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Photocurrents induced by structured light
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Advances in manipulating the structure of optical beams enable the study of interaction between structured
light and low-dimensional semiconductor systems. We explore the photocurrents in two-dimensional systems
excited by such inhomogeneous radiation with structured electromagnetic field. Besides the contribution asso-
ciated with the intensity gradient, the photocurrent contains contributions driven by the gradients of the Stokes
polarization parameters and the phase of the electromagnetic field. We develop a microscopic theory of the
nonlinear, nonlocal intraband transport of electrons induced by electromagnetic field of structured radiation and
derive analytical expressions for the photocurrent contributions. The theory is applied to analyze the radial and
azimuthal photocurrents excited by twisted radiation beams carrying orbital angular momentum, and possible
experiments to detect the photocurrents are discussed.
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I. INTRODUCTION

Structured light, extending from intensity or polarization
gratings to beams carrying orbital angular momentum and
fields with fully controlled spatiotemporal structure, has a
variety of applications in spectroscopy, metrology, quantum
information processing, etc. [1–4]. While significant progress
has been achieved recently in the optical methods of structur-
ing the light beams [5–8] and controlling the optical forces
acting on micro- and nanoscale dielectric particles [9–14],
less is known so far about the interaction of structured light
beams with charge carriers in low-dimensional semiconduc-
tor systems. The latter research area, bridging advances in
optics and solid-state physics [15–18], is intriguing from a
fundamental point of view and crucial for the development
of optoelectronics.

The electron-photon interaction in semiconductors is sen-
sitive to the local field polarization and the local symmetry
breaking [19,20]. This underlies the physics of photogalvanic
effects, where the ac electric field of linearly or circularly
polarized radiation drives dc electric currents in noncen-
trosymmetric structures [21–30]. The key feature of structured
light is that the electromagnetic field parameters, such as po-
larization or phase, vary at the scale of light wavelength. This
length is typically much larger than the scale of nonlocality in
semiconductors, which makes it challenging to study the pho-
toresponse associated with the light structure. Nevertheless,
several groups have recently reported the observation of the
photocurrents induced by the Laguerre-Gaussian beams and
sensitive to the orbital angular momentum of light [15–17].
These advances open a new page in the research of photo-
electric phenomena in solids and stimulate theoretical studies
of the photocurrents induced by structured light. Theoretical
results in the field are limited so far to the phenomenological
analysis of the photocurrents [15,17], numerical quantum-
mechanical calculations of nonstationary currents in quantum
rings and dots [31–33], and the quantum-mechanical calcula-
tion of the rotational photon drag [34]. The latter belongs to

the family of photon drag effects being extensively studied in
different material systems and geometries [35–48].

Here, we develop a microscopic theory of photocurrents
induced in two-dimensional electron systems by structured
radiation. We explore what types of direct currents can be
driven by spatially inhomogeneous electromagnetic waves
acting upon free carriers. It is found that, besides the contri-
bution associated with the intensity gradient, the photocurrent
contains contributions driven by the gradients of the Stokes
polarization parameters and the phase of the electromagnetic
field. In particular, the photocurrent emerging between the
domains excited by left-handed and right-handed circularly
polarized radiation can be interpreted as the chiral edge cur-
rent between the photoinduced topological phases with the
opposite Floquet-Chern numbers [49,50]. In the framework
of Boltzmann kinetic theory, we derive analytical expressions
for all the photocurrent contributions corresponding to the
intraband transport of electrons.

The developed theory is applied then to analyze the spa-
tial distribution of the photocurrents induced by twisted-light
beams; see Fig. 1. In this geometry, the emergent photocurrent
j(r) has both radial and azimuthal components which are
controlled by the parameters of the beam. The radial pho-
tocurrents lead to a redistribution of electric charge in the
two-dimensional plane and form the radial photovoltage. The
azimuthal photocurrents induce a static magnetic field and the
corresponding magnetization. We calculate the photovoltage
and the static magnetic field and discuss their dependence on
the beam angular momentum and polarization.

II. KINETIC THEORY

We consider a two-dimensional electron gas (2DEG) in the
xy plane (at z = 0) which is irradiated by a spatially inhomo-
geneous monochromatic electromagnetic wave. In the 2DEG
plane, the electric field has the form

E(r, t ) = E(r)e−iωt + c.c., (1)
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j(r)

FIG. 1. Photocurrents induced by structured light. Inhomoge-
neous ac electric field of twisted radiation beam generates dc electric
current j(r) in two-dimensional electron gas.

where E(r) is the field amplitude and r = (x, y) is the in-plane
coordinate. Generally, because of screening, the spatial profile
of the electric field acting upon the electrons differs from
that of the incident wave. The total field can be calculated
in the framework of the Lindhard screening theory [51,52].
However, for the amplitude E(r) which varies smoothly in
the 2DEG plane, i.e., in the long-wavelength limit, screening
is negligible. This regime reliably holds for electromagnetic
fields of radio-frequency and terahertz spectral ranges with
the inhomogeneity scale of the order of the wavelength [53].
Therefore, we neglect the difference between the profiles of
the incident and actual electric fields.

