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Massive spin-flip excitations in a ν = 2 quantum Hall ferromagnet
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Excitation with a massive spin reversal of the individual skyrmion/antiskyrmion type is theoretically studied in
a quantum Hall ferromagnet, where the zeroth and first Landau levels are completely occupied only by electrons
with spins aligned strictly in the direction determined by the magnetic field. The Wigner-Seitz parameter is not
necessarily considered to be small. The microscopic model in use is based on a reduced basic set of quantum
states [the so-called “single-mode (single-exciton) approximation”], which allows proper account to be taken
for mixing of Landau levels, and substantiating the equations of the classical O(3) nonlinear σ model. The
calculated “spin stiffness” determines the exchange gap for creating a pair of skyrmion and antiskyrmion. This
gap is significantly smaller than the doubled cyclotron energy and the characteristic electron-electron correlation
energy. Besides, the skyrmion–antiskyrmion creation gap is much smaller than the energy of creation of a
separated electron–exchange-hole pair calculated in the limit case of a spin magnetoexciton corresponding to
an infinitely large 2D momentum. At a certain magnetic field (related to the 2D electron density in the case
of fixed filling factor ν), the gap vanishes, which presumably points to a Stoner transition of the quantum Hall
ferromagnet to a paramagnetic phase.
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I. INTRODUCTION

Interest in massive spin excitations in quantum-Hall (QH)
ferromagnets, where change of total spin δS is large (|δS| > 1)
was triggered by the pioneering theoretical work of Sondhi
et al. [1] and intensified after the experimental discovery of a
massive spin flip near the ground state of a QH ferromagnet
[2]. This interest is also due to the fact that, with increase
in the number of inverted spins, the excitation energy, be-
ing of exchange origin, decreases [3]. So, according to the
theory, at the ν = 1 filling factor and in the ideally strict
two-dimensional (2D) case, the energy gap of creation of
a skyrmion-antiskyrmion pair (where |δS| � 1) is approxi-
mately by half less than the gap for an electron–exchange-hole
pair (where |δS| = 1) [1], provided the Zeeman energy is
neglected. Thus, the study of excitations with a massive spin
flip turns out to be closely related to the problem of the size of
the activation gap in QH transport.

The present paper is devoted to the QH ferromagnet, where
equally spin-polarized electrons occupy both zeroth and first
lower Landau levels, and, due to the peculiarities of the
real ν = 2 ferromagnet [4] the Wigner-Seitz parameter of
the system is not necessarily considered to be small. In this
introductory section, we present some reasons for the model
in question.

It is well known that the interparticle correlations in a
multi-electronic ensemble are responsible for the most in-
teresting properties of quantum Hall systems (QHSs). The
interaction is usually characterized by the Wigner-Seitz pa-
rameter rs that in QHSs with fixed filling factor ν ∼ 1, is
in fact the ratio of the characteristic Coulomb energy EC =
(e2/κ )

√
ns to the cyclotron one h̄ωc. (Here ns is the 2D

electron density related to the magnetic field by equation
ns ≈ 2.4×1010 · ν · B[T ]/cm2; κ is the dielectric constant).

Experimental and theoretical studies in the field of QHS
physics are distinguished by a completely different relation to
the rs magnitude. On the one hand, experiments investigating
clean QH systems with a large rs value, such as, for example,
ZnO/MgZnO structures [4,5] demonstrate quite spectacular
results and allow, in addition to “classical” quantum Hall
phenomena (e.g., the features of the ν-fractional transport),
to discover even new effects. The latter include, for instance,
Stoner magnetic transitions [4–6]. On the other hand, theory,
due to impossibility to use some perturbative technique based
on the rs smallness (cf. works in Ref. [7]), hardly “copes”
with the study of QH systems with large rs. In this situation,
there are two different theoretical approaches. The first is
presented by numerical calculations (numerical experiments),
where a fairly limited number of interacting electrons is con-
sidered. It also involves controversial assumptions about a
certain decrease in the effective Coulomb constant [8]. The
other approach is represented by the well-known studies that
use conceptually new semi-phenomenological models to, at
least indirectly, account for strong correlation in the elec-
tronic continuum (see, for example, the milestone papers [9]).
The Landau level mixing is, however, ignored even in these
fairly successful studies, despite the fact that the experimental
value of rs is not very small (rs � 0.3−0.7 in GaAs/AlGaAs
structures).

At large rs (e.g., when 1 � rs � 10) we can assume that
the electron distribution is effectively smeared across a dozen
Landau levels. There are, however, reasons to believe that
such a notion is wrong. Indeed, a smearing distribution over
Landau levels can hardly be compatible with well observed
(even at large rs) sharply nonmonotonic dependencies of the
transport and optical properties on the value of the filling
factor ν. On the contrary, there are many signs indicating that
the Fermi-liquid paradigm is valid also for the system studied.
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That is, the strong interaction retains the same classification
of energy levels as in the ideal Fermi gas, yet, leads to a
renormalization, presenting interacting particles/electrons as
quasiparticles with definite momenta [10]. The distribution of
quasiparticles over momenta at T → 0 is the step function,
θ (pF − p), where the 2D Fermi momentum pF is defined in
terms of the total density of particles (or, what is the same,
quasiparticles) by the usual expression pF /h̄ = (2πns)1/2. As
for the distribution of true particles over momenta, it is cer-
tainly not represented by the strict step function above, yet,
at any number rs has also a discontinuity at p = pF (the so-
called Migdal jump [10,11]) and the interaction results only
in some tails in the distribution at p > pF (electrons) and at
p < pF (“holes”). Thus, in a QHS there should be no very
smooth distribution of electrons over the Landau levels in
the vicinity of the Fermi energy. The Fermi-liquid picture for
describing the 2D electronic system is supported, for instance,
by the results of the recent study that has been carried out
in zero and weak magnetic fields at temperatures T � 25 mK
[12]. Typical Fermi-liquid features (in particular, observation
of the Migdal jump) were found under the conditions corre-
sponding to values rs = EC/EF � 4.5 (the Fermi energy is
EF = p2

F /2m∗
e ).

