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Wave-packet dynamics in a non-Hermitian exciton-polariton system
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We theoretically investigate the dynamics of wave packets in a generic, non-Hermitian, optically anisotropic
exciton-polariton system that exhibits degeneracies of its complex-valued eigenenergies in the form of pairs of
exceptional points in momentum space. We observe the self-acceleration and reshaping of the wave packets
governed by their eigenenergies. We further find that the exciton-polariton wave packets tend to evolve into the
eigenstate with the smaller decay rate, then propagate towards the minima of the decay rates in momentum space,
resulting in directional transport in real space. We also describe the formation of pseudospin topological defects
on the imaginary Fermi arc, where the decay rates of the two eigenstates coincide in momentum space. These
effects of non-Hermiticity on the dynamics of exciton polaritons can be observed experimentally in a microcavity
with optically anisotropic cavity spacer or exciton-hosting materials. This rich non-Hermitian dynamics can also
be observed in other two-dimensional, two-band systems with similar complex band structures such as purely
photonic planar microcavities, liquid crystal cavities, and non-Hermitian photonic lattices.
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I. INTRODUCTION

Open dissipative systems described by non-Hermitian
Hamiltonian operators can feature novel phenomena not pos-
sible in conservative, Hermitian systems [1–4], such as novel
topological invariants [3–7], new topological states [1,3,4,6–
11], nontrivial lasing [2,12,13], and unidirectional transport
[2,12,14,15], to name a few. Most of these effects can be
traced back to the complex-valued eigenvalues of the non-
Hermitian Hamiltonian. The imaginary part of the energy
eigenvalues determines the growth or decay rate of the corre-
sponding eigenstate and hence strongly affects the dynamics
of the system, even in the absence of an external potential.
For example, a recent study on a non-Hermitian Dirac model
showed that a wave packet can move in momentum space
without the presence of an external force as a result of the
growth and decay of its components [16]. The trajectories of
the wave packets under this self-acceleration are polarization
dependent and the center-of-mass (COM) momenta for certain
initial conditions follow the gradient of the imaginary part
of the eigenenergy. Similar effects were also described in
the context of a one-dimensional non-Hermitian lattice [17].
Nontrivial dynamical effects due to non-Hermiticity are there-
fore expected to arise in experimental systems with gain and
loss.

A suitable experimental platform for investigating non-
Hermitian dynamics in a continuous two-dimensional
medium is microcavity exciton polaritons (polaritons herein),
which are electron-hole pairs (excitons) strongly coupled
to photons in an optical microcavity [5,18–20]. Polaritons
represent an accessible solid-state platform for studies of
non-Hermitian physics due to their inherent open-dissipative
character [5,21–26]. The peak energies and linewidths of the
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polariton emission spectra correspond to the real and imag-
inary parts of the energy eigenvalues [5,21], respectively.
Direct imaging of real- and momentum-space density and
phase distributions is also possible, augmented by the time
and polarization resolution. These capabilities have already
enabled measurements of non-Hermitian spectral degenera-
cies, both in parameter and momentum space, as well as
the associated topological invariants and pseudospin textures
[5,21,27]. Experiments showed that the dispersion of lower
polaritons in anisotropic systems forms two momentum-space
bands corresponding to the two components of the polariton
pseudospin (polarization), which can display spectral degen-
eracies in the form of pairs of exceptional points [5,27,28]
connected by the so-called Fermi arcs [5], i.e., the lines of
degeneracy in the imaginary parts of the eigenenergies. Fur-
thermore, the energy eigenvectors are not orthogonal due to
a non-Hermitian gauge field emerging near the exceptional
points [5]. However, despite the progress in understanding
the momentum-space structure of the polariton eigenenergies
resulting from non-Hermiticity, a comprehensive understand-
ing of the non-Hermitian dynamics in these experimentally
relevant systems is still lacking, with the majority of studies
focusing on the lattice models [24–26].

In this work, we investigate the non-Hermitian wave-
packet dynamics in a microcavity polariton system using a
two-band model relevant to the recent experiments [5] and
focusing on observable effects. Apart from the previously
predicted [16] motion in the absence of an external force, we
also find that for some initial conditions, the wave packets tend
to split into multiple components that propagate towards dif-
ferent directions. Moreover, these wave packets tend to evolve
into different eigenstates and propagate towards the maxima
of the imaginary part of the corresponding eigenenergy. We
further show that this nonconservative dynamics of the wave-
packet COM is accurately captured by the non-Hermitian
extension of the Ehrenfest theorem, where the non-Hermitian
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component of the Hamiltonian drives the effective force
field. Finally, we examine the polariton pseudospin textures
resulting from the wave-packet evolution and describe the
emergent pseudospin antimerons [29–34] on the imaginary
Fermi arc in momentum space. Their detection on the imag-
inary Fermi arc would signify a clear signature of the
non-Hermitian wave-packet dynamics.

This work is organized as follows. In Sec. II, we present
the non-Hermitian polariton model considered in this work.
In Sec. III A, we discuss the wave-packet self-acceleration
and splitting in momentum space. In Sec. III B, we describe
the asymptotic behavior of the polariton wave packets in
momentum space and the unidirectional propagation in real
space. Finally, in Sec. III C, we present our investigation
of the dynamics of the polariton pseudospins, including the
formation of the pseudospin defects on the imaginary Fermi
arc without (Sec. III C 1) and with (Sec. III C 2) the presence
of an out-of-plane field, and the formation of the defects in
real space (Sec. III C 3). The discussion of the feasibility of
experimental observation of the pseudospin defects and the
analysis of wave-packet trajectories in other two-band systems
(non-Hermitian Dirac model and the non-Hermitian Chern
insulator) are presented in the Appendixes.

II. THEORETICAL MODEL

In this work, we consider polaritons under the influence
of X-Y linear polarization splitting (optical anisotropy), and
transverse-electric and transverse-magnetic (TE-TM) splitting
(photonic spin-orbit coupling) [35]. Figure 1(a) schematically
shows the planar microcavity containing an active material
hosting the excitons that hybridize with the cavity photons to
form polaritons. The anisotropy can arise from the birefrin-
gence of the cavity spacer or active material while the TE-TM
splitting is naturally present in planar microcavities.

The complex dispersion, the momentum dependence of en-
ergy (real part) and linewidth (imaginary part) of anisotropic
polaritons, can be modeled by a two-band non-Hermitian

Hamiltonian H(k) = H0(k)I + −→
G (k) · −→σ , where

−→
G (k) =

[Gx(k), Gy(k), Gz(k)] is the effective magnetic field arising
from the X-Y and TE-TM splittings. Here, −→σ is a vector of
Pauli matrices, I is the 2 × 2 identity matrix, and k = (kx, ky)
is the in-plane momentum.

