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Usually, robust invariants in physics take discrete values for the reason of topology, such as integers or
fractions in the integer or fractional quantum Hall effect. Here, we show theoretically that the valley Chern
number can be responsible for continuous invariants which are insensitive to most parameters, but continuously
tunable by a critical parameter. We numerically calculate the ac charge current generated by a periodically
varying strain in the α-T3 lattice where the valley Chern number is continuously tunable by α. The periodically
varying strain induces a valley-opposite ac pseudoelectric field which leads to a pure valley current in the
longitudinal direction, and a charge current in the transverse direction via the topological valley Hall effect. The
corresponding Hall pseudoconductance at the low-frequency limit equals the valley Chern number in gapped
α-T3 lattices and is robust against long-range disorders. This finding advances the understanding of the relation
between invariants and topology, and also provides a scheme to test the quantum valley Hall effect.
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I. INTRODUCTION

It is well known that robust invariants in physics usually
take discrete values, such as integers or fractions in the integer
[1,2] or fractional quantum Hall effect [3,4], due to the topo-
logical origin. The natural question is whether there exists a
continuous invariant which is insensitive to most parameters,
but at the same time is continuously tunable by a critical
parameter. It seems impossible for a well-defined topological
number which should be an integer. But for a not-well-defined
topological number, such as the valley Chern number [5,6],
the number need not be an integer. For example, in the α-T3

lattice which interpolates between the honeycomb lattice of
graphene and the dice lattice [7–10], the valley Chern number
can be continuous and tunable by the critical parameter α

[11,12]. Most interestingly, the valley Chern number is still
robust against fluctuations of model parameters except α.
Therefore, it is desirable to explore the physical consequences
of the robustness of the valley Chern number.

The valley Chern number is approximately well defined
when the intervalley scattering is ignorable. But the detection
of valley current is still quite challenging. The experimen-
tal observation of nonlocal conductance due to the quantum
valley Hall effect in bilayer graphene is still controversial
and far from quantization [13]. Fortunately, strain can act
as a valley-opposite driving and generate a charge current
instead of a valley current. In the α-T3 lattice, strain can be de-
scribed by an effective valley-opposite pseudovector potential
as in graphene. The periodically varying strain will induce a
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valley-opposite ac pseudoelectric field which leads to a charge
current in the transverse direction via the quantum valley Hall
effect [14]. The corresponding Hall pseudoconductance which
relates the charge current to the pseudoelectric field is ex-
pected to equal the valley Chern number at the low-frequency
limit in gapped α-T3 lattices.

In this paper, we theoretically demonstrate the genera-
tion of a robust charge current in gapped α-T3 lattices by
a periodically varying strain as the result of the quantum
valley Hall effect. The corresponding Hall pseudoconductance
equals exactly the valley Chern number at the low-frequency
limit which is continuously tunable by the critical parameter
α. By applying uniaxial (shear) strain, we obtain a robust
charge current response in the armchair (zigzag) direction in
the frame of linear response theory. The Hall pseudoconduc-
tance is robust against the fluctuation of most parameters and
long-range disorders.

II. MODEL AND LINEAR RESPONSE FORMALISM

In the α-T3 lattice shown in Figs. 1(c) and 1(d), sites A
and B form a honeycomb lattice, and sites C sit at the center
of the hexagons and couple to sites B. The hopping energy
between sites A and B is tab = t0 cos ϕ, and the hopping be-
tween sites B and C is tbc = t0 sin ϕ. Here, t0 = 2.73 eV is
the same as that in graphene. The parameter α is defined as
α = tbc/tab = tan ϕ, and the hopping between sites A and C
is ignored. This α-T3 model interpolates between the honey-
comb lattice of graphene (α = 0) and the dice lattice (α = 1)
via the parameter α. The tight-binding Hamiltonian of the
α-T3 lattice can be written as

