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We have theoretically studied phonon-mediated spin-flip processes of electrons in a GaAs double quantum
dot (DQD) holding two spins, under a phonon temperature gradient over the DQD. Transition rates of interdot
phonon-assisted tunnel processes and intradot spin-flip processes involving spin triplet states are formalized by
the electron-phonon interaction accompanied with the spin-orbit interaction. The calculations of the spin-flip
rates and the occupation probabilities of the spin-states in the two-electron DQD with respect to the phonon
temperature difference between the dots are quantitatively consistent with our previous experiment. This theo-
retical study on the temperature gradient effect onto spins in coupled QDs would be essential for understanding
spin-related thermodynamic physics.
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I. INTRODUCTION

Thermodynamics in quantum mesoscopic systems has long
been studied as one of the central concepts in solid-state
physics. In particular, temperature gradients over mesoscopic
structures have realized various kinds of thermodynamic func-
tions such as heat engines and heat valves, which are useful for
improvements of thermoelectric conversion and heat control
by electrical means in mesoscopic devices [1–4], and there
are many related theoretical studies that have been reported
[5–11]. Although these kinds of thermodynamic phenomena
are constituted mainly by a charge degree of freedom, when
spin-related effects such as the spin-orbit interaction exist,
contributions of the spin effects to thermodynamic phenom-
ena cannot be dismissed. We have recently realized a lattice
temperature gradient over a semiconductor double quantum
dot (DQD) by using a nearby QD-based phonon source [12].
In this experimental study, we reveal that such a phonon
source not only generates phonon-mediated spin transitions
in the DQD, but also, due to the nonequilibrium phonon
environment in the DQD, creates a significant imbalance in
the occupation probabilities of parallel and antiparallel spin
configurations in the two-electron DQD. This finding can
provide intriguing concepts of spin-dependent thermoelectric
devices that are driven by a local lattice temperature gradi-
ent. To date, many experimental and theoretical studies have
been conducted on the phonon-mediated spin-dependent tran-
sitions in quantum dots to explore the dephasing mechanism
of QD-based spin qubits [13–17], however, contributions of
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a temperature gradient over coupled QDs to the transitions
have never been discussed substantially. Therefore, theoreti-
cal studies on the temperature gradient effect would largely
contribute to develop spin-related thermodynamic physics
[1,18,19].

Based on this background, in this work, we have theoreti-
cally investigated the phonon-mediated spin-flip processes of
two-electron spin states in a GaAs DQD under a phonon tem-
perature gradient to reproduce our previous experiment [12].
Because spin-orbit interaction and electron-phonon interac-
tion coexist in GaAs, a spin can flip during a phonon-mediated
transition between ground states and excited states. Further-
more, we considered that the lattice temperatures are different
between the two dots, i.e., there is a temperature gradient over
the DQD. We successfully formalized the phonon-mediated
spin-flip rates in such a nonequilibrium phonon environment.
The ratio of the spin-flip tunnel rate from the right to left QD
to that in the opposite direction shows clear dependence on the
phonon temperature gradient between the QDs. Furthermore,
we calculated the occupation probabilities of the two-electron
spin states. The significant imbalance between antiparallel
and parallel spin states found in our previous experiment is
accurately reproduced by the theoretical calculation, which
takes into account the nonequilibrium phonon environment in
the DQD [12].

II. TWO-ELECTRON SPIN STATES INVOLVING THE
PHONON-MEDIATED PROCESSES

We considered the two-electron spin configurations of
the (1, 1) and (0, 2) charge states in the DQD, where (i, j)
denotes that the electron number i in the left QD and j in
the right QD. It is assumed that the DQD is formed in a
two-dimensional electron gas defined in a GaAs quantum
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FIG. 1. Geometrical configuration of the DQD and the crystal-
lographic orientations. The DQD array is aligned along the [01-1]
crystallographic axis, which is denoted by x, and each dot is located
at x = ±d . The B field is applied in the [0-1-1] direction. The x′y′

plane, that is spanned by [010] and [001] crystallographic axis, is
used to express the spin-orbit interaction.

well [20]. The geometry of the DQD is depicted in Fig. 1.
The spin states involving the phonon-mediated transition
processes are summarized in Figs. 2(a) and 2(b). We
assume that the two-electron DQD is set in the resonant
condition of the (1, 1) and (0, 2) charge states, at which
|↑↓(1, 1)〉, |↓↑(1, 1)〉, |T+(1, 1)〉, |T−(1, 1)〉, and |S(0, 2)〉
are energetically equivalent, and their energy differences

FIG. 2. (a) Energy diagram which explains the phonon-induced
spin-flip tunnel processes in the two-electron DQD. A phonon ex-
citation from |T+(1, 1)〉 to the excited state of |T+(0, 2)〉 (Process
I), which is followed by the intradot spin-flip relaxation processes
from |T+(0, 2)〉 to |S(0, 2)〉 (Process II), is illustrated. (b) Transition
diagram of the two-electron spin states with phonon excitations.

among the spin states of the (1, 1) charge state are negligible
compared to the phonon thermal energy (see the detailed
description in Appendix A). Here, Tν where ν = ± and S
denote the spin triplet and singlet states, respectively. Note
that since we assume that the DQD is an isolated system, the
electron number in the DQD is conserved. In addition, the
(2, 0) charge state cannot be occupied because the energy is
much higher than that of the (1, 1) and (0, 2) charge states
in this setup. The excited states |Tν (0, 2)〉 where ν = 0, ±
are also taken into the consideration and are only accessed
via the phonon excitation processes, that are discussed in
detail in the next section [see also Fig. 2(a)]. We define
|�i〉 as the wave function of state i derived without the
diagonalization of the two-electron Hamiltonian for the
spin-orbit interaction (see Appendix A for the definition
of |�i〉). Thus, |�1〉, |�2〉 = |↑↓(1, 1)〉, |↓↑(1, 1)〉, and
|�3〉, |�4〉 = |T+(1, 1)〉, |T−(1, 1)〉. |�5〉 = |S(0, 2)〉, and
|�6〉, |�7〉, |�8〉 = |T+(0, 2)〉, |T−(0, 2)〉, |T0(0, 2)〉.

III. ELECTRON-PHONON INTERACTION

Next, we introduce the electron-phonon interaction. Fig-
ure 2(a) shows the energy diagram of the two-electron spin
states in the DQD, which are involved in the phonon-mediated
spin-flip tunnel processes. For the initial state, |T+(1, 1)〉, the
electron residing in the left QD can be excited to the 2p orbital
in the right QD, and the two electrons form |T+(0, 2)〉 [Process
I in Fig. 2(a)]. Secondly, after this phonon-assisted interdot
tunnel, the electron in the 2p orbital rapidly relaxes to the 1s
orbital in the right QD to form |S(0, 2)〉, accompanied by the
spin flip and the phonon emission [Process II in Fig. 2(a)].
Note that for |T−(1, 1)〉, the same sequential phonon-mediated
process to |S(0, 2)〉 via |T−(0, 2)〉 takes place. Thus, this in-
direct spin-flip process between |T±(1, 1)〉 and |S(0, 2)〉 via
|T±(0, 2)〉 is added to the original direct spin-flip transitions
between |T±(1, 1)〉 and |S(0, 2)〉, and therefore, the total spin-
flip rates between |T±(1, 1)〉 and |S(0, 2)〉 increase.