Our goal is to find the excitation energy from the ground
state, which we will model using a step function, regardless of
the value of parameter rs. So, the QH ferromagnet at ν = 2 is
considered as a system where the states with spins “pointing
up” at the zeroth and first Landau levels are fully occupied,
and all other states are completely empty. Of course, this
picture can be interpreted as a renormalization, i.e., a tran-
sition to the concept of Fermi-liquid quasiparticles. However,
if we assume that the cyclotron gap is larger than the lengths
of the energy “tails” in the distribution of real electrons, we
may not actually make a difference between the Fermi-liquid
quasiparticles and the electrons.

Besides, our presumably extensive (spatially smooth)
spin excitation makes it possible to use a perturbative
approach based on the smallness of the spatial derivatives
of the spin-rotation matrix components. (The part of the
Schrödinger operator responsible for the interaction is
invariant to spin rotation, so such derivatives appear only due
to the action of the single-particle Schrödinger operator on
the spin-rotation matrix.) The smooth rotation enables us to
consider the multi-electronic Schrödinger equation separately
on two different spatial scales: on the scale of the spatial
change of the local spin, and that of the change of the electron
wave function. The former is determined by the spatial size
(core) of the skyrmion, which is determined by the small
Zeeman/exchange energy ratio (see, e.g., Ref. [13]); the latter
is the magnetic length lB. When considering a domain with a
dimension much less than the skyrmion size but larger than
lB, one can study a “local” QHS represented by a domain
perturbed by a weak gauge field, homogeneous within the
chosen domain, which is added to the vector potential [14,15].
In particular, some “fake” magnetic field arises, slightly
renormalizing the cyclotron energy and magnetic length.
Calculating the correction to the energy of this ferromagnetic
domain, we use a model of the reduced basic set describing
the QHS states. This is so-called single-mode [16] or, in other
words, a single-exciton approximation (see, e.g., Ref. [6]).

Owing to the homogeneity of the perturbating field, the
relevant single-exciton basic set contains only states that
do not violate the translation symmetry of the system,
i.e., represent only “vertical” mixing of the Landau levels.
The basis set consists of certain combinations of electron
promotions from one Landau level to another occurring with
or without a spin flip.

It is clear that the energy determined by rotation of the
spins in the space is vanishing in the case of a zero Zeeman
gap and zero spin stiffness (i.e., at zero exchange energy
associated with a spin flip). Indeed, then any spin rotation
actually becomes single-electronic, and at a zero Zeeman gap
it is certainly gapless. Zero spin stiffness occurs when, at fixed
filling factor ν, the rs parameter goes to zero (formally, this
can be achieved if the dielectric constant of the lattice goes to
infinity, κ → ∞).

Second, interestingly, in the opposite extreme case, when
the stiffness is infinitely large (for fixed ν, it means that
rs → ∞), the exchange corrections to the energy found for
a small domain can be also predicted to be vanishing. Indeed,
these represent the second-order corrections calculated per-
turbatively in terms of a weak magnitude of the additional
field proportional to the small gradients of the spin-rotation
matrix components. They are of two kinds: occurring due
to mixing of the ground state with zero-momentum magne-
toplasma modes without any spin change; or appearing as
a result of mixing with zero-momentum cyclotron–spin-flip
modes. The latter contribute only to the second-order correc-
tion, determined by the terms with denominators containing
large exchange energies of the order of EC � ωc. These terms
are vanishing if rs → ∞, and the main contribution to the
excitation energy is due to mixing with soft spinless magneto-
plasma states. Thus, the transport gap actually becomes of the
order of cyclotron energy ωc, being much smaller than EC. At
a fixed total number of electrons, the gap corresponds to the
excitation of a pair consisting of an individual skyrmion and
an antiskyrmion.

II. ENERGY OF MASSIVE SPIN EXCITATION

A. Smooth rotation in the spin space

We use the approach similar to that described in previ-
ous studies [14,15]. The rotation of the electron spins in the
3D space is determined by the rotation matrix Û (R) [17]
parametrized by three Eulerian angles α(R), β(R), and γ (R)
(see also Appendix B below) smoothly depending on the 2D
spatial coordinate R = (X,Y ). Only two of the angles, α and
β, are sufficient to fully determine the local direction of the
spin described by the unit vector of 
n(R). Operator Û repre-
sents a 2×2 matrix transforming the spinor 
ψ (R) given in the
spatially fixed system {x̂, ŷ, ẑ} to a “local” spinor 
χ (R), given
in the “local” coordinate system {x̂′, ŷ′, ẑ′}, and thus accompa-
nying the spatial spin rotation [so that, for instance, we always
have 〈 
χ〉 ∝ (1

0), where brackets 〈...〉 mean averaging over a
small domain in the vicinity of the R coordinate]. That is,


ψ (R) = Û (R) 
χ (R). (2.1)

It is convenient to choose ẑ as the Zeeman axis, i.e., to con-
sider the magnetic field parallel to ẑ in the fixed coordinate
system, but oppositely directed (assuming for certainty the
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Landé factor to be positive, that is 
B · ẑ = −B). In the case
of a tilted magnetic field, the Zeeman axis ẑ is inclined by
a constant angle θ with respect to the quantization axis Ẑ ,
where Ẑ is perpendicular to the {X̂ , Ŷ } plane. (The coordinate
systems {x̂, ŷ, ẑ} and {x̂′, ŷ′, ẑ′}, used for description of the
spin orientation, should not be confused with the coordinate
system {X̂ , Ŷ , Ẑ} in the real space, in which the 2D radius
vector R indicates the coordinates on the plane {X̂ , Ŷ }.)