The electromagnetic field necessarily contains the mag-
netic component B(r, t ) = B(r)e−iωt + c.c. with the out-of-
plane projection

Bz = −i
c

ω

(
∂Ey

∂x
− ∂Ex

∂y

)
, (2)

which follows from the Maxwell equation. In the model of 2D
transport, the electrons interact only with the in-plane compo-
nent E‖ = (Ex, Ey) of the electric field and the out-of-plane
component Bz of the magnetic field.

The electron kinetics in the presence of electric and mag-
netic fields is described by the Boltzmann equation

∂ f

∂t
+ v · ∇ f + e

[
E‖(r, t ) + 1

c
v × B(r, t )

]
· ∂ f

∂ p
= I{ f },

(3)

where f (p, r, t ) is the electron distribution function, p =
(px, py) and v = p/m∗ are the momentum and velocity, re-
spectively, ∇ = ∂/∂r is the 2D nabla operator, e is electron
charge, m∗ is the effective mass, and I{ f } is the collision
integral. In what follows, we do calculations in the relaxation
time approximation and take the collision integral in the form

I{ f } = − f − 〈 f 〉
τ

, (4)

where 〈 f 〉 is the distribution function averaged over the direc-
tions of p, and τ is the relaxation time.

The dc electric currents emerge in the second order in the
ac field amplitude. Therefore, we solve Eq. (3) iteratively by
expanding the distribution function f (p, r, t ) in the series in

the field amplitude as follows,

f (p, r, t ) = f0 + [ f1(p, r)e−iωt + c.c.] + f2(p, r), (5)

where f0(ε) is the equilibrium distribution function, ε =
p2/2m∗ is the electron energy, f1 ∝ E is the first-order
correction, and f2 is the stationary second-order correction
which determines the dc current. The correction f2 contains
contributions ∝ EE∗ and ∝ EB∗, BE∗. Other second-order
corrections, such as ∝ EE and ∝ EB, oscillate at 2ω and do
not contribute to the dc current.

The functions f1 and f2 satisfy the differential equations,
which follow from Eq. (3),

−iω f1 + v · ∇ f1 + eE‖(r) · ∂ f0

∂ p
= I{ f1}, (6)

v · ∇ f2 +
{

e

[
E‖(r) + 1

c
v × B(r)

]
· ∂ f ∗

1

∂ p
+ c.c.

}
= I{ f2} .

(7)

The term with the Lorentz force in Eq. (6) vanishes because
∂ f0/∂ p ∝ p and v × B is orthogonal to p.

The local density of the dc electric current is given by

j(r) = eν
∑

p

v f2(p, r), (8)

where ν is the factor of spin/valley degeneracy. Multiplying
Eq. (7) by v, summing up the result over p, and integrating the
term ∝ ∂ f ∗

1 /∂ p by parts, one obtains

j(r) = − eντ
∑

p

v(v · ∇ f2) + e2ντ

m∗

⎡
⎣E‖(r)

∑
p

f ∗
1 + c.c.

⎤
⎦

− e2ντ

m∗c

⎡
⎣B(r) ×

∑
p

v f ∗
1 + c.c.

⎤
⎦. (9)

To proceed further we take into account that the field is
smoothly varying in the 2DEG plane; i.e., the scale of the field
variation L is much larger than the mean free path of electrons
l = vF τ and vF /ω, where vF is the Fermi velocity. Assuming
that L � λ, where λ = 2πc/ω is the wavelength of the inci-
dent field, the above conditions reduce to l � λ and vF � c.
The former inequality holds very well for radio-frequency and
terahertz fields even in high-mobility systems (1 THz corre-
sponds to λ ∼ 0.3 mm). The latter inequality is automatically
fulfilled for conduction-band electrons in solids. We also note
that the electric field screening by 2DEG is negligible if L 	
(2πσ/c)λ, where σ is the 2D conductivity. This condition can
be readily fulfilled, particularly in the paraxial approximation
of the incident radiation. However, the effects of screening can
play an important role if L � λ, which can be achieved, e.g.,
in plasmonic structures where the electric field is enhanced
near small metal particles located at the 2DEG plane.

