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Yi-Xin Xiao ,*,† Jing Hu,* Zhao-Qing Zhang, and C. T. Chan‡

Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

(Received 12 April 2023; revised 6 September 2023; accepted 7 September 2023; published 19 September 2023)

In non-Hermitian systems, the eigenvalues near exceptional points of order N (EPNs) usually exhibit E ∼
�1/N dispersion/splitting under a small perturbation �. Such high sensitivity to perturbation makes them ideal
candidates for sensors. However, E ∼ �1/m dispersions with m = 1, 2, . . . , N − 1 are also possible for EPNs.
Using a transposed Jordan block (TJB) matrix H0 as a representative Hamiltonian, we present general rules that
provide a unified understanding of the splitting behaviors of EPNs in diverse systems. Specifically, when the
k-diagonal entries (H0)i,i+k of H0 are perturbed by �, we observe a dispersion of the form E ∼ �1/m, where m =
k + 1. The phase rigidity’s exponent χ and discriminant number ν together can serve as topological invariants to
completely characterize an EPN with E ∼ �1/m splitting, and they are proportional, i.e., χ = ν/N = (N − 1)/m.
The results are demonstrated experimentally using electrical circuits. Next, we demonstrate the applicability of
the splitting rules to general non-TJB Hamiltonians that exhibit an EPN through an example. Moreover, we
observe that the splitting of EPNs can lead to the emergence of lower-order EP structures, such as EP2 ellipses
in the parameter space. We find that the EP2 ellipses exhibit two types of coalescence: with and without an
increase in the EP order.
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I. INTRODUCTION

It is crucial to understand the behavior of non-Hermitian
(NH) Hamiltonians because they can effectively describe
systems coupled to their environment. One prominent phe-
nomenon in NH physics is the occurrence of exceptional
points (EPs), which are degeneracies associated with the co-
alescence of eigenvectors [1–3]. Early research focused on
EPs of order 2 (EP2s) [2–8], where two eigenvectors coa-
lesce, while recent studies have investigated higher-order EPs
[9–15]. The challenges in achieving higher-order EPs can
be mitigated by the presence of certain symmetries [16–18].
Extensive research on EPs have inspired various applications
such as lasing [19,20] and sensing [11,21].

Phase rigidity ρ, which describes eigenvectors’ orthogo-
nality properties, can be used to characterize EPN splitting, as
it exhibits power-law behavior ρ ∼ �χ with different χ val-
ues for different energy dispersions near the EPN [22,23]. The
Petermann factor, which underlies the increase in the intrinsic
laser linewidth due to nonorthogonality of laser modes, can
be expressed as the inverse square of phase rigidity [10]. EPs
can also be characterized by the discriminant number [16,24]
which is a topological invariant determined by the eigenvalue-
based discriminant, besides other topological invariants like
vorticity [25,26], Berry phase [27–29], winding number [30],
knot invariant [31,32], and braid degree [33].

For degeneracies in Hermitian systems, perturbation-
induced energy shift often scale linearly with perturbation
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strength. In contrast, a perturbation � applied to an EP of
order N (EPN) typically results in a E ∼ �1/N dispersion,
implying an ultra-sensitive response which is ideal for
sensor applications [11,21]. However, E ∼ �1/m dispersions
with m < N near an EPN are also reported sometimes
[11,14,15,18,22,25,29,34–39]. For example, a splitting
exponent of 1/4 was observed near an EP6 in Ref. [14], and
1/2 was observed near an EP3 in Ref. [29]. An EP is termed
anisotropic or hybrid if two different types of perturbations
�, � induce different dispersions, e.g., E ∼ �1/m and
E ∼ �1/m′

with m′ �= m [22,25]. A clear and unified under-
standing about when and why E ∼ �1/m (m ∈ {1, · · · , N})
occurs in various EPN systems is still lacking.

In this work, we establish an intuitive understanding of
EPN splitting under perturbation by drawing a connection to
the well-known NH skin effect, which denotes the localiza-
tion of many bulk eigenstates at the boundary of certain NH
systems [40–46]. Without loss of generality, we consider a
representative EPN system whose Hamiltonian H0 is a N × N
transposed Jordan block (TJB) matrix and possesses NH skin
effect, noting that the spectrum of a general EPN system can
be related to H0 by a similarity transformation. We find a
correspondence between the splitting exponent 1/m in the dis-
persion relation E ∼ �1/m and the k-diagonal entries (H0)i,i+k

that are perturbed: m = k + 1, where k ∈ {0, 1, . . . , N} is the
range of the perturbative hopping �. We then establish general
splitting rules for EPNs under various perturbation scenar-
ios, which determines the energy dispersion and whether a
lower-order EP (EPτ with τ < N) may survive. The splitting
rules provides a unified understanding of various dispersions
near an EPN that could occur in diverse systems including
PT-symmetric ones [11,15,18,29,36–39], e.g., E ∼ ε1/4 near
an EP6 in Ref. [14].
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Furthermore, we show that an EPN exhibiting E ∼ �1/m

splitting can be fully characterized by using the phase rigidity
exponent χ and discriminant number ν together as topological
invariants, which individually are insufficient. We determine
χ and ν from the eigenvectors and eigenvalues, respectively,
and find that they are proportional with χ = ν/N = (N −
1)/m. Moreover, we show that multiple EP2 curves can
emanate from an EPN when we have two independent (pertur-
bation) parameters that cause distinct splitting behaviors. An
interesting example is a tridiagonal Hamiltonian that exhibits
two types of splitting behaviors, namely E ∼ δ

1/2
t and E ∼ δε

near an EPN . In this case, we reveal the existence of multiple
EP2 ellipses touching at two EPNs, and identify two types of
coalescence of EP2 ellipses: with and without an increase in
the EP order.

