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Superconductor-polariton nondissipative drag in optical microcavity
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We consider nondissipative drag between Bose-condensed exciton polaritons in optical microcavity and
embedded superconductors. This effect consists of induction of a nondissipative electric current in the super-
conductor by motion of polariton Bose condensate due to electron-polariton interaction, or vice versa. Using
many-body theory, we calculate the drag density, characterizing magnitude of this effect, with taking into
account dynamical screening of the interaction. Hoping to diminish the interaction screening and microcavity
photon absorption, we consider atomically thin superconductors (both conventional s-wave and copper-oxide
d-wave) of planar and nanoribbon shapes. Our estimates show that in realistic conditions the drag effect could
be rather weak but observable in accurate experiments in the case of dipolar interlayer excitons in transition
metal dichalcogenide bilayers. Use of spatially direct excitons, semiconductor quantum wells as the host for
excitons, or thin films of bulk metallic superconductors considerably lowers the drag density.
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I. INTRODUCTION

Nondissipative drag was initially predicted for a mixture
of superfluid 3He and 4He [1], and then studied theoretically
in other systems: ultracold Bose-condensed atomic gases [2],
two interacting superconductors [3], and superfluid proton-
neutron mixtures in neutron stars [4]. Unlike the Coulomb
drag in heterostructures [5] or electron-polariton systems [6],
this effect is nondissipative: in a mixture of two superfluids
there appears the cross coupling between velocities of super-
fluid components and superfluid currents of two species with
the coefficient called drag density [1].

Several experimental methods to detect the nondissipative
drag were proposed over the years. The most straightforward
one implies measuring the current, induced in one specie of
the mixture in response to the current in the other specie [1,2].
Another method is to measure the spin susceptibility and the
speed of sound of the spin mode (antiphase oscillation of both
components) [7,8], since these quantities can be straightfor-
wardly related to the drag density. Moreover, it was shown that
the nondissipative drag affects the stability criteria of Bose-
Bose superfluid mixtures [8]. In extended 2D systems, where
the Berezinskii-Kosterlitz-Thouless transition is expected, the
large drag density can destroy the superfluidity [9]. Other
detection methods include, for example, measuring of the
magnetic fields, induced by drag currents in superconductors
[3], and interferometry of ultracold atomic gases [10]. Despite
predictions of the nondissipative drag in various systems, it
is still elusive in the experiments and has not been directly
confirmed.
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Recent advances in condensed matter physics, especially
in two-dimensional superconductivity [11] and electromag-
netic microcavity designs [12], may open new possibilities
for detection of the drag effect. One of the involved super-
fluid subsystems may be a Bose-Einstein condensate (BEC)
of excitonic polaritons, which was realized in a lot of
materials, such as bulk or nanostructured semiconductors
(CdTe, GaAs, GaN, etc.), atomically thin transition metal
dichalcogenides (TMDCs), and organic compounds. Despite
the driven-dissipative nature of polariton systems [13–15],
which converts the Bogoliubov excitations into diffusive
modes at low momenta and makes the Landau superfluidity
criterion formally violated, dissipationless long-range prop-
agation of polaritons, and algebraic quasi-long-range order
below the Berezinskii-Kosterlitz-Thouless transition were ob-
served [16,17]. Therefore, the excitonic polaritons can serve
as a reliable physical platform to realize BEC brought into
a coherent motion. The discovery of graphene paved the
way for two-dimensional superconductors (FeSe, magic-angle
twisted bilayer graphene, TMDCs, copper-oxide layers, etc.),
which can be used as the second subsystem. The resulting hy-
brid superconductor-polariton system provides opportunities
to study Bose-Fermi collective effects, which are starting to
draw attention [18,19].

In this paper we investigate the nondissipative drag be-
tween two systems of different natures: Bose condensate of
interlayer excitonic polaritons, arising in TMDC bilayers em-
bedded in Fabry-Perot optical microcavity; and Cooper-pair
condensate of a superconductor. Unlike in our previous pa-
per [20], where the superconducting system was assumed
to be a two-dimensional (2D) electron gas with the Cooper
pairing induced by the polariton-BEC mediated electron
attraction [19,21], here we consider the preexisting supercon-
ductors of extreme thinness (NbSe2, FeSe, YBCO, LSCO,
and Nb1−xTixN). The choice of these materials is motivated
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FIG. 1. System schematic: Bose-condensed indirect polaritons in TMDC bilayer embedded into Fabry-Perot optical microcavity interact
with (a) 2D atomically thin superconductor (SC), (b) 1D atomically thin superconducting ribbon, or (c) 1D wire fabricated from bulk
superconductor. Due to electron-exciton interaction, the superfluid drag appears when the motion of exciton-polariton BEC with the velocity
vp entrains Cooper pair condensate giving rise to the nondissipative current of electrons jel.

by intention to reduce both the absorption of microcavity
photons and the screening of electron-polariton interaction by
a superconductor. To reduce the influence of the superconduc-
tor even more, we consider not only 2D thin film, but also
one-dimensional (1D) ribbon and wirelike superconductor ge-
ometries.