For smoothly varying fields, the gradients of the field com-
ponents and the distribution function are small and can be
treated perturbatively. We do such calculations for the pho-
tocurrent Eq. (9) in the first order of l/L.

The third term in Eq. (9) contains Bz(r), which is already
determined by the field gradients [see Eq. (2)]; therefore, the
sum

∑
p v f ∗

1 can be calculated in the local response approx-
imation. Multiplying Eq. (6) by v, summing up the resulting
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equation over p, and neglecting the gradient term ∝ ∇ f1 one
obtains ∑

p

v f1 = σ

eν
E‖(r), (10)

where σ is the conductivity,

σ = ne2τ

m∗(1 − iωτ )
, (11)

and n = ν
∑

p f0 is the 2D electron density.
The sum

∑
p f ∗

1 in the second term in Eq. (9) can be
calculated by summing up Eq. (6) over p and using Eq. (10),
which gives ∑

p

f1 = − iσ

eνω
∇ · E‖(r), (12)

where ∇ · E‖ = ∂Ex/∂x + ∂Ey/∂y.
The first term in Eq. (9) is determined by the gradient of

f2; therefore the sums
∑

p vαvβ f2 can be also calculated in
the local response approximation. The function f2 contains
the zero and second angular harmonics which both contribute
to the sums

∑
p vαvβ f2 since

∑
p

vαvβ f2 =
∑

p

v2

2
δαβ f2 +

∑
p

(
vαvβ − v2

2
δαβ

)
f2. (13)

The contribution of the zero angular harmonic is calculated as
follows,

∑
p

v2

2
f2 = K

m∗ν
, (14)

where K = ν
∑

p(m∗v2/2) f2 is the density of the excess ki-
netic energy of electrons. If the energy relaxation of electrons
is faster than the energy diffusion, the excess energy K can
be found from the balance between the energy gain from the
high-frequency field 2(Re σ )|E‖|2 and the energy dissipation
K/τε, where τε is the energy relaxation time [54]. Thus, the
energy balance gives K = 2τε(Re σ )|E‖|2. To calculate the
contributions of the second angular harmonics, we multiply
Eq. (7) by vxvy or v2

x − v2
y and sum up the result over p, which

yields ∑
p

vxvy f2 = 2τRe σ

m∗ν
(ExE∗

y + E∗
x Ey),

∑
p

v2
x − v2

y

2
f2 = 2τRe σ

m∗ν
(|Ex|2 − |Ey|2). (15)

Finally, combining all the contributions to the photocur-
rent, we obtain

j = j (th) + j (pol) + j (ph), (16)

where

j (th) = −2
eττε Re σ

m∗ ∇S0, (17)

j (pol)
x = −eτ 2 Re σ

m∗

(
∂S1

∂x
+ ∂S2

∂y
− 1

ωτ

∂S3

∂y

)
,

j (pol)
y = −eτ 2 Re σ

m∗

(
∂S2

∂x
− ∂S1

∂y
+ 1

ωτ

∂S3

∂x

)
, (18)

j (ph) = −2
eτ Re σ

m∗ω
Im(Ex∇E∗

x + Ey∇E∗
y ), (19)

Re σ = ne2τ/[m∗(1 + ω2τ 2)], S0 = |E‖|2, S1 = |Ex|2 −
|Ey|2, S2 = ExE∗

y + E∗
x Ey, and S3 = i(ExE∗

y − E∗
x Ey). In

the paraxial approximation for normally incident radiation,
S0, S1, S2, and S3 correspond to the (non-normalized) Stokes
parameters. The parameter S0 describes the radiation intensity,
S1/S0 and S2/S0 are the degrees of linear polarization in the
(xy) axes and in the diagonal axes, respectively, and S3/S0 is
the degree of circular polarization. All the above contributions
to the dc current are proportional to the square of the electric
field amplitude, i.e., the radiation intensity, and, therefore,
belong to the class of photocurrents.

Besides the photothermoelectric current j (th) originating
from inhomogeneous heating and proportional to the gra-
dient of the radiation intensity, the photocurrent contains
the contributions j (pol) and j (ph). The first one, j (pol) given
by Eqs. (18), is determined by the gradients of the (non-
normalized) polarization Stokes parameters Sj ( j = 1, 2, 3).
This photocurrent is induced by the electromagnetic field with
spatially varying polarization, see Fig. 2, and emerges even
if the field intensity is constant across the 2D gas plane.
It is also induced by the field with a fixed polarization but
nonuniform intensity, e.g., when the ratio Sj/S0 is constant
but S0 depends on r. In this particular case, the photocurrent
j (pol) can be seen as proportional to the in-plane gradient of
the radiation intensity, similarly to the photothermoelectric
contribution. However, its direction is determined by the field
polarization and it can flow both along or perpendicularly to
the intensity gradient. The polarization-sensitive photocurrent
flowing perpendicularly to the intensity gradient is some-
what similar to the edge photogalvanic current in 2DEG
[26,55].