We will be looking for the U (R) matrix that satisfies certain
conditions, namely, the unit vector


n(R) ∝ 〈 
ψ †(R)̂S 
ψ (R)〉 (2.2)

(̂S stands for the operator of the total spin), specified in the
{x̂, ŷ, ẑ} space and indicating the local spin orientation, should
not have any singularities at any R, and should have a fixed
z orientation in the core (i.e., at R = 0) and on the periphery
(at |R| → ∞). This means that β(0) = π and β(R)|R→∞ = 0
regardless of the azimuth given by value α(R)|R→∞. Substitut-
ing 〈 
χ〉 = (1

0) into Eq. (2.1), and taking into account Eq. (2.2),
we obtain expressions of the components of the unit vector in
terms of the Euler angles α(R) and β(R),

nx = sin β cos α, ny = sin β sin α, nz = cos β. (2.3)

Rotation of each spin around the Zeeman axis at the same
angle leaves unchanged energy and other quantities that have
a physical meaning. That is, there is invariance with respect to
transition

α(R) → α(R) + φ, (2.4)

where φ is a constant independent of R. In particular, in
the fixed coordinate system {x̂, ŷ, ẑ} the value φ = 0 corre-
sponds to a “radial” rotation of vector 
n(R) (a Néel-type
skyrmion), whereas, e.g., φ = π/2 means a “tangential” ro-
tation (a Bloch-type skyrmion).

The ŷ axis of the coordinate system {x̂, ŷ, ẑ} and the Ŷ axis
of {X̂ , Ŷ , Ẑ} can be always chosen to coincide with the line
of intersection of the planes {x̂, ŷ} and {X̂ , Ŷ }. Hence, both
coordinate systems are combined by turning of the {x̂, ŷ, ẑ}
system at angle θ = ̂(ẑ, Ẑ ) around Ŷ . As a result, the unit
vector 
n = (nx, ny, nz ) in the system {X̂ , Ŷ , Ẑ} is presented
by components

nX = nx cos θ + nz sin θ, nZ = nz cos θ − nx sin θ,

nY = ny. (2.5)

Macroscopically, the magnet energy of the 3D unit vector
(2.3) is described in the framework of an O(3) nonlinear σ

(NLσ ) model (see Appendix A), whose equations can be
substantiated microscopically in the case of a quantum Hall
ferromagnet.

B. Microscopic approach: Hamiltonian

Before describing our system microscopically, we draw
attention to the hierarchy of distance scales. The scale of the
wave function is determined by the magnetic length, which
is assumed to be much smaller than the spatial scale of the
spin change (let the latter be designated as �, that is, lB � �

where � is the size of the “skyrmion core”, see the next sec-
tion and Appendix A). We study a single excitation, therefore,

� is considered to be much smaller than the mean distance
between excitations in the system in question. In addition, if
the excitation is charged, the parameter � characterizes the
spatial change in the charge density.

In the following, for every coordinate R we use the substi-
tution,

R → R + r, (2.6)

where r belongs to a small domain GR in the vicinity of point
R. The domain area �2R = �X�Y is considered to be much
smaller than �2 (i.e., always r � �); however, let it be still
considered much larger than l2

B. So, the integration over R can
be presented as summation over small domains �2Ri,∫

... d2R →
∑

i

... �2Ri ≡
∑

i

∫
over GRi

... d2r. (2.7)

We will present the entire area of our system as consist-
ing of GRi domains whose areas obey the condition l2

B �
area − of −GRi � �2; so that integration of a function F (R)
over the 2D space becomes summation over the domains
covering the total area of the system [18].

We start from the QHS Hamiltonian

Ĥtot = ĤZ + Ĥ1 + Ĥint, (2.8)

where

ĤZ = −εZ

∫
d2R 
ψ †(R) Ŝz 
ψ (R) (2.9)

stands for the Zeeman energy (εZ = |gμB 
B| is the Zeeman
gap, 
ψ is the Schrödinger operator now); Ĥ1 represents the
2D “kinetic energy” term

Ĥ1 = 1

2m∗
e

∫
d2R 
ψ†(R)(−i∇ + A)2 
ψ (R), (2.10)

[A(R) is the vector potential, for instance, AY = XB⊥ ≡
XB cos θ, Ax = Az ≡ 0; besides, we use units where h̄ =
e/c = 1, so that the cyclotron energy is ωc = B⊥/m∗

e ] and the
electron interaction term is Ĥint

=
∫ ∫

d2R d2R′

2

ψ†(R) 
ψ†(R′)V (|R − R′|) 
ψ (R′) 
ψ (R)

(2.11)
[V (R) is the Coulomb interaction vertex; as usual, it is ap-
propriately renormalized by taking into account nonideal
two-dimensionality of the electron system].

