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Certifying entanglement of spins on surfaces using ESR-STM
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We propose a protocol to certify the presence of entanglement in artificial on-surface atomic and molecular
spin arrays using electron spin resonance carried by scanning tunnel microscopy (ESR-STM). We first generalize
the theorem that relates global spin susceptibility as an entanglement witness to the case of anisotropic Zeeman
interactions, relevant for surfaces. We then propose a method to measure the spin susceptibilities of surface-spin
arrays combining ESR-STM with atomic manipulation. Our calculations show that entanglement can be certified
in antiferromagnetically coupled spin dimers and trimers with state-of-the-art ESR-STM magnetometry.
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I. INTRODUCTION

Very much like electricity and magnetism, quantum entan-
glement is a naturally occurring phenomena. Entanglement
lies at the heart of the most intriguing aspects of quantum
mechanics [1], such as quantum teleportation [2–4], nonlocal-
ity, and the emergence of exotic quantum states of matter [5].
The notion that quantum entanglement is also a resource that
can be exploited is at the cornerstone of the fields of quantum
computing [6], quantum sensing [7], and quantum commu-
nications [8]. In order to harness quantum entanglement, it
seems imperative to develop tools to probe it [9]. This can be
particularly challenging at the nanoscale [10].

Quantum entanglement is predicted to occur spontaneously
in interacting spin systems [11,12], going from small clus-
ters to crystals. In the last few decades, tools to create and
probe artificial spin arrays based on both magnetic atoms and
molecules on surface have been developed [13–15]. There is
now a growing interest in the exploitation of quantum be-
havior of this class of systems [16,17]. Surface-spin artificial
arrays can display exotic quantum magnetism phenomena,
including spin fractionalization in S = 1 Haldane chains [18],
resonant valence bond states in spin plaquettes [19], and
quantum criticality [20] that are known to host entangled
states. However, the lack of an on-surface single-shot readout
method, available in other platforms [21,22], prevents the im-
plementation of quantum state tomography that would make
it possible to quantify entanglement.

Here we tackle this important problem and we propose a
protocol to certify the presence of entanglement on artificial
arrays of surface spins, leveraging on state-of-the-art experi-
mental techniques for spins on surfaces. The approach relies
on two ideas. First, it was both proposed [23–25] and demon-
strated experimentally [24,26] in bulk systems, that the trace
of the finite-temperature spin susceptibility matrix can be used
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as an entanglement witness (EW) regardless of the type of
entanglement. Second, the development [27] of single-atom
electron spin resonance using scanning tunneling microscopy
(ESR-STM) that, combined with atomic manipulation, has
made it possible to carry out absolute magnetometry [28,29]
of surface spins. As illustrated in the scheme of Fig. 1, the
magnetic field created by the different quantum states of the
surface spins can be measured by an ESR-STM active atomic
spin sensor placed nearby. The accurate determination of the
height of the corresponding peaks and their shift makes it pos-
sible to pull out both their occupation and magnetic moment,
which permits one to determine the finite-temperature spin
susceptibility, if interactions between the array and the sub-
strate are negligible compared with the interactions between
the surface spins.

The global spin susceptibility is defined as the linear coef-
ficient that relates the external magnetic field to the average
total magnetization

〈Mα〉 = χαBα, (1)

where 〈·〉 stands for statistical average in thermal equilibrium,
and

Mα =
∑

i

mi
α = −μB

∑
i

gαSi
α, (2)

where α = x, y, z labels the principal axes that diagonalize the
susceptibility tensor and i labels the site in a given spin lattice.

II. SPINS SUSCEPTIBILITY AS ENTANGLEMENT
WITNESS

The interaction between the spins of interest and the ex-
ternal field is given by H1 = −∑

α MαBα . For spin-rotational
invariant Hamiltonians that commute with the Zeeman oper-
ator, [H0,H1] = 0, the spin susceptibility and the statistical
variance of the total magnetization, �M2

α , are related by
[23,30]