In Sec. II, we establish the splitting rules of EPNs and
show that an EPN exhibiting E ∼ �1/m splitting can be
topologically characterized by phase rigidity exponent χ and
discriminant number ν together. In Sec. III, we experimen-
tally demonstrate the splitting rules using electric circuits.
In Sec. IV, we demonstrate the applicability of the splitting
rules to general non-TJB Hamiltonians that possess an EPN
through an example. In Sec. V, we show that, in a class of
systems with two types of perturbations, multiple EP2 ellipses
can emerge from two EPNs. Furthermore, we show that the
EP2 ellipses can exhibit two types of coalescence: with and
without an increase in EP order. We then conclude in Sec. VI.

II. RULES FOR EPN SPLITTING AND THEIR
EXPERIMENTAL DEMONSTRATIONS

A. Understanding EP splitting via non-Hermitian skin effect

The Hatano-Nelson model [47] is a prototypical model
embodying the NH skin effect [40–46,48]. If we parametrize
the nonreciprocal hoppings t1, t2 (t1 �= t2) in a Hatano-Nelson
Hamiltonian Hhn with N sites as t1,2 = t ∓ 1, then two EPNs
occur at t = ±1. By taking t = 1, we obtain Hhn = 2H0,
where H0 is a N × N TJB matrix that possesses an EPN . We
have (H0)i j = δi, j+1, ∀i ∈ {2, 3, · · · N}. We note H0 is repre-
sentative of general systems that exhibit an EPN since they are
related by similarity transformations. The value of N indicates
both the EP order and the site number within H0.

We examine how eigenvalues split in response to pertur-
bations added to H0. To start, we introduce a perturbative
coupling � ∈ C (|�| � 1) to a 4-site chain H0 (i.e., H0 has
dimensions of 4 × 4), as shown in Fig. 1(a), so that we have

Ha = H0 + H ′
a =

⎛
⎜⎜⎝

0 0 0 �

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠. (1)

That is, (H ′
a)i j = �δi1δ j4. We note that subscripts “a,” “b,”

etc., are used to distinguish between different example sys-
tems H that are obtained by perturbing H0.

To facilitate our discussion, we define the k-diagonal of a
N × N matrix A as the set of entries (Ai,i+k ), namely the set
of entries (Ai j ) that satisfy j − i = k, k = 1 − N, . . . , N − 1.
For example, the diagonal and superdiagonal of a matrix cor-
respond to k = 0 and k = 1, respectively. We can say that �
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FIG. 1. [(a)–(c)] The systems Ha, Hb, Hc along with their spec-
trally equivalent systems, and the braids formed by their eigenvalue
strands in the (Re E , Im E , θ ) space, assuming � = 0.1eiθ . The
arrows indicate the unidirectional hoppings. The symbol “∼” repre-
sents similarity equivalence between two systems. The vertical line
in panel (c) located at E = 0 is twofold degenerate.

appears in the 3-diagonal of Ha, implying the hopping range
of (Ha)14 = � is 3.

We observe that Ha has the same spectrum as that of a finite
periodic chain [see Fig. 1(a)] represented by

H̃a = �1/4

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, (2)

which comprises uniform directional couplings �1/4, not-
ing that S−1

1 HaS1 = H̃a with S1 = diag[�3/4, �1/2, �1/4, 1].
Then it is obvious that the eigenvalues of Ha scale as E ∼
�1/4, which is a manifestation of the NH skin effect—extreme
sensitivity of the spectrum to changes in boundary conditions
[40,41].

Figure 1(a) also depicts a four-strand braid formed by
the eigenvalues of Ha in the (Re E , Im E , θ ) space taking
� = 0.1eiθ , which manifests the Riemann-surface topology of
�1/4. Projecting the strands onto the complex E plane yields
dashed circles.
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Likewise, with perturbation (Hb)13 = � added to H0,
we have

Hb = H0 + H ′
b =

⎛
⎜⎜⎝

0 0 � 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠,

H̃b = S−1
2 HbS2 =

⎛
⎜⎜⎝

0 0 �′ 0
�′ 0 0 0
0 �′ 0 0
0 0 1 0

⎞
⎟⎟⎠,

(3)

as shown in Fig. 1(b), where �′ = �1/3 and S2 =
diag[�2/3, �1/3, 1, 1]. The perturbation (Hb)13 = � corre-
sponds to a k-diagonal perturbation with k = 2. Inferring from
H̃b, it is obvious that three eigenvalues of Hb split as E ∼ �1/3

and the fourth eigenvalue remains fixed at E = 0, as is embod-
ied in the three-strand braid shown in Fig. 1(b).

In the third example shown in Fig. 1(c), the perturbation
is applied to the 1-diagonal, i.e., (Hc)12 = �. Following pre-
vious reasoning, we find that two eigenvalues of Hc split as
E ∼ �1/2, while the other two remain fixed at E = 0, yielding
an EP2, as is shown in the two-strand braid in Fig. 1(c).

We observe that perturbations applied to the k-diagonal
with k = 3, 2, 1 [as marked in Figs. 1(a)–1(c)] lead to splitting
exponents of 1/m with m = 4, 3, 2, respectively. Our finding
suggests that there is a relationship between the splitting ex-
ponent 1/m and the index k of the k-diagonal, namely, m =
k + 1. Furthermore, it is possible that a remaining EP with
lower order τ (< N) may exist after the splitting of the EPN .

B. General rules for EPN splitting

The results obtained from the motivating examples in Fig. 1
can be extended to a general N × N Hamiltonian H = H0 +
H ′, yielding several general rules elaborated as (i)–(iii) below.

