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Controlling the excitation spectrum of a quantum dot array with a photon cavity
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We use a recently proposed quantum electrodynamical density theory functional in a real-time excitation
calculation for a two-dimensional electron gas in a square array of quantum dots in an external constant
perpendicular magnetic field to model the influence of cavity photons on the excitation spectra of the system.
The excitation is generated by a short electrical pulse. The quantum dot array is defined in an AlGaAs-GaAs
heterostructure, which is in turn embedded in a parallel plate far-infrared photon microcavity. The required
exchange and correlation energy functionals describing the electron-electron and electron-photon interactions
have therefore been adapted for a two-dimensional electron gas in a homogeneous external magnetic field.
We predict that the energies of the excitation modes activated by the pulse are generally redshifted to lower
values in the presence of a cavity. The redshift can be understood in terms of the polarization of the electron
charge by the cavity photons and depends on the magnetic flux, the number of electrons in a unit cell of the
lattice, and the electron-photon interaction strength. We find an interesting interplay of the exchange forces in a
spin-polarized two-dimensional electron gas and the square-lattice structure leading to a small but clear blueshift
of the excitation mode spectra when one electron resides in each dot.

DOI: 10.1103/PhysRevB.108.115306

I. INTRODUCTION

The interest in using photon cavities to control and in-
fluence processes in chemistry and properties of physical
systems has been growing in recent years [1–6]. At the same
time, experiments show that a two-dimensional electron gas
(2DEG) in an AlGaAs-GaAs heterostructure can be placed in
a high-quality-factor terahertz cavity in an external magnetic
field, and the high polarizability of the 2DEG makes it possi-
ble to attain a nonperturbative coupling of electrons with the
cavity photons [7].

The influence of the electron-photon interaction on the
properties of a homogeneous free 2DEG (without the mutual
Coulomb interaction between the electrons) in a parallel plate
photon microcavity and an external magnetic field have been
studied [8–10].

The effects of the electron-photon interaction together
with the electron-electron Coulomb interaction have been
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modeled in nanoscale electronic systems with few electrons
using configuration interaction (CI) approaches (exact nu-
merical diagonalization) in truncated many-body Fock spaces
[11–13]. For electron systems with a higher number of
electrons different quantum electrodynamical density func-
tional approaches have been used, involving coupling of the
Maxwell equations through response functions [14–16], or the
use of explicit quantum electrodynamical density functional
theory (QEDFT) functionals with no direct photon variables
[17], and direct inclusion of electron-photon coupling into
density functional theory (DFT) [18].

An excellent introduction to, and a review on, time-
dependent density functional theory (TDDFT) can be found
in Ullrich [19]. In our previous work [20] we revealed the
effects of electron-photon interaction on the orbital and spin
magnetization of a cavity-embedded quantum dot array. Here
we test the QEDFT approach in a nonequilibrium setting and
investigate the excitation of collective modes (e.g., dipole and
quadrupole density modes) by a real-time pulse. Different
types of real-time approaches have been applied to electronic
systems described with DFT models [18,21–25], just to cite a
few. In order not to be bound to the linear response regime,
we rely on the Liouville–von Neumann equation (L–vNE) for
the density operator [26]. This approach to the time evolution
of the system after excitation was originally employed by the
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present group for investigating a spinless Hartree-interacting
periodic 2DEG in an external magnetic field [26]. To this
formalism we make modifications in order to incorporate the
spin degree of freedom, the exchange and correlation poten-
tials, and the corresponding functional for the electron-photon
interaction.

Encouraging to our real-time QEDFT modeling is our
former investigation that found a redshift of the dipole ex-
citation modes in a model of few electrons interacting with
one cavity photon mode, where the electron-electron and
the electron-photon interactions are described with an exact
numerical diagonalization in a truncated Fock space, i.e.,
where a configuration interaction is used [13]. In Ref. [13],
and later publications [27], where a full account is taken
of the electron confinement potential and the shape of
the resulting charge density for a double-dot system, we
studied electron transport through an open electron-photon
system, but here, in an extended two-dimensional array of
quantum dots the exact diagonalization method becomes
intractable.

