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Interedge van der Waals interaction between two-dimensional materials
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Interedge van der Waals interactions between coplanar two-dimensional metals or semimetals are investigated
via the coupled-plasmon approach and many-body dispersion theory. Unlike the “standard” power law E ∼ d−3

derived from pairwise theory, the nonretarded zero-point energy does not scale with interedge distance as a
power law, with the slope of the ln(−E)-ln(d) relation changing from ∼−1 at 2 Å to ∼−3 at 10 Å. The attractive
force for two 10 nm long parallel edges of graphene separated by 4 Å can be up to 6.8 nN, implying that the
interedge dispersion force at subnanometer separations might be experimentally detectable. We further show that
the interaction can be partly screened by dielectric environments, with the strength of screening being sensitive
to whether both surfaces are covered and decaying with the interlayer separation from dielectric substrates.
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I. INTRODUCTION

Two-dimensional (2D) materials with lattices periodically
extending in a single plane are the thinnest substances in
nature [1,2]. Quantum confinement endows them with novel
properties absent in their bulk counterparts, such as the mass-
less fermion of graphene [3], the direct band gap of monolayer
molybdenum disulfide [4], great elastic strength and flexibil-
ity [5,6], and intrinsically anisotropic optical response [7,8].
Since almost all atoms of a 2D material are on its surface and
in direct contact with surrounding environments, the van der
Waals (vdW) force [9–11], a fluctuation-induced interaction
existing between any charged or neutral substances, is impor-
tant for interlayer interactions. To name a few, the vdW force
is crucial for the ultralow friction between incommensurate
layered materials [12], the fabrication of atomically thin crys-
tals via micromechanical cleavage [2], the physisorption of
molecules [13], the adhesive strength between 2D interfaces
[14–16], and the slippage of water on graphite [17]. For this
reason, a lot of efforts have been devoted to the research
of interlayer interaction via either density functional theory
(DFT) [18,19], ab initio random phase approximation [20], or
atomic force microscopy (AFM) with naked or wrapped tips
[14,21].

On the other hand, the vdW interaction of open edges of
finite-size 2D flakes may be as important as the interlayer
one. For example, the dispersion interaction participates in the
pinning effect between edge and substrate that significantly
contributes to the friction of a 2D material [22,23] and domi-
nates the adsorption of free atoms on the growing edge during
chemical vapor deposition [24,25]. It may also influence a
lot of edge-related properties, such as the ferromagnetic spin
order of the graphene zigzag edge [26,27], the plasmon reso-
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nance of graphene ribbons tunable with interedge separation
[28,29], and the edge stress and stability [30,31]. In spite
of the aforementioned importance, the vdW interaction of
the edge has seldom been investigated either theoretically or
experimentally.

Existing theories of vdW interaction can be categorized
into two types. The first type is the atomic-scale theories
including density functional theory (DFT)-based vdW ap-
proaches and ab initio theories [32–36], being perfectly
suitable for the interlayer interaction between 2D materials
with in-plane periodicity. However, because of the missing
of in-plane periodicity along the direction perpendicular to
the edge, the interedge vdW interaction between two coplanar
semi-infinite 2D monolayers poses a challenge to the atomic-
scale theories. The second type is the continuum theories such
as the Lifshitz theory or the coupled-plasmon approach (CPA)
[37–40], which calculate the zero-point energy of electromag-
netic fields or surface plasmons as a function of separation.
For parallel semi-infinite half spaces or parallel 2D mono-
layers, the eigenfrequencies of coupled surface plasmons are
usually analytical functions of wave vector and interlayer
distance; thus the CPA results in energy-distance relations in
the form of simple power laws. Differently, as revealed by
Fetter et al. [41], Xia and Quinn, [42], and Wang et al. [43],
the eigenfrequencies of edge plasmons in an open edge of a
2D metal or semimetal cannot be analytically expressed as a
function of the wave vector; hence it is unclear whether the
CPA would result in a power law for the interedge energy.