(i) When a single entry in the k-diagonal of H0 is perturbed,
i.e., H ′

i j = �δi, j−k for k ∈ {0, 1, . . . , N − 1}, then m = k + 1
eigenvalues split as E ∼ �1/m and τ = N − m eigenvalues
remain at E = 0. If τ � 2, then an EPτ exists after the split-
ting of the EPN . We will show why the remaining τ -fold
degeneracy after EPN splitting must be an EPτ instead of a
nondefective degeneracy in Sec. II C.

The validity of (i) is illustrated by the three examples
shown in Fig. 1 with N = 4 and k = 3, 2, 1, respectively. It
is easily seen that the location of the single perturbed entry
within a specified k-diagonal of H does not affect the splitting
behavior.

(ii) When multiple entries in the k-diagonal of H0 are
perturbed, we can infer from (i) that the eigenvalues split as
E ∼ �1/m (m = k + 1). Compared to (i), the number of split
eigenvalues may exceed m, noting that there can be at most
N (> m) eigenvalues following E ∼ �1/m. Importantly, the
split eigenvalues are enforced to form Q sets of m-tuples due
to the Riemann-surface topology of �1/m, where Q satisfies
Qm � N and Q ∈ Z+ and its value depends on the detailed
perturbation. That is, when multiple entries in the k-diagonal
are perturbed, Qm eigenvalues split as E ∼ �1/m and τ =
N − mQ eigenvalues remain at E = 0. An EPτ persists at
E = 0 if τ � 2. The value of Q can reach its maximum value,
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Λ Λ
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π
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θ/
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FIG. 2. (a), (b) The systems Hd , He and the braids formed by
their eigenvalue strands in the (Re E , Im E , θ ) space, assuming � =
0.1eiθ . The arrows indicate the unidirectional hoppings. The vertical
line in panel (b) located at E = 0 is twofold.

Qmax = 	N/m
 (	x
 is the floor function), when the EPN is
split to the utmost by perturbing all or enough entries in the
k-diagonal [49]. The value of Q ranges from 1 to Qmax, de-
pending on the specific perturbation applied to the k-diagonal.

Figure 2(a) shows an example system Hd with N = 4,
which contains perturbation � at its all three 1-diagonal
entries, causing E ∼ �1/m with m = 2. This example has
Q = Qmax = 	N/m
 = 2 and τ = N − Qm = 0. In Fig. 2(a),
we observe a pair of two-strand braids formed by the four
eigenvalues of Hd . Q = 2 represents the number of braids,
while m = 2 indicates the number of eigenvalues involved in
each braid. We can also include different pre-coefficients to
the �’s without changing the E ∼ �1/m splitting behavior.

Figure 2(b) shows an example system He with N = 6, in
which only a subset of its eigenvalues split as E ∼ �1/2,
when a perturbation � is applied to three of its 1-diagonals.
In addition to a pair of two-strand braids formed by its four
eigenvalues, we observe an EP2 that persists at E = 0. This
example has Q = 2 and τ = N − Qm = 2.

The braid structures in Figs. 2(a) and 2(b) imply that, for
the general case when multiple entries in the k-diagonal of H0

are perturbed, swapping occurs among each m-tuple, forming
Q (∈ {1, . . . , Qmax}) sets of m-strand braids, as θ = arg(�)
accumulates 2π .

(iii) When multiple diagonals, e.g., k1-, k2-, ..., k j-diagonal,
are perturbed, the split eigenvalues follow E ∼ �1/m, where
m = max{k1, . . . , k j} + 1, and Q and τ follow the same rule
as in (ii).

An example system Hf is given in Fig. 3, where pertur-
bation � appears at all entries in the 1-, 2-, and 3-diagonals
of Hf and is denoted by blue arrows. The split eigenvalues
are E1,2 = ±�1/4 + �1/2/2 + O(�3/4) and E3,4 = ±i�1/4 −
�1/2/2 + O(�3/4), which all follow E ∼ �1/4 to the leading
order, conforming to (iii). We observe a four-strand braid
formed by E1, E2, E3, and E4 as shown in Fig. 3, assuming
� = 0.1eiθ .

We conclude that various splitting behaviors E ∼
�1/m, m = 1, . . . , N are possible for an EPN , depending on
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π

FIG. 3. The systems Hf and the braids formed by its eigenvalue
strands in the (Re E , Im E , θ ) space, assuming � = 0.1eiθ . The blue
arrows represent the unidirectional hoppings �, which appear at all
entries in the 1-, 2-, and 3-diagonals.

which k-diagonal the perturbation is applied to. The presented
splitting rules offers a valuable tool to comprehend the diverse
dispersions near an EPN in a wide range of systems, including
PT-symmetric ones [11,14,15,18,29,36–39]. For example, the
dispersion E ∼ ε1/4 near an EP6 is demonstrated in Ref. [14].
We will show that E ∼ ε1/4 results from the fact that, under
a similarity transformation, the non-TJB Hamiltonian is
equivalent to a TJB matrix H0 with perturbation ε added to
its 3-diagonal in Sec. IV. A carefully designed EPN-based
sensor can achieve ultra-sensitivity of �E ∼ �1/N [11,14].

C. EPτ arising from EPN splitting

Following Sec. II B, we show why the remaining τ -fold de-
generacy at E = 0 must be an EPτ , instead of a nondefective
degeneracy.

For a matrix A, its null space (also known as kernel) is
defined as ker(A) = {ψ |Aψ = 0}. The nullity of A denotes the
dimension of its null space and is represented by

nullity (A) = dim [ker(A)]. (4)

The rank-nullity theorem [50] states that

nullity (A) = Ncol(A) − rank (A), (5)

where Ncol(A) is the number of columns in A.
For a general N × N TJB Hamiltonian H0 that bears an

EPN , its rank is obviously

rank (H0) = N − 1. (6)

For a Hamiltonian H that arises from adding perturbation to
H0, we must have

N − 1 � rank (H ) � N, (7)

which together with Eq. (5) leads to

0 � nullity (H ) � 1. (8)

We note that nullity (H ) reveals only the geometric multi-
plicity of E = 0 (i.e., count of eigenvectors associated with
E = 0), but not its algebraic multiplicity. Equation (8) indi-
cates that there is at most one eigenvector ψ0 associated with
E = 0. Therefore, it is guaranteed to have an EPτ when there
are τ � 2 eigenvalues remaining at E = 0.