To estimate these phonon-mediated transition rates, we
take into account the electron-phonon interaction. The Hamil-
tonian of the electron-phonon interaction is

Ĥe-p =
∑
μ,k

∑
i j

�μ,k,i j |ξi〉〈ξ j |(b̂†
μ,k + b̂μ,−k ), (1)

where μ and k represent the mode and the wave num-
ber of a phonon, respectively, and b̂μ,k and b̂†

μ,k are the
corresponding annihilation and creation operators satisfying
the commutation relation: [b̂μ,k, b̂†

μ′,k′ ] = δμ,μ′δk,k′ . �μ,k,i j ≡
λμ,k〈ξi|eik·r1 + eik·r2 |ξ j〉. ri represents the position of the ith
electron, and λμ,k is the electron-phonon coupling parameter.
|ξi〉 is the eigenstates of the two-electron spin wave functions
and in an orthonormal basis for the first-order perturbation
theory for the spin-orbit interaction (see Appendix A for a de-
scription of how to derive |ξi〉 from |�i〉). Hence, please note
that |ξ1〉, |ξ2〉 � |↑↓(1, 1)〉, |↓↑(1, 1)〉, and |ξ3〉, |ξ4〉 �
|T+(1, 1)〉, |T−(1, 1)〉. |ξ5〉 � |S(0, 2)〉, and |ξ6〉, |ξ7〉, |ξ8〉 �
|T+(0, 2)〉, |T−(0, 2)〉, |T0(0, 2)〉. In addition, we note that |ξi〉
is used only for the phonon-induced transitions, in order to
take into account the simultaneous action of the spin-orbit
interaction and the electron-phonon interaction, and the other
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TABLE I. Summary of the definitions for the wave functions
used in the paper.

Single electron wave functions from the
Fock-Darwin states

ψi (i = L, R, R∗)

Single electron wave functions
orthogonalized for the interdot overlap

ψ̃i (i = L, R, R∗)

Spin wave functions of two electrons χi (i = S, T 0, T ±)
Two-electron wave functions constituted
by ψ̃i and χi

�i (i = 1, . . . , 8)

Orthogonalized Two-electron wave
functions for the spin-orbit interaction

ξi (i = 1, . . . , 8)

transitions taking place in the ground states are calculated
by |�i〉 (see also Table I for the descriptions of the wave
functions used in the paper). Based on the Fermi’s golden rule,
the transition rate from level n to level m via absorption or
emission of one phonon is

γmn ≡ 2π

h̄

∑
μ,k

|�μ,k,mn|2
[
na

μ,kδ(εn − εm + h̄ωμ,k )

+(
na

μ,k + 1
)
δ(εn − εm − h̄ωμ,k )

]
, (2)

where na
μ,k is the phonon distribution function con-

tributing to the processes a = |ξ3〉 ↔ |ξ6〉 and |ξ4〉 ↔
|ξ7〉 (∼|T±(1, 1)〉 ↔ |T±(0, 2)〉) and a = |ξ5〉 ↔ |ξ6〉 and
|ξ5〉 ↔ |ξ7〉 (∼|S(0, 2)〉 ↔ |T±(0, 2)〉). In the global equi-
librium condition, based on spatial uniformity, nμ,k (T ) ≡
1/(eh̄ωμ,k/(kBT ) − 1), where k ≡ |k|. Here, to consider the
phonon temperature gradient over the DQD, we introduce in-
dividual phonon temperatures TL for the transition |ξ3〉 ↔ |ξ6〉
(and |ξ4〉 ↔ |ξ7〉), and TR for the transition |ξ5〉 ↔ |ξ6〉 (and
|ξ5〉 ↔ |ξ7〉). The transition rates between states |ξ5〉 and |ξ6〉,
and those between states |ξ3〉 and |ξ6〉 are described by using
the phonon temperatures:

�56 =γ0(1 + nμ,k�
(TR)), (3)

�65 =γ0nμ,k�
(TR), (4)

�36 =γ ′
0(1 + nμ,k�

(TL )), (5)

�63 =γ ′
0nμ,k�

(TL ), (6)

where � is the energy separation between |S(0, 2)〉 and
|T0(0, 2)〉 (see Appendix A), and k� ≡ �/(h̄cμ). �i j denotes
the transition rate from state j to i. The coefficients, γ0 and γ ′

0,
in Eqs. (3) and (5) are derived by the following calculations:

γ0 ≡ 2π

h̄

∑
μ,k

|�μ,k,56|2δ(� − h̄ωμ,k )

� 2π

h̄

∑
μ

〈|�μ,k,56|2〉k�
νμ(k�), (7)

γ ′
0 ≡ 2π

h̄

∑
μ,k

|�μ,k,36|2δ(� − h̄ωμ,k )

� 2π

h̄

∑
μ

〈|�μ,k,36|2〉k�
νμ(k�), (8)

where νμ(k) ≡ V k2/(2π2h̄cμ) and cμ are the phonon density
of states of mode μ and a sound velocity of μ, respectively.
μ denotes either a longitudinal acoustic phonon (μ = l) or a
transverse acoustic phonon (μ = t). V = L3 is the system vol-
ume. The square of the phonon matrix element, 〈|�μ,k,i j |2〉k�

,
is approximated by its average value over the surface of the
wave number space defined as |k| = k�:

〈|�μ,k,i j |2〉k�
≡ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ |�μ,k,i j |2||k|=k�

,

(9)

where the orientation of the wave number, k/k =
(sin θ cos φ, sin θ sin φ, cos θ ), is represented by the spherical
coordinate (see a red arrow in Fig. 1 for the definition of k).

For the derivation of the phonon matrix elements �μ,k,i j ,
we calculate the bracket product of 〈ξi|eik·r|ξ j〉 based on
the wave functions perturbed by the spin-orbit interaction.
Phonons do not alter the electron spin states and solely
interact with electrons individually; therefore, the nonzero
matrix elements of Ôk ≡ ∑

i=1,2 eik·ri , i.e., the main part of
the electron-phonon interaction Hamiltonian, is

〈ξn|Ôk|ξm〉 =
8∑

j=1, j′=1

C∗
n jCm j′ 〈� j |Ôk|� j′ 〉. (10)

At the weak coupling regime of a DQD, the off-diagonal
components can be neglected because they are much smaller
by a factor of e−d2/l2

0 than the diagonal components, where d is
half the distance between the two dots (see Fig. 1) and l0 is the
confinement length of an electron in the QD. Therefore, using
only the diagonal components, we can express the matrix
elements explicitly as

〈ξn|Ôk|ξm〉 �
8∑

j=1

C∗
n jCm jOR +

4∑
j=1

C∗
n jCm jOL

+ C∗
n5Cm5OR +

8∑
j=6

C∗
n jCm jOR∗ , (11)

where OL ≡ 〈ψ̃L|eik·r|ψ̃L〉, OR ≡ 〈ψ̃R|eik·r|ψ̃R〉 and OR∗ ≡
〈ψ̃R∗ |eik·r|ψ̃R∗ 〉 (see Appendix B for the definitions of a single
electron wave functions in the DQD, ψ̃L, ψ̃R, and ψ̃R∗ ). Based
on the above results, the off-diagonal element between state
|ξ6〉 (� |T+(0, 2)〉) and |ξ5〉 (� |S(0, 2)〉) is