The overview of the superconducting materials taken into
consideration is given in Sec. II. As described in Sec. III, we
introduce the drag density which unambiguously character-
izes magnitude of the nondissipative drag even if the effective
mass of electrons in a superconductor is undefined, as happens
for high-temperature copper-oxide superconductors with es-
sentially anisotropic electron dispersions and Fermi surfaces.
Relating the drag density to the correlation function of cur-
rents, we perform many-body calculations of this quantity
with taking into account dynamical screening of electron-
polariton interaction by density responses of polariton and
electron subsystems, generally anisotropic electron disper-
sion and superconducting gap, and different superconductor
geometries.

The calculation results for the drag density in realistic
conditions are presented in Sec. IV. We show that nanoribbon
geometry allows to achieve the same order of drag density
as with atomically thin 2D superconductors, but at larger
distances between electronic and excitonic layers. In the case
of direct excitons in TMDC monolayer, or with nanowires
made of bulk superconductors, the drag density turns out to
be much lower. Section V is devoted to discussion of possi-
ble experimental observation of the effect, Sec. VI presents
our conclusions, and Appendixes A and B present details of
calculations.

II. SYSTEM OVERVIEW

The main issue with embedding a superconductor into an
optical microcavity is avoiding degradation of the quality
factor due to light absorption by the superconductor film. To
achieve it, one can use atomically thin 2D superconductors
or refuse from the plane-parallel geometry in order to reduce
spatial overlap between the superconductor and microcav-
ity electromagnetic mode. The latter scenario may include

placement of a superconductor around the microcavity [22,23]
or in a shape of narrow nanowire.

Three kinds of system schematics we propose are shown
in Fig. 1. The first one [Fig. 1(a)] includes 2D atomically
thin superconductor with low absorption and transverse width
wy much larger than the out-of-plane distance L between
the superconductor and the excitonic layer. In the second
case [Fig. 1(b)], the atomically thin superconductor has a
shape of 1D nanoribbon with the width wy � L, which al-
lows to reduce the light absorption and the screening of
electron-polariton interaction by the superconductor. The
third case [Fig. 1(c)] deals with the 1D nanowire made of
bulk metallic superconductor with the width wy and thick-
ness wz, both small with respect to L. In all cases, the
dipole spatially indirect excitons in TMDC bilayer are shown
in the figure, although the case of spatially direct excitons
in a monolayer will also be studied in the geometry of
Fig. 1(a).

As candidate materials for our calculations, we con-
sider the following atomically thin superconductors: NbSe2

[24,28], FeSe [31], as well as copper-oxide high-temperature
superconductors YBCO [26,36] and LSCO [27]. For 1D
wires, we consider relatively thick niobium-based 3D su-
perconductors Nb1−xTixN [34]. The parameters of all super-
conducting materials are listed in Table I. The attenuation
coefficients α of 2D superconductors are low enough for the
integral absorption coefficient αh, with taking into account
their effective optical thickness h, to be less than 0.01, so
we might hope that the microcavity quality will not degrade
considerably, especially when the superconductor layer does
not overlap its cross section completely.

Besides the superconducting materials presented in the
Table I, there are other superconductors with low absorp-
tion. For instance, so-called transparent superconductors, like
Li1−xNbO2 with an attenuation around 0.2 × 105 cm−1 at the
wave length 700 nm [37]. However, the thickness of such
superconductors in experiments is usually of the order of
100 nm, so their embedding into microcavity may be a chal-
lenging task.

Some remarks about the properties of FeSe and NbSe2

listed in Table I should be made. The FeSe monolayer can be
grown on various substrates, like SrTiO3, BaTiO3, graphene,
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TABLE I. Extinction and attenuation α coefficients, thicknesses h, and absorption coefficients αh at the wavelength 700 nm for the
superconductors we consider along with their electronic parameters: critical temperature Tc, zero-temperature superconducting gap �, density
nel and effective mass m∗

el of charge carriers, and three-dimensional (3D) critical current density j3D
c . The parameters for NbSe2 are taken from

[24,28–30], for FeSe from [25,31,32], for YBCO and LSCO from [26,27,33], and for Nb1−xTixN from [34,35]

NbSe2 FeSe YBCO LSCO Nb1−xTixN

Optical parameters

Extinction 0.5 [24] 0.14 2.5
α (105 cm−1) 0.9 0.25 [25] 0.77 [26] 0.16 [27] 4.5
h 2.2 nm 0.55 nm 1.17 nm 1.32 nm 3 nm
αh 0.02 0.0014 0.009 0.002 0.14

