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Angle-dependent Andreev reflection at an interface with a polaritonic superfluid
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We study analytically an analog of the Andreev reflection at a normal-superfluid interface. The polariton
gapped superfluid region is achieved by quasiresonant optical pumping. The interacting polaritons are described
with the driven-dissipative Gross-Pitaevskii equation. We find analytical formulas for the angles and amplitudes
of the reflected and transmitted particles. There are limit angles and energies, above which Andreev reflection and
transmission cannot be observed anymore and where the Andreev wave becomes a surface mode, exponentially
localized on the interface. These properties are confirmed by solving numerically the Gross-Pitaevskii equation in
simulations reproducing realistic experimental conditions.
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I. INTRODUCTION

Andreev reflection is an anomalous reflection occurring at
the interface between a superconducting and a nonsupercon-
ducting material [1]. An electron, instead of being reflected
with just its direction changed, is reflected as a hole excitation.
Its energy is inverted with respect to the Fermi energy, and so
are its charge, wave vector, and spin. Inversely, an incoming
hole is reflected as an electron. Andreev reflection determines
the properties of metal/superconductor structures [2,3]. It has
been observed experimentally not only in electronic systems
[4,5] but also in superfluid helium experiments [6]. However,
it has never been observed in fermionic gases despite a pro-
posal [7,8] (we find that Ref. [9], despite interpreting transport
properties as signatures of multiple Andreev reflection, is not
a clear and direct measurement of the Andreev reflection in
fermionic gases). The Andreev process can also lead to specu-
lar reflection when dealing with relativistic electron dispersion
relations as in graphene [10].

A similar effect has been discovered and studied in the
1970s in nonlinear optics. It is known as optical phase
conjugation [11], also related to optical parametric scatter-
ing. In this context, an incident optical wave arriving on
a phase-conjugating mirror (which involves nonlinear pro-
cesses) is reflected as its time-reversed partner, meaning that
the reflected wave has the same frequency and opposite
wave vector. The analogy between optical phase conjugation
achieved using degenerate four-wave mixing and the elec-
tronic Andreev reflection has been noticed and discussed in
Refs. [12,13]. Andreev reflection on a Bose-Einstein conden-
sate has been proposed theoretically as well [14] but has not
been observed yet. In Ref. [14], the Bose-Einstein condensate
was in a supersonic regime. This allows one to draw a parallel
with phenomena occurring close to the horizon of a black
hole. It is now understood that Andreev reflection is very simi-
lar to phenomena encountered near the horizon of black holes
[15–19], such as Hawking emission. The study of Hawking
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emission analog [20] using quantum fluids either made of
atomic vapors or of light became a very active research field in
the last years both theoretically and experimentally [21–28].

Exciton-polaritons are quasiparticles arising from the
strong coupling of excitons and cavity photons [29]. They
exhibit strong interactions, and thus a polariton mode be-
haves as a nonlinear oscillator exhibiting bistability [30].
Exciton-polaritons are part-light part-matter bosonic quasipar-
ticles arising from the strong coupling between semiconductor
excitons and confined photons [31,32]. They are intrinsi-
cally strongly interacting and their bosonic nonlinearity can
show up as a parametric oscillator behavior [33–40] or Bose-
Einstein condensation [41–45] even at room temperature
[46–50]. Polaritons also offer broad possibilites for analog
gravity simulations [23]. Under resonant pumping, the spec-
trum of the elementary excitations of the pumped mode is
complex because of the driven dissipative nature of the sys-
tem. However, above the bistability threshold it contains a gap
between the real parts of eigenenergies [32,51–55] showing
similarities with the one of a superconductor. In this regime
the excitation of the fluid approximately verifies the Lan-
dau criterion of superfluidity, the remaining dissipation being
due to the imaginary part of bogolon energies [56,57]. This
regime can therefore be called a gapped superfluid regime
where the pumped mode shows original rigid behavior against
perturbations [54]. In a previous work, we have considered
the reflection of a plane wave at an energy E + Ep on such
superfluid of energy Ep and phase φ [39]. We have shown
that normal elastic reflection occurs together with an Andreev
reflection analog at an energy Ep − E and with a phase shift
2φ. This Andreev reflection phenomenon can be interpreted
using nonlinear optics vocabulary as the result of a parametric
scattering process. We have shown that the phase shift 2φ can
be interpreted as an artificial gauge field allowing the imple-
mentation of topological bands in multi-terminal Josephson
junctions [58].

In this work, we go further and study comprehensively
the angular dependence of the Andreev reflection on a po-
laritonic gapped superfluid in two dimensions (2D). We
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FIG. 1. (a) Sketch of the planar optical microcavity hosting
exciton-polaritons. Light is confined in the z direction by distributed
Bragg reflectors (DBR), while excitons are confined by a quantum
well (QW). The external pumping is provided by a laser at energy
Ep. (b) Energy dispersion of the propagative states (solid lines) asso-
ciated with the wave vector k+ and energy dependence of the inverse
decay lengths (dotted lines) κ± in the gapped superfluid regime.
The gap is the shaded area where no propagative states exist, and
is centered around the pump energy (purple line). Blue—positive
energy +E ; red—negative energy −E . k0 = √

2mEp/h̄.

derive the Bogoliubov-de Gennes equations from the 2D
Gross-Pitaevskii equation for a 2D planar microcavity hosting
exciton-polaritons with quasiresonant pumping. The interface
between a nonsuperfluid region (not pumped) and a gapped
superfluid region (pumped) is the theatre of an anomalous
reflection, similar to the Andreev reflection, and a nontrivial
transmission (for energies of incident particles larger than the
gap). We solve the problem analytically, finding the different
quantities characterizing the reflection and the transmission,
such as wave vectors and decay lengths, angles, critical angles
and energies, and the scattering coefficients. We moreover find
peculiar solutions that take the form of surface modes for the
Andreev wave. The analytical results are verified by solving
numerically the 2D Gross-Pitaevskii equations. These results
can be useful to study polaritonic multiterminal Josephson
junctions that host Weyl singularities [58] and also in the study
of phenomena occurring close to the horizon of black holes.