D. Topological characterization

1. Phase rigidity exponent

Phase rigidity ρn = |〈ψL
n |ψR

n 〉| of the nth state of H , which
involves the normalized right and left eigenvectors, asymp-
totically takes the form ρn ∼ �χ near the EPN , where � is
the deviation from the EPN [23,35]. We find that χ follows
a universal rule: When the perturbation � is applied to the
k-diagonal of H , i.e., when the split eigenvalues follow E ∼
�1/m, we have

χ = (N − 1)/m, (9)

where m = k + 1. Equation (9) arises from the fact that the
eigenvectors take the following general form:〈

ψL
n

∣∣ ≈ [1, A1�̃, . . . , AN−1�̃
N−1],∣∣ψR

n

〉 ≈ [BN−1�̃
N−1, . . . , B1�̃, 1]T , (10)

where �̃ = �1/m with |�| � 1 and Ai, Bi are coefficients
[49], and then

ρn = ∣∣〈ψL
n

∣∣ψR
n

〉∣∣ ∼ �̃N−1 = �(N−1)/m ≡ �χ. (11)

Obviously χ in Eq. (9) encodes the EP order N and the
splitting exponent 1/m.

2. Discriminant number

Degeneracies including EPs signify the vanishing of the
discriminant D(X ) = ∏

i< j[Ei(X ) − Ej (X )]2 of the char-
acteristic polynomial fE (X ) = det[EI − H (X )], where X
denotes the system parameters of H (X ) and Ei, Ej enumerate
the eigenvalues.

We assume the EPN is split to the utmost (i.e., with-
out remaining EPτ ) by perturbations c1�, c2�, . . . in the
k-diagonal of H , where � = δ + iζ = |�|eiθ with δ, ζ ∈ R.
Taking X = (δ, ζ ), we have D(XEP) = 0 at the EPN X EP =
(0, 0) on the δζ plane. We introduce a topological invariant
called discriminant number,

ν = 1

2π i

∮
�

dX · ∇X lnD(X ), (12)

to characterize the EPN , where � is any loop that encircles
X EP (i.e., the origin) in the δζ plane [16,24].

We find that ν also follows a universal rule: For an EPN
with splitting �E ∼ �1/m (m = k + 1) induced by a pertur-
bation on the k-diagonal, we have

ν = N (N − 1)/m = Nχ, (13)

noting that D = ∏
i< j[Ei − Ej]2 ∼ (�1/m)N (N−1). Since

D(X ) recovers itself after a cycle along �, ν must be an
integer. Those (N, m) values that cause fractional ν as per
Eq. (13) correspond to situations when ν is ill-defined due to
the remnant EPτ on the δζ plane [49].

The discriminant numbers of the EPNs exhibiting E ∼
�1/m splitting are summarized in Table I, which follow
Eq. (13). When there is a remaining EPτ , ν is not well-defined
and applying Eq. (13) leads to an incorrect result, e.g., ν =
20/3 is obtained when (N, m) = (5, 3).

We note Eq. (13) reveals a correlation between the phase
rigidity exponent χ derived from the eigenvectors and the
discriminant number ν that is determined by the eigenvalues.
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TABLE I. The discriminant numbers ν for different values of N
(EP order) and m (inverse of splitting exponent). The discriminant
number is not applicable for those entries with m > N or for those
corresponding to any remaining EPτ . Those entries are filled with
the symbols “�” and “EPτ” (τ � 2), respectively.

m = 2 3 4 5 6 7 8

N=3 3 2 � � � � �

N=4 6 4 3 � � � �

N=5 10 EP2 5 4 � � �

N=6 15 10 EP2 6 5 � �

N=7 21 14 EP3 EP2 7 6 �

N=8 28 EP2 14 EP3 EP2 8 7

They together provide a complete characterization of EPNs
that exhibit ∼�1/m splitting, though individually, they are
insufficient, for instance, ν = 10 is obtained for both the cases
of (N, m) = (5, 2) and (N, m) = (6, 3) and cannot distinguish
between them.

III. EXPERIMENTAL IMPLEMENTATIONS
AND DEMONSTRATIONS

A. Realization of a TJB Hamiltonian H0

To experimentally observe the eigenvalue splitting and the
phase rigidity exponent near an EP, we employ electric circuits
to realize the model systems by mapping a Hamiltonian to a
circuit Laplacian L that relates the input currents I and node
voltages V in a circuit through the equation I = LV , where I
and V are column vectors [14,61–63].

First we implement the Hatano-Nelson model Hhn that
contains 4 sites using the circuit in the right panel of Fig. 4(a).
Specifically, current-inversion negative impedance converters
(INICs) are used to achieve nonreciprocal hoppings t1,2 =
t ∓ 1 in the Hatano-Nelson model Hhn: For the INIC detailed
in Fig. 4(a), a current that runs rightward (leftward) through an
INIC experiences a negative (positive) capacitance −C2 (C2)
[49]. By selecting appropriate values for C10,C20,C30,C40 in

(a) t1 t1 t1

t2 t2 t2

A B C D
A B C D

C1 C1 C1

R0

C10 C20 C30 C40

R0 R0 R0

-1 0 1
-2

0

2

-2

0

2

t

Re
 E

Im
 E

(b)

V+ V-+ -

INIC
R2R1 C2

±C2

INIC

±C2

INIC

±C2

INIC

EP4 EP4

FIG. 4. (a) The circuit realization Lhn of the Hatano-Nelson
model Hhn with nonreciprocal hoppings implemented by current-
inversion negative impedance converters (INICs). (b) Experimental
results (dots) for the occurrence of EP4s in the spectrum of Lhn in
panel (a) agree well with results calculated from Hhn (lines).