In this work, we investigate the interedge vdW interac-
tion between coplanar 2D metallic/semimetallic materials,
borophene [44,45], and graphene and silicene [46,47]. By ex-
pressing the surficial electrical conductivities with Drude-like
models, the interedge energies at a distance ranging from 2
to 10 Å are calculated via the coupled-plasmon approach. It
will be shown that the nonretarded interedge energy does not
scale with distance as a power law, in stark contrast to the
“standard” power law with an exponent of −3 obtained by
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summation of interatomic pairwise energies. The many-body
dispersion (MBD) theory leads to a scaling trend similar to
that of the CPA, though with relatively faster spatial decay
due to finite-width ribbons used for simulation. The attractive
forces between 10 nm long parallel edges separated by sub-
nanometer distances are evaluated and a possible strategy for
experimental detection is discussed. At last, the screening ef-
fect of the dielectric environment on the interedge interaction
is investigated via both the CPA and the MBD.

II. THEORETICAL METHODS

VdW energy is a manifestation of Coulomb interaction
between quantum fluctuation induced spontaneous dipoles.
For intersurface or interlayer interactions, the vdW energy can
be thought as the zero-point energy of surface plasmons vary-
ing with distance because of the distance-dependent Coulomb
interaction. For the interedge interaction between two copla-
nar semi-infinite 2D materials [see illustration in Fig. 1(a)],
the vdW energy is just the difference of zero-point energy
of coupled edge plasmons relative to that at infinite distance
(d → �),

ECPA = 1

2π

∫ +∞

−∞

h̄

2
[ω+(q) + ω−(q) − 2ωe(q)]dq, (1)

where h̄ is the Planck constant, q the one-dimensional wave
vector along the edge, ω+ and ω− are the two lowest eigenfre-
quencies of coupled plasmons, and ωe is the eigenfrequency
of an uncoupled edge. Since a short distance range (2–10 Å)
is considered here, we ignore the retardation effect due to
finite light speed [48,49]; namely, the eigenfrequencies are
calculated by solving the electrostatic Poisson equation. For
comparison, the interedge vdW energies are also calculated
using the pairwise theory and the MBD theory [33].

A. Self-consistent integral equation of electric potential

For simplicity, the metallic borophene and semimetallic
graphene and silicene are assumed to be infinitely thin and the
surficial electric responses are described by Drude-like local
conductivities. The surficial conductivity of borophene [50] is
expressed as

σ (ω) = e2

m

i

ω + iτ−1
n, (2)

where e is the electron charge, m is the effective carrier mass,
and n is the carrier concentration. The relaxation time τ is
discarded in actual calculations. According to the work of
Huang et al. based on ab initio theory [51], n0 of borophene is
3.4 × 1015 cm−2 and m is 3.7 times that of a free electron. For
a 2D semimetal with a Dirac cone, the surficial conductivity
derived from the band structure reads [52]

σ (ω) = e2 vF

π1/2 h̄

i

ω + iτ−1

√
n, (3)

where vF is the Fermi velocity. For graphene and silicene, vF

are 106 and 5.5 × 106 m/s [53,54], respectively. The carrier
concentrations of both semimetals are set to a moderate value
of 1012 cm−2 [53,55].

FIG. 1. (a) Schematic illustration of a coupled edge plasmon
of two coplanar semi-infinite 2D metallic/semimetallic materials.
The color plot represents the spatial distribution of in-plane electric
potential. (b) Plasmon frequency as a function of wave vector. ωb

and ωe denote the plasmon of an intact borophene and an uncoupled
borophene edge, respectively. ω− and ω+ are the two lowest eigen-
frequencies of coupled borophene edges at d = 4 Å. The two insets
represent the antisymmetric (ω+) and symmetrical (ω−) modes, re-
spectively. ωa is the plasmon frequency of intact 2D borophene at
q = 1/a. (c) Electric potential profiles of ω+ and ω− modes along
the x axis, calculated at q = 0.1 Å−1 and d = 4 Å.

Fetter et al. [41], Xia and Quinn [42], and Wang et al. [43]
have investigated the plasmon dispersion relations of uncou-
pled edges of 2D electron gas and graphene. The numerical
method here to calculate the interedge vdW energy is partly
inspired by these works. Generally, the plasmon modes of a
2D material can be solved by combining the Poisson equation
with the charge conservation law and the constitutive relation
between electric field and current. Under an electron density
fluctuation δn(r) within the z = 0 plane, the electric field
obeys Gauss’s law:

∇ · [εE(r)] = −eδn(r). (4)

Here, ε is the background dielectric constant, which is
vacuum unless specifically stated. Assuming that δn(r) is time
harmonic, the charge conservation law reads

∇ · j(r) = −ieωδn(r). (5)
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The constitutive equation relating the current density j to
the electric field E is

j(r) = σ (r, ω) · E(r), (6)

where σ becomes position dependent because of the appear-
ance of the edge.