II. GAPPED SUPERFLUID REGIME

In this section, we consider a planar microcavity hosting
interacting photons (exciton-polaritons) under quasiresonant
pumping. We neglect polarization effects. We remind the
existence of a gapped superfluid regime and the subsequent
elementary excitations of the system (bogolons). An original-
ity here is that we consider both the well-known propagative
states and the spatially decaying evanescent solutions which,
in particular, exist in the gap and which are important to
describe the reflection processes at the gap energies. We study
a strongly coupled planar microcavity [32,53,59] composed of
two distributed Bragg reflectors surrounding a quantum well,
as depicted in Fig. 1(a).

This type of cavity allows confining exciton-polaritons in
the z direction, letting them propagate in the (x, y) plane
where they can be described by a parabolic dispersion rela-
tion. We first consider the situation where the whole cavity is
under quasiresonant pumping. Experimentally, a pump laser
drives the whole cavity from the top, as shown in Fig. 1(a).
The wave function ψ of a quasiparticle confined in the cavity

can be described using the 2D Gross-Pitaevskii equation:

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 − iγ + α|ψ |2

]
ψ + P, (1)

where h̄ is the reduced Planck constant, m the effective mass
of the exciton-polaritons, γ their lifetime, α > 0 the repulsive
interaction between them, and P = P0e−iωpt the pumping term
at the energy Ep = h̄ωp (we consider the laser pump to be
at normal incidence). P0 is the amplitude of the pump. We
consider γ → 0 to simplify the analytics, but we verify the
validity of the solutions obtained with this assumption later.
A nonzero decay shows up in the imaginary part of the bo-
golon energy, but does not qualitatively affect our results in
this configuration. This equation has a spatially homogeneous
solution ψs = √

neiφ demonstrating a bistable behavior [30].
The density of exciton-polaritons |ψ |2 = n can be directly
measured experimentally because it dictates the intensity of
the light emitted by the cavity. Additionally to the spatially
homogeneous solution, we consider the weak superfluid ex-
citations called bogolons which result from the nonlinear
coupling between two complex conjugate particles:

ψ = e−iωpt (ψs + ueikre−iωt + v∗e−ikreiω∗t ), (2)

where u, v are the Bogoliubov coefficients. We can obtain
the Bogoliubov-de Gennes equations by inserting the wave
function (2) into the Gross-Pitaevskii equation (1):(

L αψ2
s

−αψ∗2
s −L∗

)(
u
v

)
= E

(
u
v

)
, (3)

where L = (εk − Ep + 2αn) with εk = h̄2k2/2m (|k| = k).
E = h̄ω denotes the energy of a particle with respect to the
pump energy Ep. The energy E comes straightforwardly from
Eq. (3):

E2 = (εk + αn − Ep)(εk + 3αn − Ep). (4)

One can use Eq. (4) to determine the wave vectors of the
particles depending on their energy:

k± =
√

2m(Ep − 2αn ±
√

(αn)2 + E2)

h̄
. (5)

If we only consider the case of repulsive interactions αn > 0,
then there are four different configurations of the system.
First, the superfluid regime is obtained when αn � Ep. The
limit case αn = Ep gives the linear Bogoliubov spectrum,
equivalent to the one found in the case of thermal equilibrium
μ = αn, which is E2 = εk (εk + 2αn). Then, for αn > Ep, the
superfluid is gapped, meaning that the two branches of the
dispersion are separated by a gap 2
, centered at the pump
energy, with


 = √
(αn − Ep)(3αn − Ep). (6)

In addition to these two superfluid regimes, where one can
find the dispersion relation of excitations with completely real
energies, there are different cases for Ep > αn > 0 where the
dispersion relation is complex, including rings of exceptional
points (non-Hermitian degeneracy line [60–66]). We will not
consider these configurations in the following. We study only
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the gapped superfluid configuration where αn > Ep. We con-
sider not only propagative states but also evanescent solutions
(with imaginary wave vectors). Indeed, from Eq. 5, we see
that the condition αn > Ep gives imaginary wave vectors (that
is, evanescent states) for a range of energies. More precisely,
the wave vector k− is imaginary for all energies and the wave
vector k+ is real only for |E | > 
. This means that instead of
the wave vectors (5), one should use inverse decay lengths:

κ± =
√

2m(2αn − Ep ∓
√

(αn)2 + E2)

h̄2 , (7)

which are the direct extensions of k±, respectively, to the case
of imaginary wave vectors.

We plot the dispersion relation of the propagative states and
the dependence of the inverse decay lengths on the energy
in Fig. 1(b). The dispersion relation obtained from Eq. (4)
shows propagative states (solid lines) that correspond to real
energies and demonstrate a gap. There are also evanescent
states, associated with κ+ (for |E | < 
) and κ− (for all en-
ergies). The dispersion relation of these states is shown in
dashed lines in Fig. 1(b). When the energy of a particle lies
inside the gap |E | < 
, there are only evanescent states in
the superfluid. However, we insist that the evanescent states
are present in the superfluid even outside the gap, together
with the propagative states: they are important to describe the
interfaces in finite-size systems, as we will see below.

The parts of the wave function oscillating at frequencies
±E/h̄ are determined by the Bogoliubov coefficients u, v.
They can be found from Eq. (3) with an appropriate normal-
ization condition. A bogolon is a particle of energy E ′ (which
can be positive or negative) with fractions |u|2 at E and |v|2
at −E . We choose E > 0, and consider two normalization
conditions: |u|2 − |v|2 = 1 and |u|2 − |v|2 = −1. Consider-
ing E < 0 would just lead to the same set of solutions with
inverted meaning of u and v. Therefore,

E ′ = E |u|2 − E |v|2

with

|u|2 − |v|2 = 1 ⇒ E ′ = E > 0,

|u|2 − |v|2 = −1 ⇒ E ′ = −E < 0. (8)

The analytical formulas of the coefficients can be computed
from Eqs. (3) and (8):

u± =
√√

(αn)2 + E2 ± E
√

2E
eiφ,

v± = ±
√√

(αn)2 + E2 ∓ E
√

2E
e−iφ, (9)

Note that the phase of the superfluid φ appears in the Bo-
goliubov coefficients with opposite signs (positive in u and
negative in v), which can be traced back to the conjugation in
Eq. (2).