First, we focus on integration over the GR domain in the
vicinity of fixed point R. Substituting Ŝz = σ̂z/2 and Eq. (2.1)
into Eq. (2.9), and remembering that by definition we have


χ |0〉 ∝ (1
0)|0〉 (where |0〉 is the ground state of the domain in

the vicinity of R), we obtain the contribution of the GR domain
to the Zeeman energy,

〈ĤZ(R)〉 = −εZ

2
cos [β(R)]

∫
GR

〈 
χ†
R(r) 
χR(r )〉d2r. (2.12)

The “kinetic energy” term takes the form [14,15]

Ĥ1(R) = 1

2m∗
e

∫
GR

d2r 
χ†
R(r)

[
−i∇r + AR(r)

+
∑

l


�R
(l )(r) σ̂l

]2


χR(r). (2.13)
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We make denotation corresponding to the replacement A(R +
r) → AR(r), and the same for 
χ (R + r) and 
�(l )(R + r).
Here l = x, y, z ; σ̂l stands for Pauli matrices. The 2D
vectors 
�R

(l )(r) with components �(l )
R,x and �(l )

R,y are pro-
portional to the small spatial derivatives of the rotation-matrix
components [14] [see Eq. (B1) in Appendix B]. In fact, only

the values 
�R
(l )(0) and ∂μ 
�(l )

R (r)|r→0 independent of r are
essential within our approach (here ∂μ ≡ ∇μ, where μ = x
or y).

Finally, the form of interaction term (2.11) is simply
invariant with respect to the rotational transformation. By
substituting Eq. (2.1) into (2.11), for the GR domain,we find

Ĥint (R) =
∫∫

r,r′∈ GR

d2rd2r′

2

χ†

R(r) 
χ†
R(r′)V (|r − r′|)

× 
χR(r′) 
χR(r). (2.14)

So, if not considering the Zeeman energy, then the “ 
�(l )
σ̂l”

terms in Eq. (2.13) represent the only thing that essentially
distinguishes our Hamiltonian describing the electrons of the
GR domain from the Hamiltonian that characterizes the sys-
tem without any spin rotation. If we consider that actually by
definition we get 〈 
χ†σ̂l 
χ〉 = δl,z and 〈 
χ†σ̂l σ̂l ′ 
χ〉 = δl,zδl ′,z
(here and further δ... is the Kronecker delta), then these terms
lead to appearance of additional gauge field δA = 
�R

(l )(r),
which for its part determines an artificial correction to the
quantizing magnetic field,

δB⊥(R) = ∇r × 
�(z)
R (r) |r→0 ≡ rot 
�(z)

R , (2.15)

directed also perpendicular to the {X̂ , Ŷ } plane. The ad-
justed magnetic length becomes l̃−1

B = l−1
B + lBrot 
�R

(z)/2,
which influences the “compactness” of the one-electron wave
function and, hence, the number of magnetic flux quanta
per domain. The latter is changed by �2R · δB⊥/2π , where
�2R ≡ �X�Y ≡ ∫

r∈ GR
d2r is the domain area. Now by using

a perturbation approach, we calculate the ground-state energy
of the GR domain in the perpendicular quantizing field

B̃ = B⊥ + δB⊥, (2.16)

by counting this energy from the appropriate value corre-
sponding to the same domain in the same field B̃, where,

however, the “ 
�(l )
σ̂l” terms in the Hamiltonian are set equal

to zero. Certainly, with the perturbation approach, we have
to hold equal the electron numbers in the perturbed and un-
perturbed systems. In the “global ground state”, i.e., in the
absence of any spin rotation, the number of electrons within
the GR domain is equal to N R= ν · �2R · B⊥/2π , where ν is
the factor equal to 1 or 2 depending on the type of quantum
Hall ferromagnet considered. In the state with spin rotation
this number is changed by value

δq̃ = ν�2R · rot 
�(z)
R /2π. (2.17)

The change of the cyclotron energy compared to the “global
ground state” is

δE (0,ν)
c = ωc

3ν − 2

4π
�2R rot 
�(z)

R , (2.18)

where ν = 1, or 2. The contribution of the Coulomb in-
teraction to the global ground-state energy is estimated as
E (0,ν)

int ∼ ECN R. Then the corrected value Ẽ (0,ν)
int is propor-

tional to 1/l̃3
B, thus being changed by

δE (0,ν)
int (R) = 3E (0,ν)

int (R)l2
Brot 
�R

(z)/2, (2.19)

as compared to the E (0,ν)
int (R) value. The estimation of the

E (0,ν)
int energy can be performed using the Hartree-Fock for-

mula [19]

E (0,ν)
int (R) = R〈ν, 0|Ĥint (R)|0, ν〉R. (2.20)

See Ref. [19] for details. |0, ν〉R in Eq. (2.20) means the
“global” ground state of the GR domain of the ν = 1, 2 quan-
tum Hall ferromagnet.

C. Perturbation theory results

We have obtained corrections (2.18) and (2.19) associated
only with the renormalization of the effective magnitude of
the quantizing magnetic field (2.16). Now we calculate correc-
tions to the ground-state energy of the GR domain determined
directly by the action of the perturbation operator

V̂�(R) = 1

2m∗
e

∫
GR

d2r 
χ †
R(r)

{ [
−i∇r + AR(r)

+
∑

l=x,y,z


�R
(l )(r)σ̂l

]2

− [−i∇r + AR(r)]2

}

χR(r)

(2.21)

on the ground state |0, ν〉R. Opening the square brackets in
this expression and using ordinary manipulations, we arrive at

V̂� ≈ Û + Ŵ (2.22)

(see Ref. [15]), where operator Û is spinless, whereas Ŵ leads
to a spin flip (i.e., to changes Sz → Sz − 1 and S → S − 1).
Let ĉnp and ĉnp be operators annihilating electrons on the nth
Landau level in the spin “up” and “down” states respectively
(p is the notation for orbital quantum states within a Landau
level). Then

Û = l2
Bωc

2

[ ∑
l=x,y,z

( 
�(l ) )2N̂ + rot 
�(z)
∑

n

(2n + 1)N̂n

]

+ lBωc�
(z)
− K̂† (2.23)

and

Ŵ = lBωc

∑
n

√
n + 1(�+

+Q̂†
n+1 n + �+

−Q̂†
n n+1

), (2.24)

where

�
(l )
± = ∓ i√

2

[
�(l )

x ± i�(l )
y

]
, �±

μ = [
�(x)