The contribution j (ph) given by Eq. (19) does not even
require polarization gradients to emerge. For the field E(r) =
E0eiϕ(r) with the constant amplitude and polarization, the pho-
tocurrent j (ph) is proportional to the gradient of the phase ϕ(r).
An example of such a field E(r) is the plane electromagnetic
wave obliquely incident on the 2D system. In this geometry,
the phase varies linearly in 2D plane as ϕ = q‖ · r, where q‖
is the in-plane component of the wave vector. The emerging
photocurrent j (ph) ∝ q‖|E‖|2 is proportional to the in-plane
wave vector q‖ and corresponds to the photon drag effect
[41,43,45]. Thus, the phase-sensitive contribution j (ph) given
by Eq. (19) can be viewed as a generalization of the photon
drag effect to the electromagnetic field with arbitrary varying
phase.

All the photocurrent contributions discussed above are pro-
portional to the cube of the electric charge e. It means that
the photocurrents excited in n-type and p-type structures are
directed oppositely while the flows of carriers, electrons or
holes, are co-directed.

Equation (16) with the contributions (18) and (19) is
the main result of our work. It describes the generation of
dc current in 2DEG by arbitrary spatially inhomogeneous
electromagnetic field. Below, we apply it to study the pho-
tocurrents induced by fields with polarization gradients and
by beams of twisted light.
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FIG. 2. The ac electromagnetic field E(r, t ) with spatially inhomogeneous polarization induces direct photocurrents j(r) in the regions
where the polarization varies. (a)–(c) Photocurrents induced by linearly polarized radiation whose polarization vector turns in the electron
gas plane. (b) Spatial profiles of the Stokes parameters Sj (x)/S0 of the incident radiation. The in-plane field polarizations are shown by black
arrows. (c) Spatial distribution of the x and y components of the photocurrent density j(x). (d)–(f) Photocurrents induced by radiation with
the polarization varying from left-handed to right-handed circular polarization. (e) Spatial profiles of the Stokes parameters Sj (x)/S0 of the
incident radiation. The field polarizations are shown by black arrows and ellipses. (f) Spatial distribution of the x and y components of the
photocurrent density j(x) at ωτ = 1.

III. PHOTOCURRENTS INDUCED BY GRADIENTS
OF FIELD POLARIZATION

Consider the photocurrents induced by electromagnetic
fields with the constant in-plane amplitude |E‖| in the 2DEG
plane and the polarization varying along the x axis. Fig-
ures 2(a) and 2(d) show examples of such fields. In Fig. 2(a),
the field E‖ is linearly polarized and the polarization rotates
from E‖ ‖ x at large negative x to E‖ ‖ y at large positive x.
In Fig. 2(d), the field polarization varies from the left-handed
to the right-handed circular polarization through the linear
polarization.

Figures 2(b) and 2(c) show the spatial dependence of the
Stokes parameters and the spatial distribution of the emer-
gent photocurrent density j(x) for the radiation sketched
in Fig. 2(a). The polarization parameter S1/S0 varies from
+1 at x → −∞ to −1 at x → +∞ whereas S2/S0 van-
ishes at x → ±∞ and reaches its maximum value of 1
at x = 0. We take the spatial profile of the electric field
amplitude in the form Ex = E0 cos �(x), Ey = E0 sin �(x),
where �(x) = (π/4)[tanh(x/L) + 1], which corresponds to
the Stokes parameters S0 = E2

0 , S1 = E2
0 cos 2�(x), S2 =

E2
0 sin 2�(x), and S3 = 0. As follows from Eqs. (17)–(19),

the currents j (th) and j (ph) vanish for such a field, and the
photoresponse is determined by the polarization-sensitive

contribution j (pol). The current j (pol) emerges in the region
where S1 and S2 vary, with j (pol)

x ∝ ∂S1/∂x and j (pol)
y ∝

∂S2/∂x. As a result, the photocurrent j has both components

jx(x) = −π

2

cos[(π/2)tanh(x/L)]

cosh2(x/L)
j0,

jy(x) = −π

2

sin[(π/2)tanh(x/L)]

cosh2(x/L)
j0, (20)

where j0 = −ne3τ 3E2
0 /[m∗2L(1 + ω2τ 2)]. The distributions

jx(x) and jy(x) are plotted in Fig. 2(c). On average, the carriers
(electrons with e < 0 or holes with e > 0) flow from the
domain with E‖ ‖ x to the domain with E‖ ‖ y.