According to Eq. (4) and the fact that δn(r) is confined in
the z = 0 plane, the electric potential Ф can be related to the
in-plane density fluctuation δn(x, y) as

∇2� = eδn(x, y)

ε
δ(z). (7)

Thanks to the spatial translational symmetry along the edge
(the y axis), the electric potential for an uncoupled edge or two
coupled edges can be plane-wave-like, picking up a harmonic
factor, eiqy−iωt . Upon a Fourier transformation in the normal
direction (the x axis), Eq. (7) is rewritten as[

∂2

∂2z
− (k2 + q2)

]
�(k, q, z) = eδnk

ε
δ(z), (8)

where

δnk = 1

2π

∫ +∞

−∞
e−ikxδn(x)dx. (9)

Then, the electric potential in the z = 0 plane is

�(k, q, 0) = − eδnk

2ε(k2 + q2)1/2 . (10)

By combining Eqs. (5) and (6), the electron density fluctu-
ation can also be related to the electric potential as

δn(x′) = − 1

ieω

[
−σ

(
q2 − d2

dx′2

)
�(x′, q, 0)

− dσ

dx′
d�(x′, q, 0)

dx′

]
. (11)

Finally, a self-consistent integral equation of the electric
potential is derived from Eqs. (10) and (11):

�(x, q, 0) = 1

iωε

∫ +∞

−∞
dx′Lq(x − x′)

×
[
σ

(
q2 − d2

dx2

)
− dσ

dx′
d

dx′

]
�(x′, q, 0).

(12)

Here, the integration kernel Lq(x − x′) is given as

Lq(x − x′) =
∫ +∞

−∞

dk

4π

eik(x−x′ )

(k2 + q2)1/2 = K0(q|x − x′|)
2π

, (13)

where K0(x) is a particular Bessel function according to for-
mula 9.6.21 of the Handbook of Mathematical Functions [56].

To describe the boundary condition upon the appearance
of the edge, n(r) is expressed by the product of n0 and
a boundary-related function f (x). For an uncoupled semi-
infinite 2D material in the left half plane, the function is

f (x) =
⎧⎨
⎩

0, 0 < x
−x/a, −a < x < 0
1, x < −a

, (14)

where a is the edge width [42]; it is set to a small value
of 0.1 Å to avoid having an artificial effect on the energy-
distance relation in the short range. For two semi-infinite 2D
materials residing in the left and right half planes, respec-
tively, we have

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

−x/a, −a < x < 0
0, 0 < x < d
(x − d )/a, d < x < d + a
1, x < −a||x > d + a

, (15)

where d is the interedge distance as illustrated in Fig. 1(a).
By incorporating f (x) into the integral equation, we arrive

at the final equation directly used for numerical calculation.
For a 2D metal, the integral equation is

�(x, q, 0) = 2ω2
a

ω2

∫ +∞

−∞
dx′Lq(x − x′)

×
[

f (x′)
(

q2 − d2

dx2

)
− df (x′)

dx′
d

dx′

]
�(x′, q, 0),

(16)

where ωa = e2 n0/2mεa is the plasmon frequency of the
intact 2D metal at a wave vector of q = 1/a. For a 2D
semimetal, the integral equation is

�(x, q, z = 0) = 2ω2
a

ω2

∫ +∞

−∞
dx′Lq(x − x′)

×
[√

f (x′)
(

q2 − d2

dx2

)
− d

√
f (x′)

dx′
d

dx′

]
�(x′, q, 0),

(17)

where ωa = e2 vF
√

n0/2
√

π h̄εa is the plasmon frequency of
the intact 2D semimetal at q = 1/a.

B. Numerical solution of the integral equation

To solve the self-consistent integral equations, the elec-
tric potential can be expanded in Laguerre polynomials
[41–43,56]. For an uncoupled edge, the electric potential is
expanded as

�(x, q, 0) = eqx
∑

cnLn(−2qx). (18)

Then the self-consistent integral equation is transformed to
a matrix equation

Gc = ω2

4ω2
aq

c, (19)

where {c j} is a set of expansion coefficients; the matrix el-
ements {Gi j} can be calculated from Eq. (16) or (17). The
eigenfrequencies of the edge plasmon can be calculated from
the eigenvalues of the matrix equation.