μ ± i�(y)
μ

]
; (2.25)

N̂n =
∑

p

(
ĉ†

npĉnp + ĉ†
npĉnp

)
, N̂ =

∑
n

N̂n,

K̂† =
∑
np

√
n + 1ĉ†

n+1pĉnp, and Q̂†
nm =

∑
p

ĉ†
mpĉnp.
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In Eqs. (2.23) and (2.24) we keep only the operators that give
a nonzero result when acting on fully spin-polarized ground
state |0, ν〉R. We omit also subscript ...R in these equations and
everywhere further, not forgetting that Eqs. (2.23) and (2.24)
apply only to the GR domain. The sign of the approximate
equality in Eq. (2.22) means that we omitted the terms leading
to corrections to energy of a higher order than the second one
in the terms of the gradients of the Euler rotation angles.

The operator of the total number of particles N̂ is certainly
diagonal for our system with a fixed number of electrons. K̂†

is the raising ladder operator [20], and, when acting on any
eigenstate of our system, it always results in an eigenstate
with energy higher by cyclotron one ωc. This property of the
operator K̂†, as well as the diagonality of the operator N̂ ,
are general and hold irrespective of the chosen model. K̂† is
contributing to the second order. Operator N̂n (corresponding
to the number of electrons on the Landau level n), acting on
our fully polarized ground state |0, ν〉, gives Nφ|0, ν〉δn,0 if
ν = 1, or Nφ|0, ν〉(δn,0 + δn,1) if ν = 2; where

Nφ = �2R/2π l2
B (2.26)

is the number of the magnetic flux quanta in the GR domain.
As a result, we obtain the perturbation theory correction de-
termined by operator (2.23) at filling factors ν = 1 or 2,

δE (ν)
U = ωcNφ l2

B

⎡⎣ν

2

∑
l=x,y

( 
�(l )
)2 +

(
3ν

2
− 1

)
rot 
�(z)

⎤⎦.

(2.27)

The perturbative correction to the ground-state energy de-
termined by spin-cyclotron operator (2.24), appears only in
the second order. This operator, unlike K̂†, does not commute
with interaction Hamiltonian (2.14), and, hence, leads to a
significant mixing of Landau levels. Generally, to find the
desired correction, we should consider as a basic set all kinds
of spin-flip–orbital excitations mixing various Landau levels.
Virtual transitions from the ground state to these excitations
determine the denominators in the formula for the W correc-
tion. If rs � 1, the denominators are of the order of EC, and
thus the W corrections vanish at rs � 1.

Among all the possible modes of various collective spin-
flip states that could form a complete basic set for calculating
the W correction, there are certainly single-mode (single-
exciton) states. Excitations in QH systems can be studied
within the framework of this single-exciton basis, and some-
times at integer filling factors such an approach even yields
an asymptotically exact result to the first order in small rs

[7,21]. Now, studying a system with an arbitrary value of rs,
we, as in Ref. [6], use the single-exciton basis as a model to
describe spin-flip states that are relevant for calculating the
W correction. Then the basic set consists only of orthogonal
single-“excitonic” states with the 
q = 0 wave vectors,

|nm, ν〉 = N−1/2
φ Q̂†

nm|0, ν〉,
where n = 0 or 1 and m �= n. Specifically, in the ν = 1 case,
the single-mode basis relevant for calculating the W correc-
tion is presented by the only state |01, 1〉, since in this case
the quantum mixing appearing due to the Coulomb correla-
tion between state Ŵ|0, 1〉 and spin-flip states |nm, 1〉 (i.e.,

∝ 〈1, mn|Ĥint|Ŵ|0, 1〉), does not vanish only if n = 0 and
m = 1. The energy of this excitation, counted from the level
of the ground state, is ωc + εZ + E01, where

E01 = 〈1, 10|Ĥint|01, 1〉=
∫ ∞

0
d p(p3/2)Ṽ (p)e−p2/2 (2.28)

(see Ref. [6]), where

Ṽ (p) ≡
∫

V (r)e−ipr/lB d2r/2π l2
B. (2.29)

It corresponds to the found 0 → 1 spin-flip excitation with a
zero wave vector. So, the W correction δE (ν)

W is obtained in
the framework of the single-exciton basic set at ν = 1 ,

δE (1)
W ≈ −Nφ (lBωc)2�−

+�+
−/(ωc + E01) (2.30)

(the value of εZ is neglected compared to ωc + E01). The
final results describing the skyrmion/antiskyrmion excitations
at the ν = 1 filling factor, obtained by means of the present
approach, are given in Ref. [15].

The spin-flip eigenstates in a ν = 2 quantum Hall fer-
romagnet, within the framework of the single-exciton set
|n m, 2〉, were studied in the study of Ref. [6]. The W cor-
rection to the ground state |0, 2〉 is found from the relevant
basic set consisting of three states,

|10, 2〉 and |±, 2〉 = A±|01, 2〉 + B±|12, 2〉
(1 + A2+)1/2

.