Figures 2(e) and 2(f) show the spatial distributions of
the Stokes parameters and the photocurrent density for the
radiation with varying helicity as sketched in Fig. 2(d).
Here, the profile of the electric field amplitude is taken in
the form Ex = iE0 sin �(x), Ey = E0 cos �(x), where �(x) =
(π/4)tanh(x/L). The corresponding Stokes parameters have
the form S0 = E2

0 , S1 = −E2
0 cos 2�(x), S2 = 0, and S3 =

−E2
0 sin 2�(x). For this electromagnetic field, the photocur-

rent j is also solely determined by the polarization-sensitive
contribution j (pol) with the projections j (pol)

x ∝ ∂S1/∂x and
j (pol)
y ∝ ∂S3/∂x. Thus, the spatial distributions of the pho-
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tocurrent components are given by the functions

jx(x) = π

2

sin[(π/2)tanh(x/L)]

cosh2(x/L)
j0,

jy(x) = −π

2

cos[(π/2)tanh(x/L)]

cosh2(x/L)

j0
ωτ

, (21)

which are plotted in Fig. 2(f).
Interestingly, the photocurrent between the domains with

left-handed and right-handed circular polarizations flows
along the boundary of the domains, as sketched in Fig. 2(d).
The total boundary current

Jy =
∫

jy(x)dx = −ne3τ 2[S3(+∞) − S3(−∞)]

m∗2ω(1 + ω2τ 2)
(22)

does not depend on the domain boundary structure or the
boundary width L and is determined by the difference of the
Stokes parameter S3 in the domains. Moreover, in the colli-
sionless limit, i.e., at ωτ 	 1, the current Jy is independent
of the relaxation time τ . These features allow us to attribute
the photocurrent Jy to the chiral edge current emerging be-
tween the photoinduced topological phases with the opposite
Floquet-Chern numbers [49,50].

The photocurrent (22) is estimated as Jy ≈ 20 µA for
the carrier density n = 5 × 1011 cm−2, the relaxation time
τ = 1 ps, the effective mass m∗ = 0.03m0, where m0 is the
free-electron mass, which correspond to bilayer graphene
[26], ωτ = 1, and the electric field amplitude E‖ = 0.25
kV/cm corresponding to the terahertz radiation intensity I =
1 kW/cm2.

IV. PHOTOCURRENTS INDUCED
BY TWISTED RADIATION

Now, we apply the developed theory to calculate the
photoresponse of 2DEG to the twisted radiation, i.e., the
electromagnetic waves carrying orbital angular momentum,
Fig. 1. Such calculations can be conveniently done in the
polar coordinate frame with the radial er = (cos ϕ, sin ϕ) and
azimuthal eϕ = (− sin ϕ, cos ϕ) unit vectors, where ϕ is the
polar angle counted from the x axis. In this frame, the pho-
tocurrents j (th), j (pol), and j (ph) are given by

j (th) = −2
eττε Re σ

m∗ ∇P0, (23)

j (pol)
r = −eτ 2 Re σ

m∗

(
∂P1

∂r
+ 2P1

r
+ 1

r

∂P2

∂ϕ
− 1

ωτ

1

r

∂P3

∂ϕ

)
,

j (pol)
ϕ = eτ 2 Re σ

m∗

(
1

r

∂P1

∂ϕ
− ∂P2

∂r
− 2P2

r
− 1

ωτ

∂P3

∂r

)
, (24)

j (ph) = −2
eτ Re σ

m∗ω

[
Im(Er∇E∗

r + Eϕ∇E∗
ϕ ) + P3

eϕ

r

]
, (25)

where ∇ = er∂r + (eϕ/r)∂ϕ , P0 = |Er |2 + |Eϕ|2 = S0,
P1 = |Er |2 − |Eϕ|2, P2 = ErE∗

ϕ + E∗
r Eϕ , and P3 =

i(ErE∗
ϕ − E∗

r Eϕ ) = S3. In the paraxial approximation, P0,
P1, P2, and P3 correspond to the Stokes parameters in the
local coordinate frame (er, eϕ ). The presence of the terms in
Eqs. (24) and (25) which do not contain derivatives is due to
the fact that the directions of the er and eϕ vectors depend
on ϕ.