For two coupled edges, the electric potential is expanded
with two sets of Laguerre polynomials,

�(x, q, 0) =
{

eqx
∑∞

n=0 c1
nLn(−2qx), x < 0

e−q(x−d ) ∑∞
n=0 c2

nLn[2q(x − d )], x > d
,

(20)
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where c1
n and c2

n are the expansion coefficients for the potential
on the left and right sides, respectively. The eigenfrequencies
of the coupled edge plasmons can be obtained by solving the
matrix equation,[

G11 G12

G21 G22

][
c1

c2

]
= ω2

4ω2
aq

[
c1

c2

]
, (21)

where the submatrices G12 and G21 originate from the
Coulomb interaction between the charge fluctuations on the
two sides. In order to ensure accuracy and efficiency, we use a
basis set with 20 Laguerre polynomials for each edge. Figure 5
of Appendix A verifies that increasing the basis size from 20
to 30 or 40 does not alter the frequency difference between
coupled and uncoupled plasmons, ω+ + ω− − 2ωe. We note
that the CPA formulation could also work for 2D semicon-
ductors, by replacing Eqs. (5) and (6) with the constitutive
relations of surficial dielectric response,

δn = −∇ · P2D, (22)

P2D = −α2D∇�(z = 0), (23)

where α2D is the 2D polarizability and P2D is the surficial
polarization. Nevertheless, the interedge vdW energy should
be given by the adiabatic connection fluctuation-dissipation
theorem (ACFDT) instead (see Appendix B for the detailed
derivations).

C. Computational details of the pairwise theory
and the MBD theory

According to the pairwise theory widely used in the phys-
ical chemistry community, the interedge vdW energy can be
expressed as the sum of interatomic energies,

Epairwise =
∑

−C6R−6
i j , (24)

where the i and j indices denote the atoms on the left and
right sides, respectively. For graphene and silicene [15], C6

coefficients derived from 2D materials’ dielectric functions
are applied, which are 17.63 and 222.1 hartree bohr6, respec-
tively. On the other hand, a free-atom C6 coefficient is used for
borophene (99.5 hartree bohr6) [57], since the 2D Clausius-
Mossotti relation [15] for the complex borophene structure is
unavailable. For a fair comparison between different theories,
the damping function as often used in the DFT-based vdW
approach is not included here. The detailed molecular struc-
tures and manners of edge alignment are displayed in Fig. 7
of Appendix C. In actual calculations with the pairwise theory,
two coplanar ribbons with a width of ∼1000 Å are used.

The DFTMBD theory developed by Tkatchenko et al. [33]
is applied to calculate the interedge vdW energy of graphene.
This method considers each atom as a quantum harmonic
oscillator and obtains the vdW energy as the difference of
zero-point energy of the coupled oscillators relative to that of
the isolated ones. Technically, the DFT-MBD calculations are
performed using the FHI-AIMS code [58]. A tight basis is used
for the orbital and the Perdew-Burke- Ernzerhof functional
[59] is applied for the exchange-correlation energy. Due to
the limitation of computational cost, the supercell consists of
two parallel coplanar armchair ribbons, each with two hex-
atomic rings along the width direction. To avoid any spurious

interactions between periodic images, the height and length
of the supercell are set to 20 and 40 Å, respectively. A k-point
mesh of 3 × 1 × 1 is used for the momentum space sampling.
Notably, the quantum Drude oscillator applied in the MBD
theory cannot tackle the vdW energy originating from electri-
cal conduction, which is important in long ranges.

III. RESULTS AND DISCUSSION

A. Uncoupled and coupled edge plasmons

We first look into the dispersion relations of the uncoupled
and coupled edge plasmons. As illustrated by the dashed curve
in Fig. 1(b), the plasmon frequency of an intact borophene
scales with the wave vector as ωb ∝ q1/2, which is a common
characteristic of 2D metal. Upon the introduction of the edge,
the lowest eigenfrequency is shifted downwards. Because the
electric potential fluctuation is mainly localized at the edge
and decays in regions far from the edge, this plasmon mode
can be attributed to the edge. As we here adopt a rather small
edge width a = 0.1 Å, the dispersion relation looks akin to
that of an abrupt edge [42], ωe ∼ (2/3)1/2ωb. In the case of
coupled edges, the dispersion curve is split into two different
ones: one with higher frequency denoted as ω+ and another
with lower frequency denoted as ω−. The splitting vanishes
with increasing wave vector (at q of ∼0.75 Å−1 in the case of
d = 4 Å), which is understandable since the electric potential
oscillates periodically along the edge direction [Fig. 1(a)].
Figure 1(c) shows that the amplitudes of the electric potentials
of the ω+ and ω− modes are symmetric and antisymmetric
along the normal direction, respectively. Then ω+ and ω−
can be defined as the antisymmetric and symmetric modes,
because the values of the electric fields of ω+ and ω− are an-
tisymmetric and symmetric, respectively. At the absolute zero
of temperature, the two lowest modes of the coupled edges
will be excited owing to quantum fluctuation, whereas there
are two uncoupled edge modes in the d → ∞ case. In the con-
sidered range of wave vector, the sum of ω+ and ω− is always
lower than two times ωe, resulting in an attractive vdW force.