〈ξ6|Ôk|ξ5〉 � ατLR∗

�EZ
(OL + OR) + β

� + EZ
(OR − OR∗ )

� ατLR∗

�EZ
(OL + OR) + β

�
(OR − OR∗ ), (12)

where it is assumed that Zeeman energy of a single electron
spin, EZ, satisfies that EZ � � from our previous experimen-
tal condition of B = 0.1 T [12]. τLR∗ is the tunnel coupling
between the ground state in the left QD and the first-excited
state in the right QD (see Appendix B for the definition of
τLR∗ ). α is the spin-orbit coupling between states 3 or 4 and
5, and β is that between states 5 and 6 or 7 (see Appendix A
for the definitions of α and β). For the weak interdot coupling
condition, since α is much smaller than EZ, the first term in
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FIG. 3. [(a)–(c)] Color-coded maps of |�l,k,36|2 calculated for the different k-vector orientations, θ and φ, at � = 0.6, 0.8, and 1.0 meV,
respectively. Phonons propagating in the angle marked in a bright color contribute to the electron-phonon interaction. Note that since the
electron-phonon interaction is symmetric with respect to z = 0, the color-coded maps are plotted only for 0 � θ � 0.5π . [(d)–(f)] Color-coded
maps of |�μ,k,56|2 calculated for the different k-vector orientations, at � = 0.6, 0.8, and 1.0 meV, respectively.

Eq. (12) can be ignored as

〈ξ6|Ôk|ξ5〉 � β

�
(OR − OR∗ ). (13)

Similarly, the off-diagonal element between states |ξ6〉 (�
|T+(0, 2)〉) and |ξ3〉 (� |T+(1, 1)〉) is

〈ξ3|Ôk|ξ6〉 � − τ ∗
LR∗

�
(OL − OR∗ ). (14)

Regarding the T− states, the off-diagonal elements between
states |ξ7〉 (� |T−(0, 2)〉) and |ξ5〉 (� |S(0, 2)〉) and between
states |ξ4〉 (� |T−(1, 1)〉) and |ξ7〉 (� |T−(0, 2)〉) can also be
determined:

〈ξ7|Ôk|ξ5〉 � β

�
(OR − OR∗ ), (15)

〈ξ4|Ôk|ξ7〉 � −τ ∗
LR∗

�
(OL − OR∗ ). (16)

Similarly, regarding the T0 state, the off-diagonal elements
between states |ξ1〉 and |ξ8〉 and between states |ξ2〉 and |ξ8〉
are described as 〈ξ1|Ôk|ξ8〉 � −〈ξ2|Ôk|ξ8〉 � −τ ∗

LR∗ (OL −
OR∗ )/(

√
2�). Note that since the spin wave functions of states

5 and 8 are orthogonal and the electron-phonon interaction
cannot alter the spin state of electrons in the QD, the transition
between the two states is not allowed. In addition, even if the
spin-orbit interaction accompanies the electron-phonon inter-
action, their simultaneous action changes the spin state from
|S(0, 2)〉 to either |T+(0, 2)〉 or |T−(0, 2)〉 and allows only the
transitions between states 5 and 6 and between states 5 and
7, as discussed above. Therefore, in our model, transitions
between states 5 and 8 never take place.

Next, we introduce the electron-phonon coupling coef-
ficient λμ,k, into the calculation of �μ,k,i j . The possible
contributions in GaAs QDs are related to the piezo-electric
effect and the deformation potential. We confirmed that, for a
phonon energy around � ∼ 1 meV, the electron-phonon cou-
pling is dominated by the deformation potential [16], and the
piezoelectric effect can be neglected [17]. Therefore, we only
considered the deformation potential. The electron-phonon
coupling coefficient of the deformation potential is described
by λμ=l,k = √

h̄/(2V ρcl )(−i
√|k|�), where ρ is the mass

density of GaAs, and cl is the velocity of a longitudinal
acoustic phonon. � is the deformation potential of GaAs. In
the following calculations, only longitudinal acoustic phonons
(μ = l) with the energy � are considered.

IV. EVALUATION OF THE PHONON-MEDIATED
SPIN-FLIP TUNNEL RATES

We calculated |�l,k,36|2 at |k| = k�. The color-coded maps
of |�l,k,36|2 as functions of θ and φ for the |S(0, 2)〉-|T0(0, 2)〉
energy separation � = 0.6, 0.8, and 1.0 meV are shown in
Figs. 3(a), 3(b) and 3(c), respectively. The physical constants
and parameters used in the calculations are listed in Table II.
Note that because of the symmetry of the DQD system with
respect to z = 0, we only plot in the range of 0 � θ � 0.5π .
The half interdot distance d is set to be 96 nm. Accord-
ing to the color-coded maps, the electron-phonon coupling
strength enhances only in 0 < θ < 0.2π . This indicates that,
for � in this energy range, only phonons which propagate
mostly perpendicularly to the xy plane can interact with the
electrons in the DQD. As confirmed by the definition of the
electron-phonon coupling [see Eqs. (7) and (8)], only phonons
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TABLE II. Values of the constants used in the calculations.

Mass density of GaAs, ρ 5300 kg/m3

Speed of sound for longitudinal phonons in GaAs, cl 4700 m/s
Deformation potential of GaAs, � [17] 13.7 eV
Electron Lande g factor −0.44
Quantum well length, lz 15 nm
Magnetic field, B 0.1 T
Spin-orbit length, λso [21–23] 1 µm

whose energy is in resonance with � contribute to the
electron-phonon coupling. In addition, the electron-phonon
coupling is maximized when the dimension of the in-plane
component of the phonon wave number vector along the
quantum well surface matches the lateral dimension of the
electron wave functions in the DQD. These two requirements
are simultaneously satisfied when θ ∼ 0.1π . Furthermore, in
these color-coded maps, more complicated structures origi-
nated from the interdot distance d appear. The color-coded
maps of |�l,k,56|2 calculated for the same values of � as
|�l,k,36|2, are shown in Figs. 3(d), 3(e) and 3(f). Since the
wave function of the excited state in the right QD, ψ̃R∗ , is
expanded mostly along the x axis (see Appendix B for the
definition of ψ̃R∗ ), the larger electron-phonon coupling shows
up at around φ = 0 and π .