Fig. 4(a), we can get a circuit Laplacian that takes a tridiagonal
matrix form:

L = yI − iω

⎛
⎜⎜⎝

0 C− 0 0
C+ 0 C− 0

0 C+ 0 C−
0 0 C+ 0

⎞
⎟⎟⎠, (14)

where C± = C1 ± C2 and y = 1
R0

+ iω(C20 + 2C1). If we as-
sume t = C1/C2 such that C−/C2 = t − 1 = t1 and C+/C2 =
t + 1 = t2, then we have

Lhn = L − yI

−iωC2
=

⎛
⎜⎜⎝

0 t1 0 0
t2 0 t1 0
0 t2 0 t1
0 0 t2 0

⎞
⎟⎟⎠, (15)

which has the same form as the Hatano-Nelson model Hhn

with t1 and t2 appearing at the superdiagonal and subdiagonal,
respectively. The parameter t can be tuned by adjusting the
value of C1 or/and C2.

The matrix L can be obtained by measuring the voltage
response at each node to input currents. Experimental details
can be found in Ref. [49]. Using Eq. (15), we can then obtain
the matrix Lhn and its corresponding eigenpairs. Figure 4(b)
shows the variation of eigenvalues E with respect to t , featur-
ing two EP4s at t = ±1. Errors are more noticeable around
the EP4s due to their extreme sensitivity to experimental im-
perfection.

When t = 1, we realize the 4 × 4 TJB Hamiltonian H0

noting that Lhn(t = 1) = 2H0. We observe E ∼ √
t − 1 near

t = 1 in Fig. 4(b), since tuning t near t = 1 is effectively
perturbing the 1-diagonal of H0.

B. Experimental demonstrations of the splitting rules

By adding a small-valued capacitor C� between nodes A
and D as shown in Fig. 5(a) and selecting appropriate values
for C10,C20,C30,C40, we realize

H1 =

⎛
⎜⎜⎝

0 0 0 �

1 0 0 0
0 1 0 0
� 0 1 0

⎞
⎟⎟⎠ (16)

by L1 = 1
−2iωC2

(L − yI) assuming � = C�/(2C2), where L
is the circuit Laplacian associated with Fig. 5(a) and y =
1

R0
+ iω(C20 + 2C1). Compared to Ha in Eq. (1), H1 contains

an extra � at (H1)41. It is worth noting that the presence
of (H1)41 = � does not affect the eigenvalue splitting (E ∼
�1/4) and phase rigidity exponent to leading order, as can
be easily verified. To avoid stability issues that arise from
implementing Ha by connecting nodes “A” and “D” with an
INIC, we opted to implement H1 instead of Ha.

Similarly, we can realize

H2 =

⎛
⎜⎜⎝

0 0 � 0
1 0 0 �

� 1 0 0
0 � 1 0

⎞
⎟⎟⎠, (17)

by L2 = 1
−2iωC2

(L − yI) assuming � = C�/(2C2), where L is
the circuit Laplacian associated with Fig. 5(b) which contains
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FIG. 5. (a), (b) The circuit realization of the 4 × 4 perturbed TJB
Hamiltonians H1 [Eq. (16)] and H2 [Eq. (17)] by L1 and L2, where
perturbation � is implemented by a capacitor C�. (c) Energy splitting
near the EP4 in the experimentally obtained L1 and L2 are denoted
by green and blue dots, respectively. Theoretical results for H1 and
H2 are denoted by lines. (d) Phase rigidities near the EP4 for L1, H1

(green) and L2, H2 (blue). Experimental and theoretical results are
denoted by dots and lines, respectively. Dashed lines show the slopes
in the small � limit, i.e., they are leading-order approximations of
the solid lines. The spreading of dots reflects the extreme sensitivity
of EP4 to experimental imperfection.

a small-valued capacitor C� between nodes A and C, as well
as between B and D. The extra terms (H2)31 = (H2)42 = � do
not affect the eigenvalue splitting and phase rigidity exponent
to leading order.

In Fig. 5(c), the eigenvalues E are plotted against � for L1

and L2 obtained from experimental measurements. The green
and blue dots represent the results for L1 and L2, respectively,
which are consistent with the theoretical results (lines) that are
obtained from H1 and H2 and follow E ∼ �1/4 and E ∼ �1/3.
Since the four eigenstates coincide in |E |, we only observe
one line for each case in Fig. 5(c).

The spreading of dots in Fig. 5(c), especially the blue
dots for L2, arise from the extreme sensitivity near the EP4
to undesirable experimental artifacts such as the parasitic
resistances of the capacitors. To mitigate the influence of ex-
perimental artifacts, experimental measurements were carried
out using moderately small � values instead of very small
ones, ensuring that � dominates over the artifacts.

Accordingly, the phase rigidity is plotted against � in
Fig. 5(d) for the measured L1 and L2. The green and blue
dots represent the results from measured L1 and L2, while the
solid lines denote the results calculated from H1 and H2. For
both H1 and H2, the phase rigidities of the four eigenstates are
the same and represented by the same solid line in Fig. 5(d).
The dashed lines with slopes of 3/4 and 1 represent the
leading-order approximations of the solid lines in the limit of
small �. And the slopes represent the phase rigidity exponents
χ = 3/4 and χ = 1 for the eigenstates of H1 and H2, which
obey the relation χ = (N − 1)/m in Eq. (9). The experimental
results (dots) agree with the theoretical results (lines), with
some imperfection arising from the extreme sensitivity near
the EP4 to undesirable experimental artifacts.