Electronic parameters

Tc 4.7 K 50 K 30 K 30 K 16 K
� 0.7 meV 17 meV 20 meV 20 meV 4 meV
nel 1015 cm−2 1014 cm−2 1014 cm−2 5 × 1013 cm−2 1022 cm−3

m∗
el/m0 1 2.7 1

j3D
c 2 × 107 A/cm2 3 × 105 A/cm2 106 A/cm2 4 × 106 A/cm2

and TiO2 (see [38] and references therein). We consider the
SrTiO3 substrate, which is almost transparent and provides
the highest critical temperature. Although the Fermi surface of
FeSe contains additional hole pockets [31], with this substrate
they are located well beneath (at 80 meV) the Fermi level and
can be disregarded. NbSe2 has three hole pockets, namely K,
K′, and � [29]. While there are differences between them, the
total answer does not change drastically on the exact form of
these pockets so we model NbSe2 as three-valley material.
There is an on-going debate on the exact form the supercon-
ducting gap and its momentum dependence [28,39], and for
simplicity we assume the same isotropic gap � = 0.7 meV
[28] in all three valleys.

III. THEORY

Nondissipative drag is characterized by the tensor of
electron-polariton current response

χαβ (q, i�) = − 1

A

∫ 1/T

0
dτ ei�τ

〈
Tτ jel

qα (τ ) jp
−qβ (0)

〉
. (1)

For 2D superconductor α, β = x, y and A is the area wxwy

of the electron layer, while for 1D superconducting ribbon
or wire α = x, β = x, y, and A = wx is its length. In the
long-wavelength limit q → 0, the operators of current density
Fourier harmonics jel

q→0 = h̄−1 ∑
ks(dεel

k /dk)a†
ksaks, jp

q→0 =
h̄−1 ∑

k(dε
p
k/dk)b†

kbk are given in terms of electron εel
k and

polariton ε
p
k dispersions as well as creation and destruction

operators of electrons a†
ks, aks and polaritons b†

k, bk with the
momentum k; s is the electron spin and valley index.

The static long-wavelength limit

χT = lim
qx→0

lim
qy→0

χxx(q, i� = 0) (2)

of the transverse part of the tensor (1) determines response of
the homogeneous electron current density jel on the gradient
of phase ϕp of the polaritonic BEC:

jel = χT h̄∇ϕp. (3)

Note that the true superfluidity of polaritons should not be
necessary for existence of the nondissipative drag, since we
need only BEC with the long-range or quasi-long-range order
and nonzero gradient ∇ϕp of the order parameter. The dis-
tinction between BEC and superfluidity can be essential for
driven-dissipative exciton-polariton systems [13].

In the case where the polaritons have well-defined mass,
ε

p
k = h̄2k2/2mp, at characteristic velocities of their condensate

motion, we can define the polariton condensate velocity vp =
h̄∇ϕp/mp and the drag density ndr:

jel = ndrvp, ndr = mpχT. (4)

When the electron effective mass is also well defined, εel
k =

h̄2k2/2m∗
el, we can introduce the drag-induced mass current

density of electrons gel = m∗
eljel and the drag mass density ρdr:

gel = ρdrvp, ρdr = m∗
elndr = m∗

elmpχT. (5)

In our preceding paper [20] we calculated ρdr implying
quadratic approximations for both electron and polariton dis-
persions. Here we go beyond this approximation in order to
include into our analysis the copper-oxide superconductors
YBCO and LSCO with manifestly nonquadratic electron dis-
persions.

Our many-body calculations of the current response (1) are
similar to those in Ref. [20], although with several modifica-
tions aimed at taking into account both 2D and 1D geometries
of the electron system, general forms of electron and polariton
dispersions, and both s- and d-wave superconducting gaps. In
the second order in the screened electron-polariton interlayer
interaction, Eq. (1) takes the form

χαβ (0, 0) = − T

2S

∑
qωn

Fel
α (q, iωn)Fp

β (q, iωn)

× ∣∣Ṽ el−p
scr (q, iωn)

∣∣2
, (6)

where ωn = 2πT n are bosonic Matsubara frequencies, and
the vector nonlinear rectification functions of electron Fel

and polariton Fp subsystems are defined and calculated in
Appendix A. The key differences between our present cal-
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culation and Ref. [20] are the following: (a) we take into
account generally nonquadratic electron εel

k and polariton ε
p
k

dispersions by replacing k/m∗
el and k/mp with the correspond-

ing group velocities, h̄−1dεel
k /dk and h̄−1dε

p
k/dk; (b) for 1D

superconducting ribbons and wires, we take into account that
electron current jel, rectification function Fel, and interlayer
transferred momentum q are 1D vectors directed along the x
axis; (c) for d-wave superconductors YBCO and LSCO, we
take into account anisotropy of the gap.

The partially screened interlayer electron-polariton inter-
action

Ṽ el−p
scr (q, iωn) = V el−p(q)

ε̃(q, iωn)
(7)

entering Eq. (6) is the electron-polariton interaction V el−p(q)
screened by random-phase approximation diagrams with den-
sity responses of both electron and polariton systems. The par-
tial character of the screening consists of neglecting the dia-
grams responsible for the screening by polaritons at the po-
laritonic end of the interaction line. This kind of screening
is already taken into account in the polariton rectification
function (A8), so it should be neglected here to avoid double
counting of diagrams [20,40].