Now that we have provided a detailed study of the different
regimes achievable for a collective excitation of the gapped
superfluid formed by quasiresonant pumping of an optical
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FIG. 2. (a) Scheme of the cavity hosting exciton-polaritons,
partly under resonant pumping creating a superfluid (red) region.
A probe (blue) is sent from the normal region toward the interface
(white dotted line) to observe Andreev reflection. (b) Scheme of the
2D real space for an incident wave at positive energy. The arrows de-
note the wave vectors with angle θI,N,A,T (with respect to the normal
incidence) denoting incident, normally reflected, Andreev reflected,
and transmitted wave at positive (blue) and negative (red) energies.
(c) Scheme of the k-space where the norms kN,A appear as circles,
the radius of the latter being smaller. This allows finding the angles
because of the constant ky (dashed/dotted black lines). For a given
ky (set by E and θI ), Andreev reflection can be possible (dashed)
or impossible (dotted black lines). (d) Energy representation of the
scattering phenomena. A wave incident at positive energy is reflected
both at the same energy and at its opposite (and is transmitted at both
energies if |E | > 
).

microcavity, we can proceed to the description of systems
containing interfaces.

III. ANDREEV REFLECTION ANALOGUE

We now consider a different configuration where only half
of the cavity is pumped, as shown in Fig. 2(a). This creates
an interface between the area under pumping and the area
without pumping, that is, a normal-superfluid interface. We
show that a phenomenon analogous to Andreev reflection can
occur at this interface, and study its properties.

In our model, the interaction and pumping terms present a
step-like profile, as shown in Fig. 2(a). The interactions and
pumping are null for x < 0 and constant for x > 0, which
sets a sharp interface at x = 0 between the two regions. The
x > 0 region is in the gapped superfluid regime αn > Ep.
For the normal region x < 0, where there are no interac-
tions nor pumping, Eq. (1) reduces to the 2D time-dependent
Schrödinger equation:

ih̄
∂ψ

∂t
= − h̄2

2m

ψ (10)

with plane waves solutions of the form:

ψ (x < 0, y, t ) = eik.re−iεkt/h̄ (11)
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with:

εk = h̄2k2

2m
. (12)

On the contrary, for x > 0, the complete form of Eq. (1) has
to be used. We will consider the problem of a wave incident
from the normal region on the superfluid region. However,
depending on whether the particle has its energy inside or
outside the gap, the wave function ansatz will be different,
describing evanescent or propagative states in the superfluid.
We first consider the case of energies of incident particles ly-
ing inside the gap |E | < 
, so that there can be no propagation
in the superfluid, and therefore there is no transmission. This
is a nontrivial extension of the previous 1D study in [39] to
two dimensions. Then we consider energies outside the gap,
leading to propagative states in the superfluid region.

A. |E| < �

We consider the problem of an incident particle of energy
0 < E < 
 (the derivation made for an incident particle of
energy −E follows the same lines). Because we measure
energies with respect to the pump energy, the norm of the
wave vector is:

kN =
√

2m(Ep + E )

h̄
. (13)

If the incident wave has an angle of incidence θI (0 � θI <

π/2) from the normal region toward the superfluid one, then
its wave vector is

kI = kN (cos θI x + sin θI y). (14)

The wave vector along y denoted ky is thus determined com-
pletely by the angle of incidence and the energy of the incident
particles, that is, by two parameters that can be easily tuned in
experiments with polaritons. Its expression is

ky = kN sin θI . (15)

The invariance of the problem in the y direction imposes that
at a given energy the wave vector along y is the same in the
normal region and the superfluid. All waves at the energy E of
the incident wave possess the same y component of the wave
vector ky. At the energy of the Andreev reflection, symmetric
to E with respect to Ep, the y component of the wave vector
is −ky because of the complex conjugation resulting from
the parametric processes creating amplitudes at the Andreev
energy. To use the scattering formalism, we need to define the
different scattering states we will consider. First, we consider
the incident wave

ψI =
(

1
0

)
eikN x cos θI eikyy, (16)

using the following basis to describe the two conjugate fre-
quencies:

e−iE/h̄t ≡
(

1
0

)
; e+iE/h̄t ≡

(
0
1

)
. (17)

This unique incident wave provokes two different reflections.
The first one is the normal reflection whose wave function

reads

ψN =
(

1
0

)
eikN cos θN xeikyy, (18)

and the second one is the Andreev-like reflection with a wave
vector:

kA =
√

2m(Ep − E )

h̄
. (19)

This corresponds to a wave with reversed energy (with respect
to the pump energy). Its wave function reads

ψA =
(

0
1

)
eikA cos θAxe−ikyy. (20)

The relations between the different angles can be determined
from the translational invariance of the problem along the y
direction, which yields [1]

ky = kN sin θI = −kN sin θN = kA sin θA. (21)

This gives both the trivial result θN = −θI and the nontrivial
result

θA = arcsin

(
kN

kA
sin θI

)
. (22)

This is analogous to the Snell-Descartes law, which has
already been extended to interfaces of electronic systems
[67,68]. However, there is no minus sign for the angle of
the Andreev reflection, meaning that it occurs in the direction
opposite to the incident wave. The different angles considered
θI,N,A are represented in real space in Fig. 2(b) and in recip-
rocal space in Fig. 2(c). The Andreev reflection occurs in the
same quadrant as the incident wave, which is very different
from the usual reflection, but close to the electronic An-
dreev reflection. In our case, however, the so-called Andreev
approximation does not hold. In electronics, this approxima-
tion states that the Andreev-reflected particle has a direction
strictly reversed with respect to the incident particle because
the gap 
 is negligible with respect to the Fermi energy

 
 EF. In our case, the pump detuning Ep plays the role
of the Fermi energy EF ∼ Ep. The Andreev approximation in
our case would consist in neglecting 
 with respect to Ep.
However, in our system, the gap can be approximately equal to
the pump detuning 
 ≈ Ep (2
 = Ep in most of the figures).
Moreover, the expression of the angle clearly states that for
incident particles of positive energies (still with respect to
Ep), the Andreev-reflected particle will be reflected at a higher
angle, giving upper bound for the angle of incidence θI,Rc,
above which no Andreev reflection is possible:

θI,Rc = arcsin

√
Ep − E

Ep + E
. (23)

Above this angle, the Andreev wave becomes a surface wave,
evanescent on both sides of the interface.