We computed the spin-conserving tunnel rate �15 and the
spin-flip tunnel rate �35 for the ground states as functions of �

and d . Note that we assume that the time scale of the interdot
tunneling events is much larger than the coherence time of the
orbitals of electrons in the QD. In the weak coupling regime,
these rates are defined by using Fermi’s golden rule [24–26]:

�15(ε) = 2π

h̄
|〈�1|ĤQD_2e|�5〉|2P(ε)

= 2π

h̄
|τLR|2P(ε), (17)

where ĤQD_2e is the Hamiltonian of the two electrons
in the DQD without the electron-phonon interaction (see
Appendix A for the definition). τLR is the tunnel coupling
between the ground states in the DQD (see Appendix B for
the definition). ε and P(ε) are the energy detuning between
states 1 and 5 and the probability that the electrons exchange
energy ε with the surrounding environment, respectively [24].
P(ε) represents the broadening of the interdot tunnel rate
spectrum, for example by the time independent fluctuation of
the QD energy level induced by the gate voltage instability
[26]. We do not discuss the mechanism of P(ε), but from pre-
vious experimental studies, it can be assumed that �15(ε) =
�15 exp(−ε2/2δ2

ε ), where δε represents the linewidth of the
interdot tunnel rate spectrum. Thereby, by integrating both
sides of Eq. (17) by ε, the incoherent tunnel rates under the
resonance condition, i.e., for ε = 0, can be described as

�15 =
√

2π |τLR|2
h̄δε

. (18)

In the calculations, we adopted δε ∼ 100 μeV estimated from
our previous experiment [12]. Similarly, the spin-flip tunnel
rates between the ground states of the left and right QDs, �35,

is

�35 =
√

2π |α|2
h̄δε

. (19)

Figures 4(a) and 4(b) show the calculated values of �15 and
�35 plotted as functions of � and d . Both rates show a very
similar dependence in the plane of � and d , meaning that
the spin-flip tunnel rate of the ground states is proportional
to the spin-conserving tunnel rate. This behavior is consistent
with previous experimental and theoretical studies [17,23,27].
Next, we calculated the transition rates, γ0 and γ ′

0, for various
values of � and d . Figure 4(c) shows γ0 plotted for the differ-
ent �. Note that since γ0 is the transition rate of the intradot
spin-flip process, it is independent of the interdot distance d .
γ0 stays at around 400 kHz for 0.4 � � � 1 meV [13–15,28].
γ ′

0 calculated for various values of � and d is shown in the
color-coded map of Fig. 4(d). γ ′

0 varies over a much wider
range than γ0. The dependence on d is understood by the
fact that the interdot tunnel coupling energy increases as d
decreases. Furthermore, the � dependence of γ ′

0 is also ex-
plained by the interdot tunnel coupling, because l0 decreases
as � increases [see Eq. (B15)] in Appendix B), and e−d2/l2

0

in τLR decreases accordingly. We chose � = 0.8 meV and
d = 100 nm for the following calculations, in such a way that
�15 is on the orders of a few kHz, and �35 is below a few Hz as
obtained in our previous experimental study. For those values
of � and d, �15 ∼ 2.2 kHz, �35 ∼ 0.47 Hz, γ0 ∼ 410 kHz,
and γ ′

0 ∼ 170 Hz are calculated.
Next, we calculated the phonon-mediated spin-flip tunnel

rates in the DQD when the phonon temperatures in the left
and right QDs, i.e., TL and TR, are different. If γ0 � γ ′

0, we
can describe the spin-flip tunnel rate from the left to right QD,
�R←L, as follows [12] [see Fig. 2(b) and Appendix D].

�R←L � �53 + �63

= �53 + γ ′
0nl,k�

(TL ). (20)

For the opposite tunneling direction, by considering the oc-
cupation probabilities of the spin states of (0, 2) for a case
that the intradot phonon excitation rates (�65, �75) and the
intradot phonon relaxation rates (�56, �57) are much faster
than the other transition rates, we describe the spin-flip tunnel
rate from the right to left QD, �L←R as

�L←R � �56

�65 + �56
(�35 + �45) + 2�65

2�65 + �56
�36

= 2
nl,k�

(TR) + 1

3nl,k�
(TR) + 1

�35 + 2nl,k�
(TR)

3nl,k�
(TR) + 1

× γ ′
0[1 + nl,k�

(TL )], (21)

where �56/(2�65 + �56) represents the occupation probability
of either state 6 or 7, and 2�65/(2�65 + �56) does that of state
5 in the (0, 2) charge state. We assume that the Zeeman energy
induced by the B field is sufficiently small compared to a ther-
mal energy of electrons in the DQD, so that states 3 and 4, and
states 6 and 7 are nearly degenerated, i.e., �35 � �45, �53 �
�54, �65 � �75, and �56 � �57. We plot �R←L with respect
to TL in Fig. 5(a), where d = 96 nm and � = 0.8 meV. When
TL > 2 K, since the population of phonons with the energy
� starts to increase, the phonon-mediated interdot transitions
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FIG. 4. (a) Color-coded map of the spin-conserving tunnel rate �15 calculated for � and d . (b) Color-coded map of the spin-flip tunnel rate
�35 calculated for � and d . (c) γ0 plotted with respect to the singlet-triplet energy separation �. (d) Color-coded map of γ ′

0 plotted in the plane
of � and d .

from state 3 to 6 and from state 4 to 7 start to take place
frequently, and �R←L increases with increasing TL. Similarly,
�L←R is plotted as functions of TL and TR in the color-coded
map of Fig. 5(b) and increases above about TR = 2 K due to
the frequent phonon-mediated spin-flip excitations from state
5 to states 6 and 7.

A more intriguing feature appears in the temperature de-
pendence of the ratio of �L←R/�R←L. We plot it with respect
to TL and TR in the color-coded map shown in Fig. 5(c). The
map can be divided into five characteristic regions: When
TL, TR < 2 K, the ratio is constant at 2, which is simply
determined by the ratio of �35 + �45 to �53. When TL < 2 K
and TR > 2 K, the phonon excitation processes take place only
in the right QD. Therefore, only �L←R increases, and the
ratio �L←R/�R←L increases accordingly. In contrast, when
TL > 2 K and TR < 2 K, the phonon excitation processes take
place only in the left QD. Therefore, only �R←L increases, and
the ratio decreases accordingly. For TR > TL > 2 K, the ratio
is larger than that in the equilibrium condition of TL = TR.
This behavior can be understood by the fact that the phonon
excitation in the right QD is more frequent than that in the left
QD. For TL > TR > 2 K, the behavior is reversed. To show the
imbalance of the spin-flip tunnel rates more clearly, we plot
the �L←R/�R←L vs. TR for different temperature gradients,
i.e., TL = rTR, in Fig. 5(d). First, for the equilibrium case of
r = 1, the ratio stays at 2 for low temperatures and decreases
above around 1 K. Note that the factor 2 is originated from the
ratio of (�35 + �45)/�53. Furthermore, the ratio �L←R/�R←L

approaches 2/3 at higher TL. This is explained by the fact that
states 5, 6, and 7 are equally populated at higher TL and TR

and that γ ′
0 � �35, �53. Thus, the value of 2/3 is determined

by the proportion of the occupation probability of either state
6 or 7 out of states 5, 6, and 7. For TL < TR, the ratio is
clearly different from the behavior of the equilibrium case
and increases at TL > 1 K. The increase of the ratio is larger
for the smaller r, i.e., larger temperature gradient between the
QDs. For TL > TR, the ratio can be smaller than 2/3 when the
temperature gradient is larger.