As a commonly used example, we consider the class of the
Bessel beams which are characterized by the integer index m
of the projection of the total angular momentum onto the beam
axis [4,5,16,56]. The electric field in the beam decomposed
over the plane waves has the form

E(r, z) = E0eiqzz
∑

q‖

a(q‖) exp
(
iq‖ · r

)
eq, (26)

where E0 is the amplitude, q = (q‖, qz ) is the wave vector with
the in-plane component q‖, q = ωnω/c, nω is the refractive
index of the medium, eq ⊥ q is the unit polarization vector
of the plane wave, and a(q‖) is the Fourier coefficient. The
Bessel beams are formed from the plane waves with the wave
vectors q lying on the surface of the cone with a certain angle
θq and the axis parallel to z. Therefore, qz = q cos θq and q‖ =
q sin θq are fixed, and the integration in Eq. (26) is performed
over the directions of the wave vector q‖.

The vector eq determines the polarization (spin momen-
tum) of the plane waves constituting the Bessel beam. We take
eq in the form

eq = α eθq + β eϕq, (27)

where α and β are complex numbers, |α|2 + |β|2 = 1,
and eθq = (cos θq cos ϕq, cos θq sin ϕq,− sin θq) and eϕq =
(− sin ϕq, cos ϕq, 0) are the unit vectors orthogonal to each
other and to the wave vector q. The cases of α = 1/

√
2

and β = ±i/
√

2, for example, correspond to the beams com-
posed of the circularly polarized plane waves. The total
angular momentum projection m of the twisted field is de-
termined by the dependence of a(q‖) on the polar angle
ϕq of the in-plane wave vector q‖, which is taken in the
form

a(q‖) = i−m−1(2π/q‖)δ(q‖ − q sin θq) exp(imϕq). (28)

By calculating the sum in Eq. (26) with eq and a(q‖) given
by Eqs. (27) and (28), respectively, one obtains the in-plane
components of the electric field in the polar coordinate frame
and in the paraxial approximation (θq � 1) [4],

Er (r, ϕ) = E0

2
eimϕ[o+Jm+1(q‖r) − o−Jm−1(q‖r)],

Eϕ (r, ϕ) = E0

2i
eimϕ[o+Jm+1(q‖r) + o−Jm−1(q‖r)], (29)

where o± = α ± iβ and Jm is the Bessel function with the
index m. In particular, o± = 1 for the “radial” Bessel beam
constructed from p-polarized plane waves (α = 1, β = 0) and
o± = ±i for the “azimuthal” Bessel beam constructed from
s-polarized waves (α = 0, β = 1). For the Bessel beams con-
structed from circularly polarized plane waves, only one of
the coefficients, either o+ or o−, is nonzero.

The straightforward calculation of the photocurrent com-
ponents (23)–(25) with the electric field given by Eq. (29)
yields j (th)

ϕ = 0,

j (th)
r = j0

τε

τ
{Jm+1(Jm − Jm+2) − Jm−1(Jm − Jm−2)

− [Jm+1(Jm − Jm+2) + Jm−1(Jm − Jm−2)] p3}, (30)
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E(r) j(r)

)b()a(

)d()c(

FIG. 3. Photocurrents induced by the radial and azimuthal Bessel
beams with m = 0. (a) and (b) Distributions of the electric field
vector E(r) and the photocurrent density j(r) = j (pol) + j (ph) for the
radial Bessel beam. (c) and (d) Distributions of the electric field
vector E(r) and the photocurrent j(r) for the azimuthal Bessel beam.
Red and blue backgrounds encode the radiation intensity and the
magnitude of the photocurrent density, respectively.

j (pol)
r + j (ph)

r = j0Jm(Jm+1 − Jm−1) p1,

j (pol)
ϕ + j (ph)

ϕ = j0Jm(Jm+1 − Jm−1)
(

p2 + p3

ωτ

)

− j0
ωτ

Jm(Jm+1 + Jm−1), (31)

where

j0 = − ne3τ 3E2
0 q‖

m∗2(1 + ω2τ 2)
, (32)

p1 = |α|2 − |β|2, p2 = αβ∗ + α∗β, and p3 = i(αβ∗ − α∗β )
are the polarization parameters of the plane waves constituting
the Bessel beam, and Jm = Jm(q‖r).

Now, we illustrate the photocurrents induced by Bessel
beams with different polarizations and angular momentum
projections. We focus on the polarization- and phase-sensitive
photocurrents j (pol) + j (ph). The photothermoelectric current
j (th) has only a radial component and is determined solely by
the gradient of the radiation intensity. Note that, for the beams
composed of circularly or elliptically polarized plane waves
(p3 �= 0), the spatial distribution of the radiation intensity and,
hence, the photothermoelectric current depend on the sign of
circular polarization; see Eq. (30).

