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Thermal mass transport mechanism of an adatom on a crystalline surface
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The diffusion of particles on surfaces subjected to a thermal gradient driven by phonons is numerically and
theoretically investigated. Performing molecular dynamics (MD) simulations, we show that the thermal gradient
induces a drift velocity of the adatom toward the cold regions. Beyond the bare study of the adatom trajectories
for various thermal gradients, we propose to use a Massieu function as a thermodynamic potential that drives
the adatom motion. We generalize the thermodynamic integration method to this out-of-equilibrium system to
compute this thermodynamic potential. The thermal-gradient-induced effect is decorrelated from the stochastic
diffusion from the analysis of the thermodynamic potential. Based on these results, we propose a model to
evaluate the drift velocity and trajectory of an adatom that compares with a good agreement with trajectories
provided by MD.
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I. INTRODUCTION

Thermodiffusion (also known as thermophoresis or the
Ludwig-Soret effect) is the motion of particles suspended
in a liquid or gas in response to a thermal gradient. This
phenomenon was first observed in liquids by Ludwig and
Soret [1,2] and in gases by Tyndall and Strutt [3,4]. Onsager
formalized the theoretical foundations of this phenomenon
in the early 1930s [5]. In solids, this process is also known
as thermomigration following Huntington suggestion [6], by
analogy with electromigration.

Thermomigration has been experimentally used in solids
since the early days of the transistor industry: noticeably, the
fabrication of pn junctions used the thermal gradient zone
melting method during which the doping of silicon by alu-
minum is achieved through the use of a thermal gradient
[7–9]. Hence, because of its industrial applications, thermomi-
gration has primarily been studied in bulk [10–13] while
thermomigration on surfaces received less attention.

However, the shrinking of device dimensions in modern
integrated circuits generates high resistance in the intercon-
nects, resulting in concentrated Joule heating. This results
in the formation of hotspots and nonuniform temperature
distributions. In this scope, the coupling of electromigration
and thermomigration has been experimentally characterized
[14,15].

In addition, since the early 2000s, there has been a surge
of interest in the development of new methods for trans-
porting and controlling matter at the nanoscale especially
for the synthesis of nanoparticles or nanodevices. Surface
thermomigration is one of the mass transport mechanisms
relevant to this aim. For instance, Schoen et al. [16,17] pre-
dicted that a gold nanoparticle confined in a carbon nanotube
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subjected to a thermal gradient migrates to the cold regions, a
prediction experimentally validated by transmission electron
microscopy on similar systems [18,19]. Recently, the surface
migration speed of vacancy islands on a Si(111) substrate
has been measured by low energy electron microscopy at
0.18 nm s−1 when applying a thermal gradient of 82 K cm−1

[20]. In the growth community, surface thermomigration has
been used to control the growth of a single-crystal aluminum
nanowire [21].

Numerous theoretical and numerical simulations have
investigated the thermal motion of concentric nanotubes
[22–24] or of fullerene or small particles inside a nanotube
[25–27]. Beyond this, exploiting the possibility to generate a
displacement and thus a work from two heat bathes, several
authors have proposed some thermal nanomachine models
and have numerically shown their operations [28–30]. The mi-
gration of a nano-object on a surface has also been highlighted
in several theoretical and numerical studies [31–35].

Despite these investigations, the elementary mechanisms
driving the thermomigration are far from being completely
understood. In conductors, the heat flux primarily results from
the displacement of free electrons, with only a minor contri-
bution of phonons. Hence, thermomigration in these material
is related to electromigration. Besides, in semiconductors and
insulators, phonons are the main heat carriers. This paper
focuses solely on these later materials where surface ther-
momigration of an object is driven by phonons traveling
through the substrate. In his pioneer work, Huntington [6]
compared several physical mechanisms presumably respon-
sible of the thermomigration. He identifies (i) an intrinsic
effective driving force [36,37] independent of the heat carriers
and (ii) a force associated to the transfer of momentum from
phonons [38]. While the transfer of momentum from phonons
has been recently proposed to be responsible for the ballistic
thermophoresis of clusters on a graphene sheet [33], following
Huntington, the first mechanism, the intrinsic driving force
is the dominant one in common solids: it corresponds to a

2469-9950/2023/108(11)/115410(11) 115410-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7333-0738
https://orcid.org/0000-0003-0582-2970
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.115410&domain=pdf&date_stamp=2023-09-06
https://doi.org/10.1103/PhysRevB.108.115410


A. ROUX AND N. COMBE PHYSICAL REVIEW B 108, 115410 (2023)

temperature effect regardless of the direction or nature (lon-
gitudinal or transversal) of the phonons interacting with the
diffusing object.

In this latter case, quantitatively, following the standard
treatments of irreversible thermodynamics, the mass flow in
a thermal gradient reads

�j = −DcQ∗

kBT 2
�∇T, (1)

where Q∗ is the atomic heat of transport, D the diffusion
coefficient, c the atom concentration, and kB the Boltzmann
constant.

Several theories have related the coefficient Q∗ to a mi-
gration energy [37]. In this paper, we propose to revise this
problem and to study the elementary mechanisms of ther-
momigration of an adatom on a crystalline surface using
molecular dynamic (MD) simulations. In particular, we will
provide a formalism and a numerical approach to study ther-
momigration at the surface of crystalline solids: this method
will enable us to explicitly determine the coefficient Q∗. We
show that Q∗ is not related to a migration energy but rather to
a binding energy. After the description of the model in Sec. II,
we evidence the thermomigration by analyzing adatom tra-
jectories in Sec. III: the motion of the adatom is composed
of a thermal-gradient-induced drift and a Brownian diffu-
sive motion. In Sec. IV, we propose a quantitative numerical
method based on the thermodynamic integration to measure a
thermodynamic potential controlling the probability of pres-
ence of the adatom. From this potential, we decorrelate the
thermal-gradient-induced response of the system from the
Brownian diffusion process. Finally in Sec. V, we develop a
kinetic model of the adatom thermomigration whose results
are compared to trajectories derived from MD simulations.

II. SYSTEM AND METHODS

We simulate the thermomigration of an adatom on a crys-
talline surface subjected to a thermal gradient. Our analysis is
restricted to the case where the heat flux is carried solely by
phonons. As a result, MD simulations, a suitable tool for this
modeling, are performed using the LAMMPS package [39].