V. OCCUPATION PROBABILITIES OF THE
TWO-ELECTRON SPIN STATES

Next, we calculated the occupation probabilities of the
respective spin states, [refer to the transition diagram in
Fig. 2(b)] for different values of TL and TR. We considered
the occupation probabilities of either |S(0, 2)〉, |T±(0, 2)〉, or
|T0(0, 2)〉 in the (0, 2) charge state, P02 ≡ P5 + P6 + P7 + P8,
and those of the anti-parallel spin states PAP ≡ P1 + P2, and
the parallel spin states, PP ≡ P3 + P4, in the (1, 1) charge
state, where Pi (i = 1, · · · , 8) denotes the occupation prob-
ability of state i in the transition diagram in Fig. 2(b).
Figures 6(a)–6(c) show the color-coded maps of P02, PAP, and
PP, respectively. When TL, TR < 2 K, since the occupations of
the ground states dominate, P02 = 0.2, and PAP, PP = 0.4. In
the case of TR > TL > 2 K, PAP decreases, and PP increases.
This behavior is explained by more phonon excitation from
state 5 to either 6 or 7 and the imbalance between �36 and
�63 and between �47 and �74 (i.e., �36 > �63 and �47 > �74).
Thus, states 3 and 4 are more populated by the phonon-
mediated spin-flip transition from state 5 to 3 via state 6 or
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FIG. 5. (a) Spin-flip tunnel rate from the left to right QD, �R←L , plotted as a function of TL . (b) Color-coded map of the spin-flip tunnel
rate from the right to left QD, �L←R, plotted as functions of TL and TR. (c) Color-coded map of the spin-flip rate ratio, �L←R/�R←L , plotted
with respect to TL and TR. A dashed line indicates TL and TR satisfying P02 ∼ 0.2 [see Fig. 6(a)]. (d) �L←R/�R←L ratio for various temperature
gradients, i.e., TL = rTR, plotted as a function of TR. The colors correspond to the values of r as shown in the annotation in the figure. (e)
�L←R/�R←L ratio extracted from 5(c) at P02 ∼ 0.2 [see a dashed line in (c) and Fig. 6(a)] is plotted by a black line. The same ratio at the
equilibrium condition, i.e., TL = TR, is plotted by a green line, as a reference.

FIG. 6. [(a)–(c)] Color-coded maps of P02, PAP, and PP, respectively, calculated for TL and TR. (d) P02 (red), PAP (green), and PP (blue)
plotted as a function of TR under the equilibrium condition, i.e., TL = TR. PAP, and PP take the same value. (e) PAP and PP extracted from (b) and
(c), respectively, at P02 ∼ 0.2 [see a dashed line in [(a)–(c)]].
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from state 5 to 4 via state 7. On the other hand, in the case of
TL > TR > 2 K, since more phonon excitation from state 3 (4)
to state 6 (7) takes place, and state 3 (4) is depopulated, result-
ing in the increase of the occupation probability of either state
1 or 2, PAP, and of the probability of the (0, 2) charge state,
P02. Next, we considered the equilibrium case, i.e., TL = TR,
and the occupation probabilities P02, PAP, and PP are shown
in Fig. 6(d). Note that PAP, and PP overlap completely in the
equilibrium condition. Above TR = 2 K, PAP, and PP start to
decrease from 0.4 while P02 increases from 0.2.

In our previous experiment, (see Fig. 4(b) in Ref. [12]),
P02 was constant at around 0.2, while PAP decreased and
PP increased from 0.4. These behaviors of the occupation
probabilities are clearly different from those calculated in the
equilibrium condition shown in Fig. 6(d). In order to compare
the theoretically calculated occupation probabilities with the
experimental result, we extract the PAP and PP for TL and
TR that satisfy P02 ∼ 0.2 (see a dashed line in Fig. 6(a)).
Figure 6(e) shows P02, PAP, and PP along the dashed line.
Unlike the equilibrium case shown in Fig. 6(d), while PAP

decreases above TR = 2 K, and PP increases around the same
temperature. These behaviors of PAP and PP are in very good
agreement with our experimental result. We can conclude
that the characteristic imbalance of the occupation probability
between parallel and anti-parallel spin configurations shown
in Ref. [12] was not caused by the phonon temperature in-
crease but by the phonon temperature gradient in the DQD
system. In addition, the black dashed line of P02(TL, TR) = 0.2
in Fig. 6(a) predicts what kind of phonon temperature gradient
was actually generated by a nearby phonon source QD [12].

Finally, we make a brief comment on the ratio of �L←R to
�R←L. As mentioned in the previous paragraph, our previous
experimental study showed P02(TL, TR) ∼ 0.2 for all values
of a bias voltage applied on a nearby phonon source QD.
Therefore, we calculated the ratio as a function of TR under
the condition of P02(TL, TR) ∼ 0.2, as shown by a black line in
Fig. 5(e). A green line in Fig. 5(e) is the ratio calculated at the
equilibrium condition, i.e., TL = TR, extracted from Fig. 5(d)
and is shown as a reference data. The ratio �L←R/�R←L cal-
culated under the nonequilibrium condition increases above
TR = 2 K, while that of the equilibrium condition decreases.
Although in our previous study [12], we plotted the ratio as
a function of the applied bias voltage of a nearby phonon
source QD instead of the phonon temperatures, this behavior
of �L←R/�R←L is in good agreement with our experimen-
tal result as well (see Fig. S5 in Supplemental Material of
Ref. [12]).

VI. CONCLUSION

In conclusion, we theoretically investigated the phonon-
mediated spin-flip tunnel processes in the two-electron DQD
under a phonon temperature gradient over the DQD, to re-
produce our previous experimental result [12]. The spin-flip
tunnel processes via the |T±(0, 2)〉 states are strongly en-
hanced when the thermal energy of acoustic phonons exceeds
the excitation energy of the triplet states. Furthermore, the
spin-flip tunnel rates in opposite tunneling directions to each
other is significantly affected by the phonon temperature
gradient. The occupation probabilities of the respective spin

states are significantly modified as well by the phonon tem-
perature gradient. These behaviors are in excellent agreement
with our previous experimental result. In addition, the calcu-
lations regarding the occupation probabilities indicates that as
long as P02(TL, TR) is kept at a certain constant value like our
previous experiment, the DQD in the nonequilibrium environ-
ment realizes a spin-pumping-like effect that makes either the
parallel spin state or antiparallel spin state in the (1, 1) charge
state more occupied. Since the spin-pumping-like effect can
be regarded as thermodynamic work conducting on spins by
a heat flow at the DQD, our DQD system can work as meso-
scopic heat engines using single spins as working substances.
If the phonon temperatures in QDs can be controlled individu-
ally in the coupled QD systems, more interesting spin-related
thermodynamic functions of QDs would be realized.
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APPENDIX A: HAMILTONIAN OF THE TWO-ELECTRON
DQD SYSTEM WITH THE SPIN-ORBIT INTERACTION

We considered the two-electron spin configurations of the
(1, 1) and (0, 2) charge states in the DQD. The geometry of
the DQD is illustrated in Fig. 1. For the parameters defining
the DQD, we refer to our previous experiment [12]. The two
QDs are aligned along the GaAs crystallographic orientation
of [01-1]. An in-plane magnetic field B is applied along the
[0-1-1] direction. The total Hamiltonian of the two-electron
system is

Ĥ = ĤQD_2e + Ĥph + Ĥe-p, (A1)

where ĤQD_2e is the Hamiltonian of two electrons in the DQD.
Ĥph and Ĥe-p are the phonon Hamiltonian and the electron-
phonon interaction, respectively. In this section, we derive the
Hamiltonian matrix of ĤQD_2e in the end. First, we define the
Hamiltonian of an electron in the DQD system, ĤQD_1e, as

ĤQD_1e = Ĥ0 + ĤZ + Ĥso + Ĥdet, (A2)

where Ĥ0 represents the kinetic energy and the potential en-
ergy of an electron in the DQD. The Zeeman term and the
spin-orbit interaction are denoted as ĤZ and Ĥso, respectively.
Ĥdet = eEx is an energy detuning between the QDs induced
by a linear electric field E applied across the DQD. Here, we
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define Ĥ0 in the xy plane as

Ĥ0 = − h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, y).