The bare electron-polariton interaction V el−p(q), which is
screened only by surrounding dielectrics, was described in
Ref. [20] and differs in the cases of spatially indirect and
direct excitons. In the latter case the interaction is much
weaker due to absence of excitonic persistent dipole moment,
although this setup does not require the bilayer system to
host excitons. In Appendix B we describe how the dielectric
function ε̃(q, iωn) is calculated for both 2D and 1D (rib-
bon or wire) superconductor geometries. In the latter case
we need to take into account 1D density response and 1D
electron-electron Coulomb interaction in the electron subsys-
tem. Reduced density response of the superconductor caused
by its small transverse wy and vertical wz dimensions makes
the electron-polariton interaction (7) stronger in the 1D geom-
etry than in the 2D plane-parallel geometry. For the YBCO
and LSCO copper-oxide superconductors we calculate the
density response numerically while taking into account the
anisotropies of both electron dispersion and d-wave energy
gap.

IV. CALCULATION RESULTS

We carried out numerical calculations of the drag den-
sity ndr according to Eqs. (2), (4), and (6) under realistic
conditions. The parameters of superconductors are listed in
Table I. The parameters of the polariton subsystem are close
to those used in Ref. [20]. For optical microcavity we take the
bare photonic mass mc = 5 × 10−5 m0 (m0 is the free elec-
tron mass) and dielectric constant εenv = 7. Spatially indirect
excitons in TMDC bilayers are considered with the electron
and hole effective masses 0.5m0, Bohr radius 4 nm, verti-
cal electron-hole separation d = 4 nm, and exciton-exciton
contact interaction gx−x = 0.1 µeV · µm2. Excitons hybridize
with the microcavity photons thanks to the Rabi splitting
�R = 5 − 30 meV to form Bose-condensed polaritons with
the density np = 1012 cm−2.

FIG. 2. Drag density ndr between Bose-condensed indirect po-
laritons and 2D superconductors as function of temperature. The
Rabi splitting is �R = 20 meV and the distance between supercon-
ductor and indirect excitons is L = 10 nm.

First we analyze the temperature dependence of the drag
density (4) shown in Fig. 2 for the atomically thin 2D su-
perconductors NbSe2, FeSe, YBCO, and LSCO. Here and
henceforth we assume that the critical temperature of the
polariton Bose condensation is much higher than supercon-
ductor critical temperatures Tc and thus, neglect the thermal
depletion of the condensate. The figure demonstrates that in
each superconductor the drag density ndr decreases with in-
creasing temperature and vanishes at T = Tc mainly due to
the temperature dependence of the superconducting gap. It
can be noted that ndr is more robust versus temperature in
the superconductors with large superconducting gaps (FeSe,
LSCO, and YBCO) rather than in small-gap superconductors
(NbSe2). However, a large gap by itself is not essential for
high ndr at T � Tc; NbSe2 shows inferior results in Fig. 2
mainly due to the strong screening caused by its high electron
density (see Table I). Since ndr (T ) decreases rather slowly at
T � Tc, in the following we will plot ndr at T = 0.

In Fig. 3 we show the drag densities for 2D supercon-
ductors as functions of the interlayer distance L. Due to
decay of the electron-polariton interaction with increasing L,
ndr decreases approximately as L−1 (except NbSe2). At the
lowest distances L ∼ 5–10 nm, ndr can reach 103 − 105 cm−2.
At moderate distances, ndr is the highest for FeSe, while
NbSe2 demonstrates better results at lower Rabi splittings
�R, as seen in the inset. The large-gap superconductors
FeSe, YBCO, and LSCO show increasing trends ndr vs
�R due to the interplay between frequency dependencies
of electron Fel(q, iωn) and polariton Fp(q, iωn) rectification
functions. Namely, Fel(q, iωn) and Fp(q, iωn) have maxima
at Matsubara frequencies equal to characteristic bosonic exci-
tation energies: at ωn ∼ � and ωn ∼ �R, respectively. With
increasing �R their maxima come closer for large-gap su-
perconductors, which increases the resulting integral (6) and
hence, ndr (4). In contrast, in NbSe2 where � � �R, the drag
density is almost independent of �R.
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FIG. 3. Drag density ndr as function of interlayer distance L be-
tween Bose-condensed indirect polaritons and 2D superconductors.
The Rabi splitting on the main plot is �R = 20 meV. Inset shows
dependence of the drag densities on the Rabi splitting at L = 10 nm.