A. Molecular dynamics

As a model case, we studied the diffusion of a single
adatom on a (111) fcc surface submitted to a thermal gradient.
Figure 1(a) reports a sketch of the simulation cell. The sub-
strate is composed of a slab whose surface is perpendicular
to the z direction. Periodic boundary conditions are applied
in the x and y directions, respectively corresponding to the
[11̄0] and [112̄] crystal structure directions. The substrate
sizes along the x, y, and z directions are respectively 72.1a0,
13.78a0, and 16.7a0 with a0 the lattice parameter. With these
choices, the simulation box typically contains about 63 800
atoms. Sizes in the y and z directions are chosen to be high
enough compared to the cutoff of the interatomic potential. In
addition, with this choice, the effects due to the quantification
of the phonon energies are limited. The size in the x direction
results from a compromise between a sufficiently large size
to observe the adatom diffusion and a small size to limit the

FIG. 1. (a) Sketch of the simulation model. Atoms of the hot
and cold regions and the diffusing adatom are respectively in red,
blue, and orange. (b) Temperature profiles (and standard deviations)
in the substrate for Thot = 0.3 and various values of Tcold. Standard
deviations are so small that they are barely visible.

computational time. Because we want to understand the phys-
ical mechanisms underlying thermomigration independently
of the precise details of the atomic potential, we have chosen
to use a Lennard-Jones [40] (LJ) potential which minimizes
the computational cost. The choice of a LJ potential is not
singular for this problem since it has been used several times
in the literature to model the interaction of nano-objects with
graphene sheets subjected to a thermal gradient [32,33].

We fix the LJ potential parameters εss = 1.0, σss = 1.0 be-
tween substrate atoms (mass ms = 1.0), and εas = 0.82, σas =
1.0 between the adatom (mass ma = 1.0) and the substrate
atoms. A 3.5 σss cutoff distance is applied. On the simulation
timescale, these parameters warrant avoiding the observation
of adatom evaporations or atomic exchange mechanisms. Be-
low all quantities will be given in LJ units [41]: distances,
masses, energies, times, and temperatures are expressed re-
spectively in units of σss, ms, εss,

√
msσss
εss

, and εss
kB

. Using LJ
units, the lattice parameter a0 is 1.56 (at 0 K) and kB = 1.

B. Thermal gradient and temperature profile

The thermal gradient is applied by defining a hot and a
cold slab region with thickness 11.2, normal to the x di-
rections, and spaced by a distance 44.9 along the substrate.
Two Nosé-Hoover thermostats (canonical NVT ensemble) are
used to thermalize these regions at Thot and Tcold. All other
atoms of the cell (included the diffusing adatom) are in the
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microcanonical (NVE) ensemble. Especially, the adatom un-
der study and the substrate atoms with which it interacts are
in the NVE ensemble. We have carefully checked that the
use of Nosé-Hoover thermostats was satisfying by comparing
our thermal gradient generation to other methods [42] and
by comparing the thermal properties of the substrate with the
literature [43]. The steady state of this system is reached once
the Nosé-Hoover Hamiltonians of the hot and cold regions
vary linearly with time, with opposite slopes proportional to
the thermal flux in the substrate. We have checked that the
velocity distributions of the adatom and interacting substrate
atoms are accordingly Gaussian. We fix Thot = 0.3, below
the fusion temperature Tf ≈ 0.69 of the LJ potential [44].
Tcold varies from 0.05 to 0.26 to investigate various thermal
gradients. Figure 1(b) shows the temperature profile along x
in the substrate for various thermal gradients. Temperature
profiles are measured from the average kinetic energy of 20
slabs of thickness 3.37 evenly distributed between the hot and
cold regions. Both the time average temperature 〈T 〉 and its
standard deviation σT are measured and reported on Fig. 1(b);
however standard deviations are so small that they are barely
visible.

In Fig. 1(b), the temperature profiles between the hot and
cold regions are linear in agreement with the standard Fourier
law for small thermal gradient. Weak deviations from the lin-
ear behavior are observed for high thermal gradients: we have
carefully checked that the steady state was not questioned in
these cases. Such cases correspond to extremely strong ther-
mal gradients: as an example, transposing the LJ parameters
to a real material as copper [45] (for which ε = 0.4096 eV,
σ = 0.2338 nm, and m = 105.49 × 10−27 kg) would result in
a thermal gradient of 113.37 K nm−1 for the smallest value
of Tcold = 0.05. In addition, the size of the simulation cell
is comparable to the phonon mean free path so that part of
the thermal transport is certainly ballistic in our simulations.
Nevertheless, all these nonlinearities will have no effects on
our analysis of Sec. IV and the kinetic model in Sec. V:
we will exploit local thermal gradients and the size of the
diffusing adatom is much smaller than the phonon mean free
path and thus not sensitive to the ballistic or diffusive char-
acter of the thermal transport. Furthermore, discontinuities of
temperatures are observed at the interfaces between the NVE
and thermostatted regions: we attribute them to the existence
of interface resistance or Kapitza resistance [46,47]. Due to
the presence of these Kapitza resistances and the nonlinear
temperature profile, there is a slight difference between the
temperature variation per unit length � T

Lx
= Thot−Tcold

Lx
and the

average thermal gradient 〈 ∂ T
∂ x 〉 = 1

Lx

∫ Lx

0
∂ T
∂ x dx extracted from

the temperature profile. Thus, below, the thermal gradient will
be characterized by the average thermal gradient 〈 ∂T

∂x 〉 whose
values as a function of Tcold are given in Table I.

III. ADATOM TRAJECTORIES

The adatom is initially positioned without speed halfway
between the hot and cold regions. Typical simulation times
are about 5 million MD steps of 5 × 10−3 time units. For each
investigated thermal gradient reported in Table I, we have per-
formed 50 trajectories varying the y coordinate of the initial
position of the adatom. Since we did not fix any substrate

TABLE I. Average thermal gradient 〈 ∂T
∂x 〉 measured from the

temperature profile as a function of Tcold.