On the contrary, if the energy of the incident particle is
negative, then the Andreev-reflected particle will be reflected
at an angle smaller than the angle of incidence: θA � θI .
There will be no limit angle in that case because for normal
incidence θI = 0 the Andreev reflection will be normal as
well. The dependence of the deviation of the angle of Andreev
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FIG. 3. (a) Andreev reflection angle with respect to the angle of
incidence for different energies of the incident wave. The difference
is not negligible, because the Andreev approximation (
 
 Ep) does
not hold. (b) The angle of the transmitted wave with respect to the
angle of incidence for different energies of the incident wave.

reflection from the angle of incidence θA − θI on the angle of
incidence θI for different energies is plotted in Fig. 3(a). We
can see that for positive energies, the curves exhibit a limit
angle, whereas for negative energies there is no such bound,
as stated above.

Now that the different propagative states are defined in
the normal region, we can consider the scattering process of
Andreev reflection and compute the scattering coefficients.
In the case |E | < 
, there are no propagative states in the
superfluid, so the wave function of the collective excitation
in the superfluid (2) has to be written explicitly to account for
the exponential spatial decay of the evanescent states:

ψ (x > 0, y, t )

= e−iωpt (ψs + ueikyye−κxe−iωt + v∗e−ikyye−κxeiωt ). (24)

We consider only real frequencies. κ is the inverse decay
length and ky is the wave vector in the y direction, directly
inherited from the incident wave. The propagative form of
this term is responsible for the shift of finite-size beams upon
reflection in the Goos-Hänchen effect [69] and its analogs.

Inserting the solution (24) into the equation (1) we find

E2 = (εky − εκx + αn − Ep)(εky − εκx + 3αn − Ep). (25)

From this relation, we can find that there are two different in-
verse decay lengths at each energy, different from the spatially
homogeneous case of Eq. (7) because it takes into account the
interface and the invariance along y:

κ∓ =
√

k2
y + 2m(2αn − Ep ±

√
(αn)2 + E2)

h̄2 . (26)

We define the scattering matrix in the {E ,−E} basis as

S =
(

rN r∗
A

rA rN

)
, (27)

where rN,A are the scattering coefficients denoting
normal/Andreev reflection, respectively. To determine
them, we consider the wave functions in the normal region
N and superfluid region S for a given configuration, say an
incident wave from the normal region toward the interface at
positive energy. This gives

N = 1√
w+

(ψI + rNψN ) + 1√
w−

rAψA, (28)

where w± = h̄
m kN,A cos θI,A are the group velocities in the x

direction at ±E , and

S =
∑
∗≡±

η∗e−κ∗x

(
u∗eikyy

v∗e−ikyy

)
. (29)

The use of the group velocities is mandatory to conserve the
density current in the x direction.

The scattering coefficients are found from the continuity of
the wave function and its derivative at the interface for both
energies, which gives a system of equations:

N (x = 0) = S (x = 0)

∂N

∂x
(x = 0) = ∂S

∂x
(x = 0), (30)

which can be written in a complete form composed of four
equations:

1√
w+

[1 + rN ]eikyy

(
1
0

)
+ rA√

w−
e−ikyy

(
0
1

)
= η+

(
u+eikyy

v+e−ikyy

)
+ η−

(
u−eikyy

v−e−ikyy

)
, (31)

ikN cos θI√
w+

[1 − rN ]eikyy

(
1
0

)
− ikA cos θArA√

w−
e−ikyy

(
0
1

)
= −κ+η+

(
u+eikyy

v+e−ikyy

)
− κ−η−

(
u−eikyy

v−e−ikyy

)
. (32)

The normal and Andreev reflection coefficients are then determined analytically:

rN = (kA cos θA + iκ−)(kN cos θI − iκ+)u+v− − (kN cos θI − iκ−)(kA cos θA + iκ+)u−v+
(kA cos θA + iκ−)(kN cos θI + iκ+)u+v− − (kN cos θI + iκ−)(kA cos θA + iκ+)u−v+

, (33)

rA = 2ikN cos θI (κ+ − κ−)v−v+
(kA cos θA + iκ−)(kN cos θI + iκ+)u+v− − (kN cos θI + iκ−)(kA cos θA + iκ+)u−v+

√
w−√
w+

. (34)

In the end, all the quantities can be calculated from the
experimental conditions. As shown in Fig. 2(d), a unique
incident wave gives indeed two different reflections (for θI <

θI,Rc). The first one (specular reflection) is at the energy of

the incident wave, with an amplitude rN . The second one
(Andreev reflection) is at the conjugate frequency, with an
amplitude rA. There is no transmission in the superfluid,
only evanescent states. The profile of the corresponding wave
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FIG. 4. (a) Phase diagram showing the experimental conditions
E , θI leading to Andreev reflection (red) and/or transmission (blue
areas). The domains are limited by red/blue thick lines, respectively.
(b–d) Real space profile of the states at positive (blue) and negative
(red) energy for three different experimental conditions. (b) θI =
π/6, E = 
/2 = 0.125 meV leads to Andreev reflection but no
transmission, all states are evanescent in the superfluid. (c) θI = π/4,
E = 0.45 meV, where there are only evanescent states at the nega-
tive energy, which creates a surface state. (d) θI = 0, E = 0.3 meV,
which give both an Andreev reflection and transmission in the super-
fluid. Note that specular reflection is present in all cases, which leads
to interferences (with the incident probe) in the amplitude at positive
energy in the normal region.

function in real space is plotted in Fig. 4(b). The incident
and reflected waves at the incident frequency (blue) interfere,
leading to a spatial modulation of the wave function at positive
energy on the left-hand side of the interface (x < 0, normal
region). On the contrary, there is only one reflected wave
at the Andreev frequency (in red), which gives a constant
profile in the normal region. In the superfluid region, at both
energies, the states are evanescent and the norm of the wave
functions rapidly decreases to zero. Above the limit angle,
the Andreev reflection coefficient goes to zero, meaning that
Andreev reflection cannot occur anymore, because the wave
vector ky dictated by experimental conditions is larger than kA

[see Fig 2(c), in the case of the black dotted line]. If Andreev
reflection is impossible, then the profiles of the wave functions
will look as shown in Fig. 4(c). At positive energy, this is very
similar to the case of Fig. 4(b), but at negative energy, Andreev
reflected waves cannot propagate in the normal region and are
evanescent, as well as in the superfluid. In the end, the state at
negative energy is evanescent at both sides of the interface, so
it is a surface state exponentially localized at the interface.