The Hamiltonian is written in the basis of circular polariza-
tion of the cavity photon or the spin projection of the excitons
on the z direction normal to the plane of the microcavity.
This basis forms the canonical representation of the polariton
pseudospin [36] (see Appendix B for details).

The specific Hamiltonian, valid for small momenta, has the
following components [5,37]:

H0(k) = E0 + h̄2k2

2m
− iγ0 − iγ2k2 − iγ4k4,

−→
G (k) = [

α̃ + β̃
(
k2

x − k2
y

)
, 2kxkyβ̃,�z

]
. (1)

Dropping the k dependence for brevity, the expression for
the complex energy can be written as E± = H0 ± G, where

G =
√−→

G · −→
G . The typical complex dispersion of the lower

polariton branch probed in the experiments (see, e.g., Ref. [5])
is presented in Figs. 1(b) and 1(c).

FIG. 1. (a) Schematic of the microcavity structure hosting
anisotropic polaritons made by sandwiching an active material host-
ing excitons (electron-hole pair) between two Bragg mirrors. The
anisotropy axis is aligned to either the x or y direction of the lab-
oratory frame. The linearly polarized modes V, H, TE, and TM
are defined accordingly. The momentum h̄k of the polaritons is
the in-plane component of the momentum of the emitted photon.
(b),(c) Splitting of the energies and the linewidths of H and V
polarized polariton modes due to anisotropy and TE-TM splitting
at kx = 0. (d),(e) In-plane vector plot of the (d) real and (e) imag-

inary parts of the effective magnetic field
→
G (k) when the Zeeman

splitting is zero. If �z �= 0, Re
→
G will have a constant out-of-plane

component. The parameter values used here and in the rest of the text
are listed in Appendix A.

The terms E0 + h̄2k2/2m describe the typical polariton dis-
persion, without polarization splitting, where E0 is the energy
of the lower polariton branch at zero momentum and m is
its effective mass. The polarization-independent loss terms
−iγ0 − iγ2k2 − iγ4k4 arise from the nonmonotonous momen-
tum dependence of the mean polariton linewidth, as illustrated
by the polynomial fitting of the data in Ref. [5]. This ensures
that the imaginary parts of the eigenenergies Im E± are always
negative since this model describes the effects of both gain
(e.g., an optical pump) and loss (e.g., radiative decay) by
an effective loss term that determines the linewidth of the
polariton spectrum. Positive values of Im E± would suggest
a net gain, which is not physical for this system. The fourth-
order term in the polynomial expansion is necessary to capture
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FIG. 2. The (a) real and (b) imaginary parts of the polariton
eigenenergies with cuts to show the degeneracies. Green dots mark
the exceptional points, and the pink and purple arcs are guides to the
eye indicating the bulk and the imaginary Fermi arcs, respectively.
(c) The momentum-space structure of the bulk Fermi arcs, the imag-
inary Fermi arcs, and the exceptional points shown in (a) and (b).
(d),(e) The imaginary parts of the eigenenergies Im E+ (orange line)
and Im E− (blue line) at ky = 0 and kx = 0, respectively. The black
dots mark the maxima of Im E±.

the nonmonotonic behavior of the linewidths even at low
momenta. This effect can arise from the coupling of excitons
with near-constant linewidth and cavity photons with strongly
k-dependent linewidth, and was experimentally observed in
Ref. [5], where the local minima of the linewidth (or maxima
of Im E ) have occurred at a finite k.

The polarization-dependent terms in Eq. (1) are captured

by
−→
G , where α̃ = α − ia captures the effect of anisotropy

which leads to both energy and linewidth splitting between the
linearly polarized horizontal (H) and vertical (V) modes, and
β̃ = β − ib describes the photonic spin-orbit coupling which
splits the transverse electric (TE) and transverse magnetic
(TM) polarization modes [5]. This is the non-Hermitian gen-
eralization of the model presented in Ref. [37]. The �z term
describes the effects of Zeeman splitting induced by an out-of-
plane magnetic field which can be introduced externally [38].
The in-plane real and imaginary components of the effective

field
−→
G are presented in Figs. 1(d) and 1(e).

The eigenenergies of the polariton Hamiltonian (1) E± are
plotted in Figs. 2(a) and 2(b). The two polariton energy bands

exhibit two pairs of exceptional points (spectral degeneracies)
located at

kEP =
√∣∣∣∣α − ia

β − ib

∣∣∣∣,
φEP = ±π

2
± arg

√
α − ia

β − ib
, (2)

where [kx, ky] = [k cos φ, k sin φ] when �z = 0. The excep-
tional points in each pair are connected by the bulk Fermi arc
where the real energy surfaces cross, and by the imaginary
Fermi arc where the imaginary energy surfaces cross [see
Figs. 2(a)–2(c)] [5,39]. A nonzero Zeeman splitting �z would
shrink the bulk Fermi arc, moving the exceptional points in a
pair towards each other such that when |�z| > |(aβ − bα)/β|,
the exceptional points annihilate and open a gap.

As shown in Fig. 2(b) and highlighted in Figs. 2(d) and
2(e), Im E+ has two maxima lying on the ky axis, while Im E−
has two maxima at the kx axis. These points play an impor-
tant role in the dynamics of the polariton wave packets, as
discussed in the next section.

Note that the orientation of the exceptional points and
the local maxima of ImE± depends on the orientation of the
birefringence, i.e., of the sample with respect to the labora-
tory frame. The orientation chosen here is determined by the
choice of parameters in the model given by Eq. (1).

III. RESULTS AND DISCUSSION

To understand the influence of the non-Hermiticity on
the dynamics of anisotropic polaritons, inspired by previous
works [16,17], we investigate the dynamics of Gaussian wave
packets in the polariton system described by the model Hamil-
tonian (1). Since the Hamiltonian contains k components
only and no external potential, the time evolution of wave
packets in real and momentum spaces and the resulting pseu-
dospin textures can be exactly calculated (see Appendix C for
details).

The initial Gaussian wave packet is a superposition of
multiple k components of the pseudospin eigenstates, whose
individual contributions to the time evolution can be described
by

|ψR
±(k, t )〉 = e−i Re E±(k)t eIm E±(k)t |ψR

±(k)〉, (3)

where the superscript R denotes the right eigenstates (see Ap-
pendix D for details). The variation in the imaginary part, as
shown below, is responsible for the peculiar effects described
in this work.