Thot Tcold 〈 ∂T
∂x 〉

0.3 0.05 0.0038
0.3 0.075 0.0036
0.3 0.1 0.0033
0.3 0.125 0.0030
0.3 0.15 0.0027
0.3 0.175 0.0022
0.3 0.2 0.0017
0.3 0.225 0.0014
0.3 0.26 0.0008

atoms, the motion of two atoms can be investigated using
the two surfaces of the substrate slabs enabling us to obtain
two adatom trajectories from a single simulation. Figure 2
shows the adatom x coordinate as a function of time for five
trajectories and for two thermal gradients 〈 ∂T

∂x 〉 = 0.0038 and
0.0027. These thermal gradients and trajectories are chosen
as representative of our results. For all thermal gradients and
calculated trajectories, the adatom jumps from a minima of
the potential defined by the substrate to the neighboring one
as shown in the inset of Fig. 2(a). The adatom motion is clearly
diffusive and not in a ballistic regime; also no Lévy flight is
observed.

For the highest thermal gradient 0.0038, regardless of
the initial y coordinate, the adatom diffuses from its initial

(a)

(b)

FIG. 2. The x coordinates of the adatom as a function of time
(only 5 trajectories out of 50 calculated trajectories are represented);
blue and red areas respectively designate cold and hot regions; (a) for
〈 ∂T

∂x 〉 = 0.0038 (the inset shows a zoom on a trajectory); (b) for

〈 ∂T
∂x 〉 = 0.0027.
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position to the cold region evidencing a clear drift induced
by the thermal gradient. Once it has entered the cold region,
the adatom remains confined in it. We hence conclude that the
cold area acts as an attractive well for the adatoms.

For the lowest thermal gradient 0.0027, the adatoms diffuse
but the presence of a drift is less obvious than in the case of the
highest thermal gradient. The adatoms may diffuse through
the hot and/or cold regions. But most of the trajectories yield
the adatoms in the vicinity of cold regions.

We conclude that the motion of the adatom is composed
of a thermal-gradient-induced drift and a Brownian diffusive
motion. To quantitatively separate these two contributions, we
develop and use below a method based on the thermodynamic
integration method [48] adapted to systems submitted to a
thermal gradient.

IV. THERMODYNAMIC INTEGRATION

In this section, we propose a generalization of the stan-
dard thermodynamic integration (TI) method in order to
calculate the thermodynamic potential controlling the x coor-
dinates of the adatom in the presence of a thermal gradient.
In standard TI [48], the free energy difference between
two states is deduced from the integral over ensemble-
averaged enthalpy changes along a thermodynamic path
linking these states. Many versions of this algorithm includ-
ing the use of out-of-equilibrium paths have been developed
[49–51]. But to our knowledge, none of these methods ap-
plies for a system in a steady state submitted to a thermal
gradient.

In a homogeneous temperature system at temperature T ,
the probability p(x0) to find the adatom at position x0 would
be controlled by its free energy A(x0) following p(x0) ∝
exp(−A(x0 )

T ).
In a system submitted to a thermal gradient, this con-

cept can be extended provided that we make a local thermal
equilibrium assumption. This assumption is justified in our
case, since the characteristic time for the adatom diffusion
(average time between two jumps in trajectories of Fig. 2) is
longer than the characteristic time for its thermalization with
the underlying substrate (of the order of the inverse of the
oscillation frequency of the adatom in the crystalline potential
well).

Under this local equilibrium assumption, we show in Ap-
pendix A that the probability p(x0) can be written as p(x0) ∝
exp[−�(x0)] with �(x0) a thermodynamic potential. Because
the temperature depends on the position, the appropriate ther-
modynamic potential controlling the position of the adatom is
no longer the free energy A(x0) but a function reducing to A

T
in a system with a homogeneous temperature: indeed, in such
a case, the function � = A

T is the opposite of the Massieu
function (S − U

T ) (Legendre transform of the entropy S, U
designing the internal energy), and corresponds accordingly
to a thermodynamic potential [52].

While the direct calculation of the thermodynamic poten-
tial �(x0) is out of our computational capabilities because it
would involve an integral over all microstates, it can be de-
duced from a TI scheme using the expression of its derivative

∂�
∂x (see Appendix A for derivation),

∂�

∂x
(x0) =

〈
1

T (x0)

∂V

∂x
(x0, y, z)

〉
x0

− 1

T 2(x0)

∂T

∂x
(x0)

×
〈

�pa
2

2ma
+ 1

2
V (x0, y, z)

〉
x0

, (2)

where x0, y, z, �pa, and ma are respectively the coordinates,
momentum, and mass of the adatom and V (x0, y, z) is the
interaction energy of the adatom with the substrate atoms. In
Eq. (2), averages 〈.〉x0 are performed on the y, z coordinates
and momentum �pa coordinates of the adatom at abscissa x0

and over positions and momenta of substrate atoms. While the
first right-hand term of Eq. (2) is standard in TI implementa-
tion (in homogeneous temperature systems), the second term
is derived from the presence of the thermal gradient.

Technically, we calculate ∂�
∂x (x0) by TI: we perform MD

simulations constraining the x coordinate of the adatom at

position x0 and we compute 〈 ∂V
∂x (x0, y, z)〉x0 , 〈 pa

2
y+pa

2
z

2ma
〉x0 , and

〈V (x0, y, z)〉x0 . Since the constraint imposes the x-momentum
component pax = 0, we use the local thermal equilibrium

assumption to rescale the kinetic energy following 〈 �pa
2

2ma
〉x0 =

3
2 〈 pa

2
y+pa

2
z

2ma
〉x0 . The temperature T (x0) is evaluated from the

temperature profile Fig. 1(b). Combining all these data yields
the values of ∂�

∂x .

A. Thermodynamic potential

Figure 3(a) shows the derivative ∂�
∂x (x0) of the thermody-

namic potential as a function of the adatom position x0 for
the thermal gradient 〈 ∂T

∂x 〉 = 0.0038. This function has a rising
amplitude and a sinusoidal wave number (k = 11.2). We have
checked that the wave number k = 2π

a , where a is the pro-
jected distance in the x direction between two adatom stable
sites on the surface, accordingly with the crystallography of
the substrate surface.

Figure 3(b) shows the thermodynamic potential �(x0)
computed by numerical integration of ∂�

∂x (x0) for different
thermal gradients. The thermodynamic potential �(x0) is a
combination of (i) a sinusoidal function and (ii) a slowly
decreasing function, referred as the thermal-gradient-induced
potential (TGIP) in the following. The sinusoidal function
is yet another manifestation of the crystalline potential. The
decreasing function, the TGIP, is related to the effect of the
thermal gradient: it drives the adatom in the increasing x direc-
tion, i.e., toward the cold region. As observed on Fig. 3(b), the
absolute slope of the TGIP increases with increasing thermal
gradient.