H =
∑

〈i, j〉,〈 j,k〉
(taba†

i b j + tbcb†
jck + H.c.), (1)
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FIG. 1. The band structures of the (a) armchair and (b) zigzag
α-T3 ribbon (N = 100), with kx = 2π/(3

√
3a0 ) and kx = 0, respec-

tively. The schematic of the (c) armchair and (d) zigzag α-T3 ribbon.
The supercells in the blue dotted rectangle contain N cells and the y
direction is considered as the longitudinal direction. (e) The supercell
(N = 6) of armchair α-T3 ribbon after uniaxial deformation and (f)
the supercell (N = 4) of zigzag α-T3 ribbon after shear deformation.
The bond lengths are changed from a0 to dχ , χ = 1 (pink bonds), 2
(green bonds), 3 (blue bonds).

where a†
i (b†

i , c†
i ) is the creation operator of the electron at site

A (B, C).
For the convenience of checking the robustness against

disorders, we consider armchair and zigzag α-T3 ribbons with
periodic boundary conditions to remove the edge effect. For
an armchair ribbon with width N as shown in Fig. 1(c), the
tight-binding Hamiltonian can be written as

HA(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IA
1 OA

1 0 · · · · · · · · · OA
1N

OA†
1 IA

2 OA
2 · · · · · · · · · 0

0 OA†
2 IA

3 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · OA †

n−1 IA
n OA

n · · ·
· · · · · · · · · · · · · · · · · · · · ·

OA †
1N 0 0 · · · · · · OA †

N−1 IA
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

where

IA
n = M +

⎛
⎜⎝

0 t y
ab 0

t y∗
ab 0 t y

bc

0 t y∗
bc 0

⎞
⎟⎠, M =

⎛
⎜⎝

mA 0 0

0 mB 0

0 0 mC

⎞
⎟⎠,

OA
n =

⎛
⎜⎝

0 t x
ab 0

t x ∗
ab 0 t x

bc

0 t x ∗
bc 0

⎞
⎟⎠, OA

1N =

⎛
⎜⎝

0 t xo
ab 0

t xo∗
ab 0 t xo

bc

0 t xo∗
bc 0

⎞
⎟⎠.

The supercell, shown in the blue dotted rectangle in Fig. 1(c),
consists of N cells, and n is the cell index. The wave function
of cell n can be written as ψn = (an, bn, cn)T . IA

n and OA
n de-

note the intracell and intercell hopping matrices, respectively.
t y
ab(bc) = tab(bc)e−ia0ky and t x

ab(bc) = tab(bc)ei a0
2 ky are hopping pa-

rameters of the armchair ribbon. t xo
ab(bc) = tab(bc)ei( a0

2 ky+N
√

3a0
2 kx ).

M in IA
n denotes the mass term, and mA (mB, mC) is the

extra on-site energy at site A (B, C). Without considering the
mass term, the band structure of the armchair ribbon is shown
in Fig. 1(a). Note that the band structure is independent of
α.

When a time-dependent uniaxial strain is applied to the
armchair ribbon along the zigzag direction, the instantaneous
deformed bond lengths [see Fig. 1(e)] are respectively given
as [15]

d1 = d3 = a0[1 + (3 − σ )ε(τ )/4],

d2 = a0[1 − σε(τ )], (3)

where ε(τ ) = ε0 cos(ωτ ) denotes a time-dependent uniaxial
strain. ε0 and ω are the amplitude and frequency of the strain,
respectively. σ denotes the Poisson’s ratio of the lattice, with
the value σ = 0.165 [16]. The deformations will change the
hopping parameters of the bonds. For a small deformation, the
changes are much smaller than t0. The perturbation Hamilto-
nian can be written as