The COM in real and momentum spaces are then cal-
culated using the expectation values of k and x following
previous work [17] as follows:

〈k(t )〉 =
∫ 〈ψ (k, t )|k|ψ (k, t )〉d2k∫ 〈ψ (k, t )|ψ (k, t )〉d2k

,

〈x(t )〉 =
∫ 〈ψ (x, t )|x|ψ (x, t )〉d2x∫ 〈ψ (x, t )|ψ (x, t )〉d2x

. (4)

This ensures that even though the time evolution is nonunitary,
we can still normalize the wave function at each point in
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FIG. 3. The polarization-dependent trajectories of the COM of
the polariton wave packet in (a),(b) the momentum space and (c) the
real space, where (b) is the zoom-in of (a). Note that the trajectories
of the horizontally polarized and the vertically polarized modes over-
lap. The open dots denote the initial wave-packet center of mass in
both momentum and real space and the black dots denote the maxima
of Im E± in momentum space.

time. These two quantities can be experimentally measured
in polariton systems since we have access to the distribution
of the polaritons in both real and momentum spaces.

A. Self-acceleration and splitting of wave packets

Example COM trajectories of the wave packets in real
and momentum spaces are presented in Fig. 3, which clearly
shows the accelerating behavior in the absence of an external
field. The same self-acceleration was previously observed in

other non-Hermitian systems [16,17]. Furthermore, the tra-
jectories are sensitive to the polarization of the initial wave
packet. However, regardless of the initial polarization, the
self-accelerating wave packets tend to move towards the same
point in momentum space or towards the same direction in
real space. This point in momentum space, which we denote
k∗, corresponds to the maximum of the imaginary part of the
eigenenergy.

Intuitively, the acceleration arises from the gradient of the
imaginary part of eigenenergy ∇ Im E± [see Figs. 2(b), 2(d),
and 2(e)] [16]. Some k components are decaying faster than
others, causing the wave packet to reshape and resulting in
an effective displacement of the COM towards k components
with larger imaginary part (or lesser decay rates), until it
reaches the value of k∗. However, the actual trajectory of the
wave packet does not follow ∇ Im E±, as we show here and in
other two-band systems (see Appendix F).

The acceleration of the wave packet can be derived from
the Ehrenfest theorem [40]. In Hermitian systems, the wave
packet will accelerate when the Hamiltonian is either time
dependent or does not commute with the momentum operator,
e.g., when H has spatial dependence. Our Hamiltonian, given
by Eq. (1), satisfies neither of these conditions. However,
extending Ehrenfest theorem to our system [41,42] leads to
the following equation of motion:

d

dt
〈k〉 = i

h̄
〈kHn〉 − i

h̄
〈k〉〈Hn〉, (5)

where Hn = H† − H is the non-Hermitian component of the

Hamiltonian, the imaginary parts of H0 and
−→
G . The ex-

tended Ehrenfest theorem clearly shows that the observed
self-acceleration is due to the non-Hermitian terms.

If the initial polarization of the wave packet is the right
eigenstate |ψR

±〉, Eq. (5) can be further simplified as

d

dt
〈k〉 = 2

h̄
〈k Im E±〉 − 2

h̄
〈k〉〈Im E±〉. (6)

This expression highlights that the self-acceleration results
from the imaginary parts of the eigenenergies. Moreover, we
note that when Im E± are constants, the two terms in Eq. (6)
will cancel out. Hence, a nonzero gradient of Im E± is neces-
sary for the self-acceleration.

Note that the self-acceleration arising from Eq. (5) also
depends on the current state of the system. Therefore, the
dynamics of 〈k〉 depends on the COM momentum, width,
and polarization of the wave packet, as well as time. This
explains the previous findings that wave packets with larger
widths in momentum space show larger accelerations [16]
and the polarization-dependent trajectories in Fig. 3 (see, also,
Ref. [16]).

Although Eq. (5) describes complicated dynamics, its
right-hand side defines an effective k-dependent force field
corresponding to the self-acceleration of an initial wave
packet. Two examples of the initial force fields, denoted as
dt 〈k〉, are presented in Figs. 4(a) and 4(b), where the fields are
calculated for a fixed-width Gaussian wave packet centered at
k with initial horizontal or vertical polarizations, respectively.
The H-polarized wave packets tend to accelerate towards
two of k∗ at k = (0,±1) µm−1 [see Fig. 4(a)], while the
V-polarized one tends towards the other k = (±1, 0) µm−1
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FIG. 4. The time derivative of the COM momenta dt 〈k〉 of
(a) horizontally polarized and (b) vertically polarized wave packets
with different initial COM momenta k0 at t = 0 ps, respectively.
(c),(d) The COM momenta of an initially diagonally polarized wave
packet, initially centered at k0 = (0, 3), while the dotted lines denote
k∗. (e),(f) dt 〈k〉 of the same wave packet. The black lines are dt 〈k〉
calculated from Eq. (5), which fully agree with the numerical results
(black dots).

[see Fig. 4(b)]. This reflects the results presented in Fig. 3
in which the magnitude of the acceleration is minimized
around k∗.

The force field also changes with time as the momentum
distribution and polarization evolve. An example is presented
in Figs. 4(c)–4(f) for the D-polarized initial wave packet in
Fig. 3. The acceleration of the wave packet oscillates and
decays to zero as the wave packet propagates towards k∗ =
(0, 1) µm−1. The agreement between the acceleration calcu-
lated from the direct simulation (dots) and from Eq. (5) (line)
clearly shows that the non-Hermitian extension Ehrenfest
theorem accurately captures the COM dynamics, and there-
fore provides a semiclassical description of the wave-packet
dynamics.

Note that the effective force field is distinct from the
real and imaginary parts of the effective magnetic field [see
Figs. 1(d) and 1(e)] and from the gradient of the imaginary
part of E±, ∇ Im E±.

Surprisingly, when the wave packet is initialized on the
imaginary Fermi arc, it splits into two components that prop-
agate away from each other, as seen in Figs. 5(a)–5(c).
Furthermore, when the wave packet is initialized at the origin
k = 0, while overlapping with the two imaginary Fermi arcs,
it splits into four components that accelerate away from each
other along the ±kx and ±ky directions [see Figs. 5(d)–5(f)].

The splitting of the wave packets is due to the different
imaginary parts (or decay rates) of the two eigenstates. It

FIG. 5. Splitting of the exciton-polariton wave packet when ini-
tialized (a)–(c) on the imaginary Fermi arc and (d)–(f) at the origin.
The black dots denote k∗. The plots and the colorbar represent the
evolution of the normalized probability density function (PDF). Note
that this is not equal to the wave-packet amplitude |ψ |2, which
decreases over time due to the continuous decay.

is natural for the wave packet to evolve with time towards
an eigenstate with the larger growth rate (or the smaller de-
cay rate). In our model, Im E+(k) is larger inside the region
bounded by the Fermi arcs, while Im E−(k) is larger out-
side. Therefore, the components of the wave packets bounded
by the Fermi arcs will evolve towards the upper eigenstate
|ψR

+(k)〉, while those outside the region will evolve towards
the lower eigenstate |ψR

−(k)〉. Hence, the wave packet splits,
as shown in Fig. 5.