We consider a parabolic electrostatic potential V (r), with the
local minima at r = (±d, 0):

V (x, y) = h̄2

2m∗l4
0

min{(r − d)2, (r + d)2}, (A3)

where l0 is the confinement length of an electron in the QD,
typically 30 to 100 nm, and m∗ = 0.067m0 is the effective
mass of electrons in GaAs. Note that the spatial shift of the
potential minima induced by Ĥdet is dismissed in our calcu-
lation [29]. It also should be noted that we set the external
magnetic field B to be sufficiently small (∼0.1 T) such that
a magnetic confinement energy is negligible compared to the
original QD confinement energy h̄ω0 = h̄2/(m∗l2

0 ). Therefore,
B only defines the spin eigenstates by the Zeeman effect.

The Hamiltonian of the Zeeman term is described as ĤZ =
(gμB/2)B · σ̂, where g and μB are the Lande g factor of an
electron spin in the QD and the Bohr magneton, respectively.
σ̂ is the vector of the Pauli-spin operators. Furthermore, we
make a comment on a local Zeeman energy induced by the
Overhauzer field of nuclear spins, inducing the energy differ-
ence between |↑↓(1, 1)〉 and |↓↑(1, 1)〉. In previous studies
[30], a nuclear field is typically 1–5 mT. In such a case, for a
weakly coupled DQD, the Zeeman energy difference between
the two dots becomes comparable with the exchange energy
difference between |S(1, 1)〉 and |T0(1, 1)〉. Therefore, the
eigenstates of the antiparallel spin configurations of the (1, 1)
charge state are not |S(1, 1)〉 and |T0(1, 1)〉 but |↑↓(1, 1)〉 and
|↓↑(1, 1)〉. In addition, it is assumed that the Zeeman energy
originated from the external B field is much stronger than that
of the local nuclear field and the exchange energy for |S(1, 1)〉
and |T0(1, 1)〉. Therefore, it is safely assumed that |T±(1, 1)〉
are good quantum basis in this configuration of the weakly
coupled DQD system.

The two-electron wave functions involved in the
phonon-mediated spin-flip processes are defined, by using
a single electron wavefunction of the 1s orbital in the left
QD, ψ̃L(r), and that of the 1s and 2p orbitals in the right
QD, ψ̃R(r), and ψ̃R∗ (r) (see Appendix B for the detailed
expressions of the wave functions). The wave functions
of |↑↓(1, 1)〉, |↓↑(1, 1)〉, |T+(1, 1)〉, |T−(1, 1)〉, |S(0, 2)〉,
|T+(0, 2)〉, |T−(0, 2)〉, and |T0(0, 2)〉 are described as follows
[see the transition diagram in Fig. 2(b)]:

�1 ≡ 1√
2

(ψ̃L(r1)ψ̃R(r2)χ↑1χ↓2

− ψ̃R(r1)ψ̃L(r2)χ↓1χ↑2), (A4)

�2 ≡ 1√
2

(ψ̃R(r1)ψ̃L(r2)χ↑1χ↓2

− ψ̃L(r1)ψ̃R(r2)χ↓1χ↑2), (A5)

�3 ≡ 1√
2

(ψ̃L(r1)ψ̃R(r2) − ψ̃R(r1)ψ̃L(r2))χT +, (A6)

�4 ≡ 1√
2

(ψ̃L(r1)ψ̃R(r2) − ψ̃R(r1)ψ̃L(r2))χT −, (A7)

�5 ≡ ψ̃R(r1)ψ̃R(r2)χS, (A8)

�6 ≡ 1√
2

(ψ̃R(r1)ψ̃R∗ (r2) − ψ̃R∗ (r1)ψ̃R(r2))χT +, (A9)

�7 ≡ 1√
2

(ψ̃R(r1)ψ̃R∗ (r2) − ψ̃R∗ (r1)ψ̃R(r2))χT −, (A10)

�8 ≡ 1√
2

(ψ̃R(r1)�R∗ (r2) − ψ̃R∗ (r1)ψ̃R(r2))χT 0, (A11)

where χS and χT ν represent the spin wave functions of the
spin triplet and singlet states, respectively. To describe the
spin wave functions, we define χ↑i and χ↓i for i = 1, 2, which
denote the spin wave functions of the i-th electron spin and
satisfy χ

†
↑iχ↑ j = χ

†
↓iχ↓ j = δi j and χ

†
↑iχ↓ j = 0. Then, the spin

wave functions of the spin singlet χS and triplet states χT ν are
described as follows:

χS ≡ 1√
2

(χ↑1χ↓2 − χ↓1χ↑2), (A12)

χT + = χ↑1χ↑2, (A13)

χT 0 = 1√
2

(χ↑1χ↓2 + χ↓1χ↑2), (A14)

χT − = χ↓1χ↓2. (A15)

Note that the spin-quantization axis is selected to be par-
allel to the in-plane magnetic field, B [(see Fig. 1(a)]. The
two-electron Hamiltonian without the spin-orbit interaction is
Ĥ0Z_2e ≡ ∑

i=1,2{Ĥ(i)
0 + Ĥ(i)

Z + Ĥ(i)
det} + Ĥint, where Ĥint rep-

resents the Coulomb interaction. Then, the diagonal matrix
elements of Ĥ0Z_2e are

〈�1|Ĥ0Z_2e|�1〉 = εL + εR + V, (A16)

〈�2|Ĥ0Z_2e|�2〉 = εL + εR + V, (A17)

〈�3|Ĥ0Z_2e|�3〉 = εL + εR + V + gμBB, (A18)

〈�4|Ĥ0Z_2e|�4〉 = εL + εR + V − gμBB, (A19)

〈�5|Ĥ0Z_2e|�5〉 = 2εR + εdet + U, (A20)

〈�6|Ĥ0Z_2e|�6〉 = εR + εR∗ + εdet + U ′ + gμBB, (A21)

〈�7|Ĥ0Z_2e|�7〉 = εR + εR∗ + εdet + U ′ − gμBB, (A22)