χα = β�M2
α = β

⎡
⎣∑

i, j

〈
mi

αm j
α

〉 −
(∑

i

〈
mi

α

〉)2
⎤
⎦, (3)
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FIG. 1. Scheme of the proposed ESR-STM experimental protocol. (a) Characterization of the bare resonance frequency f0 of the sensor.
(b) Determination of the g coefficients of a single unit (atom) of the on-surface spin array. (c) ESR-STM readout of the bare sensor at two
different fields. (d) ESR-STM readouts of a sensor nearby an antiferromagnetically coupled dimer (top) and a trimer (bottom), with J = 124µeV
and T = 1 K, using different magnetic fields that lead to different occupations of the states. (e) and (f) Energy spectra of the dimer and trimer
as a function of B.

where β = 1
kBT . The variance for an isolated spin satis-

fies
∑

α g2
α�S2

α � g2
minS where gmin = Min(gx, gy, gz ). For a

multispin system it has been shown [32] that, for nonentan-
gled states, the variance of the total magnetization is at least as
large as the sum over variances of individual magnetizations.
We thus can write the equation

Tr χ =
∑

α

χα = χx + χy + χz

= β
∑

α

⎡
⎣∑

i, j

〈
mi

αm j
α

〉 −
(∑

i

〈
mi

α

〉)2
⎤
⎦ � g2

minμ
2
BS

kBT
N

(4)

where N is the number of spins and S is the spin quantum
number (S = 1

2 , 1, . . .). Equation (4) generalizes the result
derived by Wieśnak et al. [23] to the case of anisotropic
g factor, relevant for surface spins [33], and constitutes
the starting point to our proposed entanglement certification
method. If the spin susceptibilities are measured, and violate
the inequality of Eq. (4), the presence of entanglement is
certified. Equation (4) is a sufficient condition for entangle-
ment, but not necessary: entanglement may be present, but go
unnoticed, if the susceptibility satisfies Eq. (4).

III. ENTANGLEMENT CERTIFICATION WITH ESR-STM

We discuss now how to certify entanglement using a single
ESR-STM–active atom, that will be used as a sensor, placed
nearby the spin array of interest. Specifically, we consider
the case of dimers [34,35] and trimers [19] of antiferromag-
netically coupled S = 1/2 spins on MgO [19], the canonical

surface for ESR-STM. The choice of S = 1/2 rules out single-
ion anisotropies. In the Supplemental Material [30] we show
how the role of dipolar interactions can be neglected in most
cases. Examples of S = 1/2 adsorbates deposited on MgO
include TiH [34–40], Cu [36], dimers of alkali atoms [41],
and even organic molecules [42].

The spectra of the dimer and trimer are shown in Figs. 1(e)
and 1(f) as a function of the applied field. The dimer shows
a singlet ground state with wave function 1√

2
(|↑↓〉 − |↓↑〉)

and a triplet of excited states (S = 1, Sz ). The S = 1, Sz = ±1
are product states, whereas the S = 1, Sz = 0 are entangled.
The trimer ground state is a S = 1/2 doublet with wave
functions:

∣∣∣∣1

2
,+1

2

〉
= − 1√

6
(|↑↑↓〉 + |↓↑↑〉) +

√
2

3
|↑↓↑〉 (5)

and an analogous formula for |S = 1
2 , Sz = − 1

2 〉. Therefore,
both structures, dimer and trimer, have entangled ground
states. The lowest energy excited state, with excitation energy
J , is also a S = 1/2 doublet, whereas the highest energy
multiplet has S = 3/2 and excitation energy 3J

2 .
Experiments [29] show that the ESR spectrum, i.e., the

IDC ( f ) curve of the sensor adatom, under the influence of a
nearby spin array, can be described by

IDC ( f ) =
∑

n

pnL( f − fn), (6)

where the sum runs over the eigenstates of the Hamiltonian of
the spin array, (H0 + H1)|n〉 = En|n〉, and L is a Lorentzian
curve centered around the resonant frequency f = fn, given
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by the expression

fn(�r) = μB

h

√∑
α

{gsensor
α [Bα + bn,α (�r)]}2. (7)

Here, h = 2π h̄, gsensor
α are the components of the gyromag-

netic tensor of the sensor, Bα represents the external field, and
bn,α (�r) is the α component of the stray field generated by the
spin array in the state n. The vector is given by

�bn(�r) = μ0

4π

∑
i=1,N

3[ �mi(n) · �di] �di

(di )5
− �mi(n)

(di )3
, (8)

where �ri are the positions of the surface spins and �r is the
position of the sensor, �di = �r − �ri, and �mi(n) is a vector given
with components by

mi
α (n) = −gαμB〈n|Si

α|n〉 (9)

that encode the quantum-average magnetization of the atomic
moments of the spin array for state n. Equation (6) implic-
itly assumes the absence of resonant spin-flip interactions
between the sensor spin and the spin array.