This analysis is supported by the time evolution of the nor-
malized components of the upper and lower eigenstates shown
in Fig. 6, corresponding to the case presented in Figs. 5(a)–
5(c). One component quickly becomes dominant such that the
components inside (outside) the region bounded by the Fermi
arcs belong to the upper (lower) eigenstate. The situation is the
same for the case presented in Figs. 5(d)–5(f). Note that since
the difference in the imaginary parts of the two eigenenergies,
Im(�E ), is larger for large k (see Fig. 2), the components
of the wave packets with large k will evolve into the two
eigenstates faster than the components near k = 0.

FIG. 6. (a)–(c) Evolution of the wave packet initially pre-
pared as an equal superposition of the two eigenstates |ψ〉 =
c+|ψR

+〉 + c−|ψR
−〉 (see Appendix D for details). Shown is (|c+|2 −

|c−|2)/(|c+|2 + |c−|2). The green dots denote the exceptional points
and the black dots denote k∗.
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Importantly, whenever the wave packets split, the extended
Ehrenfest theorem fails to capture their motion as the COM
momenta will no longer correspond to the peak of the wave
packets.

B. Directional propagation of wave packets

After the wave packet evolves into the eigenstates with
the larger Im E , its COM will then propagate towards the
maxima of the corresponding Im E in momentum space, as
shown in Figs. 5(c) and 5(f). In real space, the wave packets
will asymptotically exhibit directional transport with a group
velocity corresponding to the ∇k Re E at k∗ [17].

In our model, Im E+ has two maxima at (0,±k∗
+) inside

the region bounded by the Fermi arcs, while Im E− has two
maxima at (±k∗

−, 0) outside this region [see Fig. 2(c)]. Hence,
wave packets inside the region bounded by the Fermi arcs will
asymptotically reach the points k∗ = (0,±k∗

+) while those
outside this region reach k∗ = (±k∗

−, 0). Note that for �z = 0,
we have k∗

± = √
(γ2 + b)/2γ4.

In real space, the wave packets asymptotically reach their
corresponding nonvanishing group velocities. The wave pack-
ets inside the Fermi arcs will have 〈v+〉 = (0,±v∗), while
those outside will have 〈v−〉 = (±v∗

−, 0), where (for �z = 0)

v∗
± =

(
h̄

2m
− β

h̄

)√
2(γ2 + b)

γ4
. (7)

Note that these asymptotic group velocities of the wave pack-
ets only depend on the mean linewidth parameters γ2,4, and
the spin-orbit coupling parameters β and b. The anisotropy,
however, determines the direction.

In the limit of a tightly focused wave packet in real space,
hence covering multiple k∗ in momentum space, the wave
packet will split into four parts, with each part funnelling
to the vicinity of k∗ that it covered, as shown in Figs. 7(a)–
7(c). In real space, the wave packet splits and spreads over
time, eventually evolving into four broad wave packets in the
two eigenstates. Each of the smaller wave packets exhibits
directional transport with the corresponding nonvanishing
asymptotic group velocities 〈v±〉 [see Figs. 7(a)–7(f)].

In the presence of Zeeman splitting, i.e., �z �= 0, the k∗
points can be found numerically. Increasing �z will move
them towards k = 0 [see Figs. 7(g) and 7(h)]. Since the k∗
points stay on the kx and ky axes, �z will only change the
magnitude of the final group velocities, but not the directions.
The final group velocities depend on �z nonmonotonically, as
seen in Figs. 7(i) and 7(j).

Note that when the system is isotropic, both α and a vanish
and the exceptional points will move to the origin and merge
into a single Hermitian-like degeneracy with two distinct
eigenstates. In this case, the four maxima at k∗ will join to
form a ring around the origin with radius k = √

(γ2 + b)/2γ4.
Hence, the wave packet will propagate and evolve towards this
ring.

It is worth mentioning that the above results are derived un-
der the assumption that the polariton wave packet is initialized
as a superposition of the two eigenstates, |ψ〉 = c+|ψR

+〉 +
c−|ψR

−〉, which have nonzero |c±| at all of k∗. In contrast, if the
initial state is in one of the eigenstate |ψR

±〉, the wave packet

FIG. 7. (a)–(c) Momentum-space and (d)–(f) real-space time
evolution of a spatially tightly focused initial wave packet. (g),(h)
Coordinates of the k∗ points as a function of Zeeman splitting �z,
where k∗ = (0,±k∗

+), (±k∗
−, 0). (i),(j) Asymptotic group velocities

where 〈v+〉 = (0,±v∗
+) and 〈v−〉 = (±v∗

−, 0). The black lines in (i)
and (j) represent the group velocities v = ∇k Re E± calculated from
k∗ in (g) and (h), which show excellent agreement with the results
from the numerical simulation of wave-packet dynamics (black dots).

will only propagate towards the corresponding max(Im E±).
Furthermore, if the components of the eigenstate |c±|2 in the
initial state are zero at the corresponding max(Im E±), the
wave packets will not asymptotically funnel to max(Im E±)

For example, when �z = 0, the upper eigenstate at the
points k∗ = (0,±k∗

+) inside the region bounded by the Fermi
arcs is H polarized. Therefore, if the initial state is V po-
larized and has no H component, the polaritons at k∗ =
(0,±k∗

+) cannot evolve into |ψR
+〉, as shown in Figs. 8(a)–

8(c). Consequently, the wave packet will never funnel to the
corresponding k∗ points [see Figs. 8(d)–8(f)]. Instead, the
wave packet will funnel to the other extrema at k∗ = (±k∗

−, 0)
and exhibit directional transport in real space at the constant
velocities 〈v−〉. This also explains why the extended Ehrenfest
theorem predicts dt 〈k〉 ≈ 0 only at k∗ = (±k∗

−, 0) [or k∗ =
(0,±k∗

+)] for the V-polarized [or H-polarized] wave packets
in Figs. 4(a) and 4(b).

C. Dynamics of exciton-polariton pseudospin textures

The self-acceleration of the polariton wave packets is
accompanied by nontrivial pseudospin dynamics. The polari-
ton pseudospin can be characterized by the Stokes vector
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FIG. 8. (a)–(c) Time evolution of (|c+|2 − |c−|2)/(|c+|2 + |c−|2)
when the initial wave packet is vertically polarized. (d)–(f) Time evo-
lution of the wave packet with black dots marking k∗ = max(Im E±)
and green dots marking the exceptional points.