The notations used are
A+ = B− ≡ (a − b)/d+

√
(a − b)2/h2 + 1,

and A− = −B+ = 1, where

a =
∫ ∞

0
Ṽ (p)e−p2/2 p3d p, (2.31)

b =
∫ ∞

0
Ṽ (p)e−p2/2(1 + p4/16 − 3p2/8)p3d p, (2.32)

and

h = 1√
2

∣∣∣∣∫ ∞

0
Ṽ (p)e−p2/2(2 − p2/2)p3d p

∣∣∣∣. (2.33)

The energies of these excitations are equal to εZ − ωc + E10
and εZ + ωc + E± respectively, where

E10 =
∫ ∞

0
Ṽ (p)e−p2/2 p5d p/4 and

E± =(a + b ±
√

(a − b)2 + h2)/2. (2.34)

Thus we obtain the correction determined by operator (2.24),

δE (2)
W ≈ Nφ (lBωc)2

{
�+

+�−
−

ωc − E10

− �−
+�+

−
1 + A2+

[
(A+ − √

2)2

ωc + E+
+ (1 + √

2A+)2

ωc + E−

]}
,

(2.35)

again neglecting the εZ value compared to max (ωc, EC).

D. Energy of the skyrmion-antiskyrmion pair excitation

The meaning of formulae (2.15), and (2.17)–(2.19) is re-
vealed by a very important feature of the value rot 
�R

(z).
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Specifically, if we use the expression for 
�(z) through Euler
angles α(R) and β(R) {see Refs. [14] and [15], and Eqs. (A2)
and (B2) in Appendices below}, it turns out that

rot�(z)
R ≡ −2πρT (R), (2.36)

where the topological density is given by equation (A2).
According to Eq. (2.17), the electron density at point R is
changed by

δρs = −νρT (R). (2.37)

That is, the actual electric charge attributed to the studied state
is topological charge qT = ∫

ρT (R)d2R, multiplied by integer
factor ν. In the case of the ν = 2 ferromagnet, the skyrmion
(qT = −1) and antiskyrmion (qT = 1) have respectively neg-
ative and positive electric charges equal in magnitude to two
elementary charges.

The meaning of the correction given by Eq. (2.18) becomes
trivial: After summing over all domains GR [see Eq. (2.7)],
this represents a change in the single-particle orbital energy
due to the resulting electron excess or deficiency in the system
in question. In fact, at a fixed total number of particles in
the system, the excess and deficiency cancel each other, and
the total correction to the cyclotron energy determined by
Eq. (2.18) vanishes. At the same time, the energy gap for
neutral spin excitation acquires a clear physical meaning. In
our problem, this is excitation of a skyrmion-antiskyrmion
pair with oppositely charged components separated by a large
distance, so that the interaction among them can be ne-
glected. When performing summation/integration over R [see
Eq. (2.7)] of various contributions (2.19), (2.27), (2.30), and
(2.35) to the total skyrmion-antiskyrmion energy, we simply
omit the terms proportional to rot 
�(z)

R , as canceling each other.
Along with Eq. (2.36), there are other identities relating

the 
�(z)
R components with the field 
n(R) (see Appendix B),

and thus allowing presentation of the results in terms of
spatial derivatives of vector 
n. At the ν = 2 filling factor
(the case considered in details) and, in Eqs.(2.27), and (2.35)
keeping only the terms that do not contain rot 
�(z)

R , via sum-
ming/integrating over R, we obtain the contribution to the gap
of creation of the skyrmion-antiskyrmion pair,

D = 2
∑

R

[
δE (2)

U + δE (2)
W

]
= J

2

∫
[(∂X 
n)2 + (∂Y 
n)2]d2R, (2.38)

where

J = ω2
c

4π

[
2

ωc
+ 1

ωc − E10

− (A+ − √
2)2

(1 + A2+)(ωc + E+)
− (1 + √

2A+)2

(1 + A2+)(ωc + E−)

]
(2.39)

[see Eqs. (2.27) and (2.35), and identities (B2)–(B4) in
Appendix B]. According to the main result of the NLσ model
[see Eq. (A3) in Appendix A], the lowest nontrivial (not equal
to zero) minimum of this value is achieved when the integral
in Eq. (2.38) is equal to 8π , i.e., when the topological charge
is |qT | = 1.

FIG. 1. Solid lines: The calculated skyrmion-antiskyrmion ex-
citation gap D(B) [Eqs. (2.39) and (2.40); material parameters are
m∗

e = 0.3me and κ = 8.5] at different quantum well effective width
d parametrizing the 2D Fourier component Ṽ (p) of the Coulomb
vertex [see Eq. (2.29) and the specific expression for Ṽ given in the
text of Sec. III]. Value d is given in units of the magnetic length.
Dashed lines: The electron-exchange-hole gap � (see Ref. [22])
calculated in the framework of the same approach/model. Inset: The
critical magnetic field Bcr , where D vanishes [D(Bcr ) = 0], is shown
as function of parameter d .

Note that the calculated gap

D = 4πJ (2.40)

appears only owing to the electron-electron correlations. It
vanishes if we equate to zero the values E10 and E± propor-
tional to the Coulomb vertex.

When rs � 1, we obtain, as predicted above, D approach-
ing 2ωc, and thus weakly depending on the interaction. (At
unit filling ν, we have the rs � 1 value twice smaller, D ≈ ωc

[15].) This result is valid at the zero value of the Zeeman gap
and, therefore, in the absence of anything that somehow limits
the � scale. However, some dependence on the interaction
appears with finite εZ, which determines the real value of �

(large compared to lB, yet finite). The situation is similar to
that of cyclotron resonance frequency, for which there is no
dependence on the electron-electron interaction in a transla-
tionally invariant system [20], although it appears as soon as
this invariance is broken.

