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Thermodynamic uncertainty relations for systems with broken time
reversal symmetry: The case of superconducting hybrid systems
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We derive bounds to the thermodynamic uncertainty relations in the linear-response regime for steady-state
transport in two-terminal systems when time reversal symmetry is broken. We find that such bounds are different
for charge and heat currents and depend on the details of the system, through the Onsager coefficients, and on
the ratio between applied voltage and temperature difference. As a function of such a ratio, the bounds can take
any positive values. The bounds are then calculated for a hybrid coherent superconducting system using the
scattering approach, and the concrete case of an Andreev interferometer is explored. Interestingly, we find that
the bound on the charge current is always smaller than 2 when the system operates as a heat engine, while the
bound on the heat current is always larger than 2 when the system operates as a refrigerator.

DOI: 10.1103/PhysRevB.108.115422

I. INTRODUCTION

Constraints on the performance of thermodynamic ma-
chines are set by thermodynamics laws. The most important
example is the bound on the efficiency of a thermal machine
exchanging heat between two reservoirs, which is represented
by the Carnot efficiency and based on the second law. In
the context of chemical reactions, Barato and Seifert [1] in-
troduced a new constraint which sets a tradeoff between the
minimal relative uncertainty of the output of a reaction and
the minimal energy cost to generate such an output. This has
been expressed through the inequality

QI = SIσ

I2kB
� QI

bound, (1)

where I is the current, SI is the current noise, σ is the entropy
production rate, and kB is the Boltzmann constant. Such an
inequality was termed the thermodynamic uncertainty relation
(TUR) and assesses the minimal dissipation (measured by
σ ) required to generate an output current (I) with minimum
relative uncertainty. In Ref. [1], using biased random walks
in the stationary state, it has been proven that QI

bound = 2
within the linear-response theory. Such a bound has been also
derived for Markov jump processes and networks [2–4] (even
beyond linear response). Since then a large numbers of papers
have addressed TURs in various systems and approaches,
even proposing more general inequalities [5–8]. Experimen-
tal evidence of the bound QI

bound = 2 has been reported for
atomic-scale quantum conductors [9], while the possibility of
its violation has been reported in Ref. [10] for a two-qubit sys-
tem using a NMR setup. However, there are situations where
the value of the bound is not QI

bound = 2. One example is when
time reversal symmetry (TRS) is broken. In this case, various

inequalities for quantities related to QI have been derived (see
Refs. [11–17]).

Here, we are interested in the case where TUR is for-
mulated for electric and thermal transport in the steady-state
regime, as in Refs. [7,9,11–13,17–25]. In particular, we con-
sider a generic two-terminal system, possibly containing
superconducting regions, as depicted in Fig. 1. The right elec-
trode is kept at voltage VR = V and temperature TR = T0 +
�T , while the left electrode is grounded (VL = 0) and kept at
the reference temperature TL = T0. Charge current (I) and heat
current (J) flowing in the right electrode are expressed, in the
linear-response regime, through the Onsager coefficients as

I = L11
V

T0
+ L12

�T

T 2
0

,

J = L21
V

T0
+ L22

�T

T 2
0

, (2)

where Li j are the components of the Onsager matrix.
Remarkably, these systems can operate as thermoelectric

steady-state thermal machines [26], such as heat engines or
refrigerators. On the one hand, a heat engine is a machine
which converts heat into work. This happens when a tem-
perature difference applied to the conductor gives rise to a
heat current flowing out of the hot electrode and to an electric
current flowing against the applied voltage, thus generating
a usable electrical power. The efficiency of a heat engine is
defined as the ratio between the output power and the absorbed
heat. On the other hand, a refrigerator is a thermal machine
which uses external work to extract heat from a cold ther-
mal bath. It is obtained when a conductor is subjected to a
voltage which gives rise to a heat current that flows against
the temperature difference, i.e., extracting heat from the cold
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electrode. Interestingly, in Ref. [27] it is was shown that the
TUR can be written as a bound on the efficiency of a heat
engine.