In Fig. 1(d) we show the spectra for a sensor nearby a dimer
and a trimer of antiferromagnetically coupled spins, in the
presence of an external field along the z direction, assuming
a broadening � f = 5 MHz [27]. The frequency shift of the
n peak, with respect to the bare sensor, are governed by
the stray field �bn(�r) generated by that state. For the dimer,
the ESR spectrum shows a prominent peak, that has contribu-
tions from both the S = 0, Sz = 0 and S = 1, Sz = 0 states,
whose stray field vanishes. As a result, the prominent peak
has the frequency of the bare sensor. The two smaller peaks,
symmetrically located around the central peak, correspond
to the S = 1, Sz = ±1 states. In the case of the trimer up to
eight different peaks appear in our simulation, as the different
doublets generate states with different magnetization and stray
field.

We now express the average magnetization and the sus-
ceptibility in terms of the occupations pn and the magnetic
moment of each state, the two quantities that can be obtained
from ESR-STM. For spin-rotational invariant systems, we
write Eq. (1) as

〈Mα〉 =
∑

n

pnMα (n), (10)

where pn = 1
Z e−βEn is the equilibrium occupation of the

n eigenstate and Mα (n) = −gαμBSα (n), and Sα (n) is the
(half-)integer projection of the total spin operator of the spin
array along the α direction. The susceptibility would be given
by

χα =
∑

n

d pn

dBα

Mα (n). (11)

The experimental protocol to determine the pn is the following
[29]. For an ESR spectrum with Np visible peaks, we obtain
the ratios rn = In

I0
where I0 corresponds to the largest peak that

arises from a single state. For trimers, I0 is the peak that arises
from the ground state. For dimers, the ground state peak also
has contributions from the S = 1, Sz = 0 state and therefore

we normalize with respect to the S = 1, Sz = −1 peak. It has
been demonstrated [29] that the ratio of thermal occupations
is the same as the ratio of Boltzmann factors rn = pn

p0
= In

I0
.

Assuming that the peaks exhaust the occupations of the states,
we obtain pn out of the ratios (see Supplemental Material
[30]).

The determination of the Mα (n) can be done in two ways.
First, the (half-)integer values of Sα could be assigned by
inspection of the ESR spectrum relying on the fact that the
states with largest Sα have larger stray field. We have verified
[43] the feasibility of a second approach where the readout
of the ESR spectra is repeated with the sensor in different
locations, mapping the stray field of every state in real space,
and pulling out the atomic magnetization averages, inferring
Mα (n) thereby.

The protocol to measure the spin susceptibility of a spin
array has the following steps, that have to be implemented for
the three orientations α = x, y, z of the external field:

(1) The bare resonant frequencies for the sensor f0α =
μB

h gsensor
α Bα [Fig. 1(a)] are determined in the absence of the

spin array.
(2) The gmin for the individual spins that form the array

are determined. If they are ESR-STM active, a conventional
resonance experiment is carried out, for the three directions of
the field. Otherwise, the nearby ESR-STM sensor atom can be
used [29].

(3) The Mα (n) and pn are obtained as explained above,
for two values of B(1)

α and B(2)
α . This permits us to ob-

tain 〈Mα (B(1)
α )〉 and 〈Mα (B(2)

α )〉 for both fields and χα =
〈Mα (B(2)

α )〉−〈Mα (B(1)
α )〉

B(2)
α −B(1)

α

and compare to Eq. (4) to establish the
presence of entanglement.

IV. RESULTS

In the top panels of Fig. 2, we show the spin susceptibility
for dimers and trimers as a function of temperature, together
with the EW boundary, assuming isotropic factors, gα = 2.
We define the temperature T ∗, below which the trace of the
susceptibility matrix is smaller than the entanglement witness
limit, so that Eq. (4) is not satisfied, and therefore the presence
of entanglement is certified. The Tr χ (T ) curves are very
different for dimer and trimer. At low T , the dimer is in the
singlet state and its susceptibility vanishes. In contrast, for
the trimer with J 	 kBT , the excited states play no role and
the spin susceptibility is governed by the two states of the
S = 1/2 ground state doublet.