III. DISCUSSION OF THE RESULTS

So, the calculated value D [Eqs. (2.38)–(2.40)] repre-
sents the exchange contribution and an essential part of the
Coulomb contribution to the transport gap. Both constitute a
comprehensive result for the transport gap in the asymptotic
limit εZ/EC → 0 (condition that determines the limit � → ∞
[13]). At fixed filing factor ν = 2, the dependence of D on
the magnetic field is shown in Fig. 1. The calculation was
performed for a specific material parameter corresponding
to a ZnO/MgZnO heterostructure (m∗

e = 0.3me and κ = 8.5).
Besides, the renormalized e-e interaction vertex is chosen in
the form Ṽ (p) = e2/κlB p(1 + d p), which was used earlier
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[6]. The figure shows also transport gap � related to another
type of excitation in a ν = 2 QH ferromagnet, namely, exci-
tation of an electron–exchange-hole pair [22]. It is seen that
(i) the D(B) value is appreciably smaller than the electron–
exchange-hole gap � calculated within the same approach;
(ii) D(B) represents the nonmonotonic function of B, and has
a maximum at B � 5 T; and (iii) at some B > 8 T, depending
on the effective quantum well width d (presented in lB units),
the calculated D(B) vanishes, which, in fact, points to the
feasibility of a Stoner transition to the paramagnetic phase.

We emphasize that the study presented is purely theoret-
ical. However, it is worth noting that the actual situation is
as follows: The conditions under which the D value gives
the main contribution to the creation energy of the skyrmion-
antiskyrmion pair, and thereby to the transport gap, are hardly
met in the QHSs currently investigated in experiments [4,5].
Indeed, in order to ignore the change of the Zeeman energy

δEZ = ν εZ

2

∫
d2R [1 − nz(R)], (3.1)

and to neglect the Coulomb (Hartree) interaction between
different charged domains GRi (determined only by the inter-
domain repulsion at distances |Ri − R j | � lB),

VH = ν2e2

2κ

∫ ∫
d2R d2R′

|R − R′| ρT (R)ρT (R′) (3.2)

{see Eqs. (2.11) and (2.14), and also cf., e.g., Refs. [1] and
[13]}, it is necessary that the ratio εZ/(e2/κlB) be not sim-
ply small, but its smallness must be such that the logarithm
ln (e2/κlBεZ) is large [13]. (See also Appendix A below.) An
estimate, that is easy to make in the same way as it was
done earlier in the studies devoted to the ν = 1 ferromagnet
[13] leads to the conclusion: “classical” corrections, given by
Eqs. (3.1) and (3.2), become essentially smaller than the value
(2.39) and (2.40) only in the situation where εZ/(e2/κlB) <

0.001. (So then � turns out to be well larger than lB, indeed.)
Whereas, even for GaAs/AlGaAs 2D structures the charac-
teristic value is εZ/(e2/κlB) � 0.01, and for ZnO/MgZnO
quantum wells we get it �0.03.

Apparently, there are certain techniques that can reduce
the value of εZ experimentally; that is, to reduce effectively
the Landé factor g in actual experiments (see, for instance,
Ref. [23]). Then the calculated value D can correspond to the
energy gap of creation of charge carriers, skyrmions and anti-
skyrmions, responsible for Ohmic transport in ZnO/MgZnO
quantum heterostructures. More probable (even without ar-
tificial suppression of the Landé factor) is appearance of
a spin-charge texture in the ν = 2 QH ferromagnet ground
state near the critical field Bcr, corresponding to the Stoner
transition. This texture should be characterized by a local
spin change with amplitude δS > 1 and the correlation length
� > lB.

In conclusion, we note that only the (2.39) and (2.40)
result, of microscopic calculation, where the exchange in-
teraction is appropriately taken into account, can predict the
Stoner transition to a paramagnetic phase. Neither the Zee-
man energy (3.1) nor the Hartree energy (3.2) (both smoothly
growing with the magnetic field) give any grounds for the
possibility of such a phase transformation.
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APPENDIX A: THE O(3) NONLINEAR SIGMA MODEL

For convenience, we review some relevant results of the
classical field theory. In the framework of the nonlinear sigma
(NLσ ) model [24,25], the density of “gradient” energy e(R)
and topological density ρT (R) are given by the expressions

e(R) = J

2
[(∂X 
n)2 + (∂Y 
n)2]

≡ J

2
[(∇β )2 + sin2 β(∇α)2] (A1)

and

ρT (R) = (4π )−1 
n · (∂X 
n) × (∂Y 
n)

≡ (4π )−1 sin β · (∂X β · ∂Y α − ∂Y β · ∂X α), (A2)

where 
n is the 3D unit vector (2.3), ∇ ≡ (∂X , ∂Y ), and J is
the spin stiffness parameter undefined in the framework of the
NLσ model, which, however, can be found microscopically
(see Sec. III). Both values, e(R) and ρT (R), are also invariant
with respect to substitution (2.4).

With the help of Eqs. (2.5) we find that e(R) and ρT (R)
are expressed in terms of (nX , nY , nZ ) as well as in terms
of (nx, ny, nz ) above, i.e., the equations of the NLσ model
are invariant with respect to rotation by a constant angle θ .
However, the limit values of 
n at R = 0 and R = ∞ are
transformed into nX |R=0 = − sin θ, nY |R=0 = 0, nZ |R=0 =
− cos θ and nX |R=∞ = sin θ, nY |R=∞ = 0, nZ |R=∞ = cos θ ,
respectively.