The main task of this paper is to predict the effects of a
photon cavity on the far-infrared (FIR) excitation spectrum
of an array of quantum dots in GaAs heterostructures, mea-
sured in absorption or Raman scattering. These collective
excitations are in the range of few meV’s and are formed by
electron transitions in the conduction band. We find a redshift
of the collective modes depending on several factors, like the
number of electrons in each dot, the external magnetic field,
and the strength of the electron-photon interaction. Addition-
ally, we notice a small blueshift of the modes only caused
by the electron-electron exchange forces for odd number of
electrons in each dot, strongest for one electron. The main
drives for our interest are the fast experimental advances for
the measurements of 2DEG’s in GaAs heterostructures and
photon microcavities [7].

The paper is organized as follows: In Sec. II we describe
first briefly the static model in Sec. II A, and subsequently
the modeling of the time evolution of the excited system in
Sec. II A. The results and discussion thereof are found in
Sec. III, with the conclusions drawn in Sec. IV.

II. MODEL

We consider an array of interacting quantum dots defined
in a 2DEG, under external excitation, and, additionally, placed
in a cavity which supports a single-photonic mode of energy
h̄ωγ . We assume that the 2DEG is placed in the centered
x-y plane of the cavity. To model this complex system we
follow a two-step strategy: (i) First, we assume that at equi-
librium the hybrid cavity-QD array device is described by an
effective single-electron static Hamiltonian Hstat which em-
bodies the electron-electron and electron-photon interactions
via suitable exchange-correlation functionals. (ii) Second, the
effects of the real-time excitation V ext are analyzed by solving
the Liouville–von Neumann equation associated to Hstat +
V ext (r, t ). Let us recall here that this approach allows us to
go beyond the linear response approximation (see Ref. [26]).
Note also that in this work the application of the L–vNE is
extended by including the spin degree of freedom and the
exchange-correlation Coulomb functionals.
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FIG. 1. The periodic potential Vper (x, y) defining the square array
of quantum dots.

A. Static system

The dynamically two-dimensional electrons reside in a
square lattice of quantum dots defined by the potential

Vper (r) = −V0

[
sin

(
g1x

2

)
sin

(
g2y

2

)]2

, (1)

where V0 = 16.0 meV, see Fig. 1. The superlattice array is
defined by the vectors R = nl1 + ml2, where n, m ∈ Z. The
unit vectors are l1 = Lex and l2 = Ley. The inverse lattice
is formed by G = G1g1 + G2g2 with G1, G2 ∈ Z and the unit
vectors

g1 = 2πex

L
and g2 = 2πey

L
, (2)

where L = 100 nm is the lattice period. The number of elec-
trons in each dot is noted by Ne. We use GaAs parameters
m∗ = 0.067me, κ = 12.4, and g∗ = 0.44. The 2DEG is in a
perpendicular homogeneous magnetic field B = Bẑ expressed
by the vector potential A = (B/2)(−y, x) using the circular
gauge in order to facilitate analogous handling of the x and y
Cartesian coordinates selected here for representation of the
wave functions and the electron density.

The interacting many-body system will be described
by an effective single-electron Hamiltonian implied by the
Kohn-Sham equations [28]

Hstat = H0 + HZee + VH + Vper + Vxc + V EM
xc , (3)

where

H0 = 1

2m∗ π2, with π =
(

p + e

c
A

)
. (4)

HZee = ±g∗μ∗
BB/2 is the Zeeman term, and the direct

Coulomb interaction is given by the Hartree potential

VH(r) = e2

κ

∫
R2

dr′ �n(r′)
|r − r′| , (5)

where �n(r) = ne(r) − nb, with +enb being the homo-
geneous positive background charge density needed to
guarantee charge neutrality of the total system, and −ene(r)
is its electron charge density. μ∗