Figure 3 shows the spatial distributions of the ac electric
field and the photocurrent density for the radial (p1 = 1)
and azimuthal (p1 = −1) Bessel beams with the total angu-
lar momentum projection m = 0. In these particular cases,

)b()a(

p3 = −1 p3 = 1

FIG. 4. Spatial distributions of the photocurrent density j(r) =
j (pol) + j (ph) for the Bessel beams with m = 0 composed of (a) left-
handed (p3 = −1) and (b) right-handed (p3 = 1) circularly polarized
plane waves. The current j forms vortices with the winding direction
determined by the radiation helicity.

the electric field in the beams has only radial or azimuthal
component, and the field distribution is rotationally invariant,
Figs. 3(a) and 3(c). For the both beams, the photocurrent has
only a radial component, Figs. 3(b) and 3(d). The current
density is nonmonotonic and oscillates with the distance from
the beam center; these oscillations originate from the radial
distribution of the electric field. While the local current mag-
nitude is the same for the radial and azimuthal Bessel beams,
the current directions are opposite and controlled by the po-
larization of plane waves constituting the beams. Note that the
photothermoelectric effect also produces a radial electric cur-
rent. This contribution, however, is independent of the linear
polarization and, therefore, can be experimentally separated.

Whereas the photocurrents induced by the radial and
azimuthal Bessel beams with m = 0 flow radially, the pho-
tocurrents induced by the beams composed of circularly
polarized plane waves (p3 = ±1) have polarization-sensitive
azimuthal components. This is shown in Fig. 4 for the Bessel
beams with m = 0. In these cases, the photocurrents form
vortices (here, the sets of concentric current loops with alter-
nating directions) with the winding direction determined by
the radiation helicity.

For the Bessel beams with m �= 0, the spatial distributions
of the ac field amplitude and the photocurrent density get
more complex with the radial and azimuthal components in-
termixed. Figures 5(a) and 5(c) show the snapshots of the
electric field distributions in the radial (p1 = 1) Bessel beams
with m = ±2 at a certain time t0. The field distributions at any
time t are obtained by the rotation of the given distributions
by the angle ϕ = ω(t − t0)/m, as indicated by bent red ar-
rows. Far from the beam center, the field is linearly polarized
along the radius, whereas at the beam core the polarization is
elliptical. Figures 5(b) and 5(d) show the distributions of the
photocurrent density in the beams. The photocurrents contain
both radial and azimuthal components. The direction of the
azimuthal component is controlled by the sign of m and,
hence, it is opposite in Figs. 5(b) and 5(d).

Figure 6 shows the spatial distributions of the photocur-
rent density for the Bessel beams with m = ±1 composed
of the left-handed (p3 = −1) and the right-handed (p3 = 1)
circularly polarized plane waves. Similarly to the case of
m = 0 (Fig. 4), the photocurrents have polarization-sensitive
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E(r) j(r)

)b()a(

)d()c(

FIG. 5. Photocurrents induced by the radial Bessel beams with
m = ±2. (a) and (c) Snapshots of electric field distributions in the
cross sections of the beams. (b) and (d) Distributions of the photocur-
rent density j(r) = j (pol) + j (ph) for the corresponding Bessel beams.

azimuthal components and form vortices. The current dis-
tribution in the beam cross section is determined by both
the total angular momentum projection m and the radiation

)b()a(

)d()c(

m = 1
p3 = −1

m = 1
p3 = 1

m = −1
p3 = −1

m = −1
p3 = 1

FIG. 6. Spatial distributions of the photocurrent density j(r) =
j (pol) + j (ph) for the Bessel beams with m = ±1 composed of left-
handed (p3 = −1) and right-handed (p3 = 1) circularly polarized
plane waves. (a) m = 1, p3 = −1; (b) m = 1, p3 = 1; (c) m =
−1, p3 = −1; and (d) m = −1, p3 = 1.

)b()a(

m = 2 m = 4

FIG. 7. Spatial distributions of the photocurrent density j(r) =
j (pol) + j (ph) for the Bessel beams with (a) m = 2 and (b) m = 4
composed of left-handed circularly polarized plane waves.

helicity. Reversing the sign of both m and p3 mirrors the
distributions; cf. Figs. 6(a) and 6(d) or Figs. 6(b) and 6(c).

Completing the discussion of photocurrent distributions,
we note that the radius of the first circle in the Bessel beam
increases almost linearly with the absolute value of the orbital
angular momentum projection |l| = |m − p3| [4]. So does the
radius of the first current loop. This is shown in Fig. 7, where
the spatial distributions of the current density are plotted for
the Bessel beams with m = 2 and m = 4.