〈�8|Ĥ0Z_2e|�8〉 = εR + εR∗ + εdet + U ′. (A23)

where V and U are the inter- and intra-QD charging energy,
respectively. U ′ = U − K , where K (> 0) is the change in the
Coulomb interaction energy between |S(0, 2)〉 and |Tν (0, 2)〉
[20]. εL and εR are the eigenenergies of the left and right QDs,
and εR∗ is that of the first excited state in the right QD (see
Appendix B). εdet � 2eEd is the energy detuning between the
(1, 1) and (0, 2) charge states. Note that the dependence of the
intra-QD charging energy on the wave functions ψ̃L, and ψ̃R is
neglected. The off-diagonal matrix elements of Ĥ0Z_2e, which
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represent the interdot tunnel coupling, are

〈�1|Ĥ0Z_2e|�5〉 = 〈�2|Ĥ0Z_2e|�5〉 = τLR, (A24)

〈�3|Ĥ0Z_2e|�6〉 = 〈�4|Ĥ0Z_2e|�7〉 = −τLR∗ , (A25)

and

〈�1|Ĥ0Z_2e|�8〉 = −〈�2|Ĥ0Z_2e|�8〉 = −τLR∗/
√

2. (A26)

The definitions of τLR and τLR∗ are described in Appendix B.
Finally, the Hamiltonian of the spin-orbit interaction is

Ĥso = h̄

m∗λD
(−p̂x′ σ̂x′ + p̂y′ σ̂y′ )

+ h̄

m∗λR
( p̂x′ σ̂y′ − p̂y′ σ̂x′ ), (A27)

where λD and λR are the spin-orbit lengths for the Dresselhaus
and Rashba interactions, respectively. The x′ and y′ axis are
set along [010] and [001] in GaAs, respectively, as depicted
in Fig. 1. The angle between the x and x′ axis is denoted by δ.
The coordinates of the xy and x′y′ planes can be transformed
as (x′, y′) = (x cos δ + y sin δ,−x sin δ + y cos δ), using the
angle δ. In the xy plane, the spin-orbit interaction Hamiltonian
is simply given by (see Appendix C for the derivation)

Ĥso = − h̄

m∗

[
cos 2δ

λD
p̂xσ̂y +

(
sin 2δ

λD
− 1

λR

)
p̂yσ̂y

]
. (A28)

In our previous experimental study in Ref. [12], δ = π/4 was
chosen. In this condition, the off-diagonal elements involved
in the spin-orbit interaction can be described by

〈�3|
∑
i=1,2

Ĥ(i)
so |�5〉 = 〈�4|

∑
i=1,2

Ĥ(i)
so |�5〉 = h̄2

m∗
dID

λso
, (A29)

where i = 1, 2, which represents the individual electrons in
the DQD. The effective spin-orbit inverse-length is defined as
λ−1

so ≡ λ−1
R − λ−1

D . The interdot inverse dipole element, dID, is
given as

dID ≡
∫

d2rψ̃∗
L (r)

∂

∂y
ψ̃R(r). (A30)

Similarly, the off-diagonal elements of Ĥso between |�5〉 and
|�6〉 and between |�5〉 and |�7〉 are

〈�6|
∑
i=1,2

Ĥ(i)
so |�5〉 = 〈�7|

∑
i=1,2

Ĥ(i)
so |�5〉 = − h̄2

m∗
dR

λso
, (A31)

where the inverse dipole matrix element in the right QD, dR,
is

dR ≡
∫

d2rψ̃∗
R∗ (r)

∂

∂y
ψ̃R(r). (A32)

To summarize the above discussion, the Hamiltonian
matrix of the two electrons in the laterally coupled DQD are
expressed in terms of the basis states, (|�1〉; · · · ; |�8〉):

ĤQD_2e =
∑
i=1,2

{
Ĥ(i)

0 + Ĥ(i)
Z + Ĥ(i)

so + Ĥ(i)
det

} + Ĥint

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 τLR 0 0 −τLR∗/
√

2
0 0 0 0 τLR 0 0 τLR∗/

√
2

0 0 EZ 0 α −τLR∗ 0 0
0 0 0 −EZ α 0 −τLR∗ 0

τ ∗
LR τ ∗

LR α∗ α∗ ε β β 0
0 0 −τ ∗

LR∗ 0 β∗ ε′ + EZ 0 0
0 0 0 −τ ∗

LR∗ β∗ 0 ε′ − EZ 0
−τ ∗

LR∗/
√

2 τ ∗
LR∗/

√
2 0 0 0 0 0 ε′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A33)

where the diagonal elements are expressed as the difference
from the reference energy, εL + εR + V . The Zeeman energy
is described as EZ ≡ gμBB. ε ≡ εR − εL + εdet + U − V is
the energy detuning between |�1〉 or |�2〉 and |�5〉, and
ε′ ≡ εR∗ − εL + εdet + U ′ − V is that between |�1〉 or |�2〉
and |�8〉. Note that there is a local Zeeman energy differ-
ence between |�1〉 and |�2〉, but since it is assumed that
the local Zeeman energy difference is much smaller than EZ

and �, it can be negligible in the Hamiltonian ĤQD_2e and
in the following calculation. The off-diagonal elements are
α ≡ h̄2dID/(m∗λso) and β ≡ −h̄2dR/(m∗λso). In the following
derivations, we consider only the resonant condition where
the energies of |�5〉 and |�1〉 are equivalent, i.e., ε = 0, by
choosing εdet appropriately [see Fig. 2(a)]. Furthermore, in
such a case, the energy separation between |�5〉 and |�8〉 is
described as � = ε′ = εR∗ − εR − K .

By diagonalizing the matrix in Eq. (A33), we obtain the
eigenenergies and corresponding two-electron wave func-

tions: ĤQD_2e|ξn〉 = En|ξn〉, where the eigenfunctions can be
expanded as |ξn〉 = ∑8

j=1 Cn j |� j〉. Since the inter-QD tunnel
coupling and the spin-orbit interactions are relatively weak,
the off-diagonal elements of ĤQD_2e are assumed to be very
small. Therefore, the first-order perturbation theory can be
applied to obtain the two-electron wave functions: Cn, j �
〈� j |Ĥ1|�n〉/(E0

n − E0
j ) for n �= j, and Cn,n = 1, where Ĥ1 is

a matrix comprising the off-diagonal elements of ĤQD_2e, and
E0

n is the n-th diagonal element of ĤQD_2e.