B is the effective Bohr
magneton. The potential Vxc represents the exchange and
correlation effects due to the Coulomb interaction within
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FIG. 2. The Fourier power spectra for quadrupole excitation (Q2) for three different excitation wave vectors (upper left panel), The induced
density δne(r, t ) = ne(r, t ) − ne(r, 0) at t = 4 ps for kiL ≈ 0 (upper right), kiL ≈ π (lower left), and kiL ≈ 2π (lower right) for i = x, y.
pq = 4, Ne = 2, and λl = 0. For the kL ≈ π case the evolution of the system is monitored from 0–70 ps. The same range is used for induced
density δne(r, t ) with yellow color for the upper limit of the color scale and black at its bottom.

the local spin-density approximation (LSDA) [20], and V EM
xc

is the corresponding potential derived from the exchange
and correlation energy functional associated with the
electron-photon interactions introduced by Flick [17] and
adapted to a 2DEG in a magnetic field by the present authors
[20]. Importantly, this last functional depends on the electron
density and its gradient and represents the first attempt to
establish a “simple” functional for a quantum electrodynamic
density functional theory (QEDFT) based on the adiabatic-
connection fluctuation-dissipation theorem [29,30] to describe
interacting electron-photon systems [17]. Interestingly,
parallels can be found in the description of the van der Waals
interaction, a dynamical interaction of mutually induced
dipoles [31,32].

The spin-dependent exchange-correlation potential Vxc is
calculated as

Vxc,σ (r, B) = ∂

∂nσ

(neεxc[n↑, n↓, B])|nσ =nσ (r) (6)

using the exchange and correlation functional εxc calculated
in Appendix A of Ref. [20]. The exchange and correlation

potential for the electron-photon interaction is given as

V EM
xc =

{
∂

∂ne
− ∇ · ∂

∂∇ne

}
EGA

xc (ne,∇ne, λ) (7)

with the electron-photon interaction strength λ. More tech-
nical details on the exchange and correlation functionals for
the electron-electron and electron-photon interactions are to
be found in the Appendixes of Ref. [20].

In order to maintain an analogous handling of the Cartesian
x and y coordinates in the wave functions we use a basis
designed by Ferrari [33] and used by others to investigate the
properties of a modulated 2DEG in a magnetic field [34,35].
In order to use a notation for the states and wave functions
in accordance with recent publications [20,26] we use |αθσ )
and ψαθσ (r) for the states and the wave functions (orbitals) of
the “QEDFT interacting” equilibrium 2DEG (3), described in
details in Ref. [20]. α is a composite quantum number labeling
the Landau bands and their subbands. Each Landau band is
split into pq subbands, where pq is the integer number of
magnetic flux quanta flowing through the unit of the square
L × L 2D Bravais lattice. σ ∈ {↑,↓} is the z-spin component
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FIG. 3. The Fourier power spectra for dipole (Q1) (a), quadrupole (Q2) (b), current (Qj) (c), and monopole (Q0) (d) excitation. pq = 4,
Ne = 2, kxL ≈ 0, kyL ≈ 0, and h̄ωγ = 1.0 meV. The two vertical red lines in (a) indicate the location of the center-of-mass dipole excitations
according to the generalized Kohn theorem for λl = 0.

and θ = (θ1, θ2) ∈ {[−π, π ] × [−π, π ]} is the location in the
first Brillouin zone (BZ). The external homogeneous magnetic
field defines the magnetic length l = [h̄c/(eB)]1/2 and in order
to have it commensurate with the lattice length L we set
2π l2 pq = L2 here [33,36]. Due to the commensurate length
scales L and l , and the properties of the electron-electron
Coulomb interaction and of the electron-photon interaction
the time-independent problem can be solved in each point of
the BZ leading to Landau-band dispersion information, like is
shown in Fig. 4 in Ref. [20].

