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Dynamics simulation of braiding two Majorana zero modes via a quantum dot
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In this work we perform real-time simulations for the dynamics of braiding a pair of Majorana zero modes
(MZMs) through a quantum dot in a minimal setup of pure one-dimensional realization. We reveal the strong
nonadiabatic effect when the dot energy level approaches zero in order to achieve a geometric phase π/4 which
is required for a full exchange between the MZMs. Rather than the strategies of nonuniformly manipulating the
system according to adiabatic conditions and shortcuts to adiabaticity, we propose and illustrate a more feasible
scheme to suppress the nonadiabatic transition, which allows for a full exchange between the Majorana modes.
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I. INTRODUCTION

The nonlocal nature of Majorana zero modes (MZMs) and
obeyed non-Abelian exchange statistics provide an elegant
paradigm of topological quantum computation (TQC) [1–6].
The exchange (braiding) operations in real space can lead to
unitary rotations in the degenerate subspace of ground states,
which constitute desired quantum information processing and
help realize logic gates in TQC. In the past decade, after
great efforts, considerable progress has been achieved for
realizing MZMs in various experimental platforms. Yet, the
main experimental evidences are associated with the zero-
bias conductance peaks, which cannot ultimately confirm the
realization of MZMs. A further step in demonstrating the
existence of MZMs and the key procedure towards TQC is
illustrating the non-Abelian statistics.

Viewing that hybrid semiconductor-superconductor de-
vices, e.g., s-wave superconductor proximitized nanowires,
have been the leading platform to generate MZMs [7–9], thus
an obvious difficulty is that directly exchanging (braiding)
the MZMs realized in one-dimensional (1D) nanowires is im-
possible, since collisions between the MZMs during braiding
cannot be avoided in the 1D case. Schemes to combine the 1D
wires into a two-dimensional (2D) network (through T or Y
junctions) for gate-voltage-controlled moving and exchanging
the MZMs have been proposed [10–16], yet progress to re-
solve the huge technological challenges (necessary controls)
is slow. Other proposals of braiding MZMs include tuning
local couplings between Majorana modes directly via electric
gates [17–20] or indirectly via modulating the role of charging
energy on the Majorana islands [21–24] or through quan-
tum dots [25–27], measurement-only schemes [28–31], and
others [32].

Very recently, following the braiding protocol via su-
perconducting Y junctions [33–38], an alternative scheme
based on more conventional elements, i.e., superconductor
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proximitized nanowires connected with a quantum dot (QD),
was proposed to braid a pair of MZMs in the 1D case
[39], as schematically shown in Fig. 1(a). In the original Y-
junction proposal, three Cooper pair boxes are connected at a
Y junction via three overlapping Majorana fermions (which
effectively produce a single zero mode at the center). This
was regarded as the minimal setup required for the braiding
of a pair of MZMs, controlled by the fluxes through the three
Josephson junctions to a bulk superconductor. In Ref. [39], the
setup is simplified to a single 1D Josephson junction, as shown
in Fig. 1(a), where two proximitized nanowires are connected
through a quantum dot. By tuning the coupling strengths
between the MZMs and the QD through gate voltages, the
MZMs γ2 and γ3 can be exchanged with the help of the QD.
In this work we perform real-time simulations for the braiding
dynamics of the MZMs in this desired 1D setup.

In particular, we will reveal the strong nonadiabatic effect
when the dot energy level approaches zero in order to achieve
a geometric phase π/4, as required for a full exchange be-
tween the MZMs. We will also simulate and compare a variety
of manipulating schemes, to exploit a proper strategy to sup-
press the nonadiabatic transition and achieve full exchange
between the Majorana modes.

II. BASIC IDEA AND PROBLEM

Let us consider the setup schematically shown in Fig. 1(a),
where each topological superconductor wire can be realized
by a semiconductor nanowire in proximity contact with an s-
wave superconductor. For each wire, a pair of MZMs appears
at the ends. Here we denote the four MZMs as γ1, γ2, γ3, and
γ4. Actually, using four MZMs is the minimal construction of
a Majorana logic qubit in order to conserve the fermion parity
(even or odd). For the setup in Fig. 1(a), if combining (γ1, γ2)
as a regular fermion with occupation n12 = 0 or 1, and (γ3, γ4)
as another regular fermion with occupation n34 = 0 or 1, the
four-MZM qubit (with even fermion parity, for example) has
logic states |012034〉 and |112134〉. In Fig. 1(a), the QD inserted
between the wires is used to mediate exchange between the
MZMs γ2 and γ3. If a full exchange is accomplished, i.e.,
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FIG. 1. (a) Schematic diagram for the setup of topological super-
conductor (TS) nanowires connected with a quantum dot, proposed
to braid a pair of MZMs in the 1D case. (b) By splitting the dot
electron into a pair of Majorana fermions (γA and γB), the MZMs
γ2 and γ3 and the quantum dot can be mapped to a Y junction,
which supports formation of a geometric Berry phase, for the use
of braiding (exchanging) the Majorana modes γ2 and γ3. (c) Energy
diagram of the instantaneous eigenstates |E±〉 in the subspace of even
fermion parity. Here, the occupation state |n23nd 〉 is used, with n23

and nd the occupation numbers of the regular fermions associated
with the MZMs γ2 and γ3 and the quantum dot, respectively.

γ2 → γ3 and γ3 → −γ2 associated with a braiding operator
U = e

π
4 γ2γ3 , the Majorana qubit state would experience a ro-

tation as

|012034〉 → |ψg〉 = 1√
2

(|012034〉 − i|112134〉), (1)

which corresponds to a Hadamard-type logic gate (up to an
additional phase shift π/2).

The QD is assumed to have only a single level involved in
the braiding dynamics, with thus a single-level Hamiltonian
HD = εd d†d . The QD is coupled to the MZMs γ2 and γ3, de-
scribed as H ′

1 = i(λ1d + λ∗
1d†)γ2 and H ′

2 = (λ2d − λ∗
2d†)γ3.

The coupling amplitudes are more explicitly specified as λ1 =
|λ1|eiφ1/2 and λ2 = |λ2|eiφ2/2, with the phases φ1 and φ2 modu-
lated by controlling the phases of the s-wave superconductors
through magnetic fluxes (based on the Aharonov-Bohm ef-
fect) as explored in Refs. [40–42]. If we decompose the dot
electron into a pair of Majorana fermions γA and γB, described
as d = (γB − iγA)/2, and modulate the phases as φ1 = π and
φ2 = 0, we can easily check that γB is decoupled with the
MZMs γ2 and γ3, and the remaining coupling can be reex-
pressed as

HM = iγA( �R · �γ ). (2)

Here �R = (|λ1|, |λ2|, εd/2) and �γ = (γ2,−γ3, γB) are intro-
duced for the sake of brevity. Satisfactorily, in this way, we
have mapped the setup to the configuration of a Y junc-
tion [33–38], as shown in Fig. 1(b). Through control of the
coupling strengths |λ1| and |λ2| the system can complete a
cyclic evolution in the parameter space, which is described
by U = e�γ2γ3 . Here � is from the well-known Berry phase,
which is half of the solid angle (π/2, in the case εd → 0)
enclosed by the evolution trajectory in the parameter space.
The result � = π/4 corresponds to a full exchange between
γ2 and γ3, and as well the state rotation of the 4-MZMs qubit
as mentioned above.

From Fig. 1(b) we know that, in order to precisely realize
the solid angle π/2, we should make εd → 0. However, this
will cause strong nonadiabatic transitions during the initial
and final stages of the cyclic evolution, if the speed of evo-
lution is not slow enough. The reason can be understood from
the energy diagram depicted in Fig. 1(c), for the instantaneous
eigenstates. Here, the occupation state |n23nd〉 is used, with
n23 and nd the occupation numbers of the regular fermions
associated with the MZMs γ2 and γ3 and the quantum dot,
respectively. Without loss of generality, we only consider the
subspace of even fermion parity, i.e., the subspace expanded
by the basis states |0230d〉 and |1231d〉. Similar results in
the odd-fermion-parity subspace {|1230d〉, |0231d〉} are briefly
analyzed in Appendix A.

We see that, near the beginning and end of the braiding op-
eration, the energy difference of the instantaneous eigenstates
|E+〉 and |E−〉 is εd , noting that there is no direct coupling
between γ2 and γ3. This near-zero energy gap (when εd → 0)
will make the two-state system suffer strong nonadiabatic
transition, unless the evolution is infinitely slow. In this work
we would like to investigate the nonadiabatic effect caused
by the small εd . In particular, we will explore strategies to
suppress the nonadiabatic transitions and compare the re-
sults of different schemes, including four-step uniform and
nonuniform manipulations of the coupling parameters, and an
improved six-step manipulating scheme.

III. FOUR-STEP UNIFORM
AND NONUNIFORM SCHEMES

Let us start with the four-step uniform manipulating
scheme. The basic idea of braiding is clear as shown in
Fig. 1(b), in terms of manipulating the parameter vector �R.
For a spin-1/2 particle in magnetic field, the vector in the
parameter space just corresponds to the Bloch vector of the
spin state, i.e., the eigenstate of σn = �σ · �n, with �n the unit
vector of �R. This would result in the well-known Berry phase
characterized by the solid angle spanned to the closed trajec-
tory in the parameter space. For the case of Majorana braiding
as shown in Fig. 1(b), it will be more difficult to understand
the similar result, despite that one can indeed obtain the
same Berry phase by means of certain more sophisticated
treatment [38,39].

Moreover, in order to handle the nonadiabatic effect during
evolution along the parameter trajectory shown in Fig. 1(b),
we would like to describe the state evolution using the
occupation-number-state representation. In general, the state
can be expressed as

|
(t )〉 = α(t )|E−(t )〉 + β(t )|E+(t )〉, (3)

where |E−(t )〉 and |E+(t )〉 are the instantaneous eigenstates
of the two-state system under study. In the adiabatic case, we
always have β(t ) = 0, since there is no nonadiabatic transition
occurring. The system will always stay in the instantaneous
eigenstate connected with the initial state, say, |0230d〉 as-
sumed here. We thus have |α(t )| = α(0) = 1. At the end of
braiding, α(T ) = eiϕα(0). The most important point is that the
phase factor ϕ does not contain only the expected dynamical
phase ϕd = − 1

h̄

∫ T
0 dtE−(t ), but also a geometric phase ϕg,

i.e, the Berry phase determined by the solid angle as shown
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FIG. 2. Nonadiabatic effect of the four-step uniform (yellow
lines) and nonuniform (blue lines) manipulation schemes, shown by
the total braiding time dependence (a) for the transition probability,
(b) for the geometric phase error from the Berry phase −π/4, and
(c) for the fidelity of the four-MZM qubit state rotation. In all simu-
lations of this work, arbitrary units of energy are assumed by setting
the maximum coupling strength λc = 1.0. In this plot, the quantum
dot energy level is assumed as εd = 0.2λc.

in Fig. 1(b). Therefore, in total, we have ϕ = ϕd + ϕg. In the
presence of nonadiabatic transition, in addition to β(t ) �= 0,
the remaining part from the phase ϕ(T ) after subtracting the
dynamic phase ϕd (T ) will also deviate from the geometric
phase ϕg determined by the solid angle spanned in the pa-
rameter space. We will show that both errors will affect the
fidelity of the braiding operation.

In Fig. 2 we show the numerical results simulated based on
the considerations outlined above. The scheme of four-step
uniform modulation of the coupling strengths can be summa-
rized as |dλ1,2/dt | = λc

T/4 , which are involved sequentially in
the following modulations: (i) with |λ1| increased from zero
to λc, (ii) with |λ2| increased from zero to λc, (iii) with |λ1|
decreased from λc to zero, and (iv) with |λ2| decreased from
λc to zero. In Figs. 2(a) and 2(b) we show the results of
the nonadiabatic transition probability |β|2 and the geometric
phase error (deviated from the Berry phase −π/4), versus
the braiding time T . In general, as expected, the nonadiabatic
transition is less prominent with increase of T . The behavior
of oscillations observed in Fig. 2(a) is owing to the Landau-
Zener-Stückelberg (LZS) interference [43–45] between the
(relatively strong) nonadiabatic transitions near t = 0 and t =
T , where the energy gap is small. In Fig. 2(b), we find that the
geometric phase extracted from the dynamic (nonadiabatic)
evolution deviates also from the result of the adiabatic case,
i.e., the geometric phase ϕg = −�c/2, while the solid angle

takes the value of �c = arcsin[4λ2
c/(ε2

d + 4λ2
c )], numerically

which corresponds to the asymptotic result in the long-T limit
in Fig. 2(b).

The two errors shown in Figs. 2(a) and 2(b) will affect
the fidelity of the logic gate associated with the braiding
operation. In an ideal case with no errors, the desired state
of the four-MZM qubit after braiding is |ψg〉, as shown in
Eq. (1). The fidelity compared with this state is given by
F = TrM (|ψg〉〈ψg|ρM ), where ρM = TrD[|
(T )〉〈
(T )|] is
the reduced density matrix after tracing out the QD degree
of freedom from the total state |
(T )〉; thus the remaining
trace TrM (· · · ) is over the Majorana qubit states. In Fig. 2(c),
we show the numerical result of the fidelity. We find that
the fidelity is largely affected by the nonadiabatic transition
probability |β|2 shown in Fig. 2(a).

We know that the relatively strong nonadiabatic transitions
largely take place near t = 0 and t = T , where the energy
gap is small as shown in Fig. 1(c). Qualitatively speaking,
in order to avoid strong nonadiabatic transition, one should
modulate the parameter change more slowly for smaller en-
ergy difference �E = E+ − E−. Therefore, let us consider a
nonuniform change of the parameters in the four-step mod-
ulation scheme according to |dλ1,2/dt | = η(E+ − E−)2/h̄,
where the dimensionless parameter η is introduced to control
the parameter modulation speed. If η 
 1, the well-known
adiabatic condition is satisfied. On the contrary, if η > 1,
remarkable nonadiabatic transition will take place. For this
nonuniform scheme of parameter modulation, it is possible
to carry out an analytic expression for the total time of braid-
ing. The individual times for each of the four steps can be
obtained as

T1 = T4 = 1

2ηεd
arctan

2λc

εd
,

T2 = T3 = 1

2η

√
ε2

d + 4λ2
c

arctan
2λc√

ε2
d + 4λ2

c

. (4)

The total braiding time is their sum, T = T1 + T2 + T3 + T4.
From this, one can determine η from T , for given parameters
εd and λc. In Figs. 2(a), 2(b), and 2(c) we plot also the results
of the nonuniform modulation scheme, in close comparison
with the results of the uniform scheme. We find that, remark-
ably, the nonadiabatic transition can be largely suppressed,
with thus an important advantage of allowing much shorter
braiding times.

In Fig. 3 we show further the particular effect of the dot en-
ergy εd . In Fig. 3(a), the dependence of the minimum braiding
time Tm on the dot energy εd is shown for both the uniform
and nonuniform modulation schemes. The minimum braiding
time Tm is determined from the threshold value of the nonadi-
abatic transition probability |β(T )|2 < 0.1 if T > Tm. Again,
we find that the results of the nonuniform modulation scheme
are much better than the uniform scheme. This becomes
more prominent with decrease of the dot energy. In Fig. 3(b)
we show the geometric phase versus the dot energy εd , where
the results (symbols) extracted from the real-time dynamic
evolution are plotted against the adiabatic value (blue line)
determined by the solid angle as shown in Fig. 1(b).
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FIG. 3. (a) Minimum braiding time Tm under the condition
|β|2 � 0.1 versus the dot energy level εd , for the four-step uniform
and nonuniform manipulation schemes. The numerical results are
fitted by using c1/ε

2
d and c2/εd , respectively, while c1 = 32 ln 10/π

is obtained through the formula of Landau-Zener transition probabil-
ity and c2 ≈ 19 is obtained through numerical fitting. (b) Geometric
phases (plotted by symbols) extracted from dynamic evolutions
within the respective braiding time Tm under the specified threshold
conditions. The blue line plots the analytic result of the Berry phase,
�c/2 = 1

2 arcsin[4λ2
c/(ε2

d + 4λ2
c )].

IV. SIX-STEP SCHEME

In order to avoid strong nonadiabatic transitions near the
beginning and end of the braiding operation, we need a rel-
atively large dot energy, e.g., εd = 2λc. In order to achieve
at the same time a complete braiding between γ2 and γ3,
which requires to realize an exact solid angle of �c = π/2
as schematically shown in Fig. 1(b), we further propose the
following six-step modulation protocol: (i) with |λ1| increased
from zero to λc, (ii) with εd decreased from 2λc to zero, (iii)
with |λ2| increased from zero to λc, (iv) with |λ1| decreased
from λc to zero, (v) with εd restored to the initial value from
zero to 2λc, and (vi) with |λ2| decreased from λc to zero.
For each step, the modulation speed can be uniform, say, to
modulate the energy with a constant rate.

In Fig. 4 we compare the results of this six-step scheme
with the four-step protocol results shown in Fig. 2. As a
more challenging comparison, we compare here only with
the nonuniform four-step scheme, which has been demon-
strated with better effect of suppressing the nonadiabatic
transition. In Fig. 4(a), we find that the nonadiabatic tran-
sition can be largely suppressed even on a short timescale
of braiding, while in Figs. 4(b) and 4(c) we find the pre-
cise geometric phase ϕg = −π/4 and good fidelity with the
desired state |ψg〉 accomplished, which indicate a complete
exchange of the MZMs γ2 and γ3. Importantly, the uniform

FIG. 4. Nonadiabatic effect of the improved six-step manipula-
tion scheme, in comparison with the relatively good results of the
four-step nonuniform scheme as shown in Fig. 2: Braiding time de-
pendence plotted for (a) the transition probability, (b) the geometric
phase error from −π/4, and (c) the fidelity of the four-MZM qubit
state rotation. In the simulations, we assume εd = 0.2λc in the whole
process of the four-step manipulation, and εd = 2λc as the initial and
final values of the dot energy for the six-step scheme.

six-step modulation should be more feasible in practice than
the adiabatic-condition-guided nonuniform four-step scheme
analyzed above. Here, only an additional modulation of the
dot energy εd is added. This can be done similarly as modu-
lating the coupling strengths via electric gate control.

V. SHORTCUTS-TO-ADIABATICITY APPROACH

Finally, we notice that a popular method of suppressing
the nonadiabatic transition is the so-called shortcuts-to-
adiabaticity (STA) approach [46–49]. The basic idea of STA
is to add auxiliary counterdiabatic driving so that the dy-
namics can follow the adiabatic evolution. For the two-state
system under present study, as shown in Figs. 1(b) and
1(c), the counterdiabatic driving Hamiltonian can be obtained
as H ′(t ) = ih̄(ζ1γBγ3 + ζ2γBγ2 + ζ3γ2γ3)/�2, where �2 =
ε2

d + 4|λ1|2 + 4|λ2|2, ζ j = (−1) j (|λ̇ j |εd − ε̇d |λ j |) for ζ1 and
ζ2, and ζ3 = 2(|λ1λ̇2| − |λ̇1λ2|). Then, the total Hamiltonian
to affect the system evolution is H (t ) = HM (t ) + κH ′(t ).
Here we introduce an overall strength parameter κ for the
counterdiabatic driving, in order to demonstrate the effect of
the STA approach. In Fig. 5 we display the effect of the STA
counterdiabatic driving on the nonadiabatic transition proba-
bilities for the uniform four-step, nonuniform four-step, and
uniform six-step schemes in Figs. 5(a)–5(c), respectively, on
different timescales based on the previous existing results. For
each case, we consider the counterdiabatic driving strengths
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FIG. 5. Effect of counterdiabatic driving, by varying its ac-
tion strength κ , based on the shortcuts-to-adiabaticity approach.
Nonadiabatic transition probabilities for (a) the four-step uniform
scheme, (b) the nonuniform scheme, and (c) the six-step manipu-
lation scheme. The quantum dot energy level εd is assumed the same
as explained in the caption of Fig. 4.

of κ = 0, 0.5, 0.7, and 1. As expected, nonadiabatic transition
can be suppressed for every case if we perform the full control
with κ = 1. The results shown in Fig. 5 are indeed satisfac-
tory. However, one can easily find that the counterdiabatic
driving Hamiltonian is very hard to be realized in practice.
Here, in addition to switching on coupling between γB and
(γ2, γ3), we also need to establish coupling between γ2 and
γ3. All these couplings are beyond the original manipulation
couplings as shown in Fig. 1(b). Moreover, the most serious
difficulty is that precise realization of these time-dependent
coupling strengths is seemingly impossible in practice. Devi-
ations from these mathematically designed coupling strengths
will result in a failure to the success as roughly shown in
Fig. 5.

VI. SUMMARY AND DISCUSSION

By simulating the real-time dynamics of braiding a pair
of MZMs through a quantum dot, we revealed the strong
nonadiabatic effect when the dot energy level approaches zero
as required for a full exchange between the MZMs. We sim-
ulated and compared the results of different schemes. Rather
than nonuniformly manipulating the system according to adi-
abatic conditions and the shortcuts-to-adiabaticity strategy,
we proposed a simpler and more feasible scheme of six-step
manipulations to suppress the nonadiabatic transition, which

allows as well for a full exchange between the Majorana
modes.

The Majorana braiding protocol analyzed in this work
(with the help of a quantum dot) is quite compatible with
the nowadays hybrid semiconductor-superconductor exper-
imental platforms. It is also the minimal 1D realization
of braiding a pair of MZMs. We may highlight that the
scheme of the six-step manipulations has obvious advantages
over the nonuniform four-step scheme and the shortcuts-to-
adiabaticity approach, since it should be very difficult in
practice to implement the time-dependent precise controls
required by the latter schemes. The nonadiabatic transitions
can be inferred via the dot electron occupation, which can be
further detected by a nearby charge-sensitive detector such as
quantum-point-contact device. Moreover, the braiding resul-
tant state, given by Eq. (1), and deviations from it, can be
verified by moving (via gate-voltage controls) the Majorana
modes γ2 and γ3 to the other ends of the wires, to fuse with
γ1 and γ4. Then, one can measure the occupations n12 and n34

of the fused regular fermions, by coupling them to individual
quantum dots and quantum-point-contact detectors, following
the proposal in Ref. [50] to initialize the Majorana pairs for
demonstrating the nontrivial fusion of Majorana fermions.
We believe that along this line, based on the platform of
quantum-dot-coupled Majorana wires, demonstrating the non-
Abelian statistics of MZMs should be an attractive research
project.

Finally, we make a few remarks on issues not well dis-
cussed in the main text. During the braiding operation started
with |0120340d〉, there exist two evolution channels, which are
associated with initial states |0230d〉 and |1230d〉, respectively.
We have displayed detailed results of the former channel in the
main text, but would like to briefly discuss the latter channel
(with similar results) in Appendix A. Also, despite that in this
work we consider tuning local couplings to realize braiding,
the global geometric-phase-based scheme is not sensitive to
inaccuracy of the parameter fine tunings, which actually falls
into the scenario of geometric quantum computation (GQC)
and holonomic quantum computation (HQC) [51–53], hold-
ing thus inherent stability against local perturbations. In this
context, we may pay special attention to the possible inac-
curate control of the phases φ1 = π and φ2 = 0. The control
errors δφ1 and δφ2 will cause couplings of γ2 and γ3 to γB [see
Fig. 1(b)]. In Appendix B, we analyze this issue in detail and
achieve conclusions as follows.

(i) A systematic deviation of the phase difference φ1 − φ2

from π will cause state fidelity error, as shown by Fig. 7 in
Appendix B. Actually, the Berry phase (geometric solid angle)
in GQC and HQC suffers also this type of problem.

(ii) If the phase difference φ1 − φ2 suffers certain fluctu-
ations around the desired value π (this should be the most
possible situation in a real system), the state error caused by
the dynamic phase difference will be averaged out, making
thus the result hold similar robust features of the geometric
solid angle, as shown by Fig. 8 in Appendix B.
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FIG. 6. Comparison of nonadiabatic effect between the two evo-
lution channels associated with initial states |0230d 〉 and |1230d 〉, in
the subspaces {|0230d 〉, |1231d 〉} (even parity) and {|1230d 〉, |0231d 〉}
(odd parity), respectively. As a representative illustration, the optimal
six-step scheme is exemplified in this simulation. Parameters and
notations used here are the same as in Fig. 4.

APPENDIX A: NONADIABATIC TRANSITION EFFECT
STARTING WITH |1230d〉

The four-MZM setup is the minimal realization of a Ma-
jorana logic qubit (with fixed fermion parity). For instance,
the even-parity logic qubit can be defined by the two ba-
sis states |0〉L = |012034〉 and |1〉L = |112134〉. As shown by
Eq. (1) in the main text, after braiding γ2 and γ3, the
qubit state would experience a rotation, |012034〉 → |ψg〉 =

1√
2
(|012034〉 − i|112134〉). In Figs. 2(c) and 4(c) for, respec-

tively, the four-step and six-step manipulation schemes, we
display the fidelity of the reduced state that suffered nonadia-
batic transition with this target state. The numerical simulation
was just performed using the basis states |n12n34nd〉. We find
that the fidelity is largely affected by the nonadiabatic transi-
tion probability |β|2 as shown in Figs. 2(a) and 4(a).

FIG. 7. Effect of small phase errors of the coupling amplitudes.
It is found that the fidelity is more seriously affected by stronger
phase error δφ, especially with the increase of the braiding time T .
Parameters used in this simulation are the same as in Fig. 4.

FIG. 8. State fidelity in the presence of fluctuations of the phase
difference φ1 − φ2 around the required value π . δφ(t ) = φF ξ (t ) is
assumed in the simulation, while ξ (t ) is a homogeneous random
number between [−1, 1] for each time step of the state propagation.
Other parameters used in the simulation are the same as in Fig. 4.
Results for a few fluctuation strengths are shown.

During the braiding operation started with |0120340d〉, ac-
tually there exist two evolution channels, which are associated
with initial states |0230d〉 and |1230d〉, respectively. To see this,
let us prove the following transformation rule:

|012034〉 = 1√
2

(|023014〉 − i|123114〉). (A1)

Under the constraint of fermion parity, in general, we may first
construct the transformation ansatz as |012034〉 = a|023014〉 +
b|123114〉). Then, we express the operator f12 = γ1 − iγ2 in
terms of the regular fermion operators f14 and f23 as

f12 = 1
2 ( f14 + f †

14 − i f23 − i f †
23). (A2)

This result is obtained by simply associating the Majorana
fermions γ1 and γ4 with the regular fermion f14, and γ2 and
γ3 with f23, respectively. Thus we have γ1 = ( f14 + f †

14)/2
and γ2 = ( f23 + f †

23)/2. Furthermore, acting the annihilation
operator f12 on both sides of the ansatz equation, we have

0 = a

2
(|023114〉 − i|123014〉)

+ b

2
(−i|023114〉 − |123014〉). (A3)

During the algebra, one should notice the difference of a
minus sign between f23|123114〉 = |023114〉 and f14|123114〉 =
−|123014〉. From this result, we obtain a = ib = 1/

√
2, which

fulfills the proof of the above formula of transformation.
Applying the same method outlined above, one can straight-
forwardly carry out all the transformation formulas between
the two sets of basis states, |n12n34〉 and |n23n14〉.

Then, from the above Eq. (A1), we know that for the braid-
ing operation started with |0120340d〉, there are two channels
of evolution. One starts with |0230d〉, and another with |1230d〉.
In ideal case (without nonadiabatic transition), after the cyclic
evolution, both states gain a geometric phase (with a differ-
ence of sign), i.e., |0230d〉 → e−iπ/4|0230d〉 and |1230d〉 →
eiπ/4|1230d〉. This makes the state transformed back to the
representation of |n12n34〉 become the target state |φg〉. In the
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presence of nonadiabatic transition, the resultant state (the
reduced state ρM analyzed in the main text) deviates from |φg〉,
as characterized by the fidelity F [see Figs. 2(c) and Fig. 4(c)].

Here, in Fig. 6, we numerically compare the nonadia-
batic effects between the two evolution channels associated
with initial states |0230d〉 and |1230d〉, in the subspaces
{|0230d〉, |1231d〉} (even parity) and {|1230d〉, |0231d〉} (odd
parity), respectively. As a representative illustration, we only
present results from simulation of the six-step scheme. We
find that the nonadiabatic transition in both channels can be
suppressed in a similar way by properly increasing the braid-
ing time T , as seen from |β|2 → 0 in Fig. 6(a). In Fig. 6(b), we
find that the geometric phases acquired by |0230d〉 and |1230d〉
after the cyclic evolution are always the same in magnitude
but differ in sign. However, for short braiding time T , the
nonadiabatic transition probabilities in both channels do not
coincide with each other. The reason is that for the evolution in
each subspace, the instantaneous eigenstates are not the same,
despite that the instantaneous eigenenergies are identical in
the absence of coupling amplitude phase errors. For the effect
of such errors, see Appendix B.

APPENDIX B: EFFECT OF SMALL PHASE ERRORS
OF THE COUPLING AMPLITUDES

As explained in the main text, above Eq. (2) (for obtaining
it), we assume φ1 = π and φ2 = 0 (this can be realized by
controlling the phases of the s-wave superconductors through
magnetic fluxes (based on the Aharonov-Bohm effect) as ex-
plored in Refs. [40–42]). This choice allows the MZMs γ2 and
γ3 coupled only with γA, but not with γB (after decomposing
the dot electron into a pair of Majorana fermions), as shown
in Fig. 1(b) for the basic idea of geometric approach to braid
γ2 and γ3.

Below we analyze the effect of small deviations δφ1 and
δφ2. Better, let us introduce the relative phase error δφ =
(φ1 − φ2) − π . As to be clear soon, it is this relative phase
error that will affect the result. One can check that the phase
error δφ �= 0 will cause nonzero coupling of γ2 and γ3 to γB.
Thus the solid-angle-based geometric analysis does not work.
We thus present our analysis using the occupation-number-
state representation. Based on the coupling Hamiltonians H ′

1
and H ′

2, we can reexpress the coupling between (γ2, γ3) and
the quantum dot as

H ′
A = λAd† f †

23 + H.c.,

H ′
N = λN d† f23 + H.c. (B1)

Here the regular fermion operator is defined as f23 = γ2 − iγ3.
The former coupling Hamiltonian H ′

A describes the Andreev
process from Cooper pair splitting and recombination, and the
latter H ′

N describes the usual normal tunneling process. Here
and in the following in this Appendix, we introduce indices
“A” and “N” to distinguish the two processes. The coupling
amplitudes of both processes are given by

λA,N = i(λ∗
1 ± λ∗

2 ) = iλ∗
1

(
1 ± |λ2|

|λ1|ei(φ1−φ2 )/2

)
. (B2)

Now let us consider the braiding operation started with
|0120340d〉. From Eq. (A1) we know that there exist two

evolution channels associated with initial states |0230d〉
and |1230d〉, in the subspaces {|0230d〉, |1231d〉} and
{|1230d〉, |0231d〉}, respectively. The former is governed
by the Andreev process, while the latter is governed by the
normal tunneling process. In the limit of strictly adiabatic
evolution, we have (after the cyclic evolution)

|0230d〉 −→ eiϕA
d +iϕA

g |0230d〉,
|1230d〉 −→ eiϕN

d +iϕN
g |1230d〉. (B3)

The dynamic and geometric phases are given by

ϕA,N
g = ∓π

4
− δφ

4
,

ϕA,N
d = −1

h̄

∫ T

0
dtEA,N

− (t ). (B4)

The interesting point revealed by this result is that the rela-
tive geometric phase (the difference of ϕA

g and ϕN
g ) remains

unchanged in the presence of the phase error (δφ �= 0), while
the difference of the dynamic phases ϕA

d and ϕN
d is no longer

zero when δφ �= 0, since the instantaneous eigenstate energies
EA

± �= EN
± [refer to Fig. 1(c) for better understanding].

Based on Eqs. (A1) and (B3), owing to the phase difference
between |023014〉 and |123114〉 accumulated during the cyclic
evolution, we know that after transforming back to the basis
states |012034〉 and |112134〉, the resultant state will be their
superposition. If ϕA

d = ϕN
d , the result is just the target state

|ψg〉 given by Eq. (1) in the main text, even after accounting
for the change of the individual geometric phases (as shown
above). However, if ϕA

d �= ϕN
d , the resultant state will differ

from |ψg〉, leading thus to the fidelity F < 1.
In Fig. 7 we show the numerical results of fidelity F =

TrM (|ψg〉〈ψg|ρM ), where the reduced density matrix ρM is
obtained after tracing the quantum dot degree of freedom from
the total state |
(T )〉 associated with the six-step modulation
scheme. In our simulation for the total state |
(t )〉, we have
accounted for nonadiabatic transition beyond adiabatic evolu-
tion. We find that, in agreement with the above analysis based
on adiabatic evolution, the result is affected by the phase error
δφ, especially with increase of the total evolution time T . This
implies that in practice, on one aspect, we should precisely
control the coupling amplitude phases to make δφ 
 0, and
on the other aspect, we should shorten the braiding operation
time T . From simulations for the several schemes carried out
in this work, we conclude that the six-step protocol is the
optimal choice.

The above analysis corresponds to a systematic deviation
of the relative phase from φ1 − φ2 = π . Indeed, it will cause
state fidelity error. However, for GQC and HQC, the Berry
phase (geometric solid angle) suffers also this same problem.
Actually, for GQC and HQC, the relatively robust nature is
usually owing to the fact that the geometric solid angle is
stable against possible fluctuations of parameters around their
designed theoretical values of parameter control, based on
an observation that the slightly fluctuating trajectory does
not change the solid angle. Therefore, following the idea of
stability analysis in GQC and HQC, we further consider the
phase difference φ1 − φ2 suffering certain fluctuations around
the desired value π (this should be the most possible situation
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in a real system). From Eq. (B2), we find an interesting sym-
metry relation, |λA(δφ)|2 = |λN (−δφ)|2. Then, we anticipate
that the state error caused by the dynamic phase difference
ϕA

d − ϕN
d will be averaged out, making thus the result hold

similar robust features of the geometric solid angle. In Fig. 8,

we provide numerical support for this expectation. In the
numerical simulation, we assume δφ(t ) = φF ξ (t ), while ξ (t )
is a homogeneous random number between [−1, 1] for each
time step of the state propagation. We show results for a few
fluctuation strengths in Fig. 8.
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