H ′
A(k, τ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IA′
1 OA′

1 0 · · · · · · · · · OA′
1N

OA′†
1 IA′

2 OA′
2 · · · · · · · · · 0

0 OA′†
2 IA′

3 · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · OA′ †

n−1 IA′
n OA′

n · · ·
· · · · · · · · · · · · · · · · · · · · ·

OA′†
N1 0 0 · · · · · · OA′ †

N−1 IA′
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

where

IA′
n =

⎛
⎜⎝ 0 t y ′

ab 0

t y ′∗
ab 0 t y ′

bc

0 t y ′∗
bc 0

⎞
⎟⎠,

OA′
n =

⎛
⎜⎝ 0 t x ′

ab 0
t x ′∗
ab 0 t x ′

bc

0 t x ′∗
bc 0

⎞
⎟⎠, OA′

1N =

⎛
⎜⎝ 0 t xo ′

ab 0
t xo ′∗
ab 0 t xo ′

bc

0 t xo ′∗
bc 0

⎞
⎟⎠.

Under the first-order approximation, the hopping parameters
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are respectively written as

t x ′
ab(bc) = −β(3 − σ )ε(τ )t x

ab(bc)/4,

t xo ′
ab(bc) = −β(3 − σ )ε(τ )t xo

ab(bc)/4,

t y ′
ab(bc) = βσε(τ )t y

ab(bc). (5)

In this study, the Grüneisen parameter is set to be β = 3.37
[15–17]. For space limitation, the Hamiltonian of the zigzag
α-T3 ribbon is shown in Appendix A. Without the mass term,
the band structure of the zigzag ribbon is shown in Fig. 1(b).
According to linear response theory, the ac charge current
response along the longitudinal direction (y direction) can be
calculated by

Jy(τ ) = −
∑
k j j′

Jy
j j′ (k)H ′

j′ j (k, τ )( fk j − fk j′ )

h̄ω + Ek j − Ek j′ + iη
, (6)

where Ek j( j′ ) is the j( j′)th eigenenergy of the unperturbed
Hamiltonian, for a fixed k. Assuming φk j is the correspond-
ing eigenwave function, Jy

j j′ (k) and H ′
j′ j (k, τ ) in Eq. (6) are

detailedly written as Jy
j j′ (k) = e

h̄φ
†
k j

∂H (k)
∂ky

φk j′ and H ′
j′ j (k, τ ) =

φ
†
k j′H

′
A/Z (k, τ )φk j , respectively. η is a positive infinitesi-

mal. The Fermi distribution can be written as fk j = [1 +
e−(Ek j−μ)/kBT ]−1, where μ and T represent the Fermi energy
and temperature, respectively. The deduction of Eq. (6) is
shown in Appendix C.

Similar to graphene, when the uniaxial (shear) strain is
applied to the armchair (zigzag) α-T3 ribbon along the zigzag
direction, a pseudovector potential A will be effectively in-
troduced and coupled with opposite signs to two valleys due
to the time-reversal symmetry. When a time-dependent strain
is applied, the corresponding pseudoelectric field would be
[14,18,19]

E(τ ) = −∂A(τ )

∂τ
= −iω

h̄

e
δk(τ ), (7)

where δk(τ ) = δkeiωτ is the instantaneous displacement of
valleys, which is determined by the time-dependent strain.
|δk| represents the displacement amplitude. Note that cos(ωτ )
in Eq. (3) has been extended into eiωτ analytically. For
the armchair ribbon under a uniaxial deformation, δk(τ ) =
[δkA

x (τ ), 0] (see Appendix B), with

δkA
x (τ ) ≈ −ξβ(1 + σ )ε(τ )/2a0, (8)

while for the zigzag one under the shear deformation, δk(τ ) =
[δkZ

x (τ ), 0] (see Appendix B), with

δkZ
x (τ ) ≈ −ξβγ (τ )/2a0, (9)

where ξ = +1 for valley K and ξ = −1 for valley K ′. γ (τ ) =
γ0eiωτ denotes the strain parameter of the time-dependent
shear strain and γ0 is the amplitude of the strain. The displace-
ments in Eqs. (8) and (9) and the corresponding pseudoelectric
fields, referred to as Ex(τ ), are parallel to the x direction.