B. Time evolution of the excited system

As we excite the strongly modulated 2DEG with a circu-
larly polarized external potential pulse

V ext (r, t ) =Vt{(�t )2e−�t }[cos (kyy) cos (�t )

+ cr cos (kxx) sin (�t )] (8)

with cr = ±1, a new length scale defined by the wave vector
(kx, ky) will be forced on the system mixing up states at
different points in the BZ. To accommodate to this in the
calculations we need to extend the BZ to θ ∈ {[−pπ, pπ ] ×
[−qπ, qπ ]} in order to use the periodicity of ψαθσ (r) with
respect to θ to ensure the continuity of the wave functions
across zone boundaries in reciprocal space.

The parameters γ and � determine the shape of the initial
excitation pulse applied to the system. The Fourier transform

of the excitation pulse determines the excitation frequencies
offered to the system and thus the energy fed to it. We have
taken care to offer high enough frequencies to the system to
have all relevant intraband and interband transitions seen in
the frequency range indicated in each figure. Not too large
modifications of the two parameters will thus only result in
changes in the relative height of the peaks seen in the figures.

In order to continue with the viewpoint of describing the
cavity photon interacting 2DEG system with an effective
single-electron Hamiltonian the total Hamiltonian of the time-
dependent system is

H (t ) = Hstat + V ext (r, t ) (9)

with Hstat defined by Eq. (3). The time evolution of the den-
sity operator ρ is governed by the nonlinear Liouville–von
Neumann equation (L–vNE)

ih̄∂tρ(t ) = [H[ρ(t )], ρ(t )]. (10)

For the first four terms of Hstat [on the right-hand side of
Eq. (3)] we use the methods introduced in Ref. [26], but here
we obtain coupled equations for ρ↑ and ρ↓ in the extended
Hilbert space formed by the states |αθσ ).

The direct electron Coulomb repulsion term (5) is linear in
�n, but the exchange and correlation terms used to derive Vxc

and V EM
xc are generally not linear in ne. The terms depending

on the electron density ne(r) are constructed in r = x + R with
x in the primitive unit of the square Bravais lattice and the
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FIG. 4. The Fourier power spectra for dipole (Q1) (a) (upper left), quadrupole (Q2) (b), current (Qj) (c), and monopole (Q0) (d) excitation.
pq = 4, Ne = 2, kxL ≈ π , kyL ≈ π , and h̄ωγ = 1.0 meV. The two vertical red lines in (a) indicate the location of the center-of-mass dipole
excitations according to the generalized Kohn theorem for λl = 0.

potentials Vxc(r) and V EM
xc (r) are then Fourier transformed to

reciprocal space q = k + G with k in the primitive inverse
lattice. The choice of the impulse, or the wave vector, in the
excitation pulse (8) has to be done in accordance with the trun-
cations for R and G in the construction of these terms. In order
to maximize the accuracy of the components of the density
gradient ∇ne, an additional pair of Fourier transforms is used.

The L–vNE (10) is solved on a time grid and within each
time step iterations are used to consistently update the spin
densities, both density operators, and the exchange and corre-
lation potentials derived from them [26].

To analyze the effects of the excitation and the electron-
photon coupling on the periodic array of quantum dots at each
time step, we calculate the averages 〈Ô〉 = Tr{Ôρ(t )} for the
dipole operators Ô = x̂ and Ô = ŷ, the quadrupole operator
Ô = ŷx − 〈ŷ〉〈x̂〉, and the monopole operator Ô = x̂2 + ŷ2 −
〈x̂〉2 − 〈ŷ〉2 with the matrix elements of Ô evaluated with a
spatial integral over just one unit cell [26,37]. We label the
dipole operator Q1, quadrupole operator as Q2 and use Q0 for
the monopole operator. All the above averages are related to
collective modes with density variations. In order observe ro-
tational collective divergence-free modes (transverse modes)
we use the current density j = −eṙ = −(ie/h̄)[H (t ), r] and
calculate [38]