In Fig. 3(b), the thermodynamic potential �(x0) is plotted
as a function of the x coordinate of the adatom. However, since
the temperature profile also depends on the x coordinate of the
adatom, the thermodynamic potential � could equivalently be
plotted as a function of the inverse of the temperature 1/T
(Fig. 4).1

1The natural variable for the Massieu function S − U
T is the inverse

of the temperature [52].
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FIG. 3. (b) Thermodynamic potential and (a) its derivative as a
function of the adatom position x0 computed from simulations with
the thermal gradient 〈 ∂T

∂x 〉 = 0.0038.

For all the investigated thermal gradients, the thermo-
dynamic potential � as a function of 1/T appears to be
a combination of a quasilinear �TGIP( 1

T ) and a sinusoidal
�diff ( 1

T ) function. �TGIP( 1
T ) is the curve that passes through

all minima of the thermodynamic potential and �diff ( 1
T ) =

�( 1
T ) − �TGIP( 1

T ). Interestingly, for all the investigated ther-
mal gradients, the TGIP �TGIP( 1

T ) superimpose.

FIG. 4. Thermodynamic potential for several gradients as a func-
tion of the inverse of the temperature.

B. Interpretation of the thermodynamic potential

The quasilinear component �TGIP( 1
T ) of the thermody-

namic potential �( 1
T ) can be understood examining the

behavior of the adatom at the minima of a crystalline po-
tential well. Indeed, assuming a harmonic approximation and
that the adatom is in local equilibrium with the substrate,
we use the equipartition theorem to derive the average ki-

netic and potential energies of the adatoms: 〈 �pa
2

2ma
〉x0 = 3 T (x0 )

2

and 〈V (x0)〉x0 = −V0 + 3 T (x0 )
2 with V0 the binding energy

(V0 > 0),2 so that using Eq. (2),

�(x0)|min ≈ − V0

2T (x0)
− 9

4
ln[T (x0)]. (3)

Hence, we have detected all minima of the thermodynamic
potential in Fig. 4 to compute �TGIP( 1

T ) and performed a
regression using the following expression, �TGIP( 1

T ) = −Q
T −

C ln(T ) + �0, with �0 a physically meaningless constant.
We extract Q = 1.90 ± 0.03 and C = −1.8 ± 0.22 for 〈 ∂T

∂x 〉 =
0.0038. Q and C respectively characterize the drift induced
by the thermal gradient and the entropic effects. The relation
between the coefficient Q and the heat of transport Q∗ of
Eq. (1) will be addressed in Sec. V. Q = 1.90 is in rela-
tively good agreement with half the binding energy 4.17 of
the adatom with the substrate calculated at 0 K. This con-
clusion has been reinforced by checking that the coefficient
Q is proportional to the adatom-substrate interaction energy
εas.3 Besides, we found that the value of Q is independent of
the values of the thermal gradients 〈 ∂T

∂x 〉 = 0.0033 and 0.0027
used to computed the thermodynamic potential.

C = −1.8 is in disagreement with the expected value 9
4 =

2.25 provided by the harmonic assumption above. Surpris-
ingly it almost corresponds to the opposite to the expected
value: we have checked carefully that this coincidence was
not due to a sign error. For the gradients 〈 ∂T

∂x 〉 = 0.0033
and 0.0027, we extract C = −1.57 and −0.62 which evi-
dences that the logarithmic corrections are not well resolved.
To explain this disagreement, we argue that the harmonic
assumption and the use of the equipartition theorem are ques-
tionable in this case since the adatom significantly diffuses
along the y direction during the constrained MD simulations.
Another presumably important effect is that our statistics
are limited and the numerical integration used to calculated
the thermodynamic potential � inevitably accumulates er-
rors which prevents an accurate determination of C. In other
word, we think that our calculations are not precise or reliable
enough to be able to capture the logarithmic corrections.

To go forward with the examination of the thermodynamic
potential �( 1

T ), the diffusive behavior is characterized by the
quantity �diff ( 1

T ) = �( 1
T ) − �TGIP( 1

T ) plotted in Fig. 5(a).
The function �diff ( 1

T ) is an oscillating function whose
amplitude Adiff increases as the temperatures decreases. Fig-
ure 5(b) shows the amplitude Adiff as a function of the inverse

2Since the motion of the adatom is constrained, it has only two
degrees of freedom.

3The range of available values of εas ∈ [0.82 − 0.9] in MD simula-
tions is limited to avoid the evaporation or exchange mechanisms on
the simulation time scale.
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(b)

FIG. 5. (a) �diff = � − �TGIP as a function of the inverse of the
temperature. (b) Amplitude Adiff of the oscillation of �diff as a func-
tion of the inverse of the temperature and its affine regression (green
solid line). Data are extracted from simulations with the thermal
gradient 〈 ∂T

∂x 〉 = 0.0038.

of the temperature. The amplitude Adiff is related to the rate
of diffusion of the adatom: this rate is expected to decrease
as the temperature decreases since diffusion is slower at low
temperature, an expectation in agreement with the results of
Fig. 5(b).

Comparing the results of Fig. 5(b) with the values of Adiff

computed for a substrate thermostatted with a homogeneous
temperature, i.e., without a thermal gradient, we have checked
that Adiff only depends on the temperature and not on its
gradient.

The amplitude Adiff linearly increases with the inverse of
the temperature with a slope Em = 0.239 ± 0.003. Em is ho-
mogeneous to an energy and corresponds to the energy barrier
for the diffusion of the adatom (Em > 0). The measured value
of Em is slightly smaller than the energy barrier Eb = 0.255
for the adatom diffusion computed at 0 K.4 Finally, we have
checked that the amplitude Adiff (and thus Em) is proportional
to the adatom-substrate interaction energy εas.

4The energy barrier at 0K has been computed from potential energy
minimizations constraining the x-position of the adatom. We have
also checked that Em agrees with the temperature dependence of
the adatom diffusion coefficient on a thermostated substrate com-
puted from the mean squared displacements of the adatom along
trajectories.

FIG. 6. Schematic representation of the thermodynamic poten-
tial as a function of the adatom position.

V. MODEL FOR THERMOMIGRATION

In this section, we propose a 1D kinetic model able to
evaluate the average drift velocity induced by the thermal
gradient.