For quantum thermoelectric devices in Refs. [24,25,28] it
was shown, within the scattering theory, that the inequality
(1) can be violated, far from linear response, at an arbi-
trary extent when the transmission function features sharp
steps (as boxcar shapes). The largest violations occur for
idealized transmission functions consisting of a collection of
rectangular functions [28]. On the other hand, as shown in
Refs. [21,25], no violations of the inequality (1) occur when
the transmission functions are smooth. This can be the case,
for example, for systems such as quantum-dot-based devices
[25] and quantum point contacts [21]. The case of systems
where TRS is broken has been considered in Refs. [11–13,17].
Different forms of TURs (for quantities related to QI )
have been derived using different criteria (though mainly
based on the non-negativity of the net entropy production
rate).

II. SUMMARY OF THE RESULTS

In this paper, for two-terminal systems in the absence of
TRS, we derive bounds for the quantity QI , defined in Eq. (1),
and for the quantity

QJ = SJσ

J2kB
, (3)

where J is the heat current and SJ is the zero-frequency heat
current noise. Namely, within the linear-response regime, we
obtain

QI
bound = 2

[
1 + 1

2

L21 − L12

L12 + L11
(V T0

�T

)
]2

(4)

and

QJ
bound = 2

⎡
⎢⎣1 + 1

2

L12 − L21

L21 + L22

(
�T
V T0

)
⎤
⎥⎦

2

, (5)

for charge and heat current, respectively. Here, Li j are the
components of the Onsager matrix, while V and �T are
the voltage and temperature biases applied to the conductor
depicted in Fig. 1. It should be stressed that L12 and L21 are dif-
ferent in the absence of TRS. Remarkably, the two expressions
(4) and (5) depend explicitly on the ratio between the biases,
are different for charge and heat currents, and reduce to the
usual bound QI

bound = QJ
bound = 2 when TRS is restored, i.e.,

when L12 = L21. In particular, depending on the properties of
the system (encoded in the Onsager matrix) and on the biases,
the two bounds can be arbitrarily larger or smaller than 2,
i.e., tighter or looser than in the TR symmetric case.

Before proceeding, we illustrate the behavior of the bounds
by considering different choices of Onsager matrices, i.e., dif-
ferent systems. Here, we concentrate on QI

bound. First, notice
that dividing the second term in Eq. (4) by L12, the bound
depends on two parameters only, namely L11/L12 ≡ l11 and

FIG. 1. Sketch of a two-terminal system with broken TRS, where
a voltage V and a temperature difference �T are applied between the
right and the left electrode.

L21/L12 ≡ l21, so that

QI
bound = 2

[
1 + 1

2

l21 − 1

1 + rl11

]2

, (6)

and r = V T0/�T . On the one hand, l11 simply acts as a
normalization factor for r and, in particular, yields the trans-
formation QI

bound(r) → QI
bound(−r) when reversing the sign of

l11. On the other hand, l21 determines the zeros of the bound.
Therefore, the behavior of the bound can be understood by
considering a few values of l21 and a fixed value of l11. As we
shall see below, the two parameters can take any values, both
positive and negative. In Fig. 2 we plot QI

bound as a function of
the dimensionless ratio r̃ = eV/(kB�T ). The different curves
are relative to l21 = 2, 0.4,−0.4,−2 (black, red, dashed red,
and dotted red curves, respectively) and l11 = 0.5e/(kBT0).
The gray thick horizontal line is the reference, Barato-Seifert
(B-S) [1], value QI

bound = 2 obtained for l21 = 1, correspond-
ing to the TR symmetric case. First, we notice that all curves
diverge for the same value of r̃ = r̃∞ ≡ −e/l11kBT0, and
present a minimum where QI

bound = 0. The black curve, which
is the only one for which l21 > 1, is nonmonotonous for
r̃ < r̃∞ (where mainly remains smaller than 2), and decreases