For completeness, Fig. 6 of Appendix C shows the disper-
sion relations of edge plasmons calculated with a larger edge
width, a = 1 Å. The uncoupled edge is seen to support more
higher-frequency modes, which are usually termed dipole,
quadrupole modes, etc. [42,43]. Here, within the wave vector
range shown in Fig. 6, only the dipole mode appears. These
modes actually coincide with the 2D bulk mode at small wave
vectors, and thus cannot be thought of as pure edge modes.
Indeed, due to the larger separation between the charge fluc-
tuations on the two sides, the higher-frequency modes of two
coupled edges do not show evident splitting. Since the dipole
mode does not appear in the considered wave vector range at
a = 0.1 Å, we do not consider the effect of higher-frequency
modes on the vdW interaction.

The dispersion relation of graphene or silicene edges with
a small edge width of a = 0.1 Å looks quite akin to those of
borophene edges except for the different ωa; thus to avoid
repetition the details are not presented here. The similar dis-
persion relations of the 2D metal and 2D semimetals are to
be expected, if one notices that the integral equations (16) and
(17) only differ with each other in the region of edge width.
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FIG. 2. (a) Interedge vdW energy density between coplanar
semi-infinite 2D materials as a function of distance, calculated using
the CPA, the pairwise theory, and the MBD (for graphene only).
(b) Log-log plot of interedge vdW energy density as a function of
separation. The slopes at d = 2 and 10 Å are labeled in the figure.
(c) Log-log plot of interedge pairwise energy density as a function
of separation. To avoid the influence of detailed edge structures, the
energies in a medium distance range (50–100 Å) are used for the
linear fitting.

B. Interedge vdW energy

Figure 2(a) presents the interedge vdW energy densities
EvdW in the distance range from 2 to 10 Å. According to
either the CPA or the pairwise theory, the vdW interaction be-
tween borophene edges is the strongest among the considered
materials. The relatively stronger interaction of borophene
predicted by the CPA originates from its larger carrier con-
centration that is three orders of magnitude higher than those
of graphene and silicene, while that predicted by the pairwise

theory is mainly due to the relatively larger atomic density
of borophene. Among graphene and silicene with the same
carrier concentration, the former with higher Fermi velocity
exhibits relatively stronger vdW interaction.

We also show the MBD energy of two coplanar narrow
graphene ribbons in Fig. 2(a). In the considered distance
range, the MBD energy is higher than the CPA energy and the
pairwise energy. We note that the MBD energy of graphene
edges should be considered as the suitable theoretical value to
be compared with the experimental result. The CPA energy of
graphene here is underestimated, since the contribution of the
dielectric response is not included and only a moderate carrier
concentration of graphene is assumed. The pairwise energies
here could also be underestimated, in contrast to previous
works where the MBD energies tend to be lower than the
pairwise ones calculated with free-atom C6 coefficients. The
different relative magnitudes here are due to the fact that the
C6 coefficient derived from the Clausius-Mossotti relation for
intact graphene is applied, overestimating the dipole-dipole
screening near the edge.