B. |E| > �

Previously, we considered only the case |E | < 
, that is,
energies lying inside the gap. However, Andreev reflection
can occur even outside the gap. The derivation is very similar
to what was shown previously. However, one should work
with the propagative states in the superfluid, with the wave
vectors (5) (we remind that even for |E | > 
, there are still
evanescent states in the superfluid in addition to the propaga-
tive states, describing the wave profile close to the interface).
The particle is transmitted at an angle of

θT = arcsin

(
kN

kT
sin θI

)
, (35)

determined by ky = kN sin θI = kT sin θT , where kT ≡ k+ is
the wave vector of the transmitted particle. Since kT > kN ,
there is a critical angle of incidence above which there is no
transmission, even for |E | > 
:

θI,T c = arcsin

(
Ep − 2αn +

√
(αn)2 + E2

Ep + E

)
. (36)

Figure 3(b) shows the angle of transmission with respect to
the angle of incidence for different energies. Again, there is a
critical angle for certain energies, when θT reaches the value
π/2, as shown in this figure.

We represented the domains of energy/angle of incident
particle where Andreev reflection (red) or transmission (blue)
is possible in Fig. 4(a) using Eqs (23) and (36). We see that
the effective gap 
̃ where no transmission is possible is equal
to the gap 
 calculated in Eq. (6) only for θI = 0. Away from
normal incidence, the effective gap is much larger than this
value, meaning that the transmission is possible only for small
angles of incidence.

Moreover, in the region |E | > 
 the scattering coefficients
change with respect to those computed for |E | < 
, and there
is one more scattering coefficient to determine, the one ac-
counting for the transmission in the superfluid. We can write
the wave function in the superfluid in this case:

S,t = t

(
u+ei(k+x+kyy)

v+e−i(k+x+kyy)

)
+ η−e−κ−x

(
u−eikyy

v−e−ikyy

)
, (37)

and we finally find the transmission coefficient by considering
the continuity of the wave function and its derivative at the
interface:

rN = (kA cos θA + iκ−)(kN cos θI − kT cos θT )u+v− − (kN cos θI − iκ−)(kA cos θA − kT cos θT )u−v+
(kA cos θA + iκ−)(kN cos θI + kT cos θT )u+v− − (kN cos θI + iκ−)(kA cos θA − kT cos θT )u−v+

, (38)

rA = 2kN cos θI (kT cos θT + iκ−)v−v+
(kA cos θA + iκ−)(kN cos θI + kT cos θT )u+v− − (kN cos θI + iκ−)(kA cos θA − kT cos θT )u−v+

√
w−√
w+

, (39)

t = 2kN cos θI (kA cos θA + iκ−)v−
(kA cos θA + iκ−)(kN cos θI + kT cos θT )u+v− − (kN cos θI + iκ−)(kA cos θA − kT cos θT )u−v+

√
wT√
w+

, (40)
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where wT = ξ h̄kT cos θT /m is the group velocity for waves transmitted in the superfluid, with ξ = (2αn − Ep + εk )/E . Using
u+ = −v−e2iφ and v+ = u−e2iφ , we can rewrite these expressions as

rN = (kA cos θA + iκ−)(kN cos θI − kT cos θT )v2 + (kN cos θI − iκ−)(kA cos θA − kT cos θT )u2

(kA cos θA + iκ−)(kN cos θI + kT cos θT )v2 + (kN cos θI + iκ−)(kA cos θA − kT cos θT )u2
, (41)

rA = 2
√

kN kA cos θI (kT cos θT + iκ−)uv

(kA cos θA + iκ−)(kN cos θI + kT cos θT )v2 + (kN cos θI + iκ−)(kA cos θA − kT cos θT )u2
e−2iφ, (42)

t = 2
√

kN kT cos θI (kA cos θA + iκ−)v

(kA cos θA + iκ−)(kN cos θI + kT cos θT )v2 + (kN cos θI + iκ−)(kA cos θA − kT cos θT )u2
e−iφ, (43)

with u = |u−| and v = |v−|. We will explain a few features of
these scattering coefficients. First, one can verify that

|rN |2 + |rA|2U (θI,Rc − θI ) + |t |2U (|E | − 
̃) = 1, (44)

where U denotes the Heaviside step function. This equa-
tion accounts for the conservation of the current density: an
incident wave of amplitude 1 is partly reflected at the same fre-
quency with amplitude |rN |2, partly at the conjugate frequency
with amplitude |rA|2 (if the angle of incidence θI < θI,Rc), and
partly transmitted with amplitude |t |2 (if the energy |E | > 
̃)
by a wave combining both frequencies. Moreover, we can
see that the phase of the superfluid plays a role only in the
components at −E . Indeed, it does not appear in rN , but only
in rA (with a factor 2) and in t . The wave function transmitted
in the superfluid is proportional to tu at E and tv at −E [see
Fig. 2(d)], which means that the total phase of the transmitted
wave is 0 at E and −2φ at −E , in agreement with the phase
matching condition of the parametric process discussed below
and shown in Fig. 5(b).