FIG. 2. Plots of QI
bound as a function of the dimensionless ratio

eV/(kB�T ) for different parameter settings: l21 = 2, 0.4, −0.4, −2
for solid black, solid red, dashed red, and dotted red curves, re-
spectively, and l11 = 0.5e/(kBT0). The thick gray horizontal line is
the reference Barato-Seifert (B-S) [1] value QI

bound = 2 occurring for
l21 = 1, which is the TR symmetric case. Above (below) the value 2
the bound is tighter (looser) than the B-S bound.
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VR = V

TR = T0 + ΔT

N

S

S

TL = T0

φ1

φ2
2

1

VL = 0

FIG. 3. Sketch of an Andreev interferometer, which is composed
of a three-leg beam splitter and two resonant barriers (such as quan-
tum dots). The latter are placed on the two parallel left legs, which
are connected to the two superconducting (S) regions with different
phases (φ1 and φ2), while the right leg is connected to a normal
(N) electrode. The S electrode is grounded and at the reference
temperature T0, while the N electrode is kept at a voltage V and
temperature T0 + �T .

monotonously for r̃ > r̃∞ remaining larger than 2. On the
contrary, all red curves, for which l21 < 1, have an opposite
behavior being monotonously increasing for r̃ < r̃∞, and non-
monotonous for r̃ > r̃∞. The red curves differ only by the
position of the zero and their smoothness.

It is now interesting to notice that, for a coherent quantum
conductor with two electrodes, the scattering theory imposes
that L12 = L21 even when TRS is broken [26]. This im-
plies that the two bounds reduce to the B-S one, namely
QI

bound = QJ
bound = 2. There are, however, two-terminal co-

herent systems where L12 and L21 can be different: the ones
containing superconducting regions. (We note in passing that
TUR has hardly been studied for hybrid superconducting
systems [29,30].) In order to analyze the behavior of the
bounds in this case we consider an Andreev interferometer
(see Fig. 3), which is the simplest hybrid superconducting
system where TRS is broken (by a superconducting phase
difference). In order to calculate the Onsager matrix for such
a system we use the scattering theory [31]. Interestingly, we
find that the bound on QI is always smaller than 2 when
the Andreev interferometer operates as a heat engine, while
the bound on QJ is always larger than 2 when the Andreev
interferometer operates as a refrigerator. In general, it is worth
emphasizing that the absence of TRS in a conductor can be
detected by looking for values of QI or QJ smaller than 2 in
the linear-response regime, because they violate the bound for
a TRS system.

The paper is organized as follows. In Sec. III we sketch
the derivation of the inequalities expressing the TURs and
we examine their properties, while in Sec. IV we detail the
scattering approach used for describing a two-terminal hybrid
superconducting system. Finally, in Sec. V we apply the re-
sults of the previous sections to an Andreev interferometer by
calculating its Onsager coefficients and bounds of the TURs,
and we draw the conclusions in Sec. VI.

III. DERIVATION OF THE BOUNDS

We consider the two-terminal system depicted in Fig. 1,
possibly containing superconducting regions, in the linear-
response regime. We do not enforce TRS, while we allow
for the presence of an applied magnetic field B. In such a
case we recall that, in general, one has L12 �= L21, since the
Onsager relation actually requires L12(B) = L21(−B). On the

other hand, the entropy production rate in the linear response
can be written as

σ = IXμ + JXT

= L11X 2
μ + L22X 2

T + (L12 + L21)XμXT , (7)

where Xμ = V/T0 and XT = �T/T 2
0 are the affinities.

We now express the quantity QI defined in Eq. (1) in
terms of the Onsager coefficients by replacing the entropy
production rate σ and I using Eqs. (7) and (2), respectively,
obtaining

QI � 2L11
L11V 2T 2

0 + L22(�T )2 + (L12 + L21)V �T T0

(L11V T0 + L12�T )2
. (8)

Here, we have used the fact that, in the linear response (at
equilibrium), SI � 2kBL11 as a consequence of the fluctuation-
dissipation relations. We then express L22 in terms of QI and
the other quantities and, recalling that L11 � 0, we impose the
fact that the Onsager matrix is positive semidefinite,

L22 � (L12 + L21)2

4L11
. (9)

From such an inequality, which follows from the positivity of
entropy production and does not assume L12 = L21, one finds
Eq. (4). Since a small value of QI is desirable, one should look
for systems where L12 �= L21 in such a way that the bound is
well below 2.