A. Average drift velocity

Based on the results of Sec. IV, Fig. 6 schematically shows
the thermodynamic potential seen by the adatom in the pres-
ence of a thermal gradient. Since this potential is asymmetric,
the barriers to jump to the right or to the left are different.
We estimate the probability rate of both jumps using a gen-
eralization of the transition-state theory (TST). Assuming the
validity of the local thermodynamic equilibrium, the rate at
which an adatom goes from a metastable state to a neigh-
boring one can be derived generalizing the TST to a system
showing a thermal gradient. The forward rate Eq. (B3) is
calculated for a unidimensional system in Appendix B and is
proportional to the quantity e−[�(xm+ a

2 )−�(xm )]. xm designs the
abscissa of a metastable state of the thermodynamic potential
and a is the projected distance in the x direction between two
of these states. Therefore, the average velocity of the adatom
reads

〈v〉 = a
[
ν+e−[�(xm+ a

2 )−�(xm )] − ν−e−[�(xm+ a
2 )−�(xm+a)]

]
, (4)

with ν± the attempt frequencies. For simplicity, we suppose
that ν+ = ν− = ν0 in the following. Using the results of
Sec. IV, �(xm) = − Q

T (xm ) and �(xm + a/2) = − Q
T (xm+a/2) +

Em
T (xm+a/2) , the average velocity Eq. (4) deduces

〈v〉 = a2ν0e−�(xm+ a
2 )Qe− Q

T (xm )
d[1/T ]

dx

= D[T ]Qe
(Q−Em )a

2
d[1/T ]

dx
d[1/T ]

dx
(5)

= −D[T ]
Q

T 2

[
e− (Q−Em )a

2T 2
dT
dx

]dT

dx
, (6)

with D[T ] = ν0a2e(− Em
T ) the local diffusion coefficient of the

adatom. As expected, Eq. (5) is compatible with a zero drift
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velocity in the absence of a thermal gradient. As suggested in
Eq. (1), the average velocity Eq. (6) does not only depend on
the temperature gradient but also on the temperature itself.

Since Q is roughly half the binding energy of the adatom, Q
is always a positive quantity. Hence, we find that the thermal
gradient always drives the adatom toward the positive x, i.e.,
toward the cold region, so that a negative Soret coefficient is
unreachable in this system.

The driving force pushing the adatom to the cold region
is mainly an intrinsic effect: the decrease of the tempera-
ture increases its probability of presence ∝ exp(Q/T ). The
entropic effects mentioned in Sec. IV A should induce some
corrections to Eq. (5), but they are presumably weak and
we have not been able to measure them. Finally, note that
Eq. (5) originates from a first-order development of Eq. (4),
but nothing prevents us from pushing this development to a
higher order to address nonlinear effects.

Finally, from Eq. (5), one can identify the coefficient Q
with the heat of transport Q∗ in Eq. (1) providing that the ther-

mal gradient is small enough to warrant that e− (Q−Em )a
2T 2

dT
dx � 1.

B. From the model to trajectories

In order to address the validity of Eq. (5), we calculate the
model trajectory x(t ) of an adatom numerically solving the
following differential equation:

dx

dt
= −D[T ]

Q

T 2
e− (Q−Em )a

2T 2
dT
dx

dT

dx
. (7)

Q is given in Sec. IV. The diffusion coefficient D(T ) as
a function of temperature has been calculated from the
mean squared displacement along trajectories of an adatom
diffusing on a substrate thermostatted at an homogeneous
temperature T .

Figures 7(a) and 7(b) show the model trajectories com-
puted from Eq. (7) compared to the average MD trajectory
〈x(t )〉traj of the adatom at thermal gradients 〈 ∂T

∂x 〉 = 0.0038
and 0.0027. The average MD trajectory 〈x(t )〉traj of the adatom
is computed by averaging the position x(t ) of the adatom at
time t over all the trajectories computed by MD with the
same initial conditions. We emphasize that there are no free
parameters in the curves of Figs. 7(a) and 7(b).

So we presume that Murphy lacked vigilance since the
agreement between the average MD trajectories of the adatom
and the models of Eq. (7) is very good especially for time in
the range [0–4000]. Note that we have intentionally limited
the range of the abscissa of Figs. 7(a) and 7(b). Indeed when
performing the average 〈x(t )〉traj at time t over all the trajec-
tories, we elude the trajectories which have joined the cold
region at a time t ′ < t . So when time t increases, the number
of trajectories involved in the average not only decreases, but
the estimation of 〈x(t )〉traj is biased by the fact that the average
is computed on trajectories that have not reached the cold
region yet.

VI. DISCUSSION

We think that the good agreement between the prediction
of our model and MD simulations results shown in Fig. 7

(a)

(b)

FIG. 7. Model trajectory (solid black line) computed from in-
tegration of Eq. (7) compared to the average MD trajectory of the
adatom; (a) for 〈 ∂T

∂x 〉 = 0.0038; (b) for 〈 ∂T
∂x 〉 = 0.0027.

gives an additional justification of our different assumptions
to derive the model Eq. (6): noticeably, the adatom diffuses
on the surface and is locally in thermal equilibrium with the
substrate. Hence, the heat of transport Q∗ depends on the
binding energy of the adatom with the substrate and weakly
depends on the migration energy Em. This result is in oppo-
sition with previous theories [36]. We emphasize that in our
simulations, we found Q = 1.9 while Em = 0.23 so that both
quantities differ by a factor of 8, almost an order of magnitude:
a model involving a heat of transport Q∗ equal to the migration
energy as proposed previously would definitely not produce a
good agreement with MD simulations results. We think that
the main difference between our model and previous ones
is that we introduce the thermodynamic potential (a Massieu
function) � which drives the adatom probability of presence
in an inhomogeneous temperature system.

Moreover, concerning Eq. (5), in our MD simulations,

we evaluate the coefficient e− (Q−Em )a
2T 2

dT
dx � 0.84 with Q = 1.9,

Em = 0.23, T = 0.1, and dT
dx = 0.0038. Hence, nonlinear ef-

fects, i.e., the adatom average velocity reads as a series of
powers of dT

dx , are significant and could not be eluded in
our simulations. However, in realistic experimental conditions
where the thermal gradient is several orders of magnitude

smaller that in our simulations, the coefficient e− (Q−Em )a
2T 2

dT
dx

should be one to a very good approximation. Equation (5) then
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agrees with Eq. (1) with Q∗ equal to half the binding energy
of the adatom.