The implementation of the entanglement certification pro-
tocol will only be possible if the stray fields induce a
shift larger than the spectral resolution of ESR-STM. For
ESR-STM, � f 
 4 MHz [27], determined by the T1, T2 times
of the adsorbate in that system. In the simulations of Fig. 1 we
have used � f = 5 MHz. In addition, the experiment has to
meet four experimental conditions.

Condition I: temperature T has to be smaller than T ∗.
Condition II: Mα (Bα ) has to be linear. We define B∗ as the

upper value of the field above which dMα

dBα
deviates from its

value for B = 0 more than 5%.
Condition III: the relative error in the current of the refer-

ence peak �I
I0

should be small enough to allow for the accurate
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FIG. 2. Entanglement certification window (see text) for a dimer
(a) and trimer (b) with J = 124 µeV, using a sensor located 0.9 nm
away. Top panels show Tr χ (T ) and the EW condition of Eq. (4).
Color map inside the ECWs represents the largest experimental error
�I/I0 that still makes entanglement certification possible, assuming
η = 5 in Eq. (12).

entanglement certification. Specifically, the error in the spin
susceptibility associated to �I

I0
, should be smaller, by a factor

η 	 1, than the difference between χα and the EW condition.
In the Supplemental Material [30] we show this condition is

�I

I0
<

B|Tr χ − χEW |
6ηp0

∑
n([2 + rn + (Np − 2)p0]|Mα (n)|) . (12)

Condition IV: the external field must not drive the
sensor resonant frequency above the excitation bandwidth of
ESR-STM. The record, so far, is f0 = 61 GHz [35], which
translates into B 
 2.2 T for S = 1/2 Ti-H adsorbates.

The independent satisfaction of conditions I–IV occurs
only in a region of the (B, T ) plane, defining four boundary
lines, one per condition. We define the entanglement certifi-
cation window (ECW) as the area where the four conditions
are satisfied simultaneously. In Fig. 2 we show the ECW,
assuming η = 5 and imposing for condition III that �I/I0

cannot go below 10−3, for the case of a dimer (a) and a trimer
(b) with the same J reported by Yang et al. [19], J = 124 µeV
(30 GHz). The color code signals the maximal �I/I0 that
satisfies Eq. (12).

FIG. 3. (a) T ∗(J ) for different chain sizes. (b),(c) Temperature
and J dependence of the spin susceptibility (b) and B∗ (c) of dimer
(top) and trimer (bottom).

We now discuss the effect of the value of J on the size of
the ECW. In Fig. 3(a) we show that T ∗ is strictly linear with
J for spin chains with N sites, and the slope is an increasing
function of the number of N . Therefore, both long chains and
large J increase the crossover temperature. As of condition
II, our numerical simulations show that B∗ is an increasing
function of both T and J: the magnetization vs field curves
remain linear as long as the Zeeman energy is smaller than
the other two relevant energy scales J and T . Condition III
is governed both by the ratio B/p0(B, T ) [see Eq. (12)] and
by the susceptibility. In Fig. 3(b) we show the J dependence
of the χ (T ) curves. We see that reducing J tends to increase
χ , at a fixed value of T . Again, this reflects the competition
between exchange and Zeeman energies. Therefore, increas-
ing J pushes T ∗ up and pushes the χ (T ) away from the EW
boundary. The only advantage of smaller values of J/KBT is
the presence of more peaks in the I ( f ) spectra that makes the
spectra clearly distinguishable from simpler structures.

V. CONCLUSIONS

In conclusion, we propose a method to determine the pres-
ence of quantum entanglement in on-surface spin arrays using
ESR-STM, and circumventing the lack of single-shot spin
readout that would give full access to the quantum states.
For that matter, the trace of the spin susceptibility of the
spin arrays has to be measured taking advantage of the STM
potential (i) to manipulate atoms and build spin structures, and
(ii) to simultaneously resolve the stray fields and occupation
probabilities of several quantum states of nearby spins [29].
Our calculations show that the experiments can be carried out
with the state-of-the-art ESR-STM instrumentation in terms
of both spectral resolution (� f ) and relative error in the
current �I/I0 [29]. The use of STM to certify the presence
of entanglement would thus add another functionality to this
versatile tool and would open another venue in quantum
nanoscience [10].
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