S = [Sx, Sy, Sz] as defined in Appendix B and the corre-
sponding pseudospin distributions in momentum space can be
characterized using the analogy with electronic spin textures
[29–32,43,44]. As described in the previous section, the po-
lariton wave packets tend to evolve into different eigenstates
in different regions in momentum space. Since these regions
are separated by the Fermi arcs, it is natural to investigate what
happens close to these arcs. As shown in Figs. 9(a) and 9(b),
the pseudospin textures of the two eigenstates have opposing
in-plane components but the same out-of-plane components
[5]. While the pseudospin texture of each eigenstate is an-
tiparallel on both sides of the bulk Fermi arc, it can transition
smoothly to the texture of the other eigenstate. On the other
hand, the pseudospin textures of both eigenstates are continu-
ous across the imaginary Fermi arcs.

In the following, we study the dynamics of the pseudospin
texture as the polariton wave packets self-accelerate, split, and
evolve into different eigenstates. We observe the emergence
of pseudospin defects as presented in Figs. 9(c)–9(h). The
evolution of the pseudospin textures and the emergence of
the defects depend only on the initial polarization of the wave
packet, and not on the spatial or momentum components.
Therefore, the pseudospin textures can evolve independently
from the probability density function of the wave packet.
Therefore, the defects can be generated even in the regions not
covered by the bulk of the wave packet in momentum space.

1. Pseudospin defects

The pseudospin defects on the imaginary Fermi arcs are
nonsingular point defects similar to skyrmions [29–33,43–
48]. As the wave packet evolves, these defects first emerge
at the segments of the imaginary Fermi arcs with large k,
where the difference between the decay rates of the two bands,
Im(�E ), is the largest. Then, more defects are generated at
segments with smaller k on the imaginary Fermi arc where
Im(�E ) is smaller. The defects then move towards the excep-
tional points along the imaginary Fermi arc. This results in
the defects becoming more densely packed as more defects
are generated.

FIG. 9. The pseudospin textures of (a) the upper eigenstate,
(b) the lower eigenstate, and (c) a polariton wave packet at t = 3
ps with �z = 0. (d) The pseudospin textures of the polariton wave
packet at t = 1.5 ps. (e)–(h) Zoom-in of the areas marked in (d) near
the pseudospin defects on the imaginary Fermi arcs. The color rep-
resents the directions of Sz, while the arrows represent the in-plane
pseudospins (Sx, Sy ).

Topological point defects can be characterized by a wind-
ing number called the skyrmion number, Nsk , which counts
how many times the pseudospin wraps around the unit sphere
[29–31],

Nsk = 1

4π

∫∫
S · (∂xS × ∂yS)d2r. (8)

The skyrmion number can also be expressed in terms of
two other topological invariants, i.e., the vorticity w and
the polarity p, as Nsk = wp/2. The vorticity measures the
in-plane winding of S along a curve encircling the core
counterclockwise [31,33,34,49], while the polarity measures
the out-of-plane winding of S and quantifies the continu-
ous change of Sz from the center to the edge of the defect
[31,33,34,46,47,49].

Skyrmions exhibit both in-plane and out-of-plane wind-
ing. The in-plane Stokes vectors of a skyrmion are similar
to that of a spin vortex, resulting in a vorticity of w = +1.
Furthermore, a core-up (core-down) skyrmion has an out-of-
plane Stokes vector Sz = +1 (Sz = −1) at the center, which
continuously transforms into Sz = −1 (Sz = +1) at the edge,
giving it a polarity of p = +2 (p = −2) [29–33,43–47]. Con-
sequently, a core-up (core-down) skyrmion has a skyrmion
number of Nsk = +1 (Nsk = −1). Similarly, an antiskyrmion
has in-plane Stokes vectors [Sx, Sy] similar to the ones in
an antivortex and a core-up (core-down) antiskyrmion has a
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polarity of p = +2 (p = −2), giving it a skyrmion number of
Nsk = −1 (Nsk = +1) [31].

The pseudospin defects that we observe [see Figs. 9(d)–
9(h)] are core-up and core-down defects, but with Sz =
0 at the edges. These defects have vorticities of w =
−1 and the z components of their pseudospins perform
a π/2 rotation instead of a π rotation [29], and thus
have polarities p = +1 (p = −1). Hence, these defects have
skyrmion numbers Nsk = −1/2 (Nsk = +1/2). We, there-
fore, conclude that these defects are core-up and core-down
antimerons, i.e., antiskyrmions with half-integer winding
numbers.

In the vicinity of the exceptional points in the upper-half
plane (ky � 0), core-up and core-down antimerons form on
the right-hand side (kx � 0) and left-hand side (kx � 0) of
the exceptional points pair, respectively. On the lower-half
plane, the configuration is flipped. It is interesting to note
that this configuration is consistent with the configuration of
the spectral winding around the exceptional points in this
system [5].

We also observe pseudospin vortices with core polarization
Sz = +1 (Sz = −1) forming between the core-down (core-up)
antimerons on the imaginary Fermi arcs [see Figs. 9(d)–9(h)].
The in-plane pseudospins wind around the vortex cores, giv-
ing them vorticities of w = +1. However, the Sz = ±1 at their
cores does not transform into Sz = ∓1 or Sz = 0 on the edge.
Consequently, they do not have p = ±2 like a skyrmion or
p = ±1 like a meron, and therefore do not have integer-valued
or half-integer-valued skyrmion numbers.

2. Pseudospin defects with Zeeman splitting

Although the Zeeman splitting �z will not drastically
change the in-plane textures [Sx, Sy] of the defects, it has a
huge impact on the Sz textures of the eigenstates and the
defects. As �z increases, one eigenstate gains more positive
Sz component, while the other eigenstate gains the component
of the opposite sign. As shown in Fig. 10, Sz becomes more
negative on one side of the imaginary Fermi arc, and more
positive on the other side with increasing |�z|. Consequently,
some of the defects slightly drift away from the imaginary
Fermi arcs.

Which defects are pushed away from the imaginary Fermi
arcs depends on the initial polarization of the wave packet
and the sign of the Zeeman splitting �z. For example, for
an initially circularly polarized wave packet, ψ+, the core-up
antimerons and vortices stay on the imaginary Fermi arcs.
The core-down defects drift outward (inward) of the region
bounded by the Fermi arcs [see Figs. 10(a)–10(c)] for positive
�z as they gain more negative (positive) Sz in this region
[see also Figs. 10(d)–10(f) for the negative �z case]. If the
wave packet initially has the opposite polarization, ψ−, the
opposite happens, and the core-down defects would stay on
the arc while the core-up defects drift away.