IV. APPLICABILITY OF THE SPLITTING RULE
TO GENERAL EPN SYSTEMS

As previously noted, the Hamiltonian H0 of TJB matrix
form is representative of general systems H0 that exhibit an
EPN . In the following, we will explain why and how the
splitting rule applies to a general system H0 of dimensions
N × N when subjected to perturbation.

Clearly, a similarity transformation H0 = S−1H0S can be
used to relate H0 to a TJB matrix H0, where S can be obtained
through simple standard procedures. Using this transfor-
mation, the perturbed Hamiltonian H = H0 + �H can be
transformed to a perturbed TJB matrix given by

H = S−1HS = H0 + �H, (18)

where �H = S−1�HS.
Equation (18) suggests that the rules (i)–(iii) for the EPN

splitting apply to H0, but in an indirect way that we consider
the effect of adding �H to H0 instead. That is, the split-
ting exponent 1/m can be determined by inspecting which
k-diagonal entries of H0 in Eq. (18) are perturbed by �H .

For illustration, we show an example of non-TJB Hamil-
tonian that exhibits E ∼ ε1/4 near an EP6 in a work about
EP-based sensor, where ε is a perturbation parameter [14].
The Hamiltonian has the following form:

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 i 0 0
0 0 0 0 i 0
0 0 0 0 0 i
−i i 0 −iγ 0 0
iμ −2iμ iμ 0 0 0
0 i −i 0 0 iγ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)

where γ = (
√

5 + 1)/2 is assumed. The EP6 occurs when
μ = μEP = (

√
5 − 1)/4. The occurrence of the EP6 implies

that we can find a similarity transformation S−1H0S = H0

such that H0 is a TJB matrix, where H0 = H(μEP ). Explicitly
we have

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ic1 −c2 −ic2 c1 0
1 ic1/2 −1 0 0 0
1 0 0 0 0 0
0 −i c1 ic2 −c2 −ic1

0 −i c1/2 i 0 0
0 −i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where c1 = √
5 + 1 and c2 = √

5 + 3. The perturbation is in-
troduced via μ = μEP(1 + ε). In the presence of perturbation,
we have

H = S−1HS

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 −ε −ic1ε/2 ε

0 0 1 −i(c1 + c2)ε/c2 c2ε/2 ic1ε/2
0 0 0 1 + ε ic1ε/2 −ε

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(20)

Obviously, H in Eq. (20) can be viewed as a perturbed TJB
matrix with the perturbation parameter ε appearing in several
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entries. According to the EPN splitting rule (iii) in Sec. II B,
the perturbation H36 = ε that appears in the 3-diagonal of H
dominates [compared to other ε’s in Eq. (20)] and causes E ∼
ε1/4 dispersion for |ε| � 1.

The rule for phase rigidity, i.e, Eq. (9), also remains true
for H. We can understand it by looking at the definition of
phase rigidity. The left eigenvector 〈ψ ′

n| and right eigenvector
ψ ′

n〉 of H are related to those of H via

〈ψ ′
n| = 〈ψn|S−1, |ψ ′

n〉 = S|ψn〉. (21)

The phase rigidity for an eigenstate of H is then

ρ ′
n = |〈ψ ′

n|ψ ′
n〉| = |〈ψn|ψn〉| = ρn. (22)

That is, the phase rigidities for eigenstates of H are the same
as those for H .

The rule for discriminant number ν obviously holds for
non-TJB form Hamiltonians, since the discriminant D only
depends on the eigenvalues which are identical for H and H .

Furthermore, any N ′ × N ′ (N ′ > N) Hamiltonian exhibit-
ing an EPN can be decoupled to obtain a N × N subsystem
associated with the EPN .

V. EPNS SPLITTING INTO EP2 ELLIPSES

A. Emergence of EP2 ellipses

Next, we go beyond the energy dispersions in the vicinity
of EPNs and investigate EPN splitting from a global per-
spective in the parameter space. We will see that EP2 curves
can emerge from EPNs, which manifests the splitting of an
EPN into lower-order EP curves. Generally when two per-
turbation parameters, e.g., �, X ∈ R, are applied to different
k-diagonals of H0, EP curves emanate from the EPN in the
�X plane, since there are two free parameters in the single
constraint D(�, X ) = 0 noting D ∈ R.

An interesting system is the generalized Hatano-Nelson
model below,

Hdis =

⎛
⎜⎜⎜⎝

c1ε a1t1 0 0
b1t2 c2ε a2t1 0

0 b2t2 c3ε · · ·
0 0 · · · · · ·

⎞
⎟⎟⎟⎠, (23)

with arbitrary coupling coefficients (randomly chosen ai, bi >

0) and onsite energies (random ci ∈ R), t1,2 = t ∓ 1 and t, ε ∈
R. Two EPNs occur at (t, ε) = (±1, 0), where Hdis is similar
to a N × N TJB matrix H0 [49]. A deviation δt (δε) from the
EPN (t, ε) = (1, 0) is equivalent to a perturbation in the 1-
diagonal (diagonal) of H0 [49], inducing �E ∼ δ

1/2
t (�E ∼

δε) and ρ ∼ δ
(N−1)/2
t (ρ ∼ δN−1

ε ). EP curves are expected to
emanate from the EPNs in the tε plane.