APPENDIX B: ELECTRON WAVE FUNCTIONS
IN THE DQD

We assume that the Fock-Darwin states are suitable for
representing the electron wave functions of the DQD [31–34].
The ground states in the left QD, ψL, those in the right
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QD, ψR, and the first excited state in the right QD, ψR∗

are

ψL(r) = 1√
π l0

exp

[
− (x + d )2 + y2

2l2
0

]
, (B1)

ψR(r) = 1√
π l0

exp

[
− (x − d )2 + y2

2l2
0

]
, (B2)

ψR∗ (r) = ψ+
R∗ (r) cos φa + ψ−

R∗ (r)eiφb sin φa, (B3)

respectively. For, ψ±
R∗ (r), we use the linear combination of the

wave functions of the 2p orbitals:

ψ±
R∗ (r) = x − d ± iy√

π l2
0

exp

[
− (x − d )2 + y2

2l2
0

]
. (B4)

Considering the shape of the DQD potential in the sample
used in Ref. [12], the wave function along the x axis has
lower energy. Therefore, the wave functions of the excited
states are assumed to expand along the x axis, i.e., φa ∼ π/4,
and φb ∼ 0. We chose φa = π/4 and φb = 0.1π in such a
way that γ ′

0, �15, and �35 are in the same order as the values
obtained in our previous study [12]. The Fock-Darwin wave
functions of the different dots overlap each other, whereas the
wave functions in the QDs should be orthogonal to each other.
To avoid the overlaps, we introduced the extended Hund-
Mulliken approach [29]. The wave functions having a small
interdot overlap are mostly orthogonalized by the following
treatments:

ψ̃L(r) ≡ 1

Ng

[
ψL(r) − S

2
ψR(r) − 2SpψR∗ (r)

]
, (B5)

ψ̃R(r) ≡ 1

Ng

[
ψR(r) − S

2
ψL(r)

]
, (B6)

ψ̃R∗ (r) ≡ 1

Ne
[ψR∗ (r) + SpψL(r)], (B7)

where S and Sp are defined as

S ≡
∫

d2rψ∗
L (r)ψR(r), (B8)

Sp ≡
∫

d2rψ∗
L (r)ψR∗ (r), (B9)

and Ng � 1 − 3S2/4 and Ne � 1 + S2
p are the normalization

coefficients. We note that these newly defined wave func-
tions, ψ̃L, ψ̃R, and ψ̃R∗ , are almost orthonormalized in the
limit of the weak interdot coupling. For the z component of
the wave functions, ψz(z), the lowest eigenstate of the rect-
angular well model with infinite barriers is considered with
the quantum well length lz. The wave function is described
as ψz(z) = √

2/lz cos(πz/lz ), where −lz/2 � z � lz/2. The z
component of the wave functions, ψz, is multiplied to the wave
functions of the xy plane, Eqs. (B5)–(B7), for the calculation
of the electron-phonon interaction, because ψz involves the
momentum matching between an electron and a phonon in the
electron-phonon interaction. For simplicity, the wave function
ψz is omitted in the following expressions.

The eigenenergies of the ground states in the left and right
QDs, εL and εR, and that of the first excited state in the right
QD, εR∗ , are calculated by using Ĥ0 as∫

d2rψ̃∗
L (r)Ĥ0(r)ψ̃L(r) ≡ εL, (B10)∫

d2rψ̃∗
R (r)Ĥ0(r)ψ̃R(r) ≡ εR, (B11)∫

d2rψ̃∗
R∗ (r)Ĥ0(r)ψ̃R∗ (r) ≡ εR∗ . (B12)

The off-diagonal matrix elements of Ĥ0 represent the tunnel
coupling between the ground states in the two dots, τLR, and
that between the ground state in the left QD and the first-
excited state in the right QD, τLR∗ :∫

d2rψ̃∗
L (r)Ĥ0(r)ψ̃R(r) ≡ τLR, (B13)∫

d2rψ̃∗
L (r)Ĥ0(r)ψ̃R∗ (r) ≡ τLR∗ , (B14)

where the parameters τLR, and τLR∗ are complex numbers in
general.

Furthermore, the energy separation between |S(0, 2)〉 and
|T0(0, 2)〉, �, is determined by the summation of the orbital
spacing h̄ω0 in the QD and the Coulomb interaction between
two electrons [35]. By using the ratio of � to the QD orbital
spacing h̄ω0, δST , the electron confinement length in the QD,
l0, is determined by � and δST :

l0 =
√

h̄

m∗ω0
= h̄

√
δST

m∗�
. (B15)

According to Ref. [35], the value of δST is determined by the
confinement length of an electron in the QD l0 and the Bohr
radius defined by the Coulomb interaction. For the calcula-
tions in this paper, we adopted the typical reported value of
the ratio δST ∼ 0.5 [36].

APPENDIX C: SPIN-ORBIT INTERACTIONS

For the Dresselhaus-type spin-orbit interaction, the mo-
mentum terms in the xy plane are

p̂x′ σ̂x′ + p̂y′ σ̂y′ = − p̂xσ̂x cos 2δ + p̂xσ̂y sin 2δ

+ p̂yσ̂x sin 2δ + p̂yσ̂y cos 2δ. (C1)

The Rashba-type spin-orbit interaction is transformed to the
expression in the xy plane:

p̂′
xσ̂

′
y − p̂′

yσ̂
′
x =p̂xσ̂y − p̂yσ̂x. (C2)

Thus,

Ĥso = h̄

m∗

[
−cos 2δ

λD
p̂xσ̂x +

(
sin 2δ

λD
+ 1

λR

)
p̂xσ̂y

×
(

sin 2δ

λD
− 1

λR

)
p̂yσ̂x +cos 2δ

λD
p̂yσ̂y

]
. (C3)

Because the B field is applied along the −y axis, the spin is
oriented to the same direction. Therefore, the terms includ-
ing σ̂y do not contribute to the spin-flip process and can be
dismissed. Summing up the transformations, the spin-orbit
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interaction Hamiltonian in the xy plane is described as

Ĥso = h̄

m∗

[
−cos 2δ

λD
p̂xσ̂x +

(
sin 2δ

λD
− 1

λR

)
p̂yσ̂x

]
. (C4)

Furthermore, since the −y axis is the quantized axis of a spin,
nspin

z , in the spin space, the Pauli matrix σ̂x′ is replaced with
−σ̂y, and the Hamiltonian described as Eq. (A28).

APPENDIX D: OCCUPATION PROBABILITIES

To evaluate the occupation probabilities from spin state 1 to
8 in Fig. 2(b), we formed the following Master equations using
the transition rates:

dP1

dt
=−(�51 + �81)P1(t ) + �15P5(t ) + �18P8(t ), (D1)

dP2

dt
=−(�52 + �82)P2(t ) + �25P5(t ) + �28P8(t ), (D2)

dP3

dt
=−(�53 + �63)P3(t ) + �35P5(t ) + �36P6(t ), (D3)

dP4

dt
=−(�54 + �74)P4(t ) + �45P5(t ) + �47P7(t ), (D4)

dP5

dt
=�51P1(t ) + �52P2(t ) + �53P3(t ) + �54P4(t )

−(�15 + �25 + �35 + �45 + �65 + �75)P5(t )

+�56P6(t ) + �57P7(t ), (D5)

dP6

dt
=�63P3(t ) + �65P5(t ) − (�36 + �56)P6(t ), (D6)

dP7

dt
=�74P4(t ) + �75P5(t ) − (�47 + �57)P7(t ), (D7)

dP8

dt
=�81P1(t ) + �82P2(t ) − (�18 + �28)P8(t ), (D8)

where Pi(t ) (i = 1, · · · , 8) is the occupation probability of
state i in the transition diagram of Fig. 2(b). We solved these
equations for a case of the steady states, i.e., dPi/dt = 0,
and evaluated the occupation probabilities of all spin states.
The transition rates are calculated by the following relations:
�15 = �25 = �51 = �52, �35 = �45 = �53 = �54, �56 =
�57, �65 = �75, �36 = �47, �63 = �74, �18 = �28 = �36/2,
and �81 = �82 = �63/2.
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