mentioned, where a possible
static scenario of CISS was analyzed on the basis of the
pseudo-Jahn-Teller Hamilonian for a chiral molecule with C3

symmetry. In this model a broken chiral symmetry is put into
parameters of the pseudo-JT Hamiltonian, which should be
considered together with the spin-orbit interaction. Elimina-
tion of the nuclear vibronic coordinates results in an effective
Hamiltonian with spin-dependent energy spectrum of an elec-
tron injected into the molecule [43–46].
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APPENDIX: DYADIC GREEN FUNCTION

The dyadic Green function approach allows us to derive the
electric field E(r) emitted by a classical dipole with electric
dipole moment p located at the point r0. The electromagnetic
field in the vacuum is the superposition of the primary field
(Ep) and the scattered field (Es).

The primary field is given by Ep(r) = −iωĜ(p)
EE (r − r0)p,

where the dyadic Green function in a vacuum [47]

−iωĜ(p)
EE (r − r0) = 1

ε0
[Îk2 + ∇∇]g(r − r0) (A1)

is expressed via the scalar Green function

g(r − r0) = eik0|r−r0|

4π |r − r0| .

Here, the source point r0 = (0, 0, d ) is defined via the dis-
tance d of the dipole with respect to the interface plane (z =
0).

The scalar Green function may be rewritten as an integral
summation of plane waves

eik0|r−r0|

4π |r − r0| =
∫ ∞

−∞

∫ ∞

−∞

dkxdky

(2π )2

eikxx+ikyy−γ0|z−d|

2γ0

with γ0 =
√

k2
x + k2

y − k2
0 and k0 = ω/c, where the Weyl for-

mula for the plane-wave expansion of a spherical wave is used
[47].

A similar representation for the scattering part of the Green
function may be derived via the Sommerfield-type integral
[26]. However, it is often more convenient to specify Ĝ(s)

EE us-
ing the expansion of the dyadic Green function in the natural
electromagnetic modes [48]

Fnk =
(

Enk
Hnk

)
.

They are normalized

1

2

∫
dr F∗

nk(r)
∂

∂ω
[ωM̂]Fnk(r) = 1 (A2)

with the factor including the material matrix

M̂(ω) =
(

ε̂(ω) 0̂
0̂ μ0 Î

)
.

The dispersive permittivity of the molecule environment is de-
fined separately in the free space and in the media half-space
[3]

ε̂(ω) = ε0

{
Î, z > 0 (vacuum),

ε̂(ω), z < 0 (media).

In the above, Î is the 3 × 3 identity matrix and the medium is
assumed to be nonmagnetic.

The dyadic Green function can be decomposed as [26,49]

Ĝ(s)(r, r1, ω) = Ĝ+(r, r1, ω) + Ĝ−(r, r1, ω)

− i

ω
M̂−1

∞ δ(r − r1), (A3)
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where the positive Ĝ+ and the negative Ĝ− frequency parts
are expanded into the normal modes

−iωĜ+(r, r1, ω) =
∑

ωnk>0

ωnk

2

1

ωnk − ω
Fnk(r) ⊗ F∗

nk(r1),

(A4)

−iωĜ−(r, r1, ω) =
∑

ωnk>0

ωnk

2

1

ωnk + ω
F∗

nk(r) ⊗ Fnk(r1).

(A5)

Here, ωnk are the frequencies of the normal modes. Note that
since the δ-function term in (A3) is related with the self-action
and does not contribute to the Casimir-Polder force, it may be
ignored below.

In what follows we examine the mechanism of coupling
between the JT X3 molecule and the metallic surface in which
the fluctuation-induced force is driven by surface plasmon
polaritons (SPPs). A detailed analysis of these excitations may
be found in Ref. [26]; below we give just a brief review of
SPP characteristics necessary to calculate the Casimir-Polder
interaction.

A search of the natural electromagnetic modes is per-
formed in the quasistatic approximation when the electro-
magnetic wavelength c/ω is assumed to be large compared
with the distance d . It makes it possible to choose the purely
electric fields Enk = −∇φnk and Hnk ≈ 0, where the elec-
tric potential may be obtained from the Maxwell equation
div[ε̂(ω)∇φnk] = 0, where ε̂(ω) is explicitly determined by
Eqs. (24) and (25).