The drag density for atomically thin superconductors in the
1D nanoribbon geometry is shown in Fig. 4. To compare the
1D and 2D geometries, we divide ndr by the ribbon width wy,
so that ndr for 2D superconductors and ndr/wy for 1D nanorib-
bons or nanowires have the same dimensionality cm−2. We
find that ndr/wy can be of the same order 103–105 cm−2 as
in 2D geometry (Fig. 3) but at considerably larger inter-
layer distances L. This happens because of weaker metallic
screening of the interlayer electron-polariton interaction [see
Eq. (B3)] by narrow superconductor ribbons. Note that for
NbSe2 ndr even increases with L because the weakening of
the screening at increased interlayer separation outperforms
decay of the bare electron-polariton interaction V el−p(q). Inset
in Fig. 4 shows that ndr weakly depends on wy when wy � L

FIG. 4. Drag density ndr as function of interlayer distance L
between Bose-condensed indirect polaritons and 1D nanoribbon su-
perconductors. The Rabi splitting is �R = 20 meV, and the ribbon
width is wy = 30 nm [41]. Inset shows the dependence of ndr on the
nanoribbon width wy at L = 60 nm.

FIG. 5. Drag density ndr as function of interlayer distance L
between Bose-condensed direct polaritons and 2D superconductors.
The Rabi splitting on the main plot is �R = 30 meV. Insets shows
the dependence of the drag density on the nonzero photon-to-exciton
detuning δ and on the Rabi splitting �R at L = 3 nm.

because of weak, approximately logarithmic dependence of
the screening dielectric constant on the dimensionless param-
eter qwy � 1, where q ∼ L−1 is the characteristic transferred
momentum [see (B3)]. When wy approaches L, our simplified
analytical treatment of the screening in the coupled 2D-1D
system becomes poorly applicable.

For the sake of comparison, we investigate the case of
spatially direct polaritons, which interact with electrons via
excitonic polarizability. This interaction is much weaker than
with indirect polaritons [20], although with TMDC monolayer
the microcavity setup becomes simpler and the achievable
electron-to-exciton distances L can be smaller. We consider
the direct excitons hosted by TMDC monolayer with polar-
izability 30 nm3 [42] and Rabi splitting �R = 30 meV [12];
the exciton-exciton interaction is gx−x = 0.1 µeV µm2 [43].
The drag density for direct polaritons in 2D superconductor
geometry is shown in Fig. 5 as function of interlayer distance
L. As seen, ndr reaches 10–100 cm−2 at smallest L ∼ 2–3 nm,
which is 2–3 orders of magnitude lower than in the case of in-
direct polaritons. Moreover, the electron-polariton interaction
in this case decays faster with increasing L, so ndr ∼ L−6.7 de-
creases much steeper as well. The second inset in Fig. 5 shows
that ndr typically increases at positive photon-to-exciton
detuning δ because the exciton polaritons become more
excitonlike.

Finally, we consider the drag between indirect polaritons
and 1D superconductor nanowires [Fig. 1(c)] fabricated from
Nb1−xTixN bulk superconductors. The calculation results
plotted in Fig. 6 demonstrate that ndr decreases approximately
as L−1.3 with increasing L. Generally, ndr is two orders of
magnitude smaller than in the case of 1D ribbons at con-
siderable interlayer distances (compare with Fig. 4). The
reason is the strong interaction screening due to high electron
density in bulk superconductors. Fabrication of superconduc-
tor nanowires with smaller thicknesses wz allows to weaken
the screening and increase ndr, although it poses additional
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FIG. 6. Drag density ndr as function of interlayer distance L
between between Bose-condensed indirect polaritons and 1D super-
conducting Nb1−xTixN nanowires of different thicknesses wz. The
wire width is wy = 30 nm and the Rabi splitting is �R = 20 meV.
Inset shows dependence of ndr on the wire width wy at L = 60 nm,
wz = 6 nm.

challenges from the experimental point of view. As shown in
the inset in Fig. 6, decreasing the wire width wy also allows to
increase ndr.

V. DISCUSSION

Experimental detection of the nondissipative drag, as
suggested in [20], can rely on accelerating polariton Bose
condensate up to the velocity vp and measuring of induced
drag current in the superconductor. Electric current Jel flowing
through 2D superconductor of transverse width wy is related
to the electron current density (4) as Jel = ewy jel. The result-
ing estimate of drag-induced current is

Jel(nA) = 1.6 × 10−8

× wy(nm) × ndr (cm−2) × vp(109 cm/s). (8)

If the polariton velocity is vp = 109 cm/s [44], the drag density
reaches the highest value ndr = 105 cm−2 reported in Fig. 3,
and the width of the 2D superconductor is wy = 103 nm, we
obtain Jel ∼ 2 nA. For a 1D ribbon or wire superconductor, the
formula (8) can be used with the replacement ndr → ndr/wy,
and for the maximal ratio ndr/wy = 5 × 104 cm−2 reported in
Fig. 4 we obtain Jel ∼ 0.02 nA. Collecting the drag-induced
current from about 100 parallel wires would allow to raise
the total current to the same order of 2 nA. This current is
weak, but can be measured in accurate experiments [45]. We
can compare it with critical currents in the superconductors
presented in Table I: multiplying 3D critical current den-
sity j3D

c by the superconductor film thickness h and by its
typical transverse size wy = 103 nm (in the case of 2D ge-
ometry) we obtain critical currents Jc = hwy j3D

c in the range
10−4–10−6 A, i.e. 3–5 orders of magnitude stronger than Jel.
On the other hand, typical critical currents of Josephson nano-
junctions are tens of nA [45], so these structures can provide
sufficient sensitivity to detect the drag-induced current.