Similarly, we can derive a bound for QJ , defined in Eq. (3),
relative to the heat current. Again, by using Eqs. (2) and (7)
and imposing the same inequality (9), but written for L11,

L11 � (L12 + L21)2

4L22
(10)

(recall that L22 � 0), we obtain Eq. (5). Here, we have used
the equilibrium relation SJ � 2kBL22.

A few comments are in order. First, note that the two
bounds (4) and (5) are different, i.e., charge and heat cur-
rents obey different TURs. This is not the case for the
inequalities derived for TRS breaking systems, for example,
in Refs. [12,13]. Second, we have an explicit dependence on
the affinities through their ratio V/�T . In particular, when
�T = 0, Eq. (4) reduces to QI

bound = 2, while Eq. (5) becomes

QJ
bound = 2

(
L12 + L21

2L21

)2

. (11)

On the other hand, when V = 0, Eq. (4) becomes

QI
bound = 2

(
L12 + L21

2L12

)2

, (12)

while Eq. (5) reduces to QJ
bound = 2.

Finally, both bounds (4) and (5) reduce to the B-S one,
namely QI

bound = QJ
bound = 2, when L12 = L21. This is the case

for systems with TRS, where such an equality constitutes the
Onsager reciprocal relation [32]. Interestingly, the equality
L12 = L21 holds also for two-terminal systems which break
TRS, but in which transport is coherent and can be described
through the scattering theory [26] (see Appendix A). Thus,
the bounds (4) and (5) reduce to the B-S one for any coherent
two-terminal conductor.
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There is, however, a notable exception constituted by hy-
brid superconducting systems. In this case, as we shall see in
the next section, L12 can be different from L21 when TRS is
broken.

IV. SUPERCONDUCTING MULTICHANNEL SYSTEMS

Let us now consider a hybrid system consisting of a con-
ductor, possibly containing superconducting regions, attached
to a normal (N) electrode on the right and a normal or super-
conducting (S) electrode on the left (see Fig. 1). We use the
scattering approach [31,33] to calculate the charge and heat
currents produced by a voltage and a temperature difference
and flowing in the N right lead (see Appendix B). In the
linear-response regime, where eV � kBT0 and �T � T0, the
Onsager coefficients can be expressed as

L11 = e2T0

h

∫ ∞

0
dE [N+(E ) − R++(E ) + R+−

a (E )

+ N−(E ) − R−−(E ) + R−+
a (E )]

(
− ∂ f

∂E

)
, (13)

L22 = T0

h

∫ ∞

0
dE E2[N+(E ) − R++(E ) − R+−

a (E )

+ N−(E ) − R−−(E ) − R−+
a (E )]

(
− ∂ f

∂E

)
, (14)

L12 = eT0

h

∫ ∞

0
dE E [N+(E ) − R++(E ) − N−(E )

+ R−−(E ) − R+−
a (E ) + R−+

a (E )]

(
− ∂ f

∂E

)
, (15)

and

L21 = eT0

h

∫ ∞

0
dE E [N+(E ) − R++(E ) − N−(E )

+ R−−(E ) + R+−
a (E ) − R−+

a (E )]

(
− ∂ f

∂E

)
. (16)