Theoretically, the ac charge current in Eq. (6) can be equiv-
alently written as Jy(τ ) = σyxEx(τ ), where Ex(τ ) = |Ex(τ )| is
the strength of the pseudoelectric field. σyx denotes the Hall

pseudoconductance and can be calculated by

σyx = 2e

|δk|
∑

k,Ek j>Ek j′

Im
[
Jy

j j′ (k)H ′
j′ j (k, 0)

]
( fk j − fk j′ )

(Ek j − Ek j′ )2 − h̄2ω2
. (10)

On the other hand, the Hall pseudoconductance should also be
equal to the valley Chern number Cv = CK − CK ′ [20] in units
of the conductance quantum e2/h. Here, the valley-resolved
Chern number CK (K ′ ) is defined to be the integral of Berry
curvature over the neighborhood of the single valley K (K ′)
[11,12],

CK (K ′ ) = 1

2π

∫
Half BZ

�K (K ′ )(k)d2k, (11)

with the neighborhood as large as half of the Brillouin zone.
One of the main aims of this paper is to figure out how well
the Hall pseudoconductance from the linear response theory
agrees with the valley Chern number.

III. RESULTS AND DISCUSSION

A. Hall pseudoconductance

In this section, we present the numerical results of Hall
pseudoconductance. To open a gap, two types of mass terms
in α-T3 lattices are considered [21–23]:

M1 =
⎛
⎝−m 0 0

0 0 0
0 0 m

⎞
⎠, M2 =

⎛
⎝m 0 0

0 −m 0
0 0 m

⎞
⎠. (12)

The low-energy band structures are shown in Fig. 2. Note that,
for M = M2, the band structures are α independent. With a
gap, the valley Chern number can be well defined when the
intervalley scattering is ignorable. It has been shown that the
valley Chern number of the α-T3 lattice changes continuously
with the parameter α, i.e., Cv = 2 − cos(2ϕ) for M = M1 [11]
and Cv = cos(2ϕ) for M = M2 [12].

First, we focus on the zero-temperature and zero-frequency
limit, T = 0 K and ω → 0. Equation (10) can be further sim-
plified as

σyx = 2e

|δk|
∑

k,Ek j>μ
Ek j′<μ

Im
[
Jy

j j′ (k)H ′
j′ j (k, 0)

]
(Ek j − Ek j′ )2

. (13)

The Fermi energy μ lies in the gap between the valence band
and the middle flat band. Figure 3 shows the numerical results
of the Hall pseudoconductance of armchair (zigzag) ribbons,
under the time-dependent uniaxial (shear) strain. The Hall
pseudoconductances are perfectly consistent with the valley
Chern numbers in units of the conductance quantum e2/h. For
the mass term M = M1, two quantized conductances appear
at α = 0 and α = 1, with the values σyx = e2/h and 2e2/h,
respectively. For M = M2, the quantized Hall pseudoconduc-
tance appears at only α = 0, with the value σyx = e2/h. In
both cases, when 0 < α < 1, the Hall pseudoconductances are
continuous invariants which continuously vary with increas-
ing α, but remain invariant against the fluctuation of other
parameters.

Without loss of generality, we only show the numeri-
cal results of armchair ribbon in the following discussion.
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FIG. 2. The band structures of the (a)–(e) armchair and (f)–(j)
zigzag α-T3 ribbon (N = 100), with kx = 2π/(3

√
3a0) and kx = 0,

respectively. The mass terms are set as M = M2 for (a) and (f), and
M = M1 for the others. In all cases, m = 0.1t0.

Figure 4(a) shows the temperature dependence of the Hall
pseudoconductance. Obviously, the robustness against the
thermal fluctuation is determined by the gap. For a mass
m = 0.005t0, the Hall pseudoconductance remains robust up
to T = 10 K for M = M1, while up to T = 20 K for M = M2.