The main features of the NLσ model are as follows [23]:
(i) since the continuous, suitably behaved, function 
n(R)
implements the mapping of the {X̂ , Ŷ } plane onto a unit
sphere parametrized by angles α and β, the topological charge
qT [
n] = ∫

ρT (R)d2R takes only integer-number values, ei-
ther positive or negative, depending on the function β(R),
running through values from β(R)|R→∞ = 0 to β(0) = mπ ,
where m = ±1,±2, . . .; and (ii) the minima of the energy
E [
n] = ∫

e(R)d2R , considered as a function of 
n(R), are
determined by the qT values,

min E [
n] = 4πJ|qT |. (A3)

It is known that w = cot (β/2)eiα represents an analyti-
cal function of the variable Z = X + iY [24]. This property
and conditions of the physically appropriate behavior of the

n(α, β ) vector considered as a function of R enable to find
an analytical form of w(Z ). In particular, if 
n(R) has no
singularities at finite R, then in the simplest but nontrivial case
(i.e., when w is not equal to a constant) the unit topological
charge, qT = ±1, corresponds to a field where [24]

w = Z /�. (A4)

Within the framework of the macroscopic approach used, the
parameter � controlling the size scale remains undetermined
within the NLσ model. From Eq. (A4) it follows that in this
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case

cos β = R2 − �2

R2 + �2
, sin β = ± 2R�

R2 + �2
, (A5)

sin α = X

R
, and cos α = Y

R
; (A6)

and the topological density (A2) is

ρT = ± �2

π (R2 + �2)2
. (A7)

Using expressions (A5) and (A7) in formulas (3.1) and
(3.2) leads to the fact that integral (3.2) converges and is well
defined for any finite value of �, whereas integral (3.1), at
any nonzero εZ, diverges logarithmically for any finite �.
The study [13] shows that actually the skyrmion should be
characterized by two length scales: � the scale controlling
the skyrmion “core”, and some value lsk ∼ (e2/lBκεZ)1/2 as
a scale characterizing the decrease in density ρT (R) on the
“tail”—at R � �. The divergent integral is cut off at length
lsk considered to be much larger than �, so that the subsequent
minimization procedure by using � as a variational parameter,
gives the Zeeman (3.1) and Hartree (3.2) energies to logarith-
mic accuracy [13].

APPENDIX B: EQUIVALENCES FOR THE SPATIAL
DERIVATIVES OF THE SPIN-ROTATION MATRIX

COMPONENTS

The spinor-rotation matrix is [17]

Û (R) =
(

cos β

2 ei(α+γ )/2 sin β

2 e−i(α−γ )/2

− sin β

2 ei(α−γ )/2 cos β

2 e−i(α+γ )/2

)
.

The choice of functions α(R), β(R), and γ (R) is determined
by our goal to find the lowest energy spin excitation. In par-
ticular, the dependence of angle γ on coordinate R cannot be
ignored (i.e., for example, if considering it to be constant),
even despite formal nonparticipation of γ in determining the
direction of the 3D unit vector [see Eqs. (2.2) and (2.3)].

Indeed, the additional “ 
�(l )
σ̂l” terms in Eq. (2.13), appear-

ing due to the noncommutativity of the ∇ and Û (R) operators,

are equal to −iÛ †∇Û ≡ ∑
l=x,y,z �(l )(R) σ̂l , where

�(x) = (− sin α ∇β + sin β cos α∇γ )/2,

�(y) = (cos α ∇β + sin β sin α∇γ )/2,

and

�(z) = (∇α + cos β · ∇γ )/2.

If we suppose γ = const, then rot�(z) ≡ 0 wherever α(R)
is regular, which is considered to occur at any R �= 0. This
leads only to a trivial case with zero topological density
(A2), i.e., to the ground state. At the same time, if assuming
γ = α(R), we find out that: first, the nonphysical singularity
of �(z)(0) [emerging due to uncertainty of the α value at the
point R = 0, where cos β(0) = −1] is canceled; second, the
combination

∑
l [�

(l )]2 represents exactly the energy density
defined in the framework of the O(3) NLσ model (A1) (the
latter is presumably suitable for a macroscopic description
of extensive largescale spin excitations); third, the functions
α(R) and β(R) may be chosen regular at any finite R, see
below Eqs. (B4). So replacing 
�(l )

R = �(l )|γ=α , we obtain

�
(z)
R,μ = 1

2
(1 + cos β )∂μα,

�
(x)
R,μ = −1

2
sin α ∂μβ + sin β

2
cos α ∂μα, (B1)

�
(y)
R,μ = 1

2
cos α ∂μβ + sin β

2
sin α ∂μα,

where μ = X or Y . The following identities take place for
these values and their combinations determined by the for-
mulae (2.25)

rot 
�(z) ≡ 2�
(x)
X �

(y)
Y − 2�

(y)
X �

(x)
Y

≡ sin β · (∂X β · ∂Y α − ∂Y β · ∂X α) (B2)

and

�−
±�+

∓ ≡ 1

2

⎡⎢⎣ ∑
μ=X,Y
l=x,y

(
�(l )

μ

)2

⎤⎥⎦ ± 1

2
rot 
�(z) (B3)

(the subscript...R is omitted). Using Eq. (A1) we also find that∑
μ=X,Y
l=x,y

(
�(l )

μ

)2 ≡ 1

4
[(∂X 
n)2 + (∂Y 
n)2], (B4)

where 
n is the 3D unit vector presented by Eqs. (2.3) or (2.5).
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Ṽ (p) is defined by equation (2.29) in the text. The summation
is transformed by the integration:

∑
q... → (Nφ/2π )

∫
...l2

Bd2q
[Nφ is given by Eq. (2.26)]. In case parameter rs ∼ EC/ωc is
considered to be small, then the result E (0,ν )

int above is asymptot-
ically exact to the first order in rs.

[20] W. Kohn, Phys. Rev. 123, 1242 (1961).
[21] A. Pinczuk, B. S. Dennis, D. Heiman, C. Kallin, L. Brey,

C. Tejedor, S. Schmitt-Rink, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 68, 3623 (1992).

[22] This state is represented in the limit case of the lowest-energy
spin-flip (δS = −1) magnetoexciton corresponding to the in-
finitely large 2D momentum. Its energy, under the εZ = 0
condition, is given by equation [6]

� =
∫ ∞

0
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