Q j = 1

l2ωc
〈i(r × ṙ) · ẑ〉, (11)

which is directly proportional to the orbital part of the
magnetization measured in one cell, or the orbital angular
momentum in the cell. Qj is connected to the cyclotron res-
onance, which is more familiar in homogeneous 2DEGs, but
is also present in modulated systems [26,39,40]. In addition,
for selected points in time we evaluate the time-dependent
induced electron density δne(r, t ) = ne(r, t ) − ne(r, 0). The
time-dependent electron density is evaluated via the density
operator

ne(r, t ) = Tr{δ(r̂ − r)ρ(t )}

= 1

(2π )4

∫
dθ dθ′ ∑

αβσ

ψ∗
αθσ (r)ψβθσ ′ (r)ρσ

βθ′,αθ
(t ).

(12)

III. RESULTS

For the initial excitation pulse we use h̄� = 6.5 meV,
h̄� = 1.5 meV, Vt = 0.01 meV, and cr = +1. The time step is
chosen to be 0.02 ps and the time duration of the pulse is from
t = 0 to 8 ps. The time evolution of the system is calculated
for 100 ps, unless otherwise stated for individual runs. The
electron-photon interaction strength λl is measured in

√
meV

[17,20] and only one photon mode is considered with energy
h̄ωγ = 1.0 meV. Whether we evaluate the total mean energy
of the system directly as an average of the time-dependent
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FIG. 5. The Fourier power spectra for dipole (Q1) (a), quadrupole (Q2) (b), current (Qj) (c), and monopole (Q0) (d) excitation. pq = 4,
Ne = 1, kxL ≈ 0, kyL ≈ 0, and h̄ωγ = 1.0 meV. Note the clear blueshift of the dipole excitation and the higher amplitudes of the quadrupole
peak as the strength of the electron-photon λl increases. The two vertical red lines in (a) indicate the location of the center-of-mass dipole
excitations according to the generalized Kohn theorem for λl = 0.

Hamiltonian (9), as is done in the Hartree approximation, or
take the more appropriate DFT point of view, the total mean
energy remains constant after the initial pulse dies out at t = 8
ps and the trace of the density matrix remains constant.

We remind the reader here that the cavity photons are
not present in the calculation, but their effects on the elec-
tron density are included in the electron-photon exchange
and correlation energy functionals. The only external parame-
ters to the electron-photon exchange and correlation energy
functional are the coupling λl and the photon energy h̄ωγ .
Otherwise, it depends only on the electron density and its
gradient.

In order to employ reasonable cutoffs for the inverse and
the direct lattice sums in the numerical calculations and in-
vestigate collective modes in experimentally relevant regimes
in FIR spectroscopy we generally use kiL ≈ 0 with i = x, y,
but in Fig. 2 we compare the excitation of quadrupole modes
through Q2 and the induced electron density for kL ≈ 0, π ,
and 2π for pq = 4 and Ne = 2. The high-kL values might be
attainable by some extreme Raman scattering scheme, but we
present these results to show the consistency in the handling
of the excitation impulse or wave vector.

In Fig. 2 the induced density δne(r, t ) = ne(r, t ) − ne(r, 0)
displays a significant quadrupole modulation. For Ne = 2 we
see this for pq = 4 and 3, but not to the same extent for the
lower magnetic flux values pq = 1 and 2 (not shown here).

For kL ≈ 0 we use kxL = kyL = 4×10−4 in the cosine terms
in Eq. (8) for the excitation pulse, but (�k)L = (θ − θ′) = 0
in matrix elements between different points in the unit inverse
lattice [see Eqs. (19) and (20) in [26]]. Similar choice is used
for kL ≈ π and 2π , i.e., (θ − θ′) = π or 2π , but kL = π +
4×10−4, and kL = 2π + 4×10−4, respectively. (The small
shift, 4×10−4, away from π and 2π is used to avoid μ = π

and ν = π in the Ferrari basis [33].)
As expected, the Q2 excitation peaks for kL ≈ 0 and 2π

coincide within numerical accuracy, but the peak for kL ≈ π

is shifted reflecting the completely different character of that
excitation. A look at the dipole excitation Q1 (not shown
here) shows a set of two exactly overlapping peaks, but of
different heights as the wave vectors in the excitation pulse (8)
differ. An excitation pulse (8) with circular polarization leads
to relatively strong contribution of quadrupole and rotational
modes, but a pulse with linear polarization promotes stronger
dipole modes in the excitation spectrum.