FIG. 3. The strain-related Hall pseudoconductance of the arm-
chair and zigzag ribbons with different types of mass terms, as a
consequence of the linear response theory. The parameters in the
calculation are set as N = 40, m = 0.001t0, ω = 0. ε0 = 1% for the
armchair ribbon and γ0 = 1% for the zigzag ribbon. As a compari-
son, the analytic valley Chern numbers (VCNs) are also plotted.

This is because M2 opens a larger gap with the same m.
Figure 4(b) shows the conductance at low frequency ω at
T = 0 K. It is shown that the zero-frequency limit remains
well when h̄ω 	 m.

B. Robustness against disorders

To investigate the robustness of Hall pseudoconductance
against long-range disorders, we add an on-site Gaussian dis-
ordered potential U (r) to the supercells of ribbons [24–26],

U (r) =
Nimp∑
n=1

U imp
n exp

(
−|r − rn|2

2λ2

)
, (14)

where Nimp is the number of impurity centers. rn is the posi-
tion of the impurity center, which is randomly selected from
3N sites of the supercells. The density of the impurity can be

FIG. 4. (a) The Hall pseudoconductances of armchair ribbons
with different types of masses and temperature. (b) The Hall con-
ductance change with frequency ω of the time-dependent strain. The
parameters are set as N = 40, m = 0.005t0, ω = 0, ε0 = 1%.
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FIG. 5. The Hall pseudoconductances of armchair ribbons with
different types of masses, K0 and λ, in the limit of zero temperature
and zero frequency. The mass term is M = M1 for (a) and (b),
and M = M2 for (c) and (d). The parameters are set as N = 40,
m = 0.001t0, ω = 0, ε0 = 1%.

defined as nimp = Nimp /3N . U imp
n is the on-site energy of the

impurity center at rn, with the value randomly chosen in the
interval [−δm/2, δm/2]. λ denotes the screening coefficient.
Similar to Refs. [26,27], the dimensionless strength of disor-
der for the quasi-one-dimensional supercell can be defined as
K0 ≈ δ

√
40.5nimp (λ/a0)2, where λ � a0. We set nimp = 5%

in the calculation.
The numerical results are shown in Fig. 5. When the

screening coefficients are fixed at λ = 3a0 in Figs. 5(a) and
5(c), the Hall pseudoconductances remain robust against dis-
orders with the strength up to K0 = 20 for M = M1, and up
to K0 = 30 for M = M2. When the screening coefficients are
fixed at λ = 2a0 in Figs. 5(b) and 5(d), the Hall pseudocon-
ductances remain robust against disorders with the strength
only up to K0 = 5 for M = M1, and up to K0 = 10 for M =
M2. It verifies that the Hall pseudoconductance is robust
against long-range disorders with large λ, while it is sensitive
to short-range disorders with small λ.

IV. CONCLUSION

In this paper, we propose that an ac charge current can be
generated by applying time-dependent strains to α-T3 ribbons.
The corresponding Hall pseudoconductance equals the con-
tinuously tunable valley Chern number at the low-frequency
limit and is robust against long-range disorders. This finding
advances the understanding of the relation between invariants
and topology, and also provides a scheme to test the quantum
valley Hall effect.

ACKNOWLEDGMENTS

The work described in this paper is supported by the
National Natural Science Foundation of China (NSFC,
Grants No. 12174077 and No. 12174051), the National
Natural Science Foundation of Guangdong Province (Grant

No. 2021A1515012363), and the Bureau of Education of
Guangzhou Municipality (Grant No. 202255464).