Here, Nα (E ) is the number of open channels, in the N right
lead, at energy E for an α-like quasiparticle (α = + stands
for electron and α = − stands for hole) and f (E ) is the
Fermi distribution function at temperature T0 and zero chemi-
cal potential. Moreover, Rαα (E ) is the total energy-dependent
normal reflection coefficient for an α-like quasiparticle (ob-
tained by summing up the probabilities of all open channels),
while Rαβ

a (E ) is the total Andreev reflection coefficient for
a β-like quasiparticle to be reflected into an α-like quasipar-
ticle. According to Eqs. (15) and (16), L12 �= L21 as long as
R+−

a (E ) �= R−+
a (E ), i.e., when TRS is broken [31], and the

energy dependence of R+−
a (E ) is strong enough. As we shall

see below, these conditions can be met in an Andreev interfer-
ometer [33] with two resonant barriers. On the contrary, when
TRS is preserved we have R+−

a (E ) = R−+
a (E ), or equivalently

R+−
a (E ) = R+−

a (−E ), thus implying that L12 = L21 [34]. It is
worthwhile expressing the difference L21 − L12 as

L21 − L12 = 2eT0

h

∫ ∞

−∞
dE E R+−

a (E )

(
− ∂ f

∂E

)
. (17)

Two peculiar cases, which are possible in a hybrid sys-
tem, are worth mentioning. First, in the absence of normal

FIG. 4. The two Onsager coefficients L12 (black) and L21 (red)
are plotted in units of ekBT 2

0 /h as functions of δφ, for γ1 = 0.5�,
γ2 = 1.0�, ε1 = 0.4�, ε2 = 1.9�, � = 0.3, s1 = 1, s2 = −1, and
kBT0 = 0.7�.

reflection, i.e., when Rαα = 0, we have L12 = −L21 so that the
bound (4) becomes

QI
bound = 2

[
1 + L12

L11
(V T0

�T

)
]−2

. (18)

Second, in the case where the left lead is superconducting and
at low temperature (kBT0 � �) one finds L12 = L21 = L22 �
0 (see Appendix B), yielding QI � 2 from Eq. (8).

In the next section we will use the expressions of the
Onsager coefficients, Eqs. (13)–(16), to calculate for a specific
systems the bounds in Eqs. (4) and (5).

V. ANDREEV INTERFEROMETER

Let us now consider an Andreev interferometer (see Fig. 3),
consisting of a three-leg beam splitter with two resonant
barriers (in green) in the branches on the left connected to
two superconducting (S, in yellow) regions characterized by
different superconducting phases φ1 and φ2 and equal gap �.
TRS is broken when φ1 �= φ2. Note that the system corre-
sponds to a two-terminal setup because the S regions are kept
at the same temperature T0 and are grounded (zero chemical
potential). The normal (N) terminal on the right, instead, is
kept at a finite voltage V and at a temperature T0 + �T .

The scattering amplitudes of the system are calculated by
composing the scattering amplitudes of the individual compo-
nents, i.e., a three-leg beam splitter, two resonant barriers, and
two NS perfect interfaces (see Appendix C for details). We de-
note by ε1 and ε2 the energies of the two resonances and by γ1

and γ2 their broadenings. The three-leg beam splitter is char-
acterized by the transmission probability � and two constants
s1, s2 = ±1. When the energy E < �, the scattering matrix
contains only normal reflections and Andreev reflections and
unitarity imposes that R+−

a (E ) = R−+
a (E ). However, provided

that φ1 �= φ2, one finds that R+−
a (E ) �= R−+

a (E ) for E > �

when ε1 �= ε2 or γ1 �= γ2, implying that L12 �= L21. In general
the difference L12 − L21 has no definite sign. As an example,
in Fig. 4 we plot L12 (black) and L21 (red) as functions of
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FIG. 5. QI
bound (black) and QJ

bound (red) as functions of r =
V T0/�T in units of �/e. In the region highlighted in pink (light blue)
the Andreev interferometer works as a heat engine (refrigerator).
In the intermediate region highlighted in light green the Andreev
interferometer works as a heat pump. We used the same parameters
of Fig. 4.

δφ = φ1 − φ2 for a given temperature kBT0 = 0.7� and fixing
γ1 = 0.5�, γ2 = 1.0�, ε1 = 0.4�, ε2 = 1.9�, � = 0.3, s1 =
1, and s2 = −1. Note that L12 = L21 only when δφ = nπ , with
n an integer.