Next, we investigate the influence of the cavity photon
interaction on the excitation spectrum of the square array
of quantum dots. In Fig. 3 we show the results for pq = 4,
Ne = 2, and kL ≈ 0 for three different values of the electron-
photon coupling. For two electrons in a dot at this magnetic
field we expect the extended version of the Kohn theorem [41]
to be almost fulfilled, i.e., the electrons “see” almost parabolic
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FIG. 6. The Fourier power spectra for dipole (Q1) (a), quadrupole (Q2) (b), current (Qj) (c), and monopole (Q0) (d) excitation. pq = 3,
Ne = 2, kxL ≈ 0, kyL ≈ 0, and h̄ωγ = 1.0 meV. The two vertical red lines in (a) indicate the location of the center-of-mass dipole excitations
according to the generalized Kohn theorem for λl = 0.

confinement and the dipole excitation is a simple oscillation of
their center of mass.

In Fig. 3(a) the expected location of the dipole excitation
peaks is indicated by two vertical red lines (see [26] for an
analysis of the periodic confinement potential). Indeed, the
dipole excitation peaks coincide very well with the expected
Kohn peaks for λl = 0, and they are redshifted for nonzero
electron-photon coupling, like calculations using exact nu-
merical diagonalization for one photon mode interacting with
two electrons in a different confinement potential have shown
[13]. Similar redshift is found for the quadrupole Q2 excita-
tion shown in Fig. 3(b) as a function of the electron-photon
interaction strength λl . The location of the quadrupole peaks
in relation with the dipole peaks is in accordance with earlier
results for quantum dots [26,42,43]. The location of the ro-
tational excitation peaks Qj corresponds with results from a
real-time Hartree approximation [26], i.e., they coincide with
the dipole peaks and their redshifts are in accordance with the
redshift of the dipole peaks. In accordance with the fact that
the dipole oscillations are mainly center-of-mass (c.m.) oscil-
lations, the monopole excitation spectrum seen in Fig. 3(d)
only shows very low peaks and broad features.

The concurrent increase in the oscillator strength of the
upper dipole peak as it is redshifted with increasing λl can be
understood as an increasing weight of a bulk mode as the po-
larization of the charge density is increased, and the opposite

effect is seen for the lower dipole peak, the “edge mode.” With
this in mind we can understand the decrease of the strength
of the quadrupole mode as an effect of increased screening
of the angular-dependent structure facilitated by the charge
polarizability caused by the electron-photon interaction. Here,
we emphasize that we characterize the two dipole modes as
edge and bulk modes with respect to the electron density in
each dot as has been done earlier for the calculation of the
excitation modes in single quantum dots with confinement
weaker than parabolic [48].

In Fig. 4 we present the excitation spectra for an array
of quantum dots with the same number of electrons per unit
cell and magnetic flux (pq = 4) as was seen in Fig. 3, but
now the excitation has a much larger wave vector kL ≈ π

which breaks the condition for a simple harmonic excitation
described by the Kohn theorem.

Still, the electron-photon interaction redshifts all the exci-
tation peaks like before, but now extra features can be seen
for the largest coupling, and clearly stronger monopole exci-
tations can be seen reflecting some kinds of breathing modes.
This last point is related to the excitation of monopole modes
in Raman scattering [44–46].