APPENDIX A: THE TIGHT-BINDING HAMILTONIAN OF
THE ZIGZAG RIBBON

For the zigzag ribbon, the tight-binding (TB) Hamiltonian
reads

HZ (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IZ
1 OZ

1 0 · · · · · · · · · OZ
1N

OZ†
1 IZ

2 OZ
2 · · · · · · · · · 0

0 OZ†
2 IZ

3 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · OZ†

n−1 IZ
n OZ

n · · ·
· · · · · · · · · · · · · · · · · · · · ·
OZ†

1N 0 0 · · · · · · OZ†
N−1 IZ

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A1)

where

IZ
n = M +

⎛
⎜⎝

0 t z
ab 0

t z ∗
ab 0 t z

bc

0 t z ∗
ab 0

⎞
⎟⎠,

OZ
n =

⎛
⎝0 tab 0

0 0 tbc

0 0 0

⎞
⎠, OZ

1N =
⎛
⎝0 t o

ab 0
0 0 t o

bc
0 0 0

⎞
⎠,

where t z
ab(bc) = 2tab(bc) cos(ky

√
3a0
2 ) is the hopping param-

eter of the zigzag ribbon. For a wide ribbon, t o
ab(bc) =

tab(bc) cos(ky

√
3a0
2 )eiN 3a0

2 kx . The band structure of the zigzag
ribbon is shown in Fig. 1(b) in the main text, without con-
sidering the mass term.

When a time-dependent shear strain is applied to the zigzag
ribbon along the zigzag direction, the deformed supercell is
shown in Fig. 1(f) in the main text, and the instantaneous
deformed bond lengths [Fig. 1(f)] are respectively given as
[15]

d1 = a0

√
1 + δ1, d2 = a0

√
1 + δ2,

d3 = a0

√
1 + δ3, (A2)

where δ1 = −γ (τ )
√

3/2, δ2 = γ (τ )2, δ3 = γ (τ )
√

3/2.
γ (τ ) = γ0 cos(ωτ ) is the strain parameter of the time-
dependent shear strain. γ0 and ω are the amplitude and
frequency of the strain. The perturbation Hamiltonian can be
obtained as

H ′
Z (k, τ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IZ′
1 0 0 · · · · · · · · · 0

0 IZ′
2 0 · · · · · · · · · 0

0 0 IZ′
3 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · 0 IZ′

n 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 0 IZ′

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A3)
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FIG. 6. Schematic of the α-T3 lattices after (a) uniaxial and
(b) shear deformations, with both strains applied along the zigzag
direction. The bond lengths are changed from a0 to dχ , χ = 1 (pink
bonds), 2 (green bonds), 3 (blue bonds).

where

IZ ′
2n−1 = IZ ′∗

2n =

⎛
⎜⎝ 0 t z ′

ab 0
t z ′∗
ab 0 t z ′

bc

0 t z ′∗
bc 0

⎞
⎟⎠.

Note that the hopping terms between different cells can be
canceled under a first-order approximation, and t z ′

ab(bc) =
−i

√
3

2 βγ (τ )tab(bc) sin(ky

√
3a0
2 ) as the intracell hopping

parameter.

APPENDIX B: DISPLACEMENTS OF VALLEYS

The uniaxial and shear deformed lattices are shown in
Figs. 6(a) and 6(b), respectively. At this part, the strains are
time independent, and fixed at τ = 0. The unit cell of the α-T3

lattice is shown in the blue dotted rectangle in Fig. 6. Without
loss of generality, we focus on the displacement of valley K
in this Appendix.

1. The uniaxial strain is applied along the zigzag direction.
The electronic states for the uniaxial deformed α-T3 lattice
can be represented by three-component wave functions � =
(ψA, ψB, ψC )T , and the Hamiltonian can be written as

HU (k) =
⎛
⎝ 0 Uab 0

U ∗
ab 0 Ubc

0 U ∗
bc 0

⎞
⎠, (B1)

where

Uab(bc) = t (U1)
ab(bc)e

−i(
√

3kxa0/2−kya0/2) + t (U2)
ab(bc)e

−ikya0

+ t (U3)
ab(bc)e

i(
√

3kxa0/2+kya0/2)

denotes the hopping parameter between sites A (B) and B (C),
where t (Uχ )

ab(bc) = tab(bc) exp[−β(dχ/a0 − 1)], with χ = 1, 2, 3.
dχ is shown in Fig. 6(a) and the values can be found in
Eq. (3) in the main text. Under the first-order approximation,
the conduction and valence band can be respectively given as

EU
± = ± t0[e2βσε + 2e−β(3−σ )ε/2[1 + cos(

√
3kxa0)]

+ 4e−β(3−5σ )ε/4 cos(
√

3kxa0/2) cos(3kya0/2)]1/2.