Another consequence of the Zeeman splitting is that the
core-up and core-down defects also gain more positive and
negative Sz contribution, respectively. If |�z| continues to
increase, eventually the pseudospin on the edge of the an-
timerons will no longer lie on the xy plane. Consequently,
Sz in these defects will no longer perform π/2 rotations

FIG. 10. Pseudospin textures for (a)–(c) positive and (d)–(f) neg-
ative values of Zeeman splitting showing how the core-down defects
drift away from the imaginary Fermi arc. (g)–(i) Textures in the
(g) gapless phase with nonzero �z, (h) the phase where the two
exceptional points merge, and (i) the gapped phase. The wave packets
are initially circularly polarized.

with respects to the xy plane, and they lose their antimeron
character [see Figs. 10(g)–10(i)]. This is different from the
self-acceleration, splitting, and directional transport of the
wave packets, which can persist at large |�|.

3. Pseudospin defects in real space

The pseudospin antimerons on the imaginary Fermi arc in
momentum space can also be seen in the real space. When
the wave packet covers the antimerons in momentum space,
the antimeron textures also emerge in the real space (see
Fig. 11). The emergence of these antimerons is a direct conse-
quence of the antiparallel pseudospins on the imaginary Fermi
arc as the wave packet evolves into different eigenstates.
This is in contrast to the previous studies of purely Hermi-
tian two-dimensional systems, where the topological defects
emerge due to the cavity anisotropy and TE-TM splitting
[29,34,43,50].

Our results show a different way to generate topological
defects in the pseudospin structures that arise from the growth
and decay of wave packets in a non-Hermitian system. These
defects also represent a clear signature of the effects of the
imaginary Fermi arc on polariton dynamics in the real space.
Moreover, our preliminary estimates indicate that these de-
fects can be observed experimentally in a polariton system
based, for example, on a perovskite embedded in a high-
quality microcavity [5] (see Appendix E).
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FIG. 11. An exciton-polariton wave packet and its pseudospin
textures in (a),(b) the momentum and (c),(d) the real space.

IV. CONCLUSION AND OUTLOOK

To conclude, we have investigated the dynamics of wave
packets in a non-Hermitian exciton-polariton system. We
found that the wave packets tend to evolve into the eigen-
state with the larger imaginary part of the energy Im E ,
then propagate towards the momentum corresponding to the
max(Im E ). This results in splitting, self-acceleration, and
directional transport of the wave packets in the absence of
an external field. These effects arise from the imbalance of
decay rates (or gain) between the eigenstates due to the non-
Hermitian components of the Hamiltonian. We also show that
the non-Hermitian extension of the Ehrenfest theorem results
in a semiclassical equation of motion for non-Hermitian wave-
packet dynamics.

We also observe the formation of core-up and core-down
antimerons in momentum space on the imaginary Fermi arc
during the propagation of the wave packets. Using realistic
parameters, we predict that these defects can be observed in
both momentum and real space. The origin of these pseu-
dospin defects and their connections to the Fermi arcs as well
as the spectral winding around the exceptional points require
further investigation.

Although here we focus on polaritons, our results are
general and applicable to other two-dimensional two-band
systems, including purely photonic systems. However, exper-
imentally, the coupling between photons and excitons results
in a larger effective mass and slower propagation speeds,
potentially allowing us to observe the predicted dynamics at
a picosecond scale using a streak camera [51]. In addition,
the presence of distinct extrema of the polariton linewidth at a
finite momentum, which arises from photon-exciton coupling,
is responsible for the interesting dynamics described in this
work.

Our results shed light on the dynamics of wave packets
and pseudospins in a polariton system, as well as related non-
Hermitian systems. Furthermore, we believe that the emergent
momentum-space antimeron textures will enable the direct

observation of the influence of the imaginary Fermi arcs on
the dynamics of the system. All of the effects described above
do not require an external potential and can be observed in a
polariton system with optical anisotropy arising from the ma-
terial properties of the semiconductor, e.g., perovskite [5] and
the organics [27], or in a photonic cavity with an anisotropic
spacer [28,52]. Our results highlight the excellent potential of
polaritons as a platform to study non-Hermitian dynamics.
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APPENDIX A: VALUES OF PARAMETERS

For the figures presented in this work, we chose the
parameters such that the exceptional points are well sepa-
rated and the bulk Fermi arcs are clearly visible. We set
γ2 = 0 µm2eV, γ4 = 3.75 × 10−4 µm4eV, and choose the
mean energy, linewidth, and effective polariton mass to
be E0 − iγ0 = 2.306 − 4.5 × 10−4i eV and h̄2/2m ≈ 2.3 ×
10−3 µm2eV. The X-Y splitting parameters are α = 8 ×
10−3 eV and a = 10−5, while the TE-TM splitting param-
eters are β = 10−3µm2eV and b = 7.5 × 10−4 µm2eV. The
Zeeman splitting �z = 0, unless stated otherwise. Using this
set of parameters, the exceptional points are located at k ≈
2.5 µm−1 and each pair is separated by ≈1.6 µm−1 in
momentum space. For comparison, in the perovskite-based
exciton-polariton system described in Ref. [5], the exceptional
points are located at k ≈ 6.7 µm−1 and each pair is separated
by ≈0.24 µm−1 in momentum space, making the Fermi arc
difficult to see.

APPENDIX B: EXCITON-POLARITON PSEUDOSPINS

The pseudospins of the exciton polaritons can be calculated
from the polarization components as

Sx = |ψH |2 − |ψV |2
|ψH |2 + |ψV |2 ,

Sy = |ψD|2 − |ψA|2
|ψD|2 + |ψA|2 , (B1)

Sz = |ψ+|2 − |ψ−|2
|ψ+|2 + |ψ−|2 .

Here, |ψH,V |2 represents the horizontal and vertical po-
larization intensities, |ψD,A|2 represents the diagonal and
antidiagonal polarization intensities, and |ψ+,−|2 represents
the right and left circular polarization intensities [53,54].
We note that the definitions of the in-plane Stokes vectors
[Sx, Sy] can be arbitrary, and the results in this work follow
the convention above. Furthermore, in this manuscript, we
use superscripts to denote polarization states and subscripts to
denote the energy eigenstates, e.g., ψ+ is the upper eigenstate
which is not the same as the circularly polarized state ψ+.
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APPENDIX C: TIME-EVOLUTION OPERATOR
IN EXCITON-POLARITON MODEL

We consider a general two-band non-Hermitian Hamilto-
nian of the form

H(k) = H0(k)I + −→
G (k) · −→σ ,

where
−→
G (k) = [Gx(k), Gy(k), Gz(k)] is the effective mag-

netic field, −→σ is a vector of Pauli matrices, and I is the 2 × 2
identity matrix. Dropping the k dependence for brevity, the
time-evolution operator can then be written as

e−iHt/h̄ = e−iH0t/h̄

(
I cos

Gt

h̄
− i

−→
G
G

· −→σ sin
Gt

h̄

)
, (C1)

where G =
√

G2
x + G2

y + G2
z .