The scalar potential is given in terms of the evanescent
waves

ϕ(r) = Ak||√
S

ei(kxx+kyy)
{

e−k||z (z > 0),
ek̃||z (z < 0),

(A6)

with k|| =
√

k2
x + k2

y and k̃|| =
√

k2
x + εa

εt
k2

y . Here, S is the in-
terface area; the normalization parameter Ak|| will be defined
below.

The frequency of the surface plasmon polaritons may be
derived from the boundary condition that normal components
of the electric displacement D are continuous at the interface
if the surface charge is zero. Moreover, due account must be
taken of the fact that the presence of the static magnetic field
introduces a space anisotropy in the electron plasma and, as a
consequence, it is convenient to introduce the parametrization
in terms of the angle θ within the interface plane (Fig. 4)

kx = k|| cos θ, ky = k|| sin θ. (A7)

The resonance frequencies are then given by

ωθ = 1

2
ωc cos θ +

[
ω2

p

2
+ ω2

c

4

(
1 + sin2 θ

)] 1
2

. (A8)

The normalization coefficient is determined from the con-
dition (A2),

|Ak|| |2 = 2

ε0

[
k|| +

�
(
ωθ, ωc, ωp

)
2k̃||

]−1

, (A9)

where

�(ωθ, ωc, ωp) = (
k2

x + k̃2
||
) ∂

∂ω
{ωεt (ω)}

∣∣∣∣
ω=ωθ

+ k2
y

∂

∂ω
{ωεa(ω)}

∣∣∣∣
ω=ωθ

+ 2kxk̃||
∂

∂ω
{ωεg(ω)}

∣∣∣∣
ω=ωθ

. (A10)

In general, Eqs. (A3)–(A5) determine a 6 × 6 tensor of the
electric and magnetic dyadic Green functions

Ĝ =
(

ĜEE ĜEH

ĜHE ĜHH

)
.

Apparently, this tensor is reduced to the purely electric 3 ×
3 tensor ĜEE in the quasistatic approximation.

To specify its form, one starts with

−iωĜ+
EE (r, r′, ω) =

∑
k||

ωk||

2

1

ωk|| − ω
∇ϕk(r) ⊗ ∇′ϕ∗

k (r′),

(A11)

where ωk|| are frequencies of the normal modes, which are
nothing but the SPP resonance frequencies ωθ .

Replacing summation over k|| by integration and taking the
limit r → r′ with z = z′ = d , one has to evaluate

−iωĜ+
EE (r, r, ω) = 1

(2π )2

∫∫
dkxdky|Ak|| |2

ωθ

2

1

ωθ − ω

× (
ik|| − k||ez

) ⊗ (
ik|| − k||ez

)∗
e−2k||d .

Introducing the θ -dependent dimensionless tensor

�̂(θ ) = 1

k2
||

(ik|| − k||ez ) ⊗ (
ik|| − k||ez

)∗

=
⎛
⎝ cos2 θ sin θ cos θ −i cos θ

sin θ cos θ sin2 θ −i sin θ

i cos θ i sin θ 1

⎞
⎠ (A12)

and by changing to polar coordinates, one obtains

−iωĜ+
EE (r, r, ω) = 1

32π2ε0d3

∫ 2π

0
dθ

aθωθ

ωθ − ω
�̂(θ ),

(A13)
where the positive k||-independent factor is defined as

aθ = ∣∣Ak||

∣∣2ε0k|| (A14)

and the elementary integral
∫ ∞

0 dk||k2
||e

−2k||d = 2/(2d )3 is ex-
ploited.

A similar path is followed to determine

−iωĜ−
EE (r, r, ω) = 1

32π2ε0d3

∫ 2π

0
dθ

aθωθ

ωθ + ω
�̂∗(θ ).

(A15)
According to (A3), the scattered part of the equal-position

dyadic Green function for the gyrotropic media is then

−iωĜ(s)
EE (r, r, ω) = 1

32π2ε0d3

∫ 2π

0
dθ aθωθ

×
[

�̂(θ )

ωθ − ω
+ �̂∗(θ )

ωθ + ω

]
. (A16)
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