A particular interest of vdW energy is its scaling law as a
function of separation. For highly symmetric configurations,
the energy-distance relation often obeys a power law with a
dimensionality-dependent exponent. For two parallel semi-
infinite objects, the dispersion energy scales with distance
as E = −d−2 [48], while for interlayer energy between 2D
monolayers Dobson et al. [39] find that the power-law ex-
ponent can be −4, −2.5, or −3 depending on whether the
materials are metallic, semimetallic, or insulating. In order to
reveal the scaling law of interedge energy, the log-log plots of
−EvdW-d relations calculated from the CPA and the pairwise
theory are shown in Figs. 2(b) and 2(c), respectively. The
pairwise theory results in a “standard” power law with an
exponent of −3, implying that the standard interedge energy
has a slower spatial decay than the standard interlayer energy
with an exponent of −4 [39]. Previous studies of interlayer
energy find that the CPA energy decays with distance more
slowly than the pairwise energy does. This is also true for
the interedge energy here. However, in sharp contrast to the
interlayer case, the interedge CPA energy no longer follows a
power law, with the slope of the ln(−E)-ln(d) relation chang-
ing from ∼−1 at 2 Å to ∼−3 at 10 Å. The irregular scaling
law should be caused by the reduced symmetry in the con-
figuration of coplanar semi-infinite monolayers. Surprisingly,
the MBD results in a scaling trend similar to that by the CPA,
though with the slope of the ln(−E)-ln(d) relation changing
from −1.45 to −3.61 in the considered distance range. The
faster spatial decay by the MBD is just due to the narrow
graphene ribbons used in the DFTMBD calculation. If wider
graphene ribbons were used, the scaling trend of the MBD
energy should achieve even better agreement with the CPA.

To figure out whether the interedge vdW force could be
experimentally detectable, Fig. 3 shows the attractive forces
between two 10 nm long flakes. According to the MBD, the
interedge force between the graphene flakes can be up to
6.8 nN at d = 4 Å. Although this force can be one order of
magnitude smaller than that for two parallel 10 nm × 10 nm
flakes at an interlayer distance of 4 Å, it is orders of magnitude
larger than the detection accuracy of AFM [14]. According to
the work of Gao and Tkatchenko [60], the frictional force of a
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FIG. 3. Interedge vdW force between two 10 nm long flakes as a
function of distance.

triangular graphene flake with a side length of 10 nm sliding
on another graphene substrate can be down to 3.2 nN. Hence,
the interedge force is comparable to the interlayer friction
and in some circumstances could overcome the friction and
drive the nanoflake. The CPA leads to relatively lower but
still sizable vdW forces, which are 2.5, 1.2, and 0.9 nN for
borophene, graphene, and silicene at d = 4 Å, respectively.

Based on the above analyses, we suggest that the experi-
mentalists could measure the interedge force by placing a
triangular graphene nanoflake in close proximity to the open
edge of another graphene monolayer.

C. Dielectric screening effect on interedge vdW energy

Recent experimental [61] and theoretical works [62–64]
demonstrate a so-called vdW screening or Faraday cage–like
screening effect; namely, a graphenelike monolayer can partly
screen the vdW interaction between objects on its two sides.
Actually, this kind of dielectric screening can also influence
the interedge vdW interaction, when the two coplanar semi-
infinite monolayers are supported or sandwiched by dielectric
substrates. Here, we consider the screening effect induced by
an ultraflat h-BN substrate, an extensively used dielectric sub-
strate for 2D devices [65,66]. To consider the screening effect
upon sandwiching the semi-infinite monolayers with thick
h-BN layers [see illustration in Fig. 4(a)], the background
dielectric constant ε in the CPA formulation is replaced
with the frequency-dependent dielectric function of h − BN
expressed by a Lorentz model (see Appendix D). Figure 4(b)
shows the vdW energy upon screening, E ′

CPA, normalized
with respect to that without screening, ECPA. With increasing
interedge distance, the ratios E ′

CPA/ECPA converge to constant

FIG. 4. Dielectric screening effect of h-BN substrates on the interedge vdW energy. (a) Schematic illustration of interacting edges
sandwiched by bulk h-BN. (b) Interedge vdW energy densities for borophene or graphene sandwiched by h-BN, calculated using the CPA.
(c) Atomic structures of coplanar graphene ribbons sandwiched or supported by monolayer h-BN used for the DFTMBD calculations. (d)
Ratio of interedge vdW energy of graphene under screening to that without screening, calculated using the DFTMBD. The dashed line denotes
the ratio given by the CPA.
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values, which are 0.52 and 0.47 for borophene and graphene,
respectively, implying that sandwiching the monolayers with
h-BN substrates can screen off about half the interedge vdW
energy.