For such a choice of parameters, in Fig. 5 we plot QI
bound

(black) and QJ
bound (red) as functions of the ratio r = V T0/�T

in units of �/e. We first note that by varying r the two
quantities QI

bound and QJ
bound can take any value greater than

or equal to zero. Differently from QJ
bound, QI

bound departs sub-
stantially from 2 only in a relatively small range of values of r.
Moreover, they are both very close to 2 as long as r > 0, i.e.,
the voltage and the temperature difference are concordant. In
particular, since both L12 and L21 are positive for this choice
of parameters, QI

bound and QJ
bound reach zero for two different

negative values of r. Namely, QI
bound = 0 when r = −(L12 +

L21)/(2L11), while QJ
bound = 0 when r = −2L22/(L12 + L21).

On the other hand, note that for r = 0 we have QJ
bound = 2 and

QI
bound = 1/2(1 + L21/L12)2.
Furthermore, both bounds QI

bound and QJ
bound can actu-

ally diverge. For the first quantity, this happens at r = r̄ =
−L12/L11 and for the second one at r = r̄H = −L22/L21. Inter-
estingly, r̄ corresponds to the “stopping voltage” [26], which
is the maximum voltage for which the system behaves as a
heat engine, i.e., produces an output power while absorbing
heat. Indeed, in the linear response the output power P can be
expressed in terms of the Onsager matrix elements as

P = −V

(
L11

V

T0
+ L12

�T

T 2
0

)
, (19)

so that P is positive as long as V is negative and

V > − L12

L11T0
�T ≡ Vstop. (20)

The corresponding range of values of r is highlighted in pink
in Fig. 5. On the other hand, r̄H is related to the “stopping
temperature” [26], which is the maximum temperature differ-
ence, for a given applied voltage, for which the system works

as a refrigerator, i.e., extract heat from the cold electrode.
Fixing �T > 0, from Eq. (2) one can see that J < 0 as long as
�T < −V T0L21/L22 ≡ �Tstop (assuming that L21 is positive),
which can be written in terms of r as r < r̄H. Such a range
of values is highlighted in light blue in Fig. 5. Finally, for r
in the range r̄H < r < r̄, highlighted in green in Fig. 5, the
system behaves as a heat pump, i.e., heat flows out of the
hot electrode (J > 0) while power is provided to the system
(P < 0). Interestingly, QI

bound is strictly smaller than 2 (i.e.,
the bound is looser with respect to the B-S bound) when the
Andreev interferometer works as a heat engine, while QJ

bound
is strictly larger than 2 (i.e., the bound is tighter with respect
to the B-S bound) when it works as a refrigerator.

Such a correlation between the operating mode of the
system and the specific departure of the bounds from the
B-S value is due to a change in the behavior of the currents.
Indeed, QI

bound goes below 2 when the charge current crosses
zero, becoming positive, i.e., the system starts operating as
a heat engine. Similarly, QJ

bound goes above 2 when the heat
current crosses zero, becoming negative, i.e., the system starts
operating as a refrigerator. Finally, the asymptotic values (for
r → ±∞) of the two bounds are QI

bound ∼ 2 and QJ
bound ∼

1
2 (1 + L12

L21
)2.

VI. CONCLUSIONS

In this paper we have derived bounds for TURs in the
absence of TRS for steady-state electronic systems in a two-
terminal setup. Such bounds (QI

bound and QJ
bound) constrain

the value of the two quantities QI = SIσ/(I2kB) and QJ =
SJσ/(J2kB), which are associated to charge (I) and heat (J)
currents, respectively. Here, SI (SJ ) is the charge (heat) current
noise, σ is the entropy production rate, and kB is the Boltz-
mann constant. While in systems which preserve TRS the two
bounds are equal to 2 (QI