We already discussed that there are experimental condi-
tions leading to the presence of Andreev reflection and the
absence of transmission [Fig. 4(b)], or to the absence of both
Andreev reflection and transmission, accompanied by the for-
mation of a surface wave [Fig. 4(c)]. As shown above, there

FIG. 5. (a) Scattering coefficients rN (dotted), rA (solid), and t
(dashed lines) with respect to the energy for different angles of
incidence θI = {0, π/6, π/4} in pink, blue, and green, respectively.
The gray lines (and corresponding points) show the energy (and
corresponding angles) for which are calculated the states in Fig. 4.
Note the peaks in the remaining coefficients when one vanishes.
(b) Illustration of the parametric process in Andreev reflection. The
pump is at energy Ep with phase φ. Positive energies are at Ep + E
with no phase (we disregard the phase of the incident wave) whereas
negative energies at Ep − E gain a phase −2φ because of the para-
metric process [the minus sign appears because of the conjugation,
see Eq. (2)]. Two “particles” from the pump are converted in one
“particle” at +E and no phase and one “particle” at −E with a phase
−2φ according to the phase-matching condition (45).

are also experimental conditions where the transmission (and
eventually Andreev reflection) can be observed. The profile
of the state in this case is shown in Fig. 4(d): there is a
transmission in the superfluid, and simultaneously evanescent
states in the superfluid, as stated previously, whose influence
on the profile is visible only close to the interface. Far from the
interface, there is one plane wave at each energy, as expected
from the form of the wave function (37). This is the propaga-
tive bogolon quasiparticle, with a part at positive and a part at
negative energy, whose respective amplitudes are determined
by u and v.

Figure 5(a) shows the variation of the scattering coeffi-
cients rN , rA, and t for an incident wave of energy −Ep <

E < Ep and with an angle of incidence θI (different an-
gles are plotted with different colors). Increasing the angle
of incidence generally decreases the Andreev reflection and
transmission coefficients (the normal reflection thus increases,
because the sum of all square norms of the scattering coef-
ficients always equals 1). At θI = π/4, rA cancels for some
frequency range within the gap. Here the mode at Andreev
frequency is evanescent both in the superfluid and normal
region, forming a propagating surface wave. It is clear that the
particle-hole symmetry (mapping from E to −E ) only holds
for |E | < 
 and at normal incidence, so it is a very fragile
case. Moreover, some coefficients exhibit infinite derivatives,
which correspond to the appearance or disappearance of an-
other coefficient. For instance, for θI = 0 and E = 
, there
is a peak with an infinite derivative for both the normal
and Andreev reflections, rN and rA. For E → 
−, the in-
verse decay length κ+ → 0. Thus, the associated wave is
less and less vanishing, which enhances the probability of
energy conversion to occur, thus increasing the Andreev re-
flection (and decreasing the normal reflection at the same
time). Reversely, for E → 
+, the wave vector kT → 0,
and the wave propagates critically slowly in the superfluid
(we remind that the dispersion relation of the gapped su-
perfluid is parabolic), which again enhances the probability
of energy conversion. Finally, for large energies E  
, the
transmission in the superfluid region becomes dominant over
reflection.

In Fig. 5(a) we also indicate the regimes corresponding to
the previous figures. First, we have considered the case of a
wave incident at positive energy E = 1.2
, and at normal
incidence θI = 0. This corresponds to the vertical gray line
at this energy and the pink curves in Fig. 5(a). The gray
line cuts the three pink curves when none of them is zero,
meaning that there is a specular reflection rN �= 0 (dotted line),
an Andreev reflection rA �= 0 (solid line), and a transmission
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t �= 0 (dashed line). This is consistent with the phase diagram
of Fig. 4(a), which states that there is both transmission and
Andreev reflection in this region (specular reflection is always
possible). The state found in this case is plotted in Fig. 4(d),
and the Andreev reflected wave is visible, as well as the
transmitted bogolons.

The second case corresponds to an incident wave of posi-
tive energy E = 1.8
, and an angle of incidence of θI = π/4
(the set of green curves). The vertical gray line at this energy
cuts only the normal reflection coefficient, whose norm is
1 because Andreev reflection and transmission coefficients
are zero at this energy (for instance, the Andreev reflection
coefficient decreases to 0 shortly after E = 
/2). For those
experimental conditions, the phase diagram indeed tells us
that there is no Andreev reflection nor transmission possible.
The profile of this state is shown in Fig. 4(c). The wave at the
Andreev frequency is evanescent in both regions, so the state
is localized at the interface.

Finally, the third state corresponds to an incident energy
E = 
/2 (within the gap) and an angle of incidence of θI =
π/6. The vertical gray line cuts only two blue lines: rN �= 0
and rA �= 0. There is no transmission (|E | < 
). The resulting
state is shown in Fig. 4(b). We disregard the case of a wave
coming from the superfluid toward the interface.

We note once again that a phase 2φ appears in the wave
functions at the Andreev frequency (both in the reflected
and transmitted wave) whereas there is no superfluid phase
associated with the wave function at the pump frequency.
This is known to occur in optical parametric amplification,
as depicted in Fig. 5(b). The superfluid plays the role of a
pump, the normal frequency is the source, and the Andreev
frequency is the idler. From two pump particles, one gets one
particle at each energy Ep ± E , which verifies the energy and
momentum conservation laws:

2Ep = (Ep + E ) + (Ep − E ),

2iφ = 0 + ((−2φ)i)∗, (45)

where the conjugation appears from Eq. (2).

IV. SIMULATIONS

To confirm that the reflection can be observed exper-
imentally, we simulated the Gross-Pitaevskii equation (1)
numerically. The parameters of the simulation are: m =
8 × 10−5m0 (m0 is the free electron mass), γ = h̄/2τ with
τ = 15 ps, α = 3.6 μeV · μm2. We consider a 2D square
area of 256μm with a grid of 0.5μm. The method used
to integrate the Gross-Pitaevskii equation is the third-order
Adams-Bashforth method [70]. The Laplacian is computed
using the Fast Fourier Transform accelerated by the graphics
processor unit [71].