The vdW screening effect is also investigated via the MBD,
which has been shown to be effective for the interlayer vdW
screening at short interlayer distances [62,64]. Due to the
limitation of computational resources, two coplanar armchair
graphene ribbons with one carbon hexagon in the width di-
rection and sandwiched by h-BN monolayers are used for the
DFTMBD calculations [see Fig. 4(c)]. To avoid the influence
of periodic images, the height and length of the supercell are
set to 40 and 40 Å, respectively. The interedge MBD energy
is calculated as the difference of the MBD energy at d =
5.025 Å relative to that at the reference point (d = 10.050 Å),
because at the two distances the vdW energies between the
graphene ribbons and h-BN monolayers can remain identi-
cal. Surprisingly, at an interlayer distance h of 3.3 Å, the
ratio E ′

MBD/EMBD is 0.54 [see Fig. 4(d)], being rather close
to the ratio E ′

CPA/ECPA (0.47). We note that the excellent
agreements on the screening effect as well as on the scaling
trend of interedge energy by the CPA and MBD are rooted
in the fact that both theories derive the vdW energy via cou-
pled electromagnetic oscillators, either continuum or atomic
ones.

We also investigate the screening effect by merely an
underlying h-BN monolayer. The ratio E ′

MBD/EMBD at an in-
terlayer distance of 3.3 Å is 0.78, meaning that the strength of
the vdW screening effect is less significant when only one side
is covered by the dielectric. This can be readily rationalized if
one notices that only part of the electric field lines joining
the electron and hole passes through the underlying h-BN
monolayer [Fig. 4(c)]. Figure 4(d) also shows the screening
effect as a function of the interlayer separation. As h increases
to 5.3 Å, the ratios E ′

MBD/EMBD for the sandwiched and sup-
ported edges gradually increase to 0.92 and 1.00, respectively,
in good agreement with our anticipation that larger separation
will induce weaker screening. We note that this interlayer
distance dependence of screening strength is also expected
for the interlayer screening, but has not been reproduced by
the MBD, at least in the medium range [64].

IV. CONCLUSION

We have studied the interedge nonretarded disper-
sion interaction between two coplanar semi-infinite 2D
metal/semimetals, using the coupled-plasmon approach and
the many-body dispersion theory. Due to the reduced sym-
metry, the interedge energy in the short range (2–10 Å) does
not scale with distance as a power law. Compared with the
“standard” power law by the pairwise theory, the theories
based on the coupled oscillators give slower spatial decay.
At subnanometer distances, the interedge attractive forces are
sizable and even comparable to the friction of a nanoflake on
a flat substrate, and thus could be experimentally detectable.
Finally, it is shown that the interedge van der Waals interaction
can be partly screened by dielectric substrates, just like the
previously revealed dielectric screening effect on the inter-
layer interaction.
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APPENDIX A: CONVERGENCE TEST
AND EFFECT OF EDGE WIDTH

Figure 5 shows the frequency differences between the
coupled and uncoupled plasmons, ω+ + ω− − 2ωe, calculated
with bases consisting of 20, 30, and 40 Laguerre polynomials.
Increasing the basis size from 20 to 30 or 40 does not lead
to obvious improvement on the results, verifying that the
basis of 20 Laguerre polynomials is sufficient for the con-
vergence of eigenfrequencies of edge plasmons and interedge
energy.

Figure 6 shows the plasmon dispersion of the borophene
edge as a function of wave vector q, calculated with an
edge width of a = 1 Å. In the considered wave vector range
(<1.5 Å−1), the larger edge width results in a deviation
of the dipole mode from the bulk mode. For two cou-
pled edges, the symmetric and antisymmetric dipole modes
coincide with the uncoupled one, which means that the
higher-energy modes do not contribute to the interedge vdW
energy.

APPENDIX B: ACFDT FORMULATION FOR INTEREDGE
vdW ENERGY OF NONMETALLIC 2D MATERIALS

The charge fluctuations of nonmetallic 2D materials comes
from the polarization of bound charges of atoms:

nind(x, y, z = 0) = −∇ · P2D(x, y, z = 0). (B1)

Here, P2D is the surficial polarization induced by the elec-
tric field,

P2D(x, y, z = 0) = −α2D∇�(x, y, z = 0), (B2)

with α2D being the 2D polarizability in the in-plane direction.
As the dispersion relation of the plasmon in the semi-infinite

FIG. 5. ω+ + ω− − 2ωe as a function of q, calculated with bases
consisting of 20, 30, and 40 Laguerre polynomials.
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FIG. 6. Plasmon frequency of borophene edge as a function of
wave vector, calculated at an edge width of a = 1 Å. ω− and ω+ are
the two lowest eigenfrequencies of coupled modes at d = 4 Å. ωdipole,
ωdipole+, and ωdipole− are the uncoupled and coupled dipole modes of
edge plasmons, respectively.