We should also mention that this formalism does not hold
at the exceptional points where the Hamiltonian can no longer
be diagonalized and the two eigenstates coalesce. However,
since this formalism holds in the vicinity of the exceptional
points as well as for the rest of momentum space, we believe
that it is an accurate approximation for the time evolution of
the wave packets.

APPENDIX D: OVERLAP WITH EIGENSTATES

In a quantum system described by a non-Hermitian Hamil-
tonian operator, the right and left eigenstates are generally not
equal and can be written as [3,4]

H|ψR
±〉 = E±|ψR

±〉,
H†|ψL

±〉 = E∗
±|ψL

±〉. (D1)

Instead of the usual orthonormal condition, the eigenstates
obey the biorthogonal condition,〈

ψL
i

∣∣ψR
j

〉 = δi, j . (D2)

Therefore, when the system is in a superposition of the two
right eigenstates |ψ〉 = c+|ψR

+〉 + |ψR
−〉, the coefficients can

be determined as

c± = 〈ψL
±|ψ〉.

By taking the normalized modulus squared |c±|2/(|c+|2 +
|c−|2), we were able to calculate the ratio of each eigenstate
in the wave packet. Similarly to the time-evolution operator
in Appendix C, this approach fails only at the exceptional
points; hence, we believe that the approximation is accurate
as it holds in the vicinity of the exceptional points.

APPENDIX E: PROPOSED EXPERIMENTAL
MEASUREMENT OF THE PSEUDOSPIN DEFECTS

In experiments, the probability density distribution and the
pseudospin textures can be measured using a streak camera
which can take a screen shot of the wave packets in both
real and momentum space at a resolution of ≈2 ps. Since the
measurements are made by taking multiple screen shots and
then averaging over the time resolution, we aim to investigate
whether the pseudospin defects on the imaginary Fermi arc
will still appear when the fields are averaged.

Since the pseudospin of the wave packets cannot be mea-
sured in the regions with small probability density, we need
to make sure that the polariton density at the location of
the pseudospin defects is non-negligible. Previous work [16]
shows that the larger the wave packets are, the faster they
will move away from the initial COM. Therefore, we need
a wave packet that is well localized in momentum space, so it
will stay near the defect for a long time. However, the wave
packet cannot be too focused since we still need to measure
the pseudospin texture of the entire defect.

Furthermore, although it is unknown whether the change in
the pseudospin textures will reach a steady state, our numer-
ical calculations indicate that the change of the pseudospin
slows down with time. Therefore, the best way to measure the
pseudospin defects is to take measurements over a long time,
taking care to not exceed the time after which the wave packet
moves away from the imaginary Fermi arc.

To simulate an experiment, we choose a circularly polar-
ized polariton wave packet with a width of σk = 0.02 µm−1

in momentum space with initial center-of-mass momentum
of 〈k〉 = (0.215, 6.73) µm−1 and consider a realistic set of
parameters presented in Ref. [5]. The initial condition of the
wave packet is chosen so that its size is small enough so it
will stay on the imaginary Fermi arc for a long time, yet not
too small to be realized in experiment. The wave packet has a
size of σr = 50 µm in real space, which can be achieved in the
experiments. We found that that the wave packet at t = 5 ps
is still on the imaginary Fermi arc and covers the pseudospin
defect, but is starting to move away at t = 15 ps. Therefore,
we chose to take the average of the wave packets every 2 ps
from t = 5 to t = 15 ps to see if the averaged wave packet
will exhibit the pseudospin defects.

The polarizations, |ψ±|2, |ψH,V |2, and |ψD,A|2, are there-
fore measured every 2 ps from t = 5 to t = 15 ps. We then
take the average of these intensities, 〈|ψ±|2〉ave, 〈|ψH,V |2〉ave,
and 〈|ψD,A|2〉ave, and use them to compute the pseudospin tex-
tures. We observe that the wave packet and its time-averaged
pseudospin textures take forms similar to those at t = 5
ps in momentum space [see Figs. 12(a)–12(d)]. Therefore,
the snapshot of the wave packet at t = 5 ps will dominate
the time-averaged measurement in momentum space. This is
because the wave packets at later times have much lower in-
tensities due to the continuing decay (negative imaginary part
of eigenenergies) of the exciton polaritons. On the other hand,
in the real space, the averaged wave packet and pseudospin
textures do not completely agree with those at t = 5 ps, as
seen in Figs. 12(e)–12(h). However, the pseudospin antimeron
structure at the center of the wave packet still persists after
the averaging. Therefore, we conclude that the pseudospin an-
timerons generated by non-Hermitian wave-packet dynamics
can be measured experimentally in both momentum space and
real space.

APPENDIX F: WAVE-PACKET TRAJECTORIES
IN OTHER TWO-BAND SYSTEMS

Previous studies [16] have suggested that the wave-packet
COM momenta of a non-Hermitian Dirac model follow the
gradient of the imaginary part of the eigenenergies, ∇ Im E .
Although this seems to accurately describe the trajectories of

115404-10



WAVE-PACKET DYNAMICS IN A NON-HERMITIAN … PHYSICAL REVIEW B 108, 115404 (2023)

FIG. 12. The averaged wave packet and pseudospin textures of
the exciton polariton in (a),(b) momentum space and (e),(f) real
space. The probability density distribution and the pseudospin take
similar forms to the wave packet and pseudospin textures at t = 5 ps
in (c),(d) and (g),(h). The purple line denotes the imaginary Fermi
arc.

the exciton-polariton wave packets, this is not always the case.
In this section, we illustrate this point by presenting the anal-
ysis of the wave-packet dynamics in two exemplary models,
i.e., a non-Hermitian Dirac model and a non-Hermitian Chern
insulator. These two models have similar band structures near
the origin, but their wave-packet dynamics and asymptotic
behavior are qualitatively different.

1. Non-Hermitian Dirac model

We considered the Dirac model, described by the Hamilto-
nian

H = h̄ckxσx + h̄ckyσy. (F1)

This model has eigenenergies of E± = ±h̄c
√

k2
x + k2

y and has
a spectral degeneracy at the origin called the Dirac point. In
solid-state physics, this model describes the Dirac semimetal,

FIG. 13. (a),(b) The real and imaginary parts of the eigenenergies
of the non-Hermitian Dirac model. (c),(d) The real and imaginary
parts of the eigenenergies of the non-Hermitian Chern insulator in
the nodal phase. (e)–(i) Wave-packet trajectories (red) with ∇ Im E
(black) with the Fermi arcs and exceptional points of the (e) polariton
model, (f) non-Hermitian Dirac model, and (g) non-Hermitian Chern
insulator. (h),(i) Wave-packet trajectories with different sets of initial
COM momenta (blue arrows) in the non-Hermitian Dirac model and
non-Hermitian Chern insulator, respectively, showing that they do
not follow the same paths indicated by the red arrows.

which has elementary excitations of massless Dirac fermions
and describes the electronic properties of graphene [55–59].
It also plays an important role in optical physics. Written
in the basis of circularly polarized modes, the Dirac point
describes a diabolical point which exhibits conical refraction
[16,37,60,61].