(B2)

We define (kx, ky) = ( 4π

3
√

3a0
, 0) as one of the positions of

valley K of the pristine lattice. After uniaxial deformation, the

position of valley K would change to (kU
x , 0), with

kU
x = 2√

3a0

arccos

(
−1

2
e−3β(1+σ )ε/4

)
, (B3)

obtained from Eq. (B2). So, the displacement would be
[δkA

x (K ), 0], with

δkA
x (K ) = kU

x − 4π

3
√

3a0

= 2√
3a0

[
arccos

(
−1

2
e−3β(1+σ )ε/4

)
− 2π

3

]

≈ −β(1 + σ )ε/2a0. (B4)

2. The shear strain is applied along the zigzag direction.
The Hamiltonian can be written as

HS (k) =
⎛
⎝ 0 Sab 0

S∗
ab 0 Sbc

0 S∗
bc 0

⎞
⎠, (B5)

where

Sab(bc) = t (S1)
ab(bc)e

−i(kxa0/2−√
3kya0/2) + t (S2)

ab(bc)e
ikxa0

+ t (S3)
ab(bc)e

−i(kxa0/2+√
3kya0/2)

denotes the hopping parameter between sites A (B) and B (C),
with t (Sχ )

ab(bc) = tab(bc) exp[−β(dχ/a0 − 1)], with χ = 1, 2, 3. dχ

can be found in Eq. (A2) and shown in Fig. 6(b). Under the
first-order approximation, the conduction and valence band
can be respectively obtained as

ES
± = ± t0[1 + 2 cosh(2D) + 2 cos(

√
3kya0)

+ cos(3kxa0/2 −
√

3kya0/2)eD

+ cos(3kxa0/2 +
√

3kya0/2)e−D]1/2, (B6)

where D = √
3βγ /4. After shear deformation, the valley K at

(0, 4π

3
√

3a0
) will shift to (kS

x , 4π

3
√

3a0
), with

kS
x ≈ −βγ /2a0, (B7)

obtained from Eq. (B6). The displacement would be
[δkZ

x (K ), 0], with

δkZ
x (K ) = kS

x − 0 ≈ −βγ /2a0. (B8)

Similarly, the corresponding displacements of valley K ′ can
be respectively given as [δkA

x (K ′), 0] and [δkZ
x (K ′), 0], with

δkA
x (K ′) = −

(
kU

x − 4π

3
√

3a0

)
≈ β(1 + σ )ε/2a0 (B9)

and

δkZ
x (K ′) = −(

kS
x − 0

) ≈ βγ /2a0. (B10)

APPENDIX C: DEDUCTION OF EQ. (6)

When the time-dependent strain is applied to the α − T3

ribbons, the perturbation Hamiltonian can be further written
as H ′(k, τ ) = B(k, τ )F (τ ), where F (τ ) = eiωτ is assumed to
be a scalar field coupled to an observable B(k, τ ) = B(k).
We introduce the field operator � = ∑

k j φk jeikrϕk j , with ϕk j
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being the annihilation operator. The current operator and the
perturbation Hamiltonian can be written as

Jy =
∑
k j j′

Jy
j j′ϕ

†
k jϕk j, H ′(k, τ ) =

∑
k j j′

H ′
j j′ (k, τ )ϕ†

k jϕk j,

(C1)

where Jy
j j′ (k) = e

h̄φ
†
k j

∂H (k)
∂ky

φk j′ and H ′
j′ j (k, τ ) =

φ
†
k j′H

′(k, τ )φk j , respectively. According to linear response
theory, the ac charge current response along the longitudinal
direction (y direction) can be obtained as