Radial photocurrents jr lead to a redistribution of electric
charge in the 2DEG plane and, hence, to the (nonuniform)
electrostatic potential U (r), which, in turn, results in the ra-
dial drift current j (drift)

r = −σ0 dU/dr, where σ0 = ne2τ/m∗
is the static conductivity. In the open circuit configuration,
the total radial current in the steady-state regime vanishes,
jr + j (drift)

r = 0, which yields

U (r) − U (0) = 1

σ0

∫ r

0
jr (r′)dr′. (33)

Therefore, for the photocurrents induced by the Bessel beams,
Eqs. (30) and (31), we obtain

U (r) − U (0) =U0
[
δm,0 − J2

m(q‖r)
]
p1

+ U0
τε

τ

∑
s=±1

[
J2

m+s(q‖r) − δm+s,0
]
(1 − sp3),

(34)

where

U0 = − eτ 2E2
0

m∗(1 + ω2τ 2)
, (35)

and Jm is the Bessel function. Interestingly, U (∞) − U (0)
does not vanish for the beams with m = 0,±1 only. This
voltage is determined solely by the photocurrent j (pol)

r + j (ph)
r

for the beams with m = 0 and by the photothermoelectric
current j (th)

r for the beams with m = ±1. The photovoltage
U0 is of the order of 1 mV for the terahertz beams with the
intensity 1 kW/cm2 and the structure parameters listed in the
end of Sec. III.

Azimuthal photocurrents jϕ do not produce voltage drops
in homogeneous 2D systems [57]. What they produce is a
static magnetic field Bphoto, which points along the 2DEG
plane normal at z = 0. At the center of the beam, the field
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can be readily calculated from the Biot-Savart law

Bphoto = 2π

c

∫ +∞

0

jϕ (r)

r
dr. (36)

For the azimuthal photocurrent given by Eq. (31), we obtain

Bphoto = 8 j0
c(4m2 − 1)

(
p2 + p3

ωτ
+ 2m

ωτ

)
, (37)

where j0 = −ne3τ 3E2
0 q‖/[m∗2(1 + ω2τ 2)]. The first two con-

tributions in Eq. (37) depend on the polarization parameters
p2 and p3 of the plane waves constituting the beam. The third
contribution is polarization-independent but reverses its sign
upon changing the sign of m. At large values of the total
angular momentum projection, |m| 	 1, the polarization-
independent contribution dominates and the magnetic field
assumes the dependence Bphoto ∝ 1/m. Estimation of the
current density for q‖/q = 0.1 and the radiation intensity
1 kW/cm2 yields j0 ≈ 30 μA/cm. The corresponding mag-
netic field Bphoto is of the order of nT. Such fields can be
detected, e.g., by SQUIDs [58] or optical sensors based on
color centers in silicon carbide or diamond [59]. The emer-
gence of a static magnetization controlled by the angular
momentum of the beam can be considered as the inverse
Faraday effect [60] of twisted light.

V. CONCLUSIONS

In summary, we have studied the generation of direct
electric currents in two-dimensional electron systems driven
by electromagnetic radiation with structured intensity, po-
larization, and phase. The theory of such a nonlinear and
nonlocal response is developed within the kinetic approach
for the intraband electron transport, which, for semiconductor
structures, corresponds to the radiation of radio-frequency and
terahertz spectral ranges. The derived analytical expressions
for the photocurrent contributions are general and can be

applied to the radiation with an arbitrary spatial profile. In
particular, the photocurrents are induced by the radiation with
a uniform intensity but spatially varying polarization in the 2D
plane, e.g., at the boundary between the domains excited by
radiation with different polarization states. The total current
emerging at the boundary of the domains excited by circularly
polarized radiation with the opposite helicity flow along the
boundary and does not depend on the boundary structure
or the electron gas mobility in the high-frequency limit. Its
value for bilayer graphene is estimated as 20 µA for terahertz
radiation with the intensity 1 kW/cm2.

The photocurrents induced by the Bessel beams carrying
orbital angular momentum have both the radial and azimuthal
(vortex-like) components controlled by the beam polariza-
tion and angular momentum. In the experiments conducted
in the open-circuit configuration, the radial photocurrents
lead to a charge redistribution in the sample and, hence, to
a nonuniform electrostatic potential and oppositely directed
drift currents. The amplitude of the resulting voltage sensitive
to the beam polarization and angular momentum is of the
order of 1 mV for the terahertz beams with the intensity 1
kW/cm2. The azimuthal photocurrents, in turn, do not pro-
duce voltage drops in homogeneous 2D systems; however,
they create a tiny static magnetic field directed perpendic-
ular to the sample. We have calculated the photoinduced
electrostatic potential and the photoinduced magnetic field
and analyzed their dependence on the beam parameters. The
analysis suggests that the measurement of the photoresponse
provides a useful experimental tool to determine the parame-
ters of structured radiation, such as the photon spin and orbital
angular momentum.
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