For fE = det(EI − Hdis), the discriminant has the form

D(t, ε) =
M∑

j=0

Bj (ε
2) j (t1t2)M− j, (24)

where M = N (N−1)
2 and Bj = Bj (ai, bi, ci ) are real coefficients

[49]. Due to the realness of Hdis, its eigenvalues are either
real or come in complex-conjugate pairs, causing D(t, ε) ∈ R,
which can also be argued from the perspective of pseudo-
Hermiticity symmetry in Hdis, i.e., η−1Hdisη = H†

dis [17,49].

FIG. 6. (a) Circuit realization of a 4 × 4 system H (1)
dis with {a1,

a2, a3} = {b1, b2, b3} = {0.6, 0.4, 1.2} and {c1, c2, c3, c4} = {3, 1,

2.8, 0.2}. (b) Experimentally measured EP2 ellipses (dots) from the
circuit realization in panel (a).

Solving D(t, ε) = 0 gives us

t2 + ε2/α j = 1, j = 1, · · · , M, (25)

Equation (25) represents a maximum of nmax = M EP2 el-
lipses in the tε plane if α j > 0 for any j ∈ {1, · · · , M}, which
is possible for appropriate coefficients ai, bi, ci in Eq. (23). An
example will be illustrated shortly in Sec. V B.

When t ∈ (−1, 1) and ε = 0, Hdis is similar to an
anti-Hermitian matrix and has eigenvalues in the form of
±iE j, j = 1, 2, . . . , 	N/2
, where 	x
 is the floor function
[49]. When ε → ±∞, Hdis turns Hermitian and has real
eigenvalues. Thus, there are at least nmin = 	N/2
 EP transi-
tions for any t ∈ (−1, 1) as ε varies from 0 toward ±∞, which
implies the existence of a minimum of nmin = 	N/2
 EP2
ellipses in the tε plane. The region outside the outermost EP2
ellipse is the exact phase with purely real eigenvalues.

For illustration, a 4 × 4 example of Eq. (23) with
{a1, a2, a3} = {b1, b2, b3} = {0.6, 0.4, 1.2} and {c1, c2, c3,

c4} = {3, 1, 2.8, 0.2}, which we denote as H (1)
dis , is imple-

mented using the circuit shown in Fig. 6(a). The parameters t
and ε in H (1)

dis can be tuned by judiciously choosing appropriate
capacitors in Fig. 6(a).

The EP locations in the ε < 0 half-plane are obtained from
experimental measurements and shown as dots in Fig. 6(b),
and their mirror images in the ε > 0 half-plane are denoted
by circles. Each EP dot is extracted from a measured E (t )
band diagram like the one shown in Fig. 4(b). Obviously the
experimental results agree well with the ellipses solved from
D(t, ε) = 0.

In the following, we show that the EP2 ellipses can exhibit
two types of coalescence: with and without an increase in the
EP order.

B. EP2 ellipses merging into an EP2 ellipse

Figure 7(a) shows that, in a 3 × 3 system H (2)
dis , the num-

ber of EP2 ellipses reduces from three (green) to two (blue
dashed) and then to one (red), as c3 is decreased from 9.2
to 9 and then to 8.8, fixing {a1, a2} = {1, 2}, {b1, b2} = {2, 5}
and {c1, c2} = {3, 4}. Specifically, the outer two green ellipses
merge into one blue EP2 ellipse at c3 = 9 (indicated by ar-
rows), and then vanish as c3 reduces further, which is also
depicted by the Re E (ε) bands (with t = 0 fixed) in the inset
of Fig. 7(a): Two EPs merge into one EP and then get gapped.

We note that the EP order does not increase when two EP2
ellipses coalesce at c3 = 9. And there are as many as three
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FIG. 7. (a) Three green, two blue, one red EP2 ellipses obtained
for c3 = 9.2, 9, and 8.8 in a 3 × 3 system H (2)

dis . Other coefficients
are {a1, a2} = {1, 2}, {b1, b2} = {2, 5}, {c1, c2} = {3, 4}. Inset: two
EP2s (green curves) merge into a single EP2 (blue curves), which
disappears when a gap opens (red curves). (b) The EP3 nexus formed
by ellipses and hyperbolas in (t, εr, εi ) space with c3 = 8. Other
coefficients are the same as in (a).

EP2 ellipses at c3 = 9.2 as shown in Fig. 7(a), which repre-
sents a scenario where the maximum number of nmax = 3 EP2
ellipses is achieved for N = 3.

Relaxing ε ∈ R to ε ∈ C and assuming ε = εr + iεi, we
have three degrees of freedom t, εr and εi for the two con-
straint equations, ReD = 0 and Im D = 0. Therefore we are
guaranteed to have EP curves in the (t, εr, εi ) space. Actually
we find there are always M = N (N−1)

2 EP2 ellipses in the
(t, εr, εi ) space, noting that the derivation of Eq. (25) does not
require ε to be real.

For example, Fig. 7(b) shows the EP2 ellipses in the
(t, εr, εi ) space for the case of c3 = 8, where the other coeffi-
cients are the same as in Fig. 7(a). Figure 7(b) is representative
of c3 < 9 cases including the c3 = 8.8 case in Fig. 7(a).
It turns out that two ellipses for c3 = 8.8 in Fig. 7(a) are
tilted away from the tεr plane, similar to the cyan and
black ellipses in Fig. 7(b). Each EP2 ellipse is perpendic-
ular to its corresponding EP2 hyperbola in the region of
|t | > 1, and they share the same equation t2 + ε2/α j = 1
[49]. Thus, the two EP3s at (t, εr, εi ) = (±1, 0, 0) manifest
as the chain points in the EP nexus formed by ellipses and
hyperbolas.

Looping around any EP2 arc, as indicated by the gray circle
in Fig. 7(b), yields a discriminant number of ν = 1. Six EP2
arcs together give ν = 6 at the EP3, conforming to Eq. (13)
with (N, m) = (3, 1). The EP nexus are topologically robust
against smooth changes of the coefficients ai, bi, ci in Hdis.