Jy(τ ) =
∫ +∞

−∞
GR

JB(τ − τ ′)F (τ ′)dτ ′, (C2)

where

GR
JB(τ − τ ′) = −iθ (τ − τ ′)〈[Jy(τ ), B(k, τ ′)]〉 (C3)

is a retarded Green’s function. After Fourier transform,

Jy(ω′) =
∫∫ +∞

−∞
GR

JB(τ − τ ′)F (τ ′)e−iω′τ dτ ′dτ

=
∫∫ +∞

−∞
GR

JB(τ − τ ′)e−iω′(τ−τ ′ )F (τ ′)e−iω′τ ′
dτ ′dτ

= 2πGR
JB(ω′)δ(ω′ − ω). (C4)

GR
JB(ω′) can be obtained from the finite-temperature Green’s

function MJB(τ ) = 〈T Jy(τ )B(k, 0)〉, where T is the time-
ordering operator. For τ > 0 without loss of generality, we
can obtain

MJB(τ ) =
〈
T

∑
k j j′

Jy
j j′ϕ

†
k j (τ )ϕk′ j′ (τ )

×
∑
k j j′

Bii′ (k′)ϕ†
k′i(0)ϕk′i′ (0)

〉

=
∑

kk′ii′ j j′
Jy

j j′Bii′ (k′)δkk′δ ji′δ j′i

× 〈T ϕ
†
k j (τ )ϕk′ j′ (τ )ϕ†

k′i(0)ϕk′i′ (0)〉
= −

∑
k j j′

Jy
j j′Bj′ j (k)〈ϕk j (0)ϕ†

k j (τ )〉〈ϕk j′ (τ )ϕ†
k j′ (0)〉

= −
∑
k j j′

Jy
j j′Bj′ j (k)�k j (−τ )�k j′ (τ ), (C5)

where �k j (τ ) is the Green’s function of the free Bloch elec-
trons. We can expand MJB(τ ) in the range 0 � τ � χ as a

Fourier series and the Fourier coefficients would be

MJB(ωn) =
∫ χ

0
e−ωnτ MJB(τ )dτ

= −
∫ χ

0
e−ωnτ

∑
k j j′

Jy
j j′Bj′ j (k)�k j (−τ )�k j′ (τ )dτ

= −
∑

k j j′ω1ω2

∫ χ

0
e−ωnτ Jy

j j′Bj′ j (k)
1

χ
�k j (ω1)e−ω1τ

× 1

χ
�k j′ (ω2)eω2τ

= − 1

χ

∑
k j j′ω1

Jy
j j′Bj′ j (k)�k j (ω1)�k j′ (ω1 + ωn)

= −
∑

k j j′ω1

Jy
j j′Bj′ j (k)

χ

1

ω1 − Ek j + μ

× 1

ω1 + ωn − Ek j′ + μ

= −
∑
k j j′

Jy
j j′Bj′ j (k)( fk j − fk j′ )

ωn + Ek j − Ek j′
. (C6)

Here, we neglect the reduced Planck constant by setting h̄ =
1. As GR

JB(ω′) = MJB(ω′ + iη), where η is a positive infinites-
imal,

GR
JB(ω′) =

∑
k j j′

Jy
j j′Bj′ j (k)( fk j − fk j′ )

ω′ + Ek j − Ek j′ + iη
. (C7)

In the end, the ac charge current can be obtained as

Jy(τ ) = 1

2π

∫ +∞

−∞
Jy(ω′)eiω′τ dω′

=
∫ +∞

−∞
GR

JB(ω′)δ(ω′ − ω)eiω′τ dω′

= GR
JB(ω)eiωτ

= −
∑
k j j′

Jy
j j′Bj′ j (k)eiωτ ( fk j − fk j′ )

ω + Ek j − Ek j′ + iη

= −
∑
k j j′

Jy
j j′ (k)H ′

j′ j (k, τ )
(

fk j − fk j′
)

ω + Ek j − Ek j′ + iη
. (C8)

This is Eq. (6) in the main text.
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