So, what happens as we go back to the parameters used for
the results presented in Fig. 3, but now instead of two electrons
in a dot we set Ne = 1? The first thought might be that as the
electron is deeper in the dot potential we must have even a
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FIG. 7. The Fourier power spectra for dipole (Q1) (a), quadrupole (Q2) (b), current (Qj) (c), and monopole (Q0) (d) excitation. pq = 2,
Ne = 3, kxL ≈ 0, kyL ≈ 0, and h̄ωγ = 1.0 meV.

better adherence to the Kohn theorem. The results presented in
Fig. 5 show is that this simple line of thoughts is not adequate
to describe the situation. We are forgetting an important fact,
the array structure with rather short period and the role of
the exchange force that is maximized by the electron number
being an odd low integer. The generalized Kohn theorem
states that only c.m. oscillations are excited by an external
electric field with wavelength much larger than the dot if
the electrons are parabolically confined in it, independent of
the interaction between the electrons as long as they are pair
interactions, only depending on their relative positions. For
two electrons in a dot the intradot Coulomb interaction is
strong and creates no problem regarding the Kohn theorem,
but the interdot interaction makes a small deviation that is
seen in Fig. 5, especially regarding the location of the lower
Q1 excitation peak. For Ne = 1 the situation is different, the
exchange force creates an enhanced gap between the occupied
lowest subband and the unoccupied higher subbands and all
peaks in the excitation spectra are blueshifted by the strong
Coulomb exchange interaction. On top of this the electron-
photon interaction adds a redshift like earlier.

Very similar behavior is found for the excitation spectra for
Ne = 2 and the lower magnetic field corresponding to pq = 3
displayed in Fig. 6. As the magnetic length is now a bit longer
and the electrons “feel” more of the nonparabolic part of the
confinement potential leading to slightly more deviation from
the simple Kohn results. Still, the weak monopole excitation
spectrum seen in Fig. 6(d) indicates only a slight deviation

from the Kohn results judging from the main peak, but the
several low-intensity peaks in the lower-energy range hint at
a small overlapping of the charge density of the dots. Again,
the electron-photon interaction leads to a redshift of all the
excitation peaks with similar characteristics as was seen for
the pq = 4 cases.

In order to observe the effects of the electron-photon in-
teraction on the excitation spectrum for the system when it
is not protected by the Kohn theorem, we choose two cases.
First, we show in Fig. 7 the excitation spectra for the lower
magnetic field corresponding to pq = 2 and Ne = 3, where
electron charge density is not vanishingly small between the
dots in the array. Accordingly, the dipole spectrum (a) has
one strong peak and two much lower peak regions caused by
the splitting of the lower Kohn peak by the square symmetry
of the array [47]. The redshift caused by the electron-photon
interaction is smaller just like the change in the orbital mag-
netization has been seen to be smaller for a higher number of
electrons [20].

The second case, where the Kohn theorem does not apply,
is presented in Fig. 8, where pq = 1 and Ne = 1, so one elec-
tron in each dot, or unit cell of the lattice, at a low magnetic
field.

The dipole spectrum (a) shows a clear upper peak and
then a group of peaks lower in energy. The induced density
(not shown here) still shows clear c.m. oscillations, but with
some modification caused by the nonparabolic confinement
potential felt by the electrons. Importantly, for the low number
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FIG. 8. The Fourier power spectra for dipole (Q1) (upper a), quadrupole (Q2) (b), current (Qj) (c), and monopole (Q0) (d) excitation.
pq = 1, Ne = 1, kxL ≈ 0, kyL ≈ 0, and h̄ωγ = 1.0 meV.

of electrons, just one in each dot, we see again a large redshift
caused by a weak electron-photon interaction, but at the same
time there is a large all over blueshift due to the strong in-
terdot exchange force. The Kohn peaks for the dipole would
be approximately located at 7.8 and 8.8 ω/ωc. The complex
lower part of the dipole excitation spectrum reflects both the
weakening of the confinement potential away from a simple
parabolic confinement, and at the same time the influence of
the square symmetry of the dot array.