We consider the non-Hermitian Dirac model described by
the following Hamiltonian [16]:

H = h̄ckxσx + (h̄cky + iκ )σy + �σz, (F2)

which has the eigenenergies

E± = ±
√

h̄2c2k2
x + (h̄cky + iκ )2 + �2. (F3)

The non-Hermitian term iκσy splits the Dirac point at kDP =
(0, 0) into a pair of exceptional points in momentum space at
kEP = [±√

κ2 − �2/(h̄c), 0].
In the non-Hermitian Dirac model, E+ has the larger imag-

inary part at ky < 0, while E− has the larger imaginary part at
ky > 0 [see Figs. 13(a) and 13(b)]. Therefore, as time evolves,
the wave packets at ky < 0 tend to evolve into the upper
eigenstate, while the wave packets at ky > 0 tend to evolve
into the lower eigenstate. Furthermore, at � = 0, max(Im E )
lies on the ky axis. Therefore, the wave packets in the
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non-Hermitian Dirac model propagate towards a line of ex-
trema k∗, unlike the wave packets in the exciton-polariton
model. From Figs. 13(e) and 13(f), we can observe that un-
like the trajectories of the exciton-polariton wave packets, the
center-of-mass momenta of the Dirac wave packets seem to
only follow ∇ Im E± initially. As time evolves, the trajectories
of the wave packets start to deviate from ∇ Im E±. More im-
portantly, we can see that the trajectories of the wave packets
as well as the k∗ points they propagate to highly depend
on their initial momenta. From Fig. 13(h), we can see that
the trajectories of the wave packets with a different set of
initial center-of-mass momenta will not follow the same paths
towards the same k∗ as the wave packets in Fig. 13(f).

2. Non-Hermitian Chern insulator

The non-Hermitian Chern insulator is described by the
Hamiltonian [62]

H = (m + cos kx + cos ky)σx + (iγ + sin kx )σy + sin kyσz

(F4)
and has eigenenergies

E± = ±[(m + cos kx + cos ky)2 + (iγ + sin kx )2 + sin2 ky]
1/2.

(F5)

The phase diagram and edge states of this model have been
extensively studied in Ref. [62]. At m = −2, γ = 1, there
is a pair of exceptional points in the Brillouin zone at k =
(0,±π/3) and the band structure is similar to that of the non-
Hermitian Dirac model. However, unlike the Dirac model,
Im E± reaches maximum at a k∗ in the middle of the Brillouin
zone, which is also the middle of the bulk Fermi arc [see
Figs. 13(c) and 13(d)].

The wave packets with different initial center-of-mass
momenta in this model also follow different paths [see
Fig. 13(g)]. However, unlike the non-Hermitian Dirac model,
where the asymptotic behavior of the wave-packet center-
of-mass momenta is sensitive to the initial conditions, the
wave packets in the non-Hermitian Chern insulator seem to
propagate to the same k∗ asymptotically.

The above analysis of the non-Hermitian Dirac model and
the non-Hermitian Chern insulator shows that the center-of-
mass momenta of a wave packet only follow ∇ Im E of its
corresponding eigenstate on a short timescale. The trajectories
of the wave packets will deviate increasingly from ∇ Im E
with time. Furthermore, in cases where there are multiple
maxima of Im E±, both of the paths that the wave packets take
and the k∗ points that the wave packets propagate towards will
be sensitive to the initial conditions of the wave packets.
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Lee, A. Bilušić, R. Thomale, and T. Neupert, Reciprocal skin
effect and its realization in a topoelectrical circuit, Phys. Rev.
Res. 2, 023265 (2020).

[10] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A.
Stegmaier, M. Greiter, R. Thomale, and A. Szameit, Topologi-
cal funneling of light, Science 368, 311 (2020).

[11] K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin
effect in two and higher dimensions, Nat. Commun. 13, 2496
(2022).

[12] L. Jin and Z. Song, Incident Direction Independent Wave Prop-
agation and Unidirectional Lasing, Phys. Rev. Lett. 121, 073901
(2018).

[13] B. Peng, Å. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer,
F. Monifi, C. M. Bender, F. Nori, and L. Yang, Loss-induced
suppression and revival of lasing, Science 346, 328 (2014).

[14] S. Longhi, D. Gatti, and G. D. Valle, Robust light transport in
non-Hermitian photonic lattices, Sci. Rep. 5, 13376 (2015).

[15] K. Kawabata, K. Shiozaki, and S. Ryu, Topological Field The-
ory of Non-Hermitian Systems, Phys. Rev. Lett. 126, 216405
(2021).

[16] D. D. Solnyshkov, C. Leblanc, L. Bessonart, A. Nalitov, J. Ren,
Q. Liao, F. Li, and G. Malpuech, Quantum metric and wave
packets at exceptional points in non-Hermitian systems, Phys.
Rev. B 103, 125302 (2021).

[17] S. Longhi, Non-Hermitian skin effect and self-acceleration,
Phys. Rev. B 105, 245143 (2022).

[18] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André,
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G. Malpuech, B. Piętka, and J. Szczytko, Annihilation of ex-
ceptional points from different Dirac valleys in a 2D photonic
system, Nat. Commun. 13, 5340 (2022).

[29] P. Cilibrizzi, H. Sigurdsson, T. C. H. Liew, H. Ohadi, A.
Askitopoulos, S. Brodbeck, C. Schneider, I. A. Shelykh, S.
Höfling, J. Ruostekoski, and P. Lagoudakis, Half-skyrmion spin
textures in polariton microcavities, Phys. Rev. B 94, 045315
(2016).

[30] N. Nagaosa and Y. Tokura, Topological properties and dynam-
ics of magnetic skyrmions, Nat. Nanotechnol. 8, 899 (2013).

[31] C. Guo, M. Xiao, Y. Guo, L. Yuan, and S. Fan, Meron Spin
Textures in Momentum Space, Phys. Rev. Lett. 124, 106103
(2020).

[32] Q. Zhang, Z. Xie, L. Du, P. Shi, and X. Yuan, Bloch-type
photonic skyrmions in optical chiral multilayers, Phys. Rev.
Res. 3, 023109 (2021).

[33] B. Göbel, I. Mertig, and O. A. Tretiakov, Beyond skyrmions:
Review and perspectives of alternative magnetic quasiparticles,
Phys. Rep. 895, 1 (2021).

[34] M. Król, H. Sigurdsson, K. Rechcińska, P. Oliwa, K. Tyszka,
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