Besides two-dimensional TMDCs chosen in this paper as
a host for direct and indirect excitons, we can consider con-
ventional semiconducting GaAs-based quantum wells as a
possible candidate. However, such systems pose two major
problems. First, large Bohr radius of excitons aB � 10 nm
[46] imposes the limit on the maximum polaritonic density
np. If we restrict np to be one to two orders lower than
the Mott critical density ∼a−2

B , we obtain np � 1010 cm−2.
It is two orders lower than polariton densities achievable in
TMDCs [44]. Since the polaritonic rectification function Fp

is approximately proportional to np [see Eq. (A8)], the drag
density achievable in the quantum-well based systems is cor-
respondingly lower. Second, the thickness of quantum wells
(h � 8 nm [47]) is much larger than that of atomically thin
TMDCs (h ∼ 1 nm), as well as the interwell distance, which is
d = 8 nm [47] for quantum wells and d = 4 nm for TMDCs;
this imposes the lower limit on the interlayer distance L.
For indirect excitons the minimum distance is L ≈ h + d/2,
which yields 12 nm and 3 nm for quantum well and TMDCs,
respectively. Since the drag density rapidly decreases with
increasing L as L−2–L−5 [20], in the former case it is expected
to be one to three orders of magnitude lower, even at the same
polariton density.

VI. CONCLUSIONS

In this paper, we extended the theory of nondissipative
drag [20] on systems with nonquadratic electron and po-
lariton dispersions, d-wave superconductors, and nanoribbon
or nanowire superconductor geometries. The important point
of our approach is taking into account dynamical screening
of electron-polariton interaction by both polariton and elec-
tron subsystems. We carried out calculations of drag density
in realistic conditions between exciton-polariton Bose con-
densate and atomically thin superconductors NbSe2, FeSe,
YBCO, LSCO, as well as for thin-film bulk superconduc-
tors Nb1−xTixN. The choice of atomically thin or nanowire
superconductors is dictated by necessity to minimize light ab-
sorption in the microcavity thereby preserving its high quality
factor. Interestingly, a large superconducting gap by itself is
not essential for the nondissipative drag between polaritons
and superconductor.

In realistic conditions, the drag density reaches
103–105 cm−2 in the case of atomically thin superconductors
NbSe2, FeSe, YBCO, and LSCO interacting with spatially
indirect dipolar polaritons. Similar values of ndr/wy are
achieved in the case of nanoribbons of the same materials
with the width wy ∼ 30 nm, but at larger electron-to-exciton
distances L. The resulting drag-induced superconducting
currents can reach 2 nA, which are rather weak, but can
be measured in accurate experiments. The main limiting
factor for the drag is the screening of electron-polariton
interaction by the metalliclike superconductor. In the case
of thin-film bulk superconductors, such as Nb1−xTixN, the
drag is two to three orders of magnitude weaker even in
nanowire geometry. Similarly, the drag is suppressed in the
case of direct polaritons, which lack the persistent dipole
moment and thus interact much weaker with electrons of the
superconductor.
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The drag density generally increases with increase of
the Rabi splitting because the characteristic energies of
excitations (Bogoliubov quasiparticles in the polariton sub-
system and broken Cooper pairs in superconductors) come
closer to each other. Also, drag density increases at positive
photon-to-exciton detunings, which make the polaritons more
excitonlike. Other ways to enhance the nondissipative drag
may include using the resonant effects or alternative sys-
tem geometries, such as those based on optical-fiber [23] or
nanocavity [48] photon resonators.

To gain deeper insights into the physics of drag effects in
hybrid electron-polariton systems, the peculiar properties of
the polariton BEC should be accounted for. The Keldysh for-
malism of nonequilibrium Green functions can be used to take
into account the diffusive character of Bogoliubov excitations
at low momenta [13,15], which can affect the drag. Besides,
the polariton condensate demonstrates the algebraic decay of
correlations in space [15,17], which is typical to 2D systems
and makes the problem of drag calculations more complicated
than in the case of perfectly coherent condensate considered
in our work.
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APPENDIX A: RECTIFICATION FUNCTIONS

The electron and polariton nonlinear rectification functions
entering Eq. (6) are defined as

Fel(q, iωn) = 1

A

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2 e−iωn (τ1−τ2 )

× 〈
Tτ jel

0 (0)nel
q (τ1)nel

−q(τ2)
〉
, (A1)

Fp(q, iωn) = 1

S

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2 e−iωn (τ1−τ2 )