VII. CONCLUSION

In this paper, we have numerically and theoretically studied
the diffusion of an adatom on a surface submitted to a thermal
gradient. The thermal gradient drives the adatom toward the
cold regions. We have shown that (i) the Massieu function
is the suitable thermodynamic potential to investigate this
out-of-equilibrium steady-state system. (ii) We have provided
a method generalizing the thermodynamic integration method
to compute it. Analyzing this thermodynamic potential, we
have been able to decorrelate the thermal-gradient-induced
effect from the stochastic diffusion. (iii) We have shown that
the atomic heat transport characterizing the thermal-gradient-
induced effect is proportional to the binding energy of the
adatom with the substrate. Based on these results and (iv) gen-
eralizing the transition-state theory to systems submitted to
thermal gradient, (v) we have proposed a model to evaluate the
drift velocity of an adatom and to evidence the main physical
processes operating during the thermomigration process. Our
model agrees very well with MD simulation results. It also
agrees with the standard treatment of mass transport Eq. (1)
by irreversible thermodynamics.

The main driving force for the thermomigration is the
so-called intrinsic effect, i.e., the increase of the probability
of presence ∝ exp(Q/T ) of the adatom with the decrease
of temperature, where Q is found to be mainly independent
of the temperature. Our results show that the thermomigra-
tion always drives an adatom diffusing on a surface toward
the cold region and that a negative Soret coefficient is
unreachable.

We cite below two perspectives to this work. First, all of
our results are based on a local thermodynamic equilibrium
assumption. However, this local thermodynamic equilibrium
assumption has some limitations both for the evaluation of the
TST rate and the probability distribution [53,54]: investigat-
ing the corrections to the local thermodynamic equilibrium
assumptions would certainly allow a better understanding of
the thermomigration phenomenon. Especially, our approach
would certainly be arguable if the diffusion of the adatom
was faster enough to prevent its local thermalization with the
substrate.

Second, the thermomigration of a cluster involves some
elastic effects that would be worth investigating especially
for comparison with experiments. In addition, elastic effects
could potentially enable a negative Soret coefficient.
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APPENDIX A: THERMODYNAMIC INTEGRATION FOR A
SYSTEM SUBMITTED TO A THERMAL GRADIENT

Let �ra, �pa and �ri, �pi be the positions and momentum of
the adatom and of the substrate atoms with i ∈ {1, N}. The
Hamiltonian of the investigated system reads

H ( �ra, �pa, �ri, �pi ) = p2
a

2ma
+

∑
i

p2
i

2mi
+

∑
i

ELJ ( �ra, �ri ) + 1

2

∑
i 
= j

ELJ (�ri, �r j ). (A1)

In the presence of a thermal gradient and under the local thermal equilibrium assumption, the probability to observe the adatom
at a position with abscissa x0 is [53,54]

p(x0) = Z (x0)

Z
, (A2)

Z (x0) = 1

h3N+3

∫
δ(xa − x0)e[−

∫
β(�r)H(�r)d3�r]d3 �rad3 �pa

N∏
i=1

d3 �rid
3 �pi, (A3)

Z = 1

h3N+3

∫
e[−

∫
β(�r)H(�r)d3�r]d3 �rad3 �pa

N∏
i=1

d3 �rid
3 �pi, (A4)

where β(�r) = 1
T (�r) states for the temperature dependence and H(�r) is the microscopic many-body Hamiltonian density,

H(�r) = δ( �ra − �r)

[
p2

a

2ma
+ 1

2

∑
i

ELJ ( �ra, �ri )

]
+

∑
i

δ(�ri − �r)

⎡
⎣ p2

i

2mi
+ 1

2
ELJ ( �ra, �ri ) +

∑
j 
=i

1

2
ELJ (�ri, �r j )

⎤
⎦. (A5)
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In the present study, T (�r) only depends on x: T (�r) = T (x). From Eq. (A5), we hence deduce∫
β(�r)H(�r) = p2

a

2maT (xa)
+ 1

2

∑
i

ELJ ( �ra, �ri )

[
1

T (xa)
+ 1

T (xi )

]
+

∑
i

p2
i

2miT (xi )
+ 1

2

∑
i

∑
j 
=i

ELJ (�ri, �r j )

T (xi )
. (A6)

Defining �(x0) = − ln[Z (x0)], the derivative of �(x0) compared to x0 is deduced from Eqs. (A2) and (A6):

∂�

∂x
(x0) = −

∂Z
∂x

Z
(x0) = −

〈[
�pa

2

2ma
+

∑
i

1

2
ELJ

( �r0
a , �ri

)] 1

T (x0)2

∂T

∂x
(x0)

〉
x0

+
〈∑

i

1

2

∂ELJ

∂xa

( �r0
a , �ri

)[ 1

T (x0)
+ 1

T (xi )

]〉
x0

, (A7)

with �r0
a = (x0, ya, za). 〈.〉x0 designs an average over all space variables ya, za, �pa, �ri, and �pi with i ∈ {1, N} while the abscissa xa

of the adatom equals xa = x0.
Finally, since the relative temperature variation over the LJ cutoff length scale λ, 1

T
∂T
∂x � 1

λ
, is weak, we approximate 1

T (xi )
�

1
T (x0 ) when the substrate atom at abscissa xi interacts with the adatom at abscissa x0:

∂�

∂x
= −

〈[
�pa

2

2ma
+

∑
i

1

2
ELJ

( �r0
a , �ri

)] 1

T (x0)2

∂T

∂x
(x0)

〉
x0

+
〈

1

T (x0)

∑
i

∂ELJ
( �r0

a , �ri
)

∂xa

〉
x0

(A8)

= −
〈[

�pa
2

2ma
+ 1

2
V

( �r0
a

)] 1

T (x0)2

∂T

∂x
(x0)

〉
x0

+
〈

1

T (x0)

∂V

∂xa

( �r0
a

)〉
x0

, (A9)

where V ( �r0
a ) = ∑

i ELJ ( �r0
a , �ri ).