C. EP2 ellipses merging into an EP4 ellipse

EP2 ellipses can also coalesce in a different way to form
a high-order EP ellipse, e.g., two EP2 ellipses can merge into
an EP4 ellipse.

We consider H (3)
dis = tsx − isy + εsz with si being spin-

3/2 matrices [60], which amounts to a 4 × 4 Hdis in
Eq. (23) with {a1, a2, a3} = {b1, b2, b3} = {

√
3

2 , 1,
√

3
2 } and

{c1, c2, c3, c4} = { 3
2 , 1

2 ,− 1
2 ,− 3

2 }. Increasing c4 from −1.7 to
−1.3, we observe two EP2 ellipses (green) merging into one
EP4 ellipse (blue dashed) when c4 = −3/2 and then split into
two EP2 ellipses (red), as is shown in Fig. 8(a). For illustration
of the process of coalescence, we fix t = 0 and show the band
structures E (ε) in Figs. 8(b)–8(d), where the real (imaginary)
parts are represented by solid (dashed) curves, respectively.
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FIG. 8. (a) The occurrence of two EP2 ellipses (green), one EP4
ellipse (blue dashed), and two EP2 ellipses (red) in the tε plane
for c4 = −1.7, −1.5, −1.3, respectively, in a 4 × 4 system H (3)

dis

with {a1, a2, a3} = {b1, b2, b3} = {
√

3
2 , 1,

√
3

2 } and {c1, c2, c3, c4} =
{ 3

2 , 1
2 , − 1

2 , − 3
2 }. (b)–(d) Band structures E (ε) of the three cases in

panel (a), where t = 0 is fixed. The real (imaginary) parts are denoted
by solid (dashed) curves.

The merging of the two EP2 ellipses shown in Fig. 8(a)
is different from that is shown in Fig. 7(a). The coalescence
in Fig. 8(a) involves all 4 eigenstates and the induced EP4
ellipse constitutes a sixfold root of D in Eq. (24) [49], and the
number of EP2 ellipses in the tε plane is nmin = 2, both before
and after the coalescence. Compared to EP2 ellipses, the EP4
ellipse is fragile against tuning parameters since it necessitates
stricter conditions.

VI. CONCLUSION

We formulated general rules that enable a unified descrip-
tion and understanding of EPN’s splitting behaviors E ∼
�1/m, m ∈ {1, 2, . . . , N} in diverse systems. We found that
the splitting exponent 1/m is determined by m = k + 1, where
k represents the k-diagonal of the TJB matrix that is perturbed.
The key in establishing the splitting rules is that every m
eigenvalues form a group and split together in the form of
E ∼ �1/m when perturbed in the k-diagonal, and there can be
an integer number of such groups. The EPN splitting behav-
iors observed in general systems on different platforms, such
as photonics and phononics, can all be incorporated into the
same framework simply by employing similarity transforma-
tions that map them to a TJB form. The rules for EPN splitting
are demonstrated experimentally using electric circuits, which
simulate Hamiltonians through circuit Laplacians. Our work
can serve as a useful guide for optimizing the performance in
EP-based sensors, by exploiting the E ∼ �1/N response of the
EPN to small variations in certain system parameters, instead
of E ∼ �1/m with m < N .

We use the phase rigidity exponent χ and discriminant
number ν together as topological invariants to fully character-
ize any EPNs with any �1/m splitting behavior. We find that
the two quantities χ and ν, determined from eigenvectors and
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eigenvalues, respectively, are related by ν = Nχ , since both
the perturbed eigenvectors and eigenvalues contain the �1/m

factor. Interestingly, when ν is ill-defined due to the remaining
lower-order EP under perturbation, a meaningless fractional
value is obtained from ν = N (N − 1)/m [i.e., Eq. (13)]. This
justifies the effectiveness of the discriminant number in an
opposite perspective.

We then show that the EPN can split into EP2 curves when
multiple parameters are allowed to vary. For example, in a
generalized Hatano-Nelson model, we show the splitting of
two EPNs into EP2 ellipses in the plane spanned by two
parameters which individually induce square-root and linear
dispersions near EPNs. The EP2 ellipses are found to exhibit

two types of coalescence: with and without an increase in the
EP order. This suggests that the splitting of a higher-order
EP can lead to various EP geometries and complex evolution
behaviors. This opens up a promising subfield for exploration
and potential connections with other fields such as catastrophe
theory and topology in physics.

ACKNOWLEDGMENTS

This work is supported by Research Grants Council
(RGC) Hong Kong through Grants No. 16307420 and No.
AoE/P-502/20 and the Croucher Foundation (Grant No.
CAS20SC01).

[1] T. Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, 1995).

[2] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.
Heiss, H. Rehfeld, and A. Richter, Experimental Observation
of the Topological Structure of Exceptional Points, Phys. Rev.
Lett. 86, 787 (2001).

[3] M. V. Berry, Physics of non-Hermitian degeneracies, Czech. J.
Phys. 54, 1039 (2004).

[4] W. D. Heiss, The physics of exceptional points, J. Phys. A:
Math. Theor. 45, 444016 (2012).

[5] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian
Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243
(1998).

[6] S. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, Parity-Time
Symmetry and Exceptional Points in Photonics, Nat. Mater. 18,
783 (2019).

[7] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, and P. Xue, Ob-
servation of Non-Bloch Parity-Time Symmetry and Exceptional
Points, Phys. Rev. Lett. 126, 230402 (2021).

[8] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nature Phys 14, 11
(2018).

[9] K. Ding, Z. Q. Zhang, and C. T. Chan, Coalescence of
exceptional points and phase diagrams for one-dimensional PT-
symmetric photonic crystals, Phys. Rev. B 92, 235310 (2015).
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