× 〈
Tτ jp

0(0)np
q(τ1)np

−q(τ2)
〉
. (A2)

Here the Fourier harmonics of electron and polariton density
operators are nel

q = ∑
ks a†

ksak+q,s, np
q = ∑

k b†
kbk+q, and S is

the area of excitonic layer. In the clean limit, the electron
rectification function (A1) is given by the one-loop expression
[20]:

Fel(q, iωn) = gvT

Ah̄

∑
kεm

dεel
k

dk
Tr[σzĜ

el(k, iεm)

× Ĝel(k, iεm)σzĜ
el(k + q, iεm + iωn)]

+ (q, iωn → −q,−iωn), (A3)

where εm = πT (2m + 1) are fermionic Matsubara frequen-
cies, gv is the valley degeneracy factor which equals to three
for NbSe2 and one for other materials from Table I. The

electron Green functions Ĝel are written in the Nambu repre-
sentation as (2 × 2) matrices; they are found from the Gor’kov
equations.

For 2D copper oxide superconductors, where the gap is
rather large and anisotropic, and the Fermi surface is strongly
noncircular, we take the tight-binding anisotropic electron
dispersion εel

k = −2t (cos kxa + cos kya) − 4t ′ cos kxa cos kya,
where t = 300 meV, a = 0.38 nm, or a = 0.53 nm, and t ′/t =
−0.1 or −0.3 for LSCO or YBCO, respectively [49]. The
anisotropic momentum-dependent gap is �k = �(cos kxa −
cos kya).

Dimensionality of vectors in Eq. (A3) depends on the su-
perconductor geometry. For 2D thin-film geometry [Fig. 1(a)],
the rectification function Fel, electron momentum k, and
transferred momentum q are 2D vectors lying in the (x, y)
plane. For nanoribbon superconductor [Fig. 1(b)], Fel and q
are 1D vectors directed along the x axis, while the electron
momentum k is a 2D vector. For relatively thick nanowire-
shaped superconductors [Fig. 1(c)], Fel and q are 1D vectors
directed along the x axis, while electron momentum k is a
3D vector. In the last two cases, only the x projection of the
electron group velocity dεel

k /dk is retained in Eq. (A3).
As shown in [20], in the limit T = 0, � � EF,�R only

the electron Fermi surface contributes to the momentum sum
in (A3), and for isotropic gap we obtain

Fel(q, iωn) ≈ 4igv

Ah̄
Im

∑
k

dεel
k

dk

δ
(
εel

k

)
iωn + εel

k − εel
k+q

. (A4)

When electrons have well-defined effective mass m∗
el, so their

Fermi surface is circular or spherical with the radius kF, we
obtain analytical expressions

Fel(q, iωn) = 2iq̂
gvm∗

el

πqh̄3 Im
b√

b2 − 1
(A5)

for 2D superconductors,

Fel(q, iωn) = 2iq̂
gvm∗

elwy

πqh̄3 Im
b√

b2 − 1
(A6)

for 1D nanoribbon superconductors, and

Fel(q, iωn) = 2iq̂
m∗

e kFwywz

π2qh̄3

× Im

[
b arcsinh

1√
b2 − 1

]
(A7)

for 1D nanowire superconductors; here the dimensionless
combination b = (iωnm∗

el/h̄2 − q2/2)/qkF is introduced.
The rectification function of the polariton system (A2) is

calculated in the Bogoliubov approximation [20] with taking
into account the dominating contribution of the condensate
processes:

Fp(q, iωn) = 1

h̄

dε
p
q

dq
4iωnnpε̃

p
q[

(iωn)2 − (
Ep

q
)2]2 , (A8)

where np is the polariton density which is assumed to be al-
most equal to that of polariton condensate, ε̃

p
q = ε

p
q + cq − c0

is the polariton dispersion ε
p
q renormalized by the interaction-

induced self-energy cq = X 2
q X 2

0 npgx−x which is momentum
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dependent due to the Hopfield coefficients Xq. The chemi-
cal potential c0 is subtracted in ε̃

p
q to make the Bogoliubov

quasiparticle dispersion Ep
q =

√
ε̃

p
q(ε̃p

q + 2cq) gapless. The in-
teraction between excitons gx−x is assumed to be independent
of momentum.

APPENDIX B: INTERACTION SCREENING

In the case of 2D thin-film superconductor geometry, the
dielectric function entering Eq. (7) is [20,40]

ε̃(q, iωn) = 1 − �el
2D(q, iωn)

× {
V el−el

2D (q) + [V el−p(q)]2�̃p(q, iωn)
}
, (B1)

where V el−el
2D (q) = 2πe2/εenvq is the 2D Fourier trans-

form of electron-electron Coulomb interaction screened with
the dielectric constant εenv of microcavity environment,
�el

2D(q, iωn) is the density response (or polarization) function
of 2D superconductor, and

�̃p(q, iωn) = 2npε̃
p
q

(iωn)2 − (
Ep

q
)2 (B2)

is the density response function of interacting polaritons cal-
culated in the Bogoliubov approximation [20,40].