bound = QJ
bound = 2, Barato-Seifert

bound [1]), we have found that, in the absence of TRS, the
two bounds are different and depend both on the details of
the system and on the ratio between the affinities (applied
voltage and temperature difference). In particular, they differ
from 2 as long as the off-diagonal Onsager matrix coefficients
(L12 and L21) are different, and can take any positive value.
Moreover, we have found that QI

bound = 2 when �T = 0 and
that QJ

bound = 2 when V = 0.
We have then focused on the case of coherent conductors,

where the scattering approach can be used. Notably, for a
normal conductor attached to two terminals, one finds, even
when TRS is broken, that L12 = L21, so that both bounds equal
2. We have then calculated the two bounds for the case of a
hybrid superconducting system, where, in general, L12 �= L21.
In the specific case of an Andreev interferometer (TRS is
broken when a superconducting phase difference exists be-
tween two superconducting regions), we have investigated the
behavior of QI

bound and QJ
bound as functions of ratio between

affinities. Remarkably, we have found that QI
bound is always

smaller than 2 when the Andreev interferometer works as a
heat engine, while QJ

bound is always larger than 2 when the
Andreev interferometer works as a refrigerator.

We conclude by noting that the occurrence of TRS break-
ing in materials, especially in unconventional superconductors
[35], is important information which is not easy to obtain.
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Remarkably, the bounds we have found can be used to detect
the absence of TRS in superconducting materials. On the other
hand, an interesting development of the present paper would
be the study of these bounds for TURs in the absence of TRS
for nonsuperconducting systems, such as a normal conductor
which is partially coherent or where transport is predomi-
nantly classical, in which case L12 can be different from L21.
This happens in systems composed by quantum dots in the
Coulomb blockade regime, or in systems where decoherence
is partially introduced by a fictitious dephasing terminal.
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APPENDIX A: CURRENTS IN A NORMAL
MULTICHANNEL SYSTEM

For a normal system, charge I and heat J currents flow-
ing in the right lead can be calculated, using the scattering
approach [36], as

I = e

h

∫ ∞

−∞
dE D(E )[ fR(E ) − fL(E )] (A1)

and

J = 1

h

∫ ∞

−∞
dE D(E )(E − eV )[ fR(E ) − fL(E )], (A2)

where D(E ) is the transmission probability from left to right
and fL and fR are the Fermi distribution functions in the left
and right reservoir, respectively. The right reservoir is kept at
a voltage V and temperature T0 + �T , while the left reservoir
is grounded and at a temperature T0.

Expanding fL and fR in linear response, one finds

L11 = e2T0

h

∫ ∞

−∞
dE D(E )[− f ′

0(E )], (A3)

L22 = T0

h

∫ ∞

−∞
dE D(E )E2[− f ′

0(E )], (A4)

L12 = eT0

h

∫ ∞

−∞
dE D(E )E [− f ′

0(E )], (A5)

and L21 = L12, even in the absence of TRS.

APPENDIX B: CURRENTS IN A HYBRID
SUPERCONDUCTING MULTICHANNEL SYSTEM

Within the scattering approach [31,33], the charge I and
heat J currents flowing in a hybrid superconducting system
can be calculated at the N right lead and can be written,
respectively, as

I = e

h

∑
j=L,R

∑
α=±1

(α)
∫ ∞

0
dE

⎡
⎣δR jN

α
R (E ) f α

R (E )

−
∑

β=±1

Pαβ

R j (E ) f β
j (E )

⎤
⎦, (B1)

and

J =1

h

∑
j=L,R

∑
α=±1

∫ ∞

0
dE (E − eV )

[
δR jN

α
R (E ) f α

R (E )

−
∑

β=±1

Pαβ

R j (E ) f β
j (E )

]
, (B2)

where α, β = ±1 stand for particle/holelike quasiparticles,
f α
i (E ) is the Fermi distribution function in lead i = L, R for

particlelike quasiparticles (α = 1) or holelike quasiparticles
(α = −1), Pαβ

i j (E ) is the probability, at energy E , for a β-like
quasiparticle in lead j to be scattered into an α-like quasipar-
ticle in lead i, and Nα

i (E ) is the number of open channels, at
energy E , in lead i for α-like quasiparticle. In terms of the
scattering matrix elements, the probabilities can be written as
[31]