A continuous wave (cw) pump under normal incidence
covers a half-space x > 0. The pump energy Ep is 0.5 meV
above the polariton energy at k = 0. We start with an initial
condition ψ (x, y, 0) = ψ0U (x), where U is the Heaviside step
function and ψ0 is chosen so that α|ψ0|2 = 0.55 meV [ac-
cording to Eq. (6)], to reach the quasistationary regime faster.
The density injected by the pump creates a gap in the bo-
golon spectrum 2
 ≈ 0.5 meV. Figure 6(a) shows the gapped

FIG. 6. (a) Bogolon dispersion in numerical experiments. Note
the presence of a gap of 0.5 meV, as in the analytical calculations.
(b) Numerical profile of the interactions αn(x) (black line). The
plateau around 0.55 meV indicates the superfluid region. The ana-
lytical profile (step profile) is indicated as a green dashed line for
comparison. The probe is located at 15μm from the superfluid region
(blue dashed line, the arrows indicate the direction of propagation
of the probe, which is sent toward the superfluid). (c) The intensity
distribution in the reciprocal space (measured in the N-region) at
the “Andreev” frequency (−E for an incident probe at +E ) in a
realistic configuration, where interactions are also present in the
“normal” region. The angles are indicated directly in the figure, as
done schematically in Fig. 2(c). The difference in kx for normal and
Andreev reflections is visible. (d) Left: Difference between the angle
of incidence and the angle of Andreev reflection with respect to the
energy for θI = {45◦, 20◦, 10◦} (resp., purple/brown/green). Right
axis: angle of transmission. Lines represent theory (solid for reflec-
tion angle, dashed for transmission angle) and points (circles/squares
for reflection/transmission angles) results from numerical experi-
ments. The error bars correspond to the reciprocal space broadening
(full width half maximum).

bogolon spectrum in this pumped area, which is computed
by sending a narrow pulse in space and time ψ0(x, y, t ) =
exp[−(x2 + y2)/σ 2] exp[−(t − t0)2/τ 2], with σ = 3μm, τ =
0.7 ps, and t0 = 200 ps (which allows the gapped superfluid
density to settle down) into a system described by Eq. (1) with
homogeneous pumping, triple-Fourier-transforming the result
ψ (x, y, t ) → ψ (kx, ky, E ) over the final 150 ps containing the
probe pulse (the whole simulation lasts 300 ps). Such gapped
bogolon spectrum has been recently measured experimentally
[55]. A crucial difference with respect to the ideal case we
considered in the previous part, is that the superfluid flows
out of the pumped region and its density in the normal region
is nonzero, with a profile shown in Fig. 6(b). The superfluid
injected at k = 0 by the pump creates a positive potential
for itself (repulsive interactions). The repelled particles are
accelerated and acquire a kinetic energy which progressively
becomes equal to the pump energy Ep. The finite lifetime
is responsible for the decay of the particles and sets the
decay length of the density profile far from the interface in
Fig. 6(b).

The main numerical experiment is based on having both
the above-mentioned cw pump beam in the x > 0 region and
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a cw probe beam sent from the normal region x < 0 at a given
energy E (with respect to the pump energy Ep) and given
angle of incidence (e.g., θI = 45◦) toward the superfluid. The
probe beam enters Eq. (1) similar to the pump beam, that is,
as a term +Pprobe exp(−iωprobet ), where ωprobe = (Ep + E )/h̄
and Pprobe = P0,probe exp(−(x − x0)2/2σ 2

probe) exp(−y/2σ 2
probe)

with P0,probe = 0.03P0 (the probe is much weaker than the
pump), σprobe = 10μm, x0 = 15μm. The probe needs to be
sent from a reasonably short distance x0 because of the polari-
ton decay [the position is shown in Fig. 6(b)].

With respect to the ideal case previously considered, states
in the normal region are not single particle states anymore but
bogolon states with both positive and negative frequencies and
opposite wave vectors. As shown below, this makes appear
several features that are not present when the normal region is
assumed empty. However, using energy and wave-vector res-
olution allows one to perfectly discriminate between different
contributions.

Figure 6(c) shows, for the particular case of E = 0.4
 =
0.1 meV, the distribution of the probability density in the re-
ciprocal space at the Andreev frequency (the conjugate of the
frequency of the incident wave). This is obtained by making
a triple Fourier transform of ψ (x, y, t )U (−x) f (t ), where U
is the Heaviside step function centered at the interface and
f (t ) is a 500-ps-long time window. The whole simulation lasts
1000 ps; the first half is not used for the Fourier transform due
to the transient behavior of the system.

We can see that the interactions in the normal region make
appear several different intensity peaks not expected in the
ideal picture considered analytically. First, the pump at the
energy Ep is clearly visible at −E because of its finite broad-
ening due to the finite time window used in the simulation, but
also due to nonlinear processes and finite lifetime effects. It is
at ky = 0, with a broadening along kx. It shows a maximum at
a negative kx value, which corresponds to the superfluid parti-
cles accelerated by the abrupt density gradient at the interface.
These particles ballistically propagate in the normal region
with a maximal kinetic energy equal to Ep. Then, the incident
wave is the only one in the positive kx range. It is centered at
the energy +E but it remains visible in log scale at the energy
−E . This allows us to well visualize the incident angle θI . At
the same ky as the incident wave, we see a trace of the normal
reflection with the reflection angle θN . Again it is centered at
+E and is therefore only weakly visible at the energy −E . At
ky opposite to the normally reflected signal, we find two bright
peaks which this time are centered at the energy −E . The one
in red is the Andreev reflection. Its kx is slightly different
from the one of the normally reflected signal, as predicted
analytically (θA �= θI ). Our simulations show that this small
difference should be experimentally accessible: it becomes
more important at larger energies and larger incidence angles
[see Fig. 3(a)]. Finally, the last peak called “image of rN ” is
the idler state of a parametric scattering process taking place
in the normal region between the pump flow and the normally
reflected signal (and thus rN and “image of rN ” are symmetric
with respect to the “Pump flow” label in the figure). This is
a result of the deviation from the perfect interface picture,
which (nicely enough) does not compromise the observation
of the Andreev reflected signal as we further explain below.
Complementary images, showing both frequencies +E and

−E and both regions x < 0 and x > 0, and a comparison with
a nonzero transmission case are provided in the Appendix.