In the case of 1D superconductor ribbon or wire, we need
to take into account its density response �el

1D(qx, iωn) only
on the x component of the transferred momentum q, while
the polariton system responds both to qx and to qy, so the
dielectric function is given by the expression

ε̃(qx, iωn) = 1 − �el
1D(qx, iωn)

×
{

V el−el
1D (qx )+

∫ dq′
y

2π
[V el−p(q′)]2�̃p(q′, iωn)

}
,

(B3)

where intermediate 2D momenta under the integral are q′ =
{qx, q′

y}. In the 1D Fourier transform of Coulomb interac-
tion V el−el

1D (qx ) = 2e2K0(qxw)/εenv (where K0 is the modified
Bessel function of the second kind), we need to impose the
lower cutoff w to interelectron distance, which is taken to be
w = wy in the case of ribbon and w = √

wywz in the case
of thick wire. Note that the expression (B3) is applicable at
wy,wz � L, when the ribbon or wire is thin with respect to
the interlayer distance.

We approximate �el
2D(q, iωn) by the polarization function

of a normal electron system instead of that of a supercon-

ductor [50–52], because these functions are almost equal in
the range of momenta and frequencies ωn ∼ �R, q ∼ L−1,
which provide the dominating contribution to the drag density.
Polarization function of 2D normal conductor with circular
Fermi surface and well-defined effective mass calculated in
the random-phase approximation is [53]

�el
2D(q, iωn) = − 2gvN2D

⎧⎨
⎩1

2
+ ikF

q
sign(ωn)

×
√

1 −
(

q

2kF
− iωnm∗

el

qkF

)2
⎫⎬
⎭ + c.c., (B4)

where N2D = m∗
el/2π h̄2 is the 2D density of states at the

Fermi level. For 2D copper oxide superconductors we calcu-
late the density response function numerically as

�el
2D(q, iωn) = T

wxwy

×
∑
kεm

Tr[Ĝel(k, iεm)Ĝel(k + q, iεm + iωn)]

(B5)

using the normal-state electron Green functions Ĝel written in
the Nambu representation.

Density response function of 1D ribbon superconductor is
obtained by taking qy = 0 in (B4) and multiplying by its width
wy:

�el
1D(qx, iωn) = wy�

el
2D(qx, iωn). (B6)

For 1D wires we can similarly relate 1D and 3D density re-
sponse functions as �el

1D(qx, iωn) = wywz�
el
3D(qx, iωn). With

the bulk superconductor Nb1−xTixN we investigate, we are
working in the limit q � kF. Therefore, the polarization func-
tion �el

3D is dominated by close vicinity of the Fermi surface,
so we can use the Lindhard function [54] taken in the long-
wavelength limit

�el
3D(qx, iωn) ≈ −2N3D

(
1 + iωn

2vFqx
ln

iωn − vFqx

iωn + vFqx

)
, (B7)

where N3D = m∗
elkF/2π2h̄2 is the 3D density of states at the

Fermi level and vF = h̄kF/m∗
el is the Fermi velocity.
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[48] J. Vučković, Quantum optics and cavity QED with quantum
dots in photonic crystals, in Quantum Optics and Nanophoton-
ics (Oxford University Press, 2017)

[49] K.-Y. Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee,
T. Xiang, and F. C. Zhang, Low-energy physical properties of
high-Tc superconducting Cu oxides: A comparison between the
resonating valence bond and experiments, Phys. Rev. B 73,
224513 (2006).

[50] A. M. Gabovich and E. A. Pashits’kii, Polarization operator of
the superconducting electron gas. Kohn anomalies and charge
screening in superconductors, Ukr. J. Phys 18, 549 (1973).

[51] G. Rickayzen, Collective excitations in the theory of supercon-
ductivity, Phys. Rev. 115, 795 (1959).

[52] P. W. Anderson, Random-phase approximation in the theory of
superconductivity, Phys. Rev. 112, 1900 (1958).

[53] F. Stern, Polarizability of a Two-Dimensional Electron Gas,
Phys. Rev. Lett. 18, 546 (1967).

[54] B. Mihaila, Lindhard function of a d-dimensional Fermi gas,
arXiv:1111.5337.

115415-10

https://doi.org/10.1103/PhysRevB.94.125424
https://doi.org/10.1103/PhysRevB.90.125314
https://doi.org/10.1038/nphys4147
https://doi.org/10.1103/PhysRevB.93.035307
https://doi.org/10.7726/ajmst.2013.1008
https://doi.org/10.1038/nature10903
https://doi.org/10.1103/PhysRevB.73.224513
https://www.researchgate.net/publication/236433529_Polarization_operator_of_a_superconducting_electron_gas_the_Kohn_anomalies_and_charge_screening_in_superconductors
https://doi.org/10.1103/PhysRev.115.795
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRevLett.18.546
http://arxiv.org/abs/arXiv:1111.5337