Pαβ
i j (E ) =

∑
a,b

∣∣sα,β

(i,a),( j,b)(E )
∣∣2

, (B3)

where sα,β

(i,a),( j,b)(E ) is the scattering amplitude for a β-like
quasiparticle arriving from channel b in lead j at energy E
to be scattered as an α-like quasiparticle into lead i, channel
a, with a = 1, . . . , Nα

i (E ) and b = 1, . . . , Nβ
j (E ). One can

prove that if TRS is preserved we have

Pαβ
i j (E ) = Pβα

ji (E ).

Note that Eqs. (A1) and (A2) can be obtained from the above
equations by setting the Andreev scattering coefficients to
zero.

Here, we use the following notations: Rαα = Pαα
RR, Rαβ

a =
Pαβ

RR (with α �= β), T αα = Pαα
LR , T ′αα = Pαα

RL , T αβ
a = Pαβ

LR (with
α �= β), T ′αβ

a = Pαβ

RL (with α �= β). Using the fact that

Nα
i (E ) =

∑
β, j

Pαβ
i j (E ), (B4)

L12 can be written as

L12 =eT0

h

∫ ∞

0
dE E [T ′++(E ) + T ′+−

a (E )

− T ′−−(E ) − T ′−+
a (E )]

(
− ∂ f

∂E

)
, (B5)

and while using

Nβ
j (E ) =

∑
α,i

Pαβ
i j , (B6)

L21 can be written as

L21 =eT0

h

∫ ∞

0
dE E

[
T ++(E ) + T −+

a (E )

−T −−(E ) − T +−
a (E )

](− ∂ f

∂E

)
. (B7)

Moreover,

L22 =T0

h

∫ ∞

0
dE E2[T ′++(E ) + T ′+−

a (E )

+ T ′−−(E ) + T ′−+
a (E )]

(
− ∂ f

∂E

)
. (B8)
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Note that in a SN system and at low temperature (kBT0 �
�) the above equations yield L12 = L21 = L22 � 0, since all
transmissions are zero for energies below the gap �.

APPENDIX C: COMPOSITION OF THE SCATTERING
MATRIX OF AN ANDREEV INTERFEROMETER

In order to obtain the scattering matrix of the An-
dreev interferometer depicted in Fig. 3, we compose [37]
the scattering matrices for the individual components. The
three-leg beam splitter is described by the following, energy-
independent, scattering matrix [38]

SB =

⎛
⎜⎝−s1

√
1 − 2�

√
�

√
�√

� a b√
� b a

⎞
⎟⎠, (C1)

where a = 1/2(s2 + s1
√

1 − 2�), b = 1/2(−s2 +
s1

√
1 − 2�), 0 � � � 1/2, s1,2 = ±. The two resonant

barriers, labeled by 1 and 2, are described by the following
reflection and transmission amplitudes,

rb,1(2)(E ) = (E − ε1(2))τ1(2)(E ) (C2)

and

tb,1(2)(E ) = −iγ1(2)τ1(2)(E ), (C3)

respectively, where

τ1(2)(E ) = 1

(E − ε1(2)) + iγ1(2)
. (C4)

Here, γ1(2) is the coupling strength of each individual barrier
of the resonator 1(2) and ε1(2) is the position of the resonant
level for the barrier 1(2). Each ideal NS interface, labeled by 1
and 2, is described by the following perfect Andreev reflection
amplitude,

rhe
A,1(2)(E ) = exp

[
−i arccos

(
E

|�1(2)|
)

− iφ1(2)

]
, (C5)

for an electron to be reflected as a hole, and

reh
A,1(2)(E ) = exp

[
−i arccos

(
E

|�1(2)|
)

+ iφ1(2)

]
, (C6)

for a hole to be reflected as an electron, where �1(2) is the
superconducting order parameter and φ1(2) is the supercon-
ducting phase.
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