nonmetallic 2D layers cannot be explicitly derived, the sum-
mation of zero-point energies cannot be used to evaluate the
interedge vdW energy. Instead, the adiabatic connection fluc-
tuation dissipation theorem (ACFDT) is generally applicable
[39], if only the electron density–density response function χ

can be explicitly given. The correlation energy reads

EvdW = − h̄

2π

∫ 1

0
dλ

∫
drdr′ e2

|r − r′|

×
∫ ∞

0
χλ(r, r′, iu) − χ0(r, r′, iu)du, (B3)

where χλ is the charge density response function at the
Coulomb interaction scaled by λ and χ0 is the bare response
function. Both χλ and χ0 are functions of the imaginary fre-
quency iu.

Combining Eqs. (B1) and (B2), one obtains the induced
charge density under an external potential,

nind(x, q, 0) = α2D

[
f (x)

(
d2

dx2
− q2

)
+ df (x)

dx

d

dx

]
�(x, q, 0),

(B4)

where the total potential is

�(x, q, 0) = �ext (x, q, 0) + 2
∫ +∞

−∞
λK0[q(

∣∣x − x′∣∣)]
× nind(x′, q, 0)dx′. (B5)

By linearly expanding the induced charge density nind and
the external potential �ext (r) with the Laguerre polynomials,

nind(x, q, 0) =
{∑∞

n=0 c1
n eqxLn(−2qx), x < 0∑∞

n=0 c2
n e−q(x−d )Ln[2q(x − d )], x > d

,

(B6)

�ext (x, q, 0) =
{∑∞

n=0 b1
n eqxLn(−2qx), x < 0∑∞

n=0 b2
n e−q(x−d )Ln[2q(x − d )], x > d

,

(B7)

the charge density response can be described via the linear
relation of coefficients of linear expansions,

[
c1

c2

]
=

[
R11 R12

R21 R22

][
b1

b2

]
, (B8)

where R is the response matrix. By left multiplying Eq. (B5)
by any basis function and integrating, one obtains a matrix
equation of R,

1

2q
R = R0 + AR, (B9)

where R0 is the bare response matrix. The vdW energy per
unit length then is

EvdW/L = − h̄

π

∫ 1

0
dλ

∫ ∞

0
du

∫
dxdx′

∫ −∞

0
dq

2π

(2π )2

× K0(q|x − x′|) · [l (x′)T (R − R0)l (x)], (B10)

where the elements of vector l are the Laguerre basis func-
tions as applied in Eq. (B6) or (B7).

APPENDIX C: DETAILS OF PAIRWISE THEORY

Figure 7 shows the atomic structures used for the cal-
culations of pairwise vdW energies. To mimic semi-infinite
monolayers, the ribbon width is set to be 1000 Å, much larger
than the interedge distances. The atomic structures periodi-
cally extend along the edge direction. We note that while the
crystal structure of the adopted borophene is anisotropic, the
optical anisotropy along the x and y axes is insignificant [51]
and neglected in this work.

FIG. 7. Atomic structures used for calculations of pairwise vdW
energies between (a) borophene, (b) graphene, and (c) silicene edges.
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APPENDIX D: DIELECTRIC FUNCTION OF h-BN
AND EDGE PLASMONS UNDER SCREENING

To calculate the interedge energy under screening, the
background dielectric constant ε in the CPA formulation is
replaced with the frequency-dependent dielectric function of
h-BN, which can be expressed by a Lorentz model [67]:

εL = ε∞
ω2 − ω2

LO + iγω

ω2 − ω2
TO + iγω

. (D1)

Here, ωLO and ωTO are longitudinal optical phonon fre-
quency and transverse optical phonon frequency, respectively;
γ is the damping factor; ε∞ is the high-frequency dielectric

constant. Inserting (D1) into Eqs. (19) and (21), we get new
matrix equations for the uncoupled and coupled edges, respec-
tively,

Gc = ω2

4ω
′2
a q

c, (D2)

[
G11 G12

G21 G22

][
c1

i

c2
k

]
= ω2

4ω′2
aq

[
c1

i

c2
k

]
, (D3)

where ω′
a is the plasmon frequency at a wave vector of q =

1/a for the intact 2D material under screening

ω′2
a =

(
ω2 + ω2

TO + γω
)
ε∞

ω2
a

(
ω2 + ω2

LO + γω
) . (D4)
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