APPENDIX B: TRANSITION-STATE THEORY
WITH A THERMAL GRADIENT

In this section, using the transition-state theory (TST), we
calculate the forward rate k+

TST, i.e., the probability per unit
time that a system submitted to a thermal gradient goes from
a metastable state to a neighboring one crossing a transition
state. For simplicity, we derive here the forward rate k+

TST for
a unidimensional system. The generalization to a multidimen-
sional potential is not simple except perhaps if the thermal
gradient is perpendicular to the transition-state hyperplane,
but even this simpler case is out of the scope of this study. So
we suppose a unidimensional particle of mass m, position x,
and momentum p = mẋ. This particle interacts with a wider
system with many degrees of freedom (the substrate in the
present case), so that the dynamic of the particle can be
derived from a reduction procedure yielding to an effective
potential V (x) driving the particle motion [55]. We suppose
that this effective potential V (x) shows two metastable states
x1 and x2 > x1 divided by a transition state at xt . See Fig. 8.

FIG. 8. Sketch of the effective potential seen by the particle.

We limit our development to the simple case where all
timescales of the system (substrate + particle) are separable,
and we assume that (i) the local thermodynamic equilibrium
prevails for all degree of freedom (including the degree of
freedom of the particle and the ones of the substrate) and that
(ii) any trajectory of the particle that crosses the transition xt

will not recross it [55]. The assumption (ii) is standard for
TST and assumption (i) is a generalization of the standard
thermodynamic equilibrium assumption for TST. Within these
assumptions, the forward rate, i.e., the probability per unit
time that the particle goes from the metastable state in x1 to
the one in x2, reads [55]

k+
TST =

∫
dxd p δ(x − xt )

p
m θ (p)e−β(x)( p2

2m +V (x))∫
initial well dxd p e−β(x)( p2

2m +V (x))
,

with θ (x) = 1 for x > 0 and 0 otherwise,

k+
TST = e−β(xt )V (xt )

∫ +∞
0 d p p

m e−β(xt ) p2

2m∫
initial well dxd p e−β(x)( p2

2m +V (x))
,

with ∫ +∞

0
d p

p

m
e−β(xt ) p2

2m = 1

β(xt )

and ∫
initial well

dxd p e
−β(x)

(
p2

2m +V (x)
)

=
∫

x<xt

dx

[
e−β(x)V (x)

∫ ∞

−∞
d pe−β(x) p2

2m

]

=
∫

x<xt

dx

⎡
⎣e−β(x)V (x)

√
2πm

β(x)

⎤
⎦.
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The function e−β(x)V (x) is only significant in the vicinity of
the minima xmin of the function β(x)V (x). Hence, we can ap-
proximate β(x)V (x) = β(xmin)V (xmin) + (x−xmin )2

2
d2(βV )

dx2 (xmin)
to get ∫

initial well
dxd p e−β(x)( p2

2m +V (x))

�
√

2πm

β(xmin)
e−β(xmin )V (xmin )

√
2π

d2(βV )
dx2 (xmin)

.

So finally, we get

k+
TST = e−β(xt )V (xt )

e−β(xmin )V (xmin )

1

2πβ(xt )

√
β(xmin) d2(βV )

dx2 (xmin)

m
. (B1)

In the case of the thermomigration of an adatom on a crys-
talline substrate, the length scale of the temperature variation
is very weak compared to the one of the variation of the poten-
tial V (x); the minima x1 of the potential V (x) almost coincides
with the minima of the function β(x)V (x): xmin ≈ x1, so that

within a good approximation, k+
TST reads

k+
TST = e−β(xt )V (xt )

e−β(x1 )V (x1 )

1

2πβ(xt )

√
β(x1) d2(βV )

dx2 (x1)

m
(B2)

= ν+e−[β(xt )V (xt )−β(x1 )V (x1 )], (B3)

with ν+ = 1
2πβ(xt )

√
β(x1 ) d2 (βV )

dx2 (x1 )

m . Equation (B2) is equivalent
to the result of the TST theory when the temperature is inde-
pendent of the position [55].

Including the entropic terms of the prefactor in the expo-
nential, Eq. (B2) would involve the thermodynamic potential
φ so that k+

TST ∝ e−[φ(xt )−φ(x1 )].
We note that Eq. (B3) differs from previous theories [36]

where the rate at which an adatom goes from a metastable
state to a neighboring one only depends on the adatom tem-
perature in its initial metastable state (and not on the one at the
barrier). Nevertheless, we argue that these former expressions
[36] do not satisfy the detailed balance whereas Eq. (B3) does.

[1] C. Ludwig, Sitz.-ber. Akad. Wiss. Wien, Math. Nat. Kl 20, 539
(1856).

[2] Ch. Soret, J. Phys. Theor. Appl. 9, 331 (1880).
[3] J. Tyndall, Nature (London) 1, 339 (1870).
[4] R. J. Strutt, Proc. R. Soc. London 34, 414 (1883).
[5] L. Onsager, Phys. Rev. 37, 405 (1931).
[6] H. Huntington, J. Phys. Chem. Solids 29, 1641 (1968).
[7] W. Pfann, JOM 7, 961 (1955).
[8] E. Y. Buchin and Y. I. Denisenko, Proc. SPIE 6260, 62601L1

(2006).
[9] M. Eslamian and Z. Saghir, Fluid Dyn. Mater. Process. 8, 353

(2012).
[10] J. Janek and H. Timm, J. Nucl. Mater. 255, 116 (1998).
[11] D. Peterson and S. J. Kim, J. Less-Common Met. 141, 249

(1988).
[12] M. Uz and O. Carlson, J. Less-Common Met. 116, 317

(1986).
[13] B. Ernst, G. Frohberg, K. Kraatz, and H. Wever, in Diffusion in

Materials DIMAT 1996, Defect and Diffusion Forum Vol. 143
(Trans Tech Publications, 1997), pp. 1649–1654.

[14] N. Somaiah and P. Kumar, J. Appl. Phys. 124, 185102 (2018).
[15] Y. Kimura and Y. Ju, AIP Adv. 10, 085125 (2020).
[16] P. A. E. Schoen, J. H. Walther, S. Arcidiacono, D. Poulikakos,

and P. Koumoutsakos, Nano Lett. 6, 1910 (2006).
[17] P. A. E. Schoen, J. H. Walther, D. Poulikakos, and P.

Koumoutsakos, Appl. Phys. Lett. 90, 253116 (2007).
[18] A. Barreiro, R. Rurali, E. R. Hernández, J. Moser, T. Pichler, L.

Forró, and A. Bachtold, Science 320, 775 (2008).
[19] H. Somada, K. Hirahara, S. Akita, and Y. Nakayama, Nano Lett.