IV. CONCLUSIONS

We model the real-time excitation of a two-dimensional
electron gas in a periodic square array of quantum dots by
solving the Liouville–von Neumann equation associated with
a time-dependent QEDFT Hamiltonian. The DFT component
of the problem is nonlinear in the density operator, and the
electron density, and relies on a recently proposed energy
functional describing the interaction of the electrons with
randomly polarized cavity photons, that has been extended to
a two-dimensional electron gas in an external homogeneous
magnetic field.

This QEDFT approach shows that the spectra for the
dipole, the quadrupole, the monopole, and the rotational ex-
citations are all redshifted by the polarization of the electron
charge by the cavity photons. The redshifting of the excitation
modes is in accordance with earlier many-body calculations
for configuration interacting electrons and cavity photons in

small systems using truncated but large Fock spaces. The
influence of the cavity photons on the excitation spectra of
the system can be compared for consistency to the changes to
the orbital and spin magnetization of the system regarding the
dependence on the electron number and the external magnetic
flux. The calculations have moreover given us an insight into
the strong Coulomb exchange forces in the relatively short
period square lattice of quantum dots when one electron re-
sides in each dot, leading to a small blueshift of the excitation
spectra. In addition to the redshift of the excitation modes
caused by the electron-photon interaction, we notice how the
interaction increases the oscillator strength of the upper dipole
peak, but reduces the strength of the quadrupole peaks. These
effects can be understood in terms of the electron polarizabil-
ity and can be seen from the evolution of the charge density
with increasing electron-photon interactions (not shown here),
and in terms of an earlier analysis of the collective oscillations
of individual nearly parabolically confined quantum dots [48].
We concentrate our analysis on the effects of a photon-cavity
field on known FIR or Raman excitations in an array of
quantum dots in a GaAs heterostructure in light of possible
experiments. We are not searching for more complex topolog-
ical excitations that might exist in a finite array of quantum
dots as they have not been identified in FIR experiments in the
systems we aim at, and we are not convinced that our model
of an infinite array of dots in a magnetic field is well suited for
such search in its present form. For the same reasons we have
selected a weak excitation of the system with Vt = 0.01 meV
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and we have monitored in each calculation that only a small
energy is added to the system so that it can be described in the
linear response regime.

The earlier many-body calculations cited in the paper are
all done in large truncated Fock spaces for confined systems.
Due to the size of the single-electron basis needed in the
present calculation we can not use that methodology here, i.e.,
exact numerical diagonalization or CI (configuration interac-
tions). Thus, we resort here to a real-time QEDFT calculation.
In the previous work we could only observe the polarization of
the charge in a double quantum dot (embedded in a quantum
wire) in addition to the redshift of the dipole excitations of
a two-electron state in the double dot [13]. Here, we observe
the redshift of several collective excitation modes in an in-
finite array of quantum dots in an external magnetic field in
a photon cavity system. The latter system is a system were
the collective modes have been explored in both FIR and
Raman spectroscopy intensively in the 1990s. In the last eight
years high-mobility 2DEGs have been measured optically in
FIR-photon cavities, and we are thus predicting that soon the
optical spectrum of a 2DEG in an array of quantum dots could
be measured in a photon cavity.

The QEDFT approach employs an exchange and corre-
lation energy functional based on the adiabatic-connection
fluctuation-dissipation theorem and concepts derived from the
analysis of van der Waals interaction in physics and quantum

chemistry. Instead of directly utilizing the electron-photon
coupling or the Maxwell equations, this method represents a
“photon-free” approach, but focusing solely on their resultant
effects. Therefore, questions regarding the number of pho-
tons, photon replicas, and resonant transitions may thus not
have obvious answers. Nonetheless, the presented calculations
show that, on the one hand, this functional can reproduce
results found by pure many-body approaches, and on the other
hand, predicts measurable effects where the more involved
methods are difficult to apply.
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