As already stated, there is a flow at the pump energy in the
normal region and a conversion from interaction to kinetic en-
ergy. This conversion defines a subsonic area, near the pump
region, where the velocity of the superfluid is smaller than the
one of bogolons v < c, and a supersonic region v > c. It can
be shown (from v = c ⇐⇒ mv2/2 = αn/2 and energy con-
servation mv2/2 + αn = Ep) that the transition between both
regions takes place when the interaction energy drops to two-
thirds of the initial energy αn(x) = 2Ep/3. In the language of
analog gravity [20] this frontier is an event horizon analog,
with the supersonic region being the interior of the black
hole. Similar schemes have been proposed in the past to study
Hawking emission in polaritonic platform [21,72] and atomic
condensates [22]. One can see in Fig. 6(b) that this boundary
occurs very close to x = 0 (within 1 pixel of the numerical
grid) and it is not expected, with the parameters chosen, to
deeply modify the Andreev reflection scheme we studied in
the previous section. Moreover, our probe corresponds to an
excitation of the “superluminal” region of bogolon branch (as
in Ref. [72]), for which propagation against the flow occurs
even in the supersonic region, and where the propagation
direction is not changing sign crossing the horizon. The elastic
scattering toward the other bogolon branch propagating to-
gether with the flow occurs all along the propagation, because
of the inhomogeneous density distribution. Independently of
the strength of this scattering, because of the narrowness of
this region, the probe (becoming a combination of propagative
and evanescent waves) is still able to pass through the event
horizon and to reach the gapped superfluid region, where it is
entirely reflected by the gap, with both normal and Andreev
components. The contribution of the evanescent waves of the
gapped superfluid region into the reflection remains dominant,
which justifies our simplified analytical treatment. Both the
incident probe and the probe reflected at the gapped polariton
fluid can provoke stimulated Hawking emission at the horizon.
A vast majority of the signal reflected by the gapped fluid will
pass through the horizon, but a tiny part will be reflected back
to the gap as Hawking radiation, similar to multiple reflections
occurring in other analog systems [73–76]. The detailed study
of this last effect is beyond the scope of the present work and
could be a topic for future studies.

We quantitatively verify the agreement between the ana-
lytical results of previous section and these numerical results
in Fig. 6(d). Their reasonable agreement shows that the de-
viation from the ideal picture described above does not affect
qualitatively the main features of the Andreev reflected signal.
The difference between the angle of Andreev reflection and
the angle of incidence is plotted with respect to the energy for
different angles of incidence, showing both analytical results
(lines) and numerics (points with error bars). We also plot the
angle of transmission (dashed green line). We use the broad-
ening (full width half maximum) of the peaks observed in the
reciprocal space as an estimate for the uncertainty. Indeed,
the shape of these peaks is asymmetric, and it is therefore
not clear without a deep analysis, whether the “true” value of
the wave vector corresponds to the maximum of the intensity,
to the center of mass of the distribution, or to some other,
more complicated quantity taking into account the different
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nature of the sources of broadening (finite duration, finite
system size, the shape of the dispersion relation...). Choosing
the overall broadening for uncertainty guarantees that the real
value of the wave vector falls inside the error bars. We can
see that there is a good agreement between analytics and
numerical experiments, even if the latter were performed in a
realistic case (finite lifetime, pump flow in the normal region,
etc.).

V. CONCLUSION

To conclude, we provide a comprehensive theoretical
analysis of the angular-dependent Andreev reflection on a
polaritonic gapped superfluid. For energies inside the gap,
the superfluid hosts only evanescent states, whereas the non-
superfluid region has propagative states. It enables us to
observe a phenomenon analogous to the Andreev reflection:
a wave incident at +E is reflected at −E . The Andreev-
reflected wave is reflected at an angle different from the
angle of incidence. We find a critical angle, above which the
Andreev reflection cancels and the Andreev wave becomes a
surface mode. The Andreev reflection also occurs for energies
outside the gap, accompanied by partial transmission into the
superfluid. We find a good agreement between our analytical
model and realistic numerical simulations. The phenomenon
we describe is close to optical phase conjugation and analo-
gous to reflection on black hole horizons (Hawking radiation).
While most existing works only deal with Hawking radiation
in 1D, our work could help working out its description in 2D.
We believe that experimental observations could lead to new
developments in the analog gravity community thanks to the
strong similarities between Andreev reflection and Hawking
radiation.
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APPENDIX: ADDITIONAL NUMERICAL RESULTS

Here, we present additional results of numerical simula-
tions for two particular cases of zero transmission at 45◦
incidence and nonzero transmission at 10◦ incidence, where
it is allowed. To give a complete picture, for each of the
two simulations we present the distribution of the probabil-
ity density in the reciprocal space |ψ (kx, ky)|2 both at the
energy of the probe +E and at the energy of the Andreev
reflection −E . These distributions are presented both for the
left and right half-spaces (x < 0 and x > 0). The values of
the energies considered are E = 0.05 meV and E = 0.4 meV

FIG. 7. Reciprocal space distribution for left (a, c, e, g: x < 0)
and right (b, d, f, h: x > 0) half-spaces at the probe (a, b, e, f: +E ) and
conjugate (c, d, g, h: −E ) energies, corresponding to zero (a,b,c,d:
E = 0.05 meV) and nonzero (e, f, g, h: E = 0.4 meV) transmission.
The color scale has been adjusted for visibility.

(with Ep = 0.5 meV and 
 = 0.25 meV) for zero and nonzero
transmission cases, respectively.

The results of these simulations are shown in Fig. 7.
When the transmission is nonzero, a peak with a well-defined
nonzero wave vector along kx shows up in the reciprocal space
[Figs. 7(f) and 7(h)]. On the contrary, when the transmission
is zero, the spatially decaying bogolon solution shows up as a
weak and broad maximum centered at kx = 0 [Figs. 7(b) and
7(d)].

The region with the reflected signal x < 0 in Fig. 7 in
both cases (zero and nonzero transmission) presents a nonzero
signal both at the probe frequency and at the conjugate fre-
quency, the latter corresponding to the Andreev reflection.
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Since the probe intensity at the conjugate frequency −E is
especially weak, the maximum of the false color scale needs
to be adjusted accordingly [Figs. 7(c) and 7(g)]. This makes

the pump much more visible than at the probe frequency +E
[Figs. 7(a) and 7(e)]. The color scale is also adjusted between
the top and the bottom panels.
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