9, 62 (2009).
[20] F. Leroy, A. E. Barraj, F. Cheynis, P. Müller, and S. Curiotto,

Phys. Rev. Lett. (to be published).
[21] D. Xie, Z.-Y. Nie, S. Shinzato, Y.-Q. Yang, F.-X. Liu, S. Ogata,

J. Li, E. Ma, and Z.-W. Shan, Nat. Commun. 10, 4478 (2019).
[22] Q.-W. Hou, B.-Y. Cao, and Z.-Y. Guo, Nanotechnology 20,

495503 (2009).

[23] V. R. Coluci, V. S. Timóteo, and D. S. Galvão, Appl. Phys. Lett.
95, 253103 (2009).

[24] J. Leng, Z. Guo, H. Zhang, T. Chang, X. Guo, and H. Gao, Nano
Lett. 16, 6396 (2016).

[25] R. Rurali and E. Hernández, Chem. Phys. Lett. 497, 62
(2010).

[26] W. Yao and C. Basaran, Int. J. Damage Mech. 23, 203 (2013).
[27] A. V. Savin and O. I. Savina, Phys. Solid State 63, 811

(2021).
[28] Z.-Y. Guo, Q.-W. Hou, and B.-Y. Cao, J. Heat Transfer 134,

051010 (2012).
[29] F. Zhu, Z. Guo, and T. Chang, Appl. Mater. Today 18, 100520

(2020).
[30] R. L. Zhang, S. Y. Li, Y. Li, and M. F. Wang, J. Nano Res. 74,

97 (2022).
[31] A. Savin and Y. Kivshar, Sci. Rep. 2, 1012 (2012).
[32] M. Becton and X. Wang, J. Chem. Theory Comput. 10, 722

(2014).
[33] E. Panizon, R. Guerra, and E. Tosatti, Proc. Natl. Acad. Sci.

USA 114, 201708098 (2017).
[34] R. Rajegowda, S. K. Kannam, R. Hartkamp, and S. P. Sathian,

Nanotechnology 29, 215401 (2018).
[35] A. V. Savin, Phys. Rev. B 106, 205410 (2022).
[36] J. A. Brinkman, Phys. Rev. 93, 345 (1954).
[37] G. Schottky, Phys. Status Solidi B 8, 357 (1965).
[38] V. B. Ficks, Sov. Phys. Solid State 3, 724 (1961).
[39] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,

W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C.
Trott, and S. J. Plimpton, Comput. Phys. Commun. 271, 108171
(2022).

[40] J. E. Lennard-Jones, Proc. Phys. Soc. 43, 461 (1931).
[41] M. Allen and D. Tildesley, Computer Simulation of Liquids

(Clarendon Press, 1987).
[42] P. Wirnsberger, D. Frenkel, and C. Dellago, J. Chem. Phys. 143,

124104 (2015).

115410-10

https://doi.org/10.1051/jphystap:018800090033101
https://doi.org/10.1038/001339a0
https://doi.org/10.1098/rspl.1882.0059
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1016/0022-3697(68)90106-6
https://doi.org/10.1007/BF03377594
https://doi.org/10.3970/fdmp.2012.008.353
https://doi.org/10.1016/S0022-3115(98)00037-3
https://doi.org/10.1016/0022-5088(88)90411-0
https://doi.org/10.1016/0022-5088(86)90665-X
https://doi.org/10.1063/1.5045086
https://doi.org/10.1063/5.0011417
https://doi.org/10.1021/nl060982r
https://doi.org/10.1063/1.2748367
https://doi.org/10.1126/science.1155559
https://doi.org/10.1021/nl802323n
https://doi.org/10.1038/s41467-019-12416-x
https://doi.org/10.1088/0957-4484/20/49/495503
https://doi.org/10.1063/1.3276546
https://doi.org/10.1021/acs.nanolett.6b02815
https://doi.org/10.1016/j.cplett.2010.07.081
https://doi.org/10.1177/1056789513488396
https://doi.org/10.1134/S106378342104020X
https://doi.org/10.1115/1.4005640
https://doi.org/10.1016/j.apmt.2019.100520
https://doi.org/10.4028/p-wj60p1
https://doi.org/10.1038/srep01012
https://doi.org/10.1021/ct400963d
https://doi.org/10.1073/pnas.1708098114
https://doi.org/10.1088/1361-6528/aab3a3
https://doi.org/10.1103/PhysRevB.106.205410
https://doi.org/10.1103/PhysRev.93.345
https://doi.org/10.1002/pssb.19650080135
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1088/0959-5309/43/5/301
https://doi.org/10.1063/1.4931597


THERMAL MASS TRANSPORT MECHANISM OF AN ADATOM … PHYSICAL REVIEW B 108, 115410 (2023)

[43] P. Chantrenne and J. Barrat, J. Heat Transfer 126, 577
(2004).

[44] E. A. Mastny and J. J. de Pablo, J. Chem. Phys. 127, 104504
(2007).

[45] P. Guan, D. R. Mckenzie, and B. A. Pailthorpe, J. Phys.:
Condens. Matter 8, 8753 (1996).

[46] P. Kapitza, in Helium 4, edited by Z. Galasiewicz (Pergamon,
1971), pp. 114–153.

[47] E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605
(1989).

[48] D. Frenkel and B. Smit, Understanding Molecular Simulation,
2nd ed. (Academic Press, 2002).

[49] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
[50] D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188

(1984).
[51] R. Freitas, M. Asta, and M. de Koning, Comput. Mater. Sci.

112, 333 (2016).
[52] H. B. Callen, Thermodynamics and an Introduction to Thermo-

statistics, 2nd ed. (John Wiley and Sons, 1985).
[53] H. Mori, Phys. Rev. 112, 1829 (1958).
[54] P. Anzini, G. M. Colombo, Z. Filiberti, and A. Parola, Phys.

Rev. Lett. 123, 028002 (2019).
[55] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62,

251 (1990).

115410-11

https://doi.org/10.1115/1.1777582
https://doi.org/10.1063/1.2753149
https://doi.org/10.1088/0953-8984/8/45/011
https://doi.org/10.1103/RevModPhys.61.605
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.448024
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1103/PhysRev.112.1829
https://doi.org/10.1103/PhysRevLett.123.028002
https://doi.org/10.1103